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ABSTRACT

Next-generation high-resolution (km-scale) climate models promise unprece-
dented accuracy in climate projections, but realising their potential requires ro-
bust methods to quantify how well simulations align with real-world observa-
tions. Average-based metrics conventionally used for climate model evaluation
ignore the physics encoded in the finescale structures of km-scale simulations.
To overcome this limitation, we propose a novel, statistically principled evalua-
tion methodology based on the likelihood function of a generative image model.
Our method provides a continuous similarity metric derived from the likelihood
distribution of observation and simulation snapshots, which can redefine the eval-
uation, intercomparison, and parameter tuning of high-resolution climate models.
We demonstrate the applicability and interpretability of this method by evaluating
convective clouds simulated by two state-of-the-art global km-scale models, using
their outgoing infrared radiation fields. This work establishes a scalable pathway
toward observation-based evaluation of next-generation climate simulations.

1 INTRODUCTION

Climate models play a crucial role in understanding and predicting the Earth’s climate, providing the
foundation for assessments such as the Intergovernmental Panel on Climate Change (IPCC) reports,
which guide policy and societal responses to climate change (Pörtner et al., 2022). These models
integrate complex interactions between the atmosphere, oceans, land, and ice to simulate how the
climate responds to natural and human-induced changes (Stocker, 2011).

Global km-scale models are the frontier in climate modelling, simulating the atmosphere and ocean
at unprecedented resolution, with previously inaccessible physical detail Stevens et al. (2019). They
are being developed to address long-standing limitations of low-resolution models, which rely on
parameterisations to approximate unresolved processes such as convection, cloud formation, and
ocean eddies — approximations that drive major systematic errors and biases. By resolving these
processes more explicitly, km-scale models could substantially improve the accuracy of global and
regional climate projections. However, significant uncertainties remain due to parameterisations of
remaining subgrid-scale processes. To isolate, understand, and reduce these biases, km-scale models
need to be thoroughly evaluated.

Satellite observations are essential for evaluating km-scale models. A model that cannot reproduce
the characteristics of today’s climate cannot be trusted to realistically simulate future changes under
increased atmospheric carbon dioxide. Km-scale climate models simulate one possible trajectory
of the weather over many decades. The statistics of this simulated time series define the model’s
climate and should be consistent with observations. However, since weather is intrinsically stochas-
tic, individual simulated snapshots are not expected to match observed snapshots at that exact time.
Instead, the problem of climate model evaluation is to determine whether the model reproduces the
statistical properties of the observed climate system.

Traditionally, climate models are assessed by comparing spatio-temporally averaged outputs to ob-
servations, using skill metrics such as mean-square error and variance (Gleckler et al., 2008; Flato
et al., 2014). While informative, such metrics disregard the spatio-temporal structure of observed
and simulated fields which encodes essential information about the underlying physical processes
(Labe & Barnes, 2022). To improve models, performance must be explicitly linked to these physical
processes, which are localised in space and time. This requires local diagnostics of the statistical
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consistency between models and observations. Recent machine learning-based approaches have be-
gun to automate the evaluation of (km-scale) climate models. However, existing studies rely on
spatial or temporal averaging, or aggregate results over large regions, limiting their interpretability
(e.g., Brunner & Sippel, 2023; Mooers et al., 2023).

There are strong parallels between evaluating climate simulations and assessing deep generative
image models: in both cases, the goal is to determine whether the distribution of simulated data
matches that of the real world. Climate modellers recognise that simulations are imperfect, and do
not replicate observations exactly, but they require methods that can quantify statistical similarity.
Such methods are critical for testing new parameterisation schemes, identifying which parameter
choices yield realistic simulations, and comparing models that differ in modelling strategies and
produce distinct outputs. Despite the growing number of km-scale models in use, the field still lacks
robust and objective metrics to evaluate which models best capture the spatio-temporal structure of
the climate system.

Hence, a robust evaluation metric for high-resolution climate models is needed which: (1) assesses
models based on the statistics of simulated fields, without requiring paired simulations; (2) is local
in time, avoiding temporal averaging; (3) is local in space, avoiding both spatial averaging or only
assessing large areas at once; (4) evaluates a field directly observable (or closely related to those
observable) by satellites; (5) primarily evaluates the structures present in the field, rather than trivial
differences in means or other low-order statistics; and (6) provides a quantitative distance metric
that enables direct comparison across different model outputs.

To address this gap, we introduce a statistically motivated evaluation metric for assessing the re-
alism of km-scale climate models directly against snapshots of high-resolution satellite imagery.
First, we reproject the observation and model datasets to a square format better suited to train gen-
erative models. Second, we train a generative model exclusively on observational data in order to
learn a statistical representation of the observed climate system. Third, we compute the likelihood
distribution of observational and simulated data under the trained model, and assess the realism of
simulations based on the distance between the simulation and observation likelihood distributions.

We present a case study evaluation of two state-of-the-art km-scale models, the Integrated Fore-
casting System (IFS, Rackow et al., 2025) and the ICOsahedral Nonhydrostatic model (ICON, Ho-
henegger et al., 2023), against observations from NOAA’s Geostationary Operational Environmental
Satellite (GOES-16, Schmit & Gunshor, 2020). Our analysis focuses on convective thunderstorm
clouds, which are a major source of uncertainty in climate projections (Stephens et al., 2024). Un-
like traditional low-resolution models, km-scale models operate at sufficiently high resolutions to
directly simulate deep convection (Stevens et al., 2019). We evaluate simulated outgoing longwave
radiation (OLR), a quantity observable from satellites and commonly used as a proxy for high cloud
cover and convective activity, making it well suited for investigating deep convection.

In summary, this paper makes the following contributions:

1. We introduce a dataset-agnostic, likelihood-based evaluation metric for assessing high-
resolution global climate models via comparison with satellite observations.

2. We propose a general procedure for creating directly comparable observation and simula-
tion datasets for a fine-scale focused evaluation approach, homogenising diverse spherical
grid geometries and removing large-scale biases.

3. We demonstrate the utility of our method by evaluating simulated convective clouds in two
high-resolution climate models, showing that our metric can (a) identify systematic biases
from spatial snapshots alone, and (b) disentangle spatial and temporal sources of bias.

2 BACKGROUND

Geostationary satellite observations Atmospheric observations come from diverse platforms
such as surface stations, radiosondes, and aircraft, but these provide limited spatial and temporal
coverage. In contrast, modern geostationary satellites deliver continuous observations over wide re-
gions at nadir resolutions of ≤ 2 km (Schmit & Gunshor, 2020; Holmlund et al., 2021), making them
well suited for evaluating km-scale climate models. They measure radiances in visible and infrared
bands, from which quantities such as outgoing longwave radiation, surface temperature and cloud
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properties can be derived. Geostationary sensors sample the Earth on a grid that is regular in satellite
viewing geometry but projects to a curvilinear latitude-longitude grid, with highest resolution near
the sub-satellite point and coarser resolution toward the limb.

Figure 1: Example high-resolution snapshots of satellite observations and climate model simula-
tions. Left: globally merged geostationary satellite image (11µm brightness temperature) from the
preliminary ISCCP-ng dataset (CIMSS, 2025). Right: outgoing longwave radiation (OLR) field
simulated by the nextGEMS ICON model (Segura et al., 2025).

Geospatial data representation A key challenge in applying machine learning to atmospheric
and climate data is the representation, standardisation, and projection of input fields. While at-
mospheric variables are naturally defined on the spherical Earth, most machine learning frameworks
operate on rectilinear arrays. Data sources add further inconsistency: climate models employ diverse
non-rectilinear grids (e.g., octahedral (Rackow et al., 2025), icosahedral (Hohenegger et al., 2023)),
and satellites produce instrument-specific projections (e.g., derived from the viewing geometry of
a geostationary satellite). The lack of standardisation across Earth observation and climate model
outputs is one of the main bottlenecks for applying machine learning methods at scale (Francis &
Czerkawski, 2024). To enable meaningful comparisons between models and observations, datasets
are often remapped to regular latitude–longitude grids. However, this introduces systematic distor-
tions: pixels at higher latitudes cover smaller surface areas, inflating sampling density and biasing
evaluation metrics. More suitable projections are therefore required to ensure consistent analysis.

HEALPix map projection The HEALPix (Hierarchical Equal Area isoLatitude Pixelization)
scheme defines the sphere as 12 equal-area base pixels, recursively subdivided by powers of two
into a quasi-regular, curvilinear grid (Górski et al., 2005). Each pixel represents an identical sur-
face area, supporting consistent area-based metrics and fair comparisons across spatial domains.
HEALPix also defines a local square coordinate structure at each subdivision level, making it com-
patible with standard machine learning architectures that expect rectilinear arrays. Originally de-
veloped for astronomy, HEALPix is increasingly used in atmospheric science to integrate heteroge-
neous observational and model datasets (Segura et al., 2025).

Normalising flows Normalising flows are a family of generative models that use a sequence of
invertible and differentiable transformations to map a simple base distribution (e.g., a standard nor-
mal) into a complex target distribution matching the data of interest. Unlike other generative models
such as GANs or VAEs, which provide only implicit or approximate likelihoods, normalising flows
offer both tractable likelihood evaluation and efficient sampling. Early architectures such as NICE
(Dinh et al., 2015) and RealNVP (Dinh et al., 2017) demonstrated flows for density estimation,
while GLOW (Kingma & Dhariwal, 2018) scaled them to high-dimensional image domains. Neu-
ral Spline Flows (Durkan et al., 2019) introduced flexible, monotonic spline-based transformations
that further improved expressivity while more recently, TarFlow (Zhai et al., 2025) showed that
transformer-based normalising flows can achieve state-of-the-art likelihood performance and high
sample quality in image generation. In this work, we adopt Neural Spline Flows, which provide a
favourable balance of expressivity and parameter efficiency.

Machine learning for climate model evaluation The first applications of machine learning to
climate model evaluation demonstrate the potential of data-driven approaches for evaluating and in-
tercomparing climate models. Labe & Barnes (2022) used neural networks to identify which model
produced a given annual-mean surface temperature field, and Brunner & Sippel (2023) classified
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models versus observations from global daily-mean snapshots of near surface temperature. Mooers
et al. (2023) compared global km-scale models using variational autoencoders which captured phys-
ically meaningful information about convection from vertical velocity fields. However, because
vertical velocity cannot be directly observed, their framework cannot incorporate comparisons to
satellite data. More broadly, these studies depend on global snapshots, temporally averaged fields,
or variables that are not directly observable. None satisfy the requirements for a robust evaluation
metric for high-resolution models outlined in Section 1, a gap which we address in this work.

3 METHODS: LIKELIHOOD-BASED EVALUATION OF KM-SCALE MODELS

The key question that climate model evaluation aims to answer is how well a model datasets rep-
resents the real climate system. To answer this question, we need to determine how similar the
distribution of the model data is to observational data. Since the data is high dimensional, calculat-
ing the similarity between two such datasets is not straightforward. For this purpose, we propose an
evaluation framework based on the likelihood function of a generative image model (Figure 2). It
is trained on an observational dataset to learn its statistical distribution, and then places simulated
data within this statistical distribution for comparison. Finally, the similarity between model and ob-
servations is calculated via the distance between the likelihood distributions using symmetrised KL
divergence. This produces a quantitative similarity metric suitable for evaluating km-scale models.

3.1 PRELIMINARIES

A km-scale climate model, initialized at time t0, generates a trajectory of weather states x′
1,x

′
2, . . .

whose statistics define the simulated climate. Observations provide a corresponding sequence
x1,x2, . . . representing the real climate system. Because weather is intrinsically stochastic, we
cannot expect xt = x′

t at any given time t. Instead, the task of climate model evaluation is to assess
whether the statistics of the simulated climate are consistent with those of the observed system.

Formally, we assume access to some observational dataset X = {x1, . . . ,xN}, generated from an
unknown data generating distribution, xi ∼ pobs(x), and a simulated dataset X′ = {x′

1, . . . ,x
′
M}

drawn from a km-scale model distribution x′
i ∼ qmodel(x). In general, multiple models may be

considered, each creating different datasets X′
1,X

′
2, . . . ,X

′
K . The evaluation problem is to quantify

the similarity between pobs and qmodel,k. We take x to be high-dimensional (d > 500) and assume
access to a sufficiently large number of observations N to train a deep neural network.

3.2 CREATING DIRECTLY COMPARABLE OBSERVATION–SIMULATION DATASETS

Evaluating climate models against observations requires directly comparable observation and sim-
ulation datasets that represent the same variable and lie on the same grid. For neural network ap-
plications, the grid should represent sub-regions of the globe as a contiguous matrix and provide an
equal-area discretisation of the sphere to ensure global statistical consistency.

Conservative remapping of geospatial data on curvilinear grids We reproject all datasets onto
the HEALPix grid (Górski et al., 2005) which satisfies the above-mentioned requirements. Simple
interpolation onto a different grid at the same or lower spatial resolution can introduce artifacts
that bias model–observation comparisons. To mitigate this, we employ a first-order conservative
remapping scheme, which guarantees conservation of the reprojected quantity (Jones, 1999).

Conservative remapping is the reprojection of a quantity v of a source grid onto a destination grid
based on the fractional area-overlap of the source and destination grid cells. More specifically, the
remapped quantity V in target grid cell j is given by:

Vj =
1

Aj

∑
i

Aijvi, (1)

where Aij is the intersection area between source cell i and target cell j, Aj is the area of the target
cell, and vi is the source quantity at cell i. This will automatically ensure that the integral of v over
the sphere is preserved: ∑

j

VjAj =
∑
i

viAi. (2)
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Figure 2: An overview of our likelihood-based framework for km-scale climate model evaluation.
(1) We remap model and observation datasets onto the HEALPix projection to extract square patches
for processing by the generative model. (2) A normalising flow model is trained on observations only
and (3) used to compute the likelihood distribution of the observations and km-scale simulations.
(4) We score the similarity between the simulation and observations by calculating the symmetrised
KL-divergence between the likelihood distributions. (5) The likelihood distribution can be stratified
by time or location to gain further insights into spatial and temporal biases.

To calculate intersection areas Aij , the pixel boundaries of the source and destination grid need to
be defined. For observational data such as satellite imagery, however, only the pixel (centre) coor-
dinates are declared by the satellite’s grid projection coordinates. To construct pixel boundaries, we
approximate each corner as the midpoint in latitude-longitude space between the four neighbouring
pixel centres on the curvilinear grid. At km-scale resolution, this approximation is accurate as pixels
are sufficiently small that spherical distortions are negligible.

Removing large-scale biases via histogram matching To focus evaluation on small-scale fea-
tures rather than large-scale biases, we standardise simulated data using histogram matching. Let
Fobs and Fsim denote the empirical cumulative distribution functions (CDFs) of observations and
simulations, respectively. Each simulated value x′ is transformed as

x̃′ = F−1
obs (Fsim(x

′)) , (3)

so that the transformed simulation x̃′ follows the observed distribution. In practice, the CDFs are
constructed from discretised histograms with bin width b, and the mapping is implemented by find-
ing the smallest observation bin whose cumulative probability exceeds that of the simulated value.

3.3 GENERATIVE MODEL LIKELIHOODS FOR SIMILARITY ESTIMATION

We fit a likelihood-based generative model p(x; θ) to the observational dataset X, with trainable
parameters θ. We use a normalizing flow, although any likelihood-based generative model could be
used. The trained model provides a likelihood distribution for observational snapshots under p(x; θ)
against which model datasets are evaluated.

Formally, we estimate discrete log likelihood distributions:

Lobs = {ℓ(x1), . . . , ℓ(xN )}, ℓ(x) = log p(x; θ), (4)

Lmodel = {ℓ(x′
1), . . . , ℓ(x

′
M )}, ℓ(x′) = log p(x′; θ). (5)
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We then compute the symmetrised Kullback-Leibler (KL) divergence between Lobs and Lmodel:

DSKL(Lobs ∥Lmodel) =
1

2
(DKL(Lobs ∥Lmodel) +DKL(Lmodel ∥Lobs)) (6)

=
1

2

(∑
i

Lobs(i) log
Lobs(i)

Lmodel(i)
+
∑
i

Lmodel(i) log
Lmodel(i)

Lobs(i)

)
. (7)

This divergence is zero if the two distributions are identical, and increases without bound as they
diverge, thus providing a metric quantifying the similarity between observations and simulations.

Likelihoods are computed for individual patches, x, by the generative model fitted to the whole
dataset. We stratify these likelihoods by time or location to investigate temporal and spatial biases.
Alongside each patch, we retain metadata: the local solar time t and the central latitude-longitude
coordinates (ϕ, λ). To study temporal biases, we group by local solar time and compare the condi-
tional likelihood distributions Lobs|t and Lmodel|t. To study spatial biases, we group by patch centre
coordinates and compare Lobs|(ϕ,λ) and Lmodel|(ϕ,λ), computing DSKL within each subset.

3.4 NORMALISING FLOW LIKELIHOODS

Flow-based generative models define an expressive probability density on the data of interest x ∈
RD by applying an invertible, differentiable mapping fθ : RD → RD to a simple base random
variable z. Using the change-of-variables formula, the exact log-likelihood of a given sample x is:

log pθ(x) = log pZ(fθ(x)) + log

∣∣∣∣det ∂fθ(x)∂x

∣∣∣∣ . (8)

4 EXPERIMENTS

We use our framework for a case study evaluation of two km-scale models, IFS and ICON against
observations from the geostationary satellite GOES-16. We analyse snapshots of top-of-atmosphere
outgoing longwave radiation (OLR) and thereby focus our evaluation on deep convective clouds.
We use PyTorch lightning for neural network training and evaluation. We extend the Neural Spline
Flow implementation provided by Durkan et al. (2019) to process our OLR datasets.

4.1 DATASETS AND EXPERIMENTAL SETUP

Km-scale OLR simulations We evaluate data from two global km-scale coupled models: ICON
(Hohenegger et al., 2023) and IFS (Rackow et al., 2025). We analyse nextGEMS cycle 4 simulations
(Segura et al., 2025), initialised with ERA5 reanalysis (Hersbach et al., 2020) at 00:00 UTC on 20
January 2020 and integrated for 30 years at ∼10 km atmospheric and 5 km ocean resolution. ICON
directly outputs OLR as rlut (W/m2). IFS provides top net thermal radiation (ttr) which, by
definition, is equal to the negative of OLR accumulated over output intervals, i.e., over each hour
(J/m2). We thus convert ttr to instantaneous OLR (W/m2) using: OLR = −ttr/(3600 seconds).
Both model outputs are saved on the HEALPix grid. We use the finest resolution available, HEALPix
zoom level 9, with a grid spacing of ∼ 0.115◦ ≈ 12.7 km.

GOES-16 OLR observations We evaluate simulations against observations from the GOES-16
satellite, launched in 2016 and positioned at 75.2◦W. It carries the Advanced Baseline Imager (ABI)
which provides full-disks image at 2 km resolution every 10 minutes (Schmit & Gunshor, 2020).
We estimate OLR from ABI narrowband infrared measurements (Appendix A; Lee et al., 2010)
and reproject it onto the HEALPix grid using the climate data operators conservative remapping
implementation (Schulzweida, 2023).

Region, time period and train/val/test split We analyse the tropical band visible from GOES-
16 which ranges from 20◦ to 130◦W, using one year of data (2024) at hourly intervals. We split
the dataset temporally into training, validation and test sets for our machine learning models. More
specifically, we use days 1 to 15 of each month for training, days 20 to 23 for validation, and days 26
to 29 for testing. We leave 3 day gaps to reduce information leakage between the three datasets; this
choice is motivated by the atmospheric predictability in the tropics, where small-scale (<100 km)
features typically lose memory of their initial conditions within 5-7 days (Judt, 2020).
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Table 1: Similarity scores (lower is better) based on the symmetrised KL divergence of the likelihood
distribution of outgoing longwave radiation fields of two km-scale climate models IFS and ICON,
compared to GOES-16 geostationary satellite observations.

Overall Ocean Land
DSKL(LIFS || LGOES) 0.830± 0.013 1.650± 0.050 1.117± 0.038
DSKL(LICON || LGOES) 0.148± 0.001 0.205± 0.001 0.134± 0.003

DSKL(LGOES1−15
|| LGOES16−31

) 0.0004 0.001 0.003
DSKL(LIFS1−15 || LIFS16−31) 0.001 0.002 0.002
DSKL(LICON1−15 || LICON16−31) 0.001 0.002 0.002

Data Processing We empirically determine the range and distribution of values in our model
and observation datasets from the training set by computing OLR histograms at a bin width of
0.5 W/m2. The histograms are used to derive the cumulative distribution functions (cdfs) of our
three datasets, and create lookup tables between the model and observation cdfs for histogram
matching of the simulated OLR data to GOES OLR observations. Finally, we scale OLR val-
ues to the range (0, 1) using the empirically determined minimum (94.1 W/m2) and maximum
(398.9 W/m2) GOES OLR values. All three datasets were pre-patched to 64× 64 pixel patches.

4.2 TRAINING A NEURAL SPLINE FLOW ON GOES-16 OBSERVATIONS

We train a Neural Spline Flow model (Durkan et al., 2019) to model the GOES-16 OLR data.
The architecture follows a multiscale flow with 3 levels and 7 steps per level, each step beginning
with ActNorm. Transformations use rational quadratic splines with 4 bins, a tail bound of 1.0, and
minimum constraints on bin width, height, and derivatives set to 10−3. The coupling networks are
implemented as ResNets with 3 residual blocks, 96 hidden channels, batch normalization, and no
dropout. The model was trained for 20 epochs on 1 NVIDIA A100 GPU with a batch size of 64.

4.3 QUANTITATIVE EVALUATION OF KM-SCALE MODELS AGAINST OBSERVATIONS

To evaluate the realism of outgoing longwave radiation fields simulated by km-scale models, we
compute the symmetrised KL divergence of the likelihood distribution between each model output
and the observations. Models which replicate the observed climate distribution in the input region
will have a low DSKL (approaching 0) while models which fail to capture (high-resolution) features
of the data distribution will have higher DSKL. We additionally calculate DSKL between two halves
of the each dataset as a baseline for comparison. All DSKL calculations in this section discretise the
likelihood distributions of our observational and model datasets using 100 bins, and error bounds
were estimated using bootstrap resampling.

Figure 3: Histograms of log-likelihoods (bits/dim) under the neural spline flow trained on GOES
satellite observations. (A) shows the likelihood distribution of GOES compared with the two km-
scale simulations IFS and ICON. (B) shows likelihood distributions split into land and ocean, with
patch classified as land or ocean based on its central latitude–longitude.

The likelihood distributions of both observations and simulations are bimodal (Figure 3), with the
two modes corresponding to differences in cloud regimes over land and ocean. This indicates that
both models capture the existence of distinct land–ocean cloud regimes, but they do not represent
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each regime equally well. Both over land and over ocean, the model seems to assign particularly high
likelihoods to cloud-free scenes, whereas cloudy scenes containing a lot of small-scale variability get
assigned low likelihoods (Figure 8 in Appendix D.2) The two models show distinct biases (Table 1).
ICON is relatively close to the observationsand shows lower divergence over land than ocean, while
IFS diverges strongly. Notably, IFS scores significantly worse when the likelihood distribution is
split by ocean and land. DSKL between training and validation splits is very low for all datasets,
confirming internal consistency.

4.4 REVEALING SPATIAL AND TEMPORAL PATTERNS OF DIVERGENCE

Next, we examine the spatial and temporal origins of the biases identified by our distance metric.
Likelihood distributions are conditioned on patch centre coordinates to assess spatial biases, and
on local solar time to assess temporal biases (Section 3.3). This stratified analysis reveals distinct
spatial and temporal patterns in model errors, demonstrating the value of likelihood-based evaluation
for uncovering not only overall biases but also their spatial and temporal organisation.

Figure 4 shows the divergence at each patch location. For ICON, the higher divergence over the
ocean (Table 1) is concentrated in the south-western part of the domain, where deep convection is
largely absent. By contrast, convectively active regions are represented exceptionally well. This
indicates that ICON realistically captures deep convective structures but struggles in regimes domi-
nated by shallow convection and clear-sky conditions. IFS, by comparison, exhibits high divergence
more uniformly across the domain, with slightly larger errors in convectively active regions, pointing
to systematic biases in both cloudy and clear-sky regimes.

Figure 4: Analysis of spatial biases in outgoing longwave radiation of two km-scale climate models
IFS and ICON, compared to GOES-16 geostationary satellite observations. Top row: maps showing
the mean log-likelihood for each patch across the input region. Bottom row: maps showing the
distance between likelihood distributions of IFS and ICON compared to GOES-16.

Temporal stratification exposes further structure in model biases (Figure 5). Clouds respond strongly
to the diurnal cycle of incoming solar radiation, especially over land (Jones et al., 2023). Because
cloud fields in turn modulate outgoing longwave radiation, their diurnal cycle is also expressed in
the OLR signal. Climate models are known to struggle to capture the diurnal cycle accurately (Yin
& Porporato, 2017), making its representation a critical test of model realism. Both ICON and IFS
show clear time-of-day dependence in their similarity scores, with agreement generally improving
in the early afternoon when convective activity peaks.

4.5 METRIC COMPARISON

We compare our method to baseline methods and evaluate the sensitivity of our results to the size of
input patches.

We calculate the OLR mean absolute error (MAE) by averaging OLR over the full year of data. In
addition, we evaluate multifractal parameters of the input patches at each location, providing a cloud-
sensitive measure of simulation realism that directly probes high-resolution spatial structures in the
fields. Full technical details of the baseline metrics are given in Appendix D.1, with corresponding
results summarized in Table 2.

8
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Figure 5: Analysis of temporal biases of two km-scale climate models ICON and IFS, compared to
GOES-16 geostationary satellite observations. Diurnal cycle of (A) average log likelihood and (B)
the distance between likelihood distributions of models and observations.

The MAE results reveal opposite biases to our likelihood-based method: for example, IFS has overall
lower MAE compared to ICON, while ICON performs worse over land than over ocean. This is not
unexpected, since we perform histogram matching between model and observation datasets, thereby
removing mean bias to focus on small-scale structural biases. Multifractal analysis finds biases
closely aligned with those discovered by our likelihood-based approach, which is encouraging given
that both methods probe fine-scale variability. At the same time, our likelihood-based evaluation is
more expressive, capturing model errors beyond those explained by scaling behaviour alone.

To test sensitivity to patch size, we train an additional Neural Spline Flow model on 32 × 32
pixel patches, using the same training setup described in Section 4.2. Results are presented in Ap-
pendix D.4. The metric scores are consistent with those obtained for 64×64 patches (Table 3). This
indicates robustness to the chosen patch size and emphasises that our method can evaluate models
based on small-scale structural differences.

5 DISCUSSION

Climate model evaluation is critical for ensuring that simulations faithfully represent the Earth sys-
tem and provide reliable climate projections. Traditional evaluation methods, developed for low-
resolution models, rely on bias metrics or low-order statistics and therefore cannot assess the spatial
and temporal structures explicitly resolved at kilometre scale.

To address this gap, we introduced a new framework that derives a quantitative similarity met-
ric from the likelihood distribution learned by a normalising flow model. Unlike existing metrics,
this approach directly measures the distance between distributions of simulated and observed snap-
shots. To facilitate the direct, fine-scale focused comparison between models and observations, we
introduced a dataset-agnostic procedure for homogenising dataset grid projections and removing
large-scale biases via histogram matching.

We present a case study evaluation of two km-scale climate models, IFS and ICON. Our results
demonstrate that the likelihood-based method can robustly distinguish between models and obser-
vations, identifying spatio-temporally local biases in both of the models that were analysed. Overall,
ICON exhibits closer agreement with observations across regions and the diurnal cycle. IFS has a
consistent bias towards higher likelihoods, likely due to more clear-sky regions in simulated cloud
fields. Thus could be due to more organised convection and thus larger structures in OLR fields
which is consistent with the expected behaviour of a model that parameterises deep convection.

Our approach provides an objective, quantitative, and dataset-agnostic distance metric that cap-
tures both overall similarity and the spatial–temporal structure of model biases. This enables rig-
orous comparison of simulations with observations, offering guidance for the calibration of next-
generation kilometre-scale climate models and help diagnose where improvements are needed.
While our case study focused on outgoing longwave radiation as a proxy for cloud fields, the frame-
work is readily extensible. Incorporating additional variables such as shortwave radiation, water
vapour, or precipitation will allow a more comprehensive assessment of model realism and enable
their calibration to a wide range of Earth observations.

9
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H. O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegrı́a, M. Craig,
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Xi Chen, Peter Düben, Falko Judt, Marat Khairoutdinov, Daniel Klocke, Chihiro Kodama, Luis
Kornblueh, Shian-Jiann Lin, Philipp Neumann, William M Putman, Niklas Röber, Ryosuke
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A APPENDIX

A GOES-16 ABI OUTGOING LONGWAVE RADIATION (OLR)

The multi-spectral outgoing longwave radiation (OLR) algorithm is based on work by Ellingson
et al. (1989) and computes OLR as a weighted sum of narrowband radiances:

OLR = a0(θ) +

n∑
i=1

ai(θ)Ni(θ), (9)

where a0 is a constant regression coefficient, ai are regression coefficients for the ith predictor, Ni

is the ABI radiance of the ith predictor, and θ is the local zenith angle. Used are radiance channels
8 (6.2µm), 10 (7.3µm), 11 (8.4µm), 13 (10.3µm), and 16 (13.3µm).

The Earth Radiation Budget Team of the GOES-R Algorithm Working Group computed the regres-
sion coefficients using Clouds and the Earth’s Radiant Energy System (CERES) OLR observations
and OLR estimated from Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiance obser-
vations (Lee et al., 2010). The SEVIRI channels used for fitting match the wavelength of the ABI
channels used for GOES OLR retrievals.

B DATA DETAILS AND ACCESS LINKS

The km-scale climate model outputs used in our analyses have no missing data. However, GOES-16
radiance observations can have missing pixels, or be unavailable for some time steps. If one of the
channels required for the OLR retrieval algorithm is missing, we cannot obtain OLR observations.
In total, out of the total 8784 time steps, 123 snapshots (1.4%) could not be retrieved and were thus
not considered in our analyses.

NextGEMS production simulations for ICON and IFS are archived by the German Climate Com-
puting Center (DKRZ) and can be accessed via DKRZ’s supercomputer Levante after registration at
https://luv.dkrz.de/register/. GOES-16 OLR data was derived from Level 1b radiance measurements
which were supplied by the National Oceanic and Atmospheric Administration (NOAA) and can be
downloaded at https://console.cloud.google.com/marketplace/product/noaa-public/goes.
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C HEALPIX GRID

Figure 6: Visualisation of the HEALPix projection. Top row: healpix cell numbers for zoom levels
0 and 1, Second and Third row: outgoing longwave radiation (OLR) on zoom levels 1, 2, 4, 8.
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D FULL LIKELIHOOD-BASED SIMILARITY METRIC RESULTS

D.1 BASELINE CLIMATE MODEL EVALUATION METRICS

Commonly used metrics for climate model evaluation include the mean absolute error (MAE) ap-
plied to long term means of the data Gleckler et al. (2008). We calculate the mean OLR for each
patch location in the dataset, and compute MAE of each model as the difference between model
OLR at that patch location compared to GOES OLR. This mean difference is averaged, either over
the entire input region (’Overall’), or separately for patches centred over the ocean and patches
centred over land.

In addition, we compare our metric to multifractal biases. Multifractal analysis is a more experimen-
tal, high-resolution focused evaluation methodology to assess the realism of simulated convective
clouds in km-scale models based on their scaling behaviour (Freischem et al., 2024). We assess the
error in fractal parameter ζ∞, which is calculated as described in Freischem et al. (2024). More
specifically, for each patch, we compute OLR structure functions of orders Q = 1 to 10 for pixel
distances r = 1 to 40. We average structure functions across all patches at location (ϕ, λ) for the en-
tire year, before calculating fractal parameter ζ∞ as a fit to structure functions in range r ∈ (8, 20).
The multifractal bias at each patch location is calculated as the absolute difference in ζ∞ between
model and observations.

Table 2: Biases identified by our likelihood based metric, DSKL(Lmodel||Lobs), compared to mean
absolute error (MAE), and fractal scaling, all evaluated on OLR fields. For DSKL, MAE, and differ-
ence in fractal scaling parameters, smaller is better.

DSKL(Lmodel || Lobs) ↓ MAE ↓ Multifractal ↓
Overall Ocean Land Overall Ocean Land Overall Ocean Land

IFS 0.963 1.399 1.441 5.690 5.835 5.329 1.450 1.182 2.118
ICON 0.102 0.149 0.095 8.026 7.644 8.974 1.271 1.460 0.800

Figure 7: Multifractal parameter (top) and bias compared to GOES (bottom) on an individual patch
basis.
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D.2 EXAMPLE PATCHES WITH LIKELIHOODS

Figure 8: Example patches with low and high log likelihoods from our three datasets: (top row)
GOES satellite observations, (middle row) IFS model simulations and (bottom row) ICON model
simulations.
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D.3 CHANGING BIASES THROUGHOUT THE DAY

Figure 9: Log-likelihood distribution by local solar hour of the GOES-16 geostationary satellite
observations, compared to the two high-resolution climate models IFS and ICON.

D.4 SENSITIVITY TEST TO PATCH SIZE

Table 3: Similarity scores (lower is better) for 32x32 pixel patches based on the symmetrised KL di-
vergence of the likelihood distribution of outgoing longwave radiation fields of two km-scale climate
models IFS and ICON, compared to GOES-16 geostationary satellite observations.

Overall Ocean Land
DSKL(LIFS || LGOES) 0.774± 0.018 1.163± 0.067 1.001± 0.033
DSKL(LICON || LGOES) 0.099± 0.001 0.161± 0.001 0.068± 0.001

DSKL(LGOES1−15 || LGOES16−31) 0.0002 0.001 0.002
DSKL(LIFS1−15 || LIFS16−31) 0.0009 0.001 0.002
DSKL(LICON1−15 || LICON16−31) 0.0008 0.001 0.001
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