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Abstract

This study investigates the machine unlearning
techniques within the context of large language
models (LLMs), referred to as LLM unlearn-
ing. LLM unlearning offers a principled ap-
proach to removing the influence of undesir-
able data (e.g., sensitive or illegal information)
from LLMs, while preserving their overall util-
ity without requiring full retraining. Despite
growing research interest, there is no compre-
hensive survey that systematically organizes
existing work and distills key insights; here, we
aim to bridge this gap. We begin by introduc-
ing the definition and the paradigms of LLM
unlearning, followed by a comprehensive tax-
onomy of existing unlearning studies. Next, we
categorize current unlearning approaches, sum-
marizing their strengths and limitations. Ad-
ditionally, we review evaluation measures and
benchmarks, providing a structured overview
of current assessment methodologies. Finally,
we outline promising directions for future re-
search, highlighting key challenges and oppor-
tunities in the field.

1 Introduction

The widespread adoption of large language models
(LLMs) has brought significant challenges, particu-
larly concerning user data privacy, copyright pro-
tection, and alignment with societal values. During
training, these models can inadvertently memo-
rize sensitive information, such as personally iden-
tifiable data or copyrighted materials (Li et al.,
2024b,c; Zhang et al., 2024b; Yao et al., 2024).
In addition to privacy and copyright issues, some
training data may embed content that conflicts with
contemporary social norms, such as discriminatory
language based on race, ethnicity, etc (Li et al.,
2025a). These biases often manifest as harmful
stereotypes, undermining the fairness and inclusiv-
ity of Al systems. Addressing these concerns is
not only a societal imperative but also a regulatory
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Figure 1: Overview of LLM Unlearning. LLM un-
learning focuses on removing specific data (forget set)
while minimizing the impact on related knowledge (re-
tain set) and general world knowledge.

requirement under privacy laws such as the Gen-
eral Data Protection Regulation (GDPR, Council
of the European Union 2016) and the EU Artificial
Intelligence Act (EU Al Act, Council of the Euro-
pean Union 2024). These laws mandate the “right
to be forgotten" and require mechanisms to delete
specific data upon request.

To address these challenges, the field of LLM
unlearning has emerged, focusing on removing spe-
cific information or behaviors from models while
preserving their overall performance. However,
LLM unlearning faces significant technical chal-
lenges. One of the most pressing issues is the
prohibitively high cost of retraining. Tradition-
ally, addressing harmful or unwanted data required
retraining the model from scratch after exclud-
ing problematic data from the training set (Jang
et al., 2023). This is impractical for LLMs due
to the immense time and computational resources
required (Li et al., 2024b). Moreover, the frequent
unlearning requests that arise in deployed models
highlight the need for more efficient unlearning
techniques. The complexity of LLMs, with their
millions, or even hundreds of billions of parame-



Related Work Date Taxonomy # Methodologies Modality Adv Evaluation
Si et al. (2023) December 2023 Yes 3 Unimodal 0
Xu (2024) April 2024 Yes 3 Unimodal 0
Liu et al. (2025) June 2024 No 6 Unimodal,Multimodal 5
Liu et al. (2024c) July 2024 No 5 Unimodal,Multimodal 0
Ours May 2025 Yes 10 Unimodal,Multimodal 7

Table 1: Comparison of different surveys on the LLM Unlearning. Adv Evaluation refers to Adversarial Evaluation.

ters, further complicates the task of removing spe-
cific information without causing unintended side
effects, such as performance degradation or catas-
trophic forgetting (Zhang et al., 2024a).

Table 1 provides a comparative overview of ex-
isting survey papers on LLM unlearning alongside
our work. Most prior surveys were published be-
fore July 2024 and therefore do not capture recent
advancements in the field. Moreover, these surveys
either lack a systematic taxonomy or are limited
to unimodal unlearning methods. Here we aim to
bridge this gap. In particular, we offer a thorough
overview of the field, including various unlearning
and evaluation methods, and we make the follow-
ing contribution

* We formalize the LLM unlearning paradigms
and propose a comprehensive taxonomy to
categorize the existing approaches. This tax-
onomy not only offers a structured understand-
ing of the research landscape, but also helps
researchers identify their areas of interest.

* We systematically review the existing meth-
ods, analyzing their strengths and weaknesses.
We further examine the existing evaluation
measures and benchmarks, highlighting the
challenges of balancing utility preservation
with forgetting quality.

* We discuss future research opportunities for
LLM unlearning, including extending tech-
niques to multimodal models and address-
ing complex real-world unlearning requests.
These avenues aim to advance the field and
address emerging challenges.

2 Preliminaries and Taxonomy

2.1 Problem Definition

The objective of LLM unlearning is to selectively
remove the influence of specific information while
maintaining the model’s overall utility for other
tasks. The optimization objective of the model
parameters 6 can be expressed as follows:

mein L) = mein{—ﬁf(Q) + AL ()} (1)

Here, the forget loss L¢(0) quantifies the model
prediction error on the forget set Dy, while the
retain loss L, (0) ensures the preservation of the
model’s utility on the retain set D,. The regular-
ization parameter A > 0 controls the trade-off be-
tween effectively forgetting undesired information
and preserving the model’s utility.

2.2 LLM Unlearning Paradigms

LLM unlearning follows two main paradigms.
The fine-tuning-then-unlearning paradigm focuses
on eliminating knowledge introduced during fine-
tuning. As illustrated in Figure 1, this paradigm typ-
ically leverages synthetic data (e.g., TOFU (Maini
et al., 2024) and FIUBench (Ma et al., 2024)) and
partitions a task-specific dataset into a forget set
Dy and a retain set D, to highlight the unlearn-
ing precision. The original model 8,,; is first ob-
tained by fine-tuning a pretrained model ¢, on the
task-specific data to encode the target knowledge.
Unlearning techniques are then applied to reduce
the model’s reliance on the forget set, resulting in
the unlearned model 0,,,;. The direct-unlearning
paradigm focuses on eliminating knowledge ac-
quired during the pretraining stage of 6,,;, assum-
ing the target knowledge originates from multiple
points within the pretraining dataset. The forget
and retain sets are typically sampled from pretrain-
ing corpora (Yao et al., 2024) or publicly avail-
able datasets such as Wiki (Jin et al., 2024). This
paradigm is also extensively applied in safety align-
ment tasks, where it aims to eradicate hazardous
knowledge and to mitigate risks such as misuse
or jailbreak attacks (Li et al., 2024b; Zhang et al.,
2024b).

2.3 Taxonomy

We present a comprehensive taxonomy of LLM
unlearning in Figure 2, outlining existing research
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Figure 2: The taxonomy of machine unlearning in LLMs.

from the perspectives of methods, evaluation mea-
sures, benchmarks, and applications. Existing
methods can be categorized into four types: di-
rect fine-tuning, localized parameter modifica-
tion, leveraging auxiliary models, and input/output-
based unlearning. Forgetting quality and utility
preservation are critical measures for evaluating
unlearning algorithms, particularly given recent
discussions on whether knowledge is robustly for-
gotten or remains susceptible to adversarial recov-
ery. This is often assessed through input- or logit-
based evaluation, as well as model intervention
techniques. Additionally, we review commonly
used unimodal and multimodal benchmarks.

3 LLM Unlearning Methods

3.1 Direct Fine-Tuning

Relabeling-based fine-tuning first replaces the
original responses with generic or neutral substi-
tutes, as present above. The LLM is then fine-tuned
on relabeled data to reduce the effect of undesired

information (Jin et al., 2024; Eldan et al., 2024).

Gradient ascent (GA) Jang et al. [2023] apply
gradient ascent (GA) on the next-token loss over
the forget set, equivalent to minimizing the negative
log-likelihood:

Lca(0) = —E@y~p, [—log(p(y | z;0))]. (2

However, GA often degrades model quality, pro-
ducing uniform, low-quality outputs. To mitigate
this, Liu et al. [2022] add a gradient descent (GD)
loss on the retain set D, as regularization. Yao
et al. [2024] instead use KL divergence to align the
fine-tuned model with the original on D,.:

Lrr(0) =E@y~p, [Drr (p(y | 7500r:) | p(y | 25 9))33-)

These regularization techniques can also be applied
in other unlearning methods to preserve the utility.

Reinforcement learning (RL) The Quark
method (Lu et al., 2022) is a pioneering approach



to applying reinforcement learning for LLM
unlearning. It uses a reward model and Proximal
Policy Optimization (PPO) (Schulman et al.,
2017) to reduce undesirable behaviors such as
toxicity, repetition, and unwanted sentiment.
The reward model assesses the output quality
using task-specific measures of toxicity and
sentiment. Quark alternates between collecting
samples, sorting them into reward-based quantiles
labeled with reward tokens, and applying language
modeling loss conditioned on these tokens, with a
KL-divergence penalty to stay close to the original
model. Kassem et al. [2023] proposed DeMem,
which leverages a negative similarity reward.
This approach trains the LLMs to develop a para-
phrasing policy on the forget dataset, generating
dissimilar tokens that minimize memorization
while preserving semantic coherence.

Preference optimization (PO) was first designed
to align model behavior to human-defined pref-
erences. Specifically, it leverages pairwise com-
parisons or ranking data to guide the model to-
ward producing outputs that best match desired
preferences. Given a preference dataset D, =
{24 Yisws 920) ey Where g0 and ;1 represent
responses to input x;, the preference ;. > iy
is derived from human comparisons. Direct pref-
erence optimization (DPO) (Rafailov et al., 2023)
minimizes the following objective function:
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where o is the sigmoid function and j is the inverse
temperature controlling the preference strength.
Maini et al. [2024] pioneered the application of
DPO to unlearning by framing the forget set as
a preference set. The original responses are de-
noted as y;, while refusal responses, such as “/
do not know the answer,” are designated as y,,.
This formulation guides the unlearning process by
aligning the model’s behavior with the preferred
alternative responses. Inspired by this idea, Zhang
et al. [2024a] proposed negative preference opti-
mization (NPO), a DPO variant that uses only neg-
ative responses from the forget set, disregarding v,
in Eq. (4):

;0
Lppo,5(0) = = 5B~y [log" (‘5 log pf;\yz‘;eofi))] ‘
(5

Zhang et al. [2024a] further theoretically showed
that NPO converges to GA as 8 — 0 and the speed

toward collapse using NPO is exponentially slower
than GA.

3.2 Localized Parameter Modification

Representation engineering RMU (Li et al,,
2024b) focuses on unlearning hazardous knowl-
edge in LLMs by fine-tuning the lower layer [ to
redirect internal representations of token ¢ in the
forget set toward a fixed-noise vector u:

Lionger(6) = Eapm, 7= 20 M) (0) = c-ull3, (6)
tex

where L, is the number of tokens in x and c is
some hyperparameter that controls activation scal-
ing, ’Hél) (t) denotes the internal activations of to-
ken ¢ at layer [. Simultaneously, it ensures that
preserved knowledge remains consistent with the
original model by aligning its representations, de-
noted as:

Lretin(®) = Ega, 7= 3 IHS)(0) = H5), 013 (1
tex
Dang et al. [2025] proposed adaptive RMU,
which dynamically scales the random unit vec-
tor u with an adaptive coefficient /3 ||H§21 (z)||3 for
improved unlearning across layers, unlike RMU’s
fixed-scaling coefficient c.

Locate-then-unlearn methods This method fo-
cuses on identifying and localizing key model com-
ponents (e.g., layers or neurons) that are critical for
unlearning. DEPN (Wu et al., 2023) leverages pri-
vacy attribution via gradient integration to identify
privacy-sensitive neurons. It quantifies each neu-
ron’s contribution to privacy leakage by efficiently
approximating the integral of the gradient changes
using a limited number of steps (e.g., m = 20).
Specifically, the privacy attribution score Att(w})
for a neuron wL at layer [ is computed using the
following cumulative gradient integration:

o oplule.od) o B 0Pl 6L
Att 1 — P\Y|T, O, d l ~ Pk » m Pk
(wk) /0 owt, W JZ1 owt

®)
where /6’,2 is the activation value of the neuron, agg
represents the modified activation value, and p(y|z)
is the conditional probability of the model predict-
ing the private information.

WAGLE (Jia et al., 2024) uses bi-level optimiza-
tion to examine the interaction between weight ad-
justment and unlearning efficacy. By leveraging
weight attribution, it quantifies the relationship be-
tween weight influence and the impact of forgotten

k]



or retained data on LLM outputs. The unlearning
sensitivity score for weight perturbation is obtained
from the forget loss S; = L¢(e©0(e)) — L#(0(1)),
where € ® 6(¢) is the weight-adjusted model, € rep-
resents weight modifications, and € = 1 indicates
no interference. The weights #(e) minimize the
retain loss £, to preserve utility. WAGLE uses a
diagonal Hessian approximation for computational
efficiency and accuracy, with the sensitivity score
expressed as:

SZ‘ XX [Q]Z[Vﬁf(e)]z [V/LAQ)]AVﬁf(Q)L‘, (9)

1

v
where [0]; is the i-th weight, [VL;(6)]; and
[VL,(0)]; are the gradients of the forget and the
retain losses for the i-th weight, respectively, and
~ is the Hessian parameter.

Beyond DEPN and WAGLE, Guo et al. [2024]
introduced a mechanistic unlearning framework
that combines fact lookup localization, using lo-
gistic regression probes or path patching to assess
causal importance, with localized fine-tuning. Sim-
ilarly, Needle (Hong et al., 2024) identifies and
disrupts concept vectors in MLP layers encoding
specific knowledge using vocabulary projections
and causal tests.

3.3 Leveraging Auxiliary Models

These methods typically fine-tune an assistant
model 6, to replicate knowledge from Dy. Its out-
puts are then used to adjust the original model’s
responses, mitigating the influence of D through
the auxiliary model’s weights or logits.

Contrastive decoding ULD (Ji et al., 2024) uses
an auxiliary model trained on the forget set to guide
the unlearning process during decoding. It claims
that the auxiliary LLM should exclusively capture
the unique knowledge within the forget set while
preventing the retention of any information meant
to be preserved. Ideally, this results in a uniform
distribution over the retain set. The optimization
objective of the auxiliary model is formulated as
the inverse of Eq. (1):

rrelin L(0.) = r%in{ﬁf(ea) — BLr(0a)}. (10)

The retain loss £,.(6,) is specifically formulated as
the cross-entropy with respect to the uniform dis-
tribution. To enhance the efficiency in the auxiliary
model’s implementation, the first k transformer lay-
ers of the original LLM are reused, along with the
language model head, to map hidden representa-
tions to output logits across the entire vocabulary.

Knowledge distillation uses a specialized un-
learning teacher model to guide the unlearning
process, providing signals to the student model
to adjust the logits and to selectively forget spe-
cific information. RKLD (Wang et al., 2024) first
identifies tokens requiring unlearning by detecting
such with consistently increased logit values after
fine-tuning. The formula for the unlearning teacher
model is as follows:

L(y|w; 0ori) — a - ReLU (I(y|=; 0a) — U(yl|z; 0ors))  (11)

where [(y|z; 0o;) and I(y|x; 6,) represent the log-
its of the original and the auxiliary model, respec-
tively, and « is a hyperparameter that controls
the forgetting strength, respectively. This strat-
egy offers more precise guidance for intentional
forgetting while safeguarding other information.
Moreover, Dong et al. [2024] introduced a self-
distillation method that assumes tokens like named
entities or nouns contain sensitive information re-
quiring unlearning. To identify these key tokens,
they used a syntactic analysis tool for extraction.
The teacher model’s logits were derived by sub-
tracting hyperparameter-controlled one-hot vectors
for the key tokens from the logits of the original
model.

Task vectors , defined as 7 = 0, — 0,,;, steer the
model behavior by editing the weight space, thus
enabling operations such as negation and addition
for applications such as unlearning and multi-task
learning. Negating task vectors effectively sup-
press behaviors such as mitigating toxic language
generation (Ilharco et al., 2023). Liu et al. [2024d]
enhanced fine-tuning with modules targeting harm-
ful knowledge: guided distortion, random disasso-
ciation, and preservation divergence. Ethos (Gao
et al., 2024) distinguishes general and undesired
knowledge by projecting task vectors onto principal
components. By negating only undesired compo-
nents, Ethos minimizes collateral damage to model
utility, thus achieving unlearning.

3.4 Input/Output-based Unlearning

Input/output-based unlearning methods offer flex-
ibility by using prompt engineering and post-
processing without modifying the model weights or
the architecture. Liu et al. [2024a] proposed train-
ing a prompt classifier to identify prompts within
the scope of unlearning and efficiently corrupting
them in the embedding space using zeroth-order op-
timization. Thaker et al. [2024] showed that simple



Method Unhty. Robu5t Efficiency
Preservation  Forgetting
Relabeling-Based Fine-Tuning Low Medium High
Gradient Ascent Low High High
Preference Optimization High Medium High
Reinforcement Learning High Medium High
Representation Engineering High Medium Medium
Locate-Then-Unlearn Methods High High Medium
Contrastive Decoding Medium Medium Low
Task Vector Low Medium Low
Knowledge Distillation Medium Medium Low
Input/Output-based Unlearning High Low High

Table 2: Comparison of various methods in terms of
utility preservation, robust forgetting, efficiency.

guardrails like prompting and input/output filtering
can effectively support unlearning independently
or alongside fine-tuning. Pawelczyk et al. [2025]
proposed in-context unlearning by constructing tai-
lored prompts, where the labels of the data to be
forgotten are flipped.

Summary of Unlearning Methodologies Ta-
ble 2 provides a comparative overview of existing
unlearning methodologies, assessing their strengths
and limitations across three key dimensions: util-
ity preservation, robust forgetting, and efficiency.
These methods reflect varying design principles,
leading to distinct trade-offs. For example, GA
excels in robustly forgetting target data but sig-
nificantly compromises utility, often resulting in
degraded model performance. On the other hand,
methods like PO and RL strike a more favorable
balance, achieving high utility with moderate for-
getting and efficiency, making them appealing for
scenarios requiring minimal side effects. Locate-
then-unlearn techniques stand out by offering both
high utility preservation and strong forgetting capa-
bilities, although they often involve computation-
ally intensive attribution analysis. Approaches that
rely on auxiliary models, such as contrastive decod-
ing or knowledge distillation, tend to suffer from
reduced efficiency due to added model complex-
ity. Overall, the choice of method hinges on the
specific unlearning goal—whether prioritizing for-
getting effectiveness, maintaining model utility, or
optimizing computational cost.

4 Benchmarks

This section provides a detailed description of
the commonly used benchmarks, addressing ar-
eas such as copyright, privacy, and Al alignment.
Notably, WMDP and RWKU are designed for
direct-unlearning, while other benchmarks are used

within the fine-tuning-then-unlearning paradigm.

4.1 Unimodal Benchmarks

Who is Harry Potter (WHP) (Eldan et al., 2024)
evaluates unlearning of Harry Potter-related in-
formation using a dataset combining the original
books (2.1M tokens) with synthetic content (1M to-
kens). Unlearning effectiveness is assessed through
330 Harry Potter-related questions scored with a
GPT-4-based evaluation.

TOFU (Maini et al., 2024) includes 200 synthetic
author profiles with 20 question-answer examples
each, ensuring no overlap with existing training
data. The benchmark also includes 100 real-world
author profiles and 117 world facts, comprehen-
sively evaluating model utility after unlearning.
WMDP (Li et al., 2024b) comprises 3,668 multiple-
choice questions on biosecurity, cybersecurity, and
chemical security, curated by experts to evaluate
hazardous knowledge while excluding sensitive in-
formation. It serves as a benchmark for assessing
LLMs’ hazardous knowledge and unlearning meth-
ods for Al alignment.

RWKU (Jin et al., 2024) includes 200 unlearning
targets centered on well-known public figures, com-
prising 13,131 multi-level forget probes and 11,379
neighbor probes. In addition, it incorporates a wide
range of adversarial evaluation methods, includ-
ing membership inference attacks (MIA), jailbreak
prompts, and others.

4.2 Multimodal Benchmarks

FIUBench (Ma et al., 2024) comprises 400 syn-
thetic faces paired with fictitious private data such
as personal backgrounds, health records, crimi-
nal histories, phone numbers, occupations and in-
comes are randomly assigned. GPT-40 generates
20 question-answer pairs for each profile.
MLLMU-Bench (Liu et al., 2024b) contains 500
fictitious profiles and 153 celebrity profiles, each
with 14+ question-answer pairs evaluated in multi-
modal (image+text) and unimodal (text-only) set-
tings. It features 20.7k questions, with fictitious
profiles generated by GPT-40 and real celebrity pro-
files reviewed by experts. The test set includes 3.5k
paraphrased questions and 500 modified images
with pose variations. An additional utility set uses
celebrity profiles.

CLEAR (Dontsov et al., 2024) focuses on per-
son unlearning, characterizing unlearning across
textual and visual modalities. It generates con-
sistent images through a comprehensive strategy



Benchmark Data Source # Volume | Traditional Evaluation Adversarial Evaluation

Image Text
‘WHP (Eldan et al., 2024) - Harry Potter books 330 GPT-Eval/Probability -
TOFU (Maini et al., 2024) - Fictitious Profiles 4,000 Probability/Rouge/TR Paraphrasing
WMDP (Li et al., 2024b) - Safety-related documents | 3,668 Probe Accuracy Jailbreak Prompts
RWKU (Jin et al., 2024) - Public figure knowledge | 2,4510 Rouge Paraphrasing, Jailbreak Prompts,MIA
(Lucki et al., 2024) - ‘WMDP - Probe Accuracy Relearning,Intervention,Jailbreak Prompts,Pruning
(Lynch et al., 2024) - WHP GPT-Eval Relearning, Jailbreak Prompts
FIUBench (Ma et al., 2024) Synthetic face images Generated private data 8,000 |Rouge/GPT-Eval/TR/EM -
MMUBench (Li et al., 2024a) Common visual concepts Related knowledge 2,000 Rouge/GPT-Eval/EM Paraphrasing, MIA, Jailbreak Prompts
MLLMU-Bench (Liu et al., 2024b) | Fictitious and celebrity faces Related profiles 20,754 Accuracy/Rouge Paraphrasing
CLEAR (Dontsov et al., 2024) Synthetic face images Data from TOFU 7,700 TR, Probability, Rouge Paraphrasing

Table 3: Overview of existing benchmarks for LLM unlearning. Some (Lucki et al., 2024; Lynch et al., 2024) focus
on adversarial evaluation using existing datasets. TR: Truth Ration, EM: Exact Match.

and links them to the corresponding author-related
questions from TOFU. It includes a total of 200 fic-
titious individuals linked with 3.7k visual question-
answer pairs and 4k textual question-answer pairs,
enabling a thorough evaluation of unimodal and
multi-modal unlearning techniques.

5 Evaluation Measures

We group existing measures into two categories.
Classical evaluation uses standard utility metrics
to assess forgetting (via performance drop on the
forget set) and utility preservation (on the retain
set and world knowledge). Adversarial evaluation
tests whether forgetting is robust or merely superfi-
cial suppression.

5.1 Classical Evaluation

To evaluate utility preservation and forgetting ef-
fectiveness, several classical metrics are commonly
employed. (Probing) Accuracy assesses whether
the unlearned model maintains its world knowledge
without performance degradation. GPT-Eval uses
large language models as evaluators to measure
multiple dimensions beyond traditional metrics; for
instance, Ma et al. (2024) employ GPT-40 Mini to
score correctness, helpfulness, and relevance, pro-
ducing an overall score between 0 and 1. ROUGE
quantifies the similarity between generated outputs
and ground truth responses (Maini et al., 2024;
Yuan et al., 2024). Probability-based evaluation
estimates the model’s confidence by computing the
normalized conditional likelihood of the target out-
put. Truth Ratio is specially proposed to compare
the model’s likelihoods of correct versus incorrect
answers for a given question and has been used in
many benchmarks (Maini et al., 2024; Ma et al.,
2024; Dontsov et al., 2024). Specifically, it is the
ratio of the average normalized conditional prob-
ability of perturbed incorrect answers § € A to
that of a paraphrased correct answer 4. Both 3 and

1y can be generated by LLMs. A lower truth ratio
indicates better forgetting. It is defined as:

Ruun(4) = T e an(@l: Oun) V17
e P(G|2; Oy ) /191

On the retain and world knowledge sets,
max(0, 1 — Ryym(y)) is used to measure how well
the model preserves relevant information.

5.2 Adversarial Evaluation

Recent work (Lynch et al., 2024; Ma et al., 2024)
emphasize the essence of distinguishing real for-
getting from mere suppression, where suppressed
knowledge can be recovered via adversarial tech-
niques. This motivates the summation of adversar-
ial evaluation to capture such subtle distinctions.

Input-based evaluation assesses whether a
model has truly forgotten information by modify-
ing the input rather than probing its internal repre-
sentations. Paraphrasing involves rephrasing ques-
tions or translating them into other languages (e.g.,
Spanish or Russian) to test whether the model still
recalls unlearned content (Maini et al., 2024; Lynch
et al., 2024). Jailbreak prompts attempt to revive
forgotten knowledge by providing contextual cues
or demonstrations during inference (Lynch et al.,
2024), or by crafting adversarial inputs. These in-
clude both black-box strategies (e.g., role-playing)
and white-box methods (e.g., optimized prefixes)
to bypass unlearning and extract suppressed infor-
mation (Lucki et al., 2024).

Logit-based evaluation assesses unlearning ef-
fectiveness by analyzing changes in the model’s
output distributions—typically probabilities or log-
its—before and after unlearning. Kolmogorov-
Smirnov Test (KS-Test) measures the divergence
between output distributions by comparing their
cumulative distribution functions (CDFs). A lower
KS statistic indicates greater unlearning success.



Its non-parametric nature makes it robust across
various datasets and tasks (Maini et al., 2024; Ma
et al., 2024). Moreover, Membership Inference
Attacks (MIAs) determine whether a specific data
point is part of a model’s training data (member)
or originates from outside the training set (non-
member). Hence, it is applied to evaluate unlearn-
ing efficacy (Jin et al., 2024; Yao et al., 2024). Jin
et al. [2024] used various MIA methods to assess
the robustness of unlearning and found that many
unlearning methods failed under such attacks.

Model intervention methods evaluate the ro-
bustness of unlearning by directly modifying the
model’s parameters, activations, or numerical pre-
cision—interventions that may inadvertently re-
verse unlearning and expose residual memoriza-
tion. Relearning through fine-tuning refers to the
phenomenon where continued training on benign
and loosely related data (e.g., "What is avian in-
fluenza?") causes the model to recover previously
forgotten knowledge. This suggests that unlearn-
ing may suppress rather than fully remove the un-
derlying representations (Hu et al., 2024; Lucki
et al., 2024). LLM quantization offers another
perspective, where reducing the model’s preci-
sion—such as converting weights to 4-bit—can
increase the likelihood of forgotten content re-
emerging, thereby weakening the unlearning ef-
fect (Zhang et al., 2025; Lucki et al., 2024). Sim-
ilarly, Lucki et al. (2024) evaluate neuron prun-
ing as a means of assessing residual memoriza-
tion. Finally, activation intervention techniques
analyze the model’s internal activations to identify
and remove the so-called refusal direction—a vec-
tor derived from differences between the original
and unlearned models. Suppressing this direction
reduces refusal behavior and enables the model
to regenerate responses that were assumed to be
forgotten (Arditi et al., 2024; Lucki et al., 2024;
Seyitoglu et al., 2024; Li et al., 2025b).

6 Future Directions

Theoretical frameworks are methodologically
demanding. Existing LLM unlearning meth-
ods often lack formal guarantees of effectiveness.
While locate-then-unlearn approaches (Wu et al.,
2023; Jia et al., 2024) enhance interpretability, they
do not establish a rigorous theoretical foundation.
A crucial future direction is to develop a compre-
hensive framework that formally defines and en-
sures its effectiveness. This could involve leverag-

ing principles from information theory (Jeon et al.,
2024) and other theoretical approaches to provide a
more principled understanding of LLM unlearning.

Multimodal unlearning shows promising poten-
tial. While numerous multimodal datasets have
been introduced for multimodal unlearning, current
methods remain largely confined to text-based un-
learning approaches (Ma et al., 2024; Liu et al.,
2024b; Dontsov et al., 2024). Future research
should prioritize the development of techniques ca-
pable of identifying and isolating modality-specific
representations within MLLMs. Moreover, robust
evaluation benchmarks are essential for assessing
the effectiveness of multimodal unlearning meth-
ods in disentangling representations where knowl-
edge is intertwined across both texts and images.

Real-world complexity is crucial for robust eval-
uation. Current unlearning methods primarily
focus on removing specific data points from the
model, requiring explicit target data points (se-
quences) to be provided. However, real-world un-
learning requests may differ from this assumption.
A significant future direction for LLM unlearning
lies in addressing more complex requests, such as
entity-level unlearning, which aims to remove all
knowledge related to a specific entity across diverse
contexts and associations. This involves not only
forgetting explicit facts but also erasing implicit or
derived knowledge. Choi et al. [2024] introduced
datasets to evaluate the effectiveness of algorithms
in entity-level unlearning tasks. Looking ahead,
even more complex scenarios may emerge, such as
removing all information about a specific organiza-
tion, or erasing entire domains of knowledge, such
as medical or criminal records.

7 Conclusion

We provided a comprehensive survey of recent ad-
vances in LLM unlearning. We began by defining
the problem and outlining the foundational settings
of LLM unlearning. To offer a structured under-
standing, we proposed a novel taxonomy that cate-
gorizes existing research from diverse perspectives.
We further explored the methodologies used to im-
plement unlearning and evaluates the effectiveness
of these approaches in achieving the desired for-
getting. Finally, we examined the key challenges
in the field and identified promising directions for
future research, thus offering valuable insights for
researchers and practitioners.



Limitations
This survey mainly has the following limitations:

No experimental benchmarks Without original
experiments, this paper cannot offer empirical vali-
dation of the theories or concepts. This limits the
paper’s ability to contribute new, verified knowl-
edge to the field.

Potential omissions We have made our best ef-
fort to compile the latest advancements. Due to
the rapid development in this field, there is still
a possibility that some important work may have
been overlooked.

Ethics and Broader Impact

We anticipate no significant ethical concerns in our
work. As a survey of recent progress in this re-
search area, our study does not involve experimen-
tal implementation, the use of sensitive datasets, or
the employment of annotators for manual labeling.
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