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Abstract001

This study investigates the machine unlearning002
techniques within the context of large language003
models (LLMs), referred to as LLM unlearn-004
ing. LLM unlearning offers a principled ap-005
proach to removing the influence of undesir-006
able data (e.g., sensitive or illegal information)007
from LLMs, while preserving their overall util-008
ity without requiring full retraining. Despite009
growing research interest, there is no compre-010
hensive survey that systematically organizes011
existing work and distills key insights; here, we012
aim to bridge this gap. We begin by introduc-013
ing the definition and the paradigms of LLM014
unlearning, followed by a comprehensive tax-015
onomy of existing unlearning studies. Next, we016
categorize current unlearning approaches, sum-017
marizing their strengths and limitations. Ad-018
ditionally, we review evaluation measures and019
benchmarks, providing a structured overview020
of current assessment methodologies. Finally,021
we outline promising directions for future re-022
search, highlighting key challenges and oppor-023
tunities in the field.024

1 Introduction025

The widespread adoption of large language models026

(LLMs) has brought significant challenges, particu-027

larly concerning user data privacy, copyright pro-028

tection, and alignment with societal values. During029

training, these models can inadvertently memo-030

rize sensitive information, such as personally iden-031

tifiable data or copyrighted materials (Li et al.,032

2024b,c; Zhang et al., 2024b; Yao et al., 2024).033

In addition to privacy and copyright issues, some034

training data may embed content that conflicts with035

contemporary social norms, such as discriminatory036

language based on race, ethnicity, etc (Li et al.,037

2025a). These biases often manifest as harmful038

stereotypes, undermining the fairness and inclusiv-039

ity of AI systems. Addressing these concerns is040

not only a societal imperative but also a regulatory041
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Figure 1: Overview of LLM Unlearning. LLM un-
learning focuses on removing specific data (forget set)
while minimizing the impact on related knowledge (re-
tain set) and general world knowledge.

requirement under privacy laws such as the Gen- 042

eral Data Protection Regulation (GDPR, Council 043

of the European Union 2016) and the EU Artificial 044

Intelligence Act (EU AI Act, Council of the Euro- 045

pean Union 2024). These laws mandate the “right 046

to be forgotten" and require mechanisms to delete 047

specific data upon request. 048

To address these challenges, the field of LLM 049

unlearning has emerged, focusing on removing spe- 050

cific information or behaviors from models while 051

preserving their overall performance. However, 052

LLM unlearning faces significant technical chal- 053

lenges. One of the most pressing issues is the 054

prohibitively high cost of retraining. Tradition- 055

ally, addressing harmful or unwanted data required 056

retraining the model from scratch after exclud- 057

ing problematic data from the training set (Jang 058

et al., 2023). This is impractical for LLMs due 059

to the immense time and computational resources 060

required (Li et al., 2024b). Moreover, the frequent 061

unlearning requests that arise in deployed models 062

highlight the need for more efficient unlearning 063

techniques. The complexity of LLMs, with their 064

millions, or even hundreds of billions of parame- 065
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Related Work Date Taxonomy # Methodologies Modality Adv Evaluation

Si et al. (2023) December 2023 Yes 3 Unimodal 0
Xu (2024) April 2024 Yes 3 Unimodal 0
Liu et al. (2025) June 2024 No 6 Unimodal,Multimodal 5
Liu et al. (2024c) July 2024 No 5 Unimodal,Multimodal 0

Ours May 2025 Yes 10 Unimodal,Multimodal 7

Table 1: Comparison of different surveys on the LLM Unlearning. Adv Evaluation refers to Adversarial Evaluation.

ters, further complicates the task of removing spe-066

cific information without causing unintended side067

effects, such as performance degradation or catas-068

trophic forgetting (Zhang et al., 2024a).069

Table 1 provides a comparative overview of ex-070

isting survey papers on LLM unlearning alongside071

our work. Most prior surveys were published be-072

fore July 2024 and therefore do not capture recent073

advancements in the field. Moreover, these surveys074

either lack a systematic taxonomy or are limited075

to unimodal unlearning methods. Here we aim to076

bridge this gap. In particular, we offer a thorough077

overview of the field, including various unlearning078

and evaluation methods, and we make the follow-079

ing contribution080

• We formalize the LLM unlearning paradigms081

and propose a comprehensive taxonomy to082

categorize the existing approaches. This tax-083

onomy not only offers a structured understand-084

ing of the research landscape, but also helps085

researchers identify their areas of interest.086

• We systematically review the existing meth-087

ods, analyzing their strengths and weaknesses.088

We further examine the existing evaluation089

measures and benchmarks, highlighting the090

challenges of balancing utility preservation091

with forgetting quality.092

• We discuss future research opportunities for093

LLM unlearning, including extending tech-094

niques to multimodal models and address-095

ing complex real-world unlearning requests.096

These avenues aim to advance the field and097

address emerging challenges.098

2 Preliminaries and Taxonomy099

2.1 Problem Definition100

The objective of LLM unlearning is to selectively101

remove the influence of specific information while102

maintaining the model’s overall utility for other103

tasks. The optimization objective of the model104

parameters θ can be expressed as follows:105

min
θ

L(θ) = min
θ

{−Lf (θ) + λLr(θ)} (1) 106

Here, the forget loss Lf (θ) quantifies the model 107

prediction error on the forget set Df , while the 108

retain loss Lr(θ) ensures the preservation of the 109

model’s utility on the retain set Dr. The regular- 110

ization parameter λ ≥ 0 controls the trade-off be- 111

tween effectively forgetting undesired information 112

and preserving the model’s utility. 113

2.2 LLM Unlearning Paradigms 114

LLM unlearning follows two main paradigms. 115

The fine-tuning-then-unlearning paradigm focuses 116

on eliminating knowledge introduced during fine- 117

tuning. As illustrated in Figure 1, this paradigm typ- 118

ically leverages synthetic data (e.g., TOFU (Maini 119

et al., 2024) and FIUBench (Ma et al., 2024)) and 120

partitions a task-specific dataset into a forget set 121

Df and a retain set Dr to highlight the unlearn- 122

ing precision. The original model θori is first ob- 123

tained by fine-tuning a pretrained model θpre on the 124

task-specific data to encode the target knowledge. 125

Unlearning techniques are then applied to reduce 126

the model’s reliance on the forget set, resulting in 127

the unlearned model θunl. The direct-unlearning 128

paradigm focuses on eliminating knowledge ac- 129

quired during the pretraining stage of θori, assum- 130

ing the target knowledge originates from multiple 131

points within the pretraining dataset. The forget 132

and retain sets are typically sampled from pretrain- 133

ing corpora (Yao et al., 2024) or publicly avail- 134

able datasets such as Wiki (Jin et al., 2024). This 135

paradigm is also extensively applied in safety align- 136

ment tasks, where it aims to eradicate hazardous 137

knowledge and to mitigate risks such as misuse 138

or jailbreak attacks (Li et al., 2024b; Zhang et al., 139

2024b). 140

2.3 Taxonomy 141

We present a comprehensive taxonomy of LLM 142

unlearning in Figure 2, outlining existing research 143
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Methods

Direct Fine-Tuning

Relabeling-based Fine-Tuning Eldan et al. (2024); Li et al. (2024a)

Gradient Ascent Jang et al. (2023); Yao et al. (2024)

Preference Optimization Maini et al. (2024); Zhang et al. (2024a,b)

Reinforcement Learning Kassem et al. (2023); Lu et al. (2022)

Localized Parameter
Modification

Representation Engineering Li et al. (2024b); Dang et al. (2025); Li et al. (2025b)

Locate-then-Unlearn Wu et al. (2023); Jia et al. (2024); Hong et al. (2024)

Leveraging Auxiliary
Models

Task Vector Ilharco et al. (2023); Lu et al. (2024); Gao et al. (2024)

Contrastive Decoding Ji et al. (2024)

Knowledge Distillation Wang et al. (2024); Dong et al. (2024)

Input/Output-Based
Unlearning

Thaker et al. (2024); Liu et al. (2022)
Pawelczyk et al. (2025)

Evaluation
Measures

Adversarial Evaluation

Logit-Based Evaluation
KS-Test Maini et al. (2024); Ma et al. (2024)

MIA Jin et al. (2024); Yao et al. (2024)

Model Intervention

Relearning with Fine-Tuning Hu et al. (2024); Łucki et al. (2024)

LLM Quantification Zhang et al. (2025); Łucki et al. (2024)

Activation Intervention Arditi et al. (2024); Łucki et al. (2024)
Seyitoğlu et al. (2024)

Input-based Evaluation
Paraphrasing Maini et al. (2024); Lynch et al. (2024)

Jailbreak Prompts Lynch et al. (2024); Łucki et al. (2024)

Traditional Evaluation (Probe) Accuracy/GPT-Eval/Rouge/Probability/Truth Ratio

Benchmark
Unimodal Benchmark Eldan et al. (2024); Maini et al. (2024); Li et al. (2024b)

Jin et al. (2024)

Multimodal Benchmark Ma et al. (2024); Liu et al. (2024b)
Dontsov et al. (2024); Li et al. (2024a)

Application
Privacy and Copyright Eldan et al. (2024); Maini et al. (2024)

AI Alignment Zhang et al. (2024b); Lu et al. (2022); Li et al. (2024b)

Figure 2: The taxonomy of machine unlearning in LLMs.

from the perspectives of methods, evaluation mea-144

sures, benchmarks, and applications. Existing145

methods can be categorized into four types: di-146

rect fine-tuning, localized parameter modifica-147

tion, leveraging auxiliary models, and input/output-148

based unlearning. Forgetting quality and utility149

preservation are critical measures for evaluating150

unlearning algorithms, particularly given recent151

discussions on whether knowledge is robustly for-152

gotten or remains susceptible to adversarial recov-153

ery. This is often assessed through input- or logit-154

based evaluation, as well as model intervention155

techniques. Additionally, we review commonly156

used unimodal and multimodal benchmarks.157

3 LLM Unlearning Methods158

3.1 Direct Fine-Tuning159

Relabeling-based fine-tuning first replaces the160

original responses with generic or neutral substi-161

tutes, as present above. The LLM is then fine-tuned162

on relabeled data to reduce the effect of undesired163

information (Jin et al., 2024; Eldan et al., 2024). 164

Gradient ascent (GA) Jang et al. [2023] apply 165

gradient ascent (GA) on the next-token loss over 166

the forget set, equivalent to minimizing the negative 167

log-likelihood: 168

LGA(θ) = −E(x,y)∼Df
[− log (p(y | x; θ))] . (2) 169

However, GA often degrades model quality, pro- 170

ducing uniform, low-quality outputs. To mitigate 171

this, Liu et al. [2022] add a gradient descent (GD) 172

loss on the retain set Dr as regularization. Yao 173

et al. [2024] instead use KL divergence to align the 174

fine-tuned model with the original on Dr: 175

LKL(θ) = E(x,y)∼Dr [DKL (p(y | x; θori) ∥ p(y | x; θ))] .
(3) 176

These regularization techniques can also be applied 177

in other unlearning methods to preserve the utility. 178

Reinforcement learning (RL) The Quark 179

method (Lu et al., 2022) is a pioneering approach 180
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to applying reinforcement learning for LLM181

unlearning. It uses a reward model and Proximal182

Policy Optimization (PPO) (Schulman et al.,183

2017) to reduce undesirable behaviors such as184

toxicity, repetition, and unwanted sentiment.185

The reward model assesses the output quality186

using task-specific measures of toxicity and187

sentiment. Quark alternates between collecting188

samples, sorting them into reward-based quantiles189

labeled with reward tokens, and applying language190

modeling loss conditioned on these tokens, with a191

KL-divergence penalty to stay close to the original192

model. Kassem et al. [2023] proposed DeMem,193

which leverages a negative similarity reward.194

This approach trains the LLMs to develop a para-195

phrasing policy on the forget dataset, generating196

dissimilar tokens that minimize memorization197

while preserving semantic coherence.198

Preference optimization (PO) was first designed199

to align model behavior to human-defined pref-200

erences. Specifically, it leverages pairwise com-201

parisons or ranking data to guide the model to-202

ward producing outputs that best match desired203

preferences. Given a preference dataset Dp =204

{(xi, yi,w, yi,l)}i∈[n], where yi,w and yi,l represent205

responses to input xi, the preference yi,w > yi,l206

is derived from human comparisons. Direct pref-207

erence optimization (DPO) (Rafailov et al., 2023)208

minimizes the following objective function:209

LDPO,β(θ) =− 1

β
EDp

[
log σ

(
β log

p(yw | x; θ)
p(yw | x; θori)

− β log
p(yl | x; θ)

p(yl | x; θori)

)]
,

(4)210

where σ is the sigmoid function and β is the inverse211

temperature controlling the preference strength.212

Maini et al. [2024] pioneered the application of213

DPO to unlearning by framing the forget set as214

a preference set. The original responses are de-215

noted as yl, while refusal responses, such as “I216

do not know the answer,” are designated as yw.217

This formulation guides the unlearning process by218

aligning the model’s behavior with the preferred219

alternative responses. Inspired by this idea, Zhang220

et al. [2024a] proposed negative preference opti-221

mization (NPO), a DPO variant that uses only neg-222

ative responses from the forget set, disregarding yw223

in Eq. (4):224

LDPO,β(θ) = − 2
β
E(x,y)∼Df

[
log σ

(
−β log p(y|x;θ)

p(y|x;θori)

)]
.

(5)225

Zhang et al. [2024a] further theoretically showed226

that NPO converges to GA as β → 0 and the speed227

toward collapse using NPO is exponentially slower 228

than GA. 229

3.2 Localized Parameter Modification 230

Representation engineering RMU (Li et al., 231

2024b) focuses on unlearning hazardous knowl- 232

edge in LLMs by fine-tuning the lower layer l to 233

redirect internal representations of token t in the 234

forget set toward a fixed-noise vector u: 235

Lforget(θ) = E(x,y)∼Df

1

Lx

∑
t∈x

∥H(l)
θ (t)− c · u∥22, (6) 236

where Lx is the number of tokens in x and c is 237

some hyperparameter that controls activation scal- 238

ing, H(l)
θ (t) denotes the internal activations of to- 239

ken t at layer l. Simultaneously, it ensures that 240

preserved knowledge remains consistent with the 241

original model by aligning its representations, de- 242

noted as: 243

Lretain(θ) = E(x,y)∼Dr

1

Lx

∑
t∈x

∥H(l)
θ (t)−H(l)

θori
(t)∥22. (7) 244

Dang et al. [2025] proposed adaptive RMU, 245

which dynamically scales the random unit vec- 246

tor u with an adaptive coefficient β∥H(l)
θori

(x)∥22 for 247

improved unlearning across layers, unlike RMU’s 248

fixed-scaling coefficient c. 249

Locate-then-unlearn methods This method fo- 250

cuses on identifying and localizing key model com- 251

ponents (e.g., layers or neurons) that are critical for 252

unlearning. DEPN (Wu et al., 2023) leverages pri- 253

vacy attribution via gradient integration to identify 254

privacy-sensitive neurons. It quantifies each neu- 255

ron’s contribution to privacy leakage by efficiently 256

approximating the integral of the gradient changes 257

using a limited number of steps (e.g., m = 20). 258

Specifically, the privacy attribution score Att(wl
k) 259

for a neuron wl
k at layer l is computed using the 260

following cumulative gradient integration: 261

Att(wl
k) =

∫ βl
k

0

∂p(y|x, αl
k)

∂wl
k

dαl
k ≈ βl

k

m

m∑
j=1

∂p(y|x, j
m
βl
k)

∂wl
k

,

(8) 262

where βl
k is the activation value of the neuron, αl

k 263

represents the modified activation value, and p(y|x) 264

is the conditional probability of the model predict- 265

ing the private information. 266

WAGLE (Jia et al., 2024) uses bi-level optimiza- 267

tion to examine the interaction between weight ad- 268

justment and unlearning efficacy. By leveraging 269

weight attribution, it quantifies the relationship be- 270

tween weight influence and the impact of forgotten 271
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or retained data on LLM outputs. The unlearning272

sensitivity score for weight perturbation is obtained273

from the forget loss Si = Lf (ϵ⊙θ(ϵ))−Lf (θ(1)),274

where ϵ⊙ θ(ϵ) is the weight-adjusted model, ϵ rep-275

resents weight modifications, and ϵ = 1 indicates276

no interference. The weights θ(ϵ) minimize the277

retain loss Lr to preserve utility. WAGLE uses a278

diagonal Hessian approximation for computational279

efficiency and accuracy, with the sensitivity score280

expressed as:281

Si ∝ [θ]i[∇Lf (θ)]i−
1

γ
[∇Lr(θ)]i[∇Lf (θ)]i, (9)282

where [θ]i is the i-th weight, [∇Lf (θ)]i and283

[∇Lr(θ)]i are the gradients of the forget and the284

retain losses for the i-th weight, respectively, and285

γ is the Hessian parameter.286

Beyond DEPN and WAGLE, Guo et al. [2024]287

introduced a mechanistic unlearning framework288

that combines fact lookup localization, using lo-289

gistic regression probes or path patching to assess290

causal importance, with localized fine-tuning. Sim-291

ilarly, Needle (Hong et al., 2024) identifies and292

disrupts concept vectors in MLP layers encoding293

specific knowledge using vocabulary projections294

and causal tests.295

3.3 Leveraging Auxiliary Models296

These methods typically fine-tune an assistant297

model θa to replicate knowledge from Df . Its out-298

puts are then used to adjust the original model’s299

responses, mitigating the influence of Df through300

the auxiliary model’s weights or logits.301

Contrastive decoding ULD (Ji et al., 2024) uses302

an auxiliary model trained on the forget set to guide303

the unlearning process during decoding. It claims304

that the auxiliary LLM should exclusively capture305

the unique knowledge within the forget set while306

preventing the retention of any information meant307

to be preserved. Ideally, this results in a uniform308

distribution over the retain set. The optimization309

objective of the auxiliary model is formulated as310

the inverse of Eq. (1):311

min
θa

L(θa) = min
θa

{Lf (θa)− βLr(θa)}. (10)312

The retain loss Lr(θa) is specifically formulated as313

the cross-entropy with respect to the uniform dis-314

tribution. To enhance the efficiency in the auxiliary315

model’s implementation, the first k transformer lay-316

ers of the original LLM are reused, along with the317

language model head, to map hidden representa-318

tions to output logits across the entire vocabulary.319

Knowledge distillation uses a specialized un- 320

learning teacher model to guide the unlearning 321

process, providing signals to the student model 322

to adjust the logits and to selectively forget spe- 323

cific information. RKLD (Wang et al., 2024) first 324

identifies tokens requiring unlearning by detecting 325

such with consistently increased logit values after 326

fine-tuning. The formula for the unlearning teacher 327

model is as follows: 328

l(y|x; θori)− α ·ReLU(l(y|x; θa)− l(y|x; θori)) (11) 329

where l(y|x; θori) and l(y|x; θa) represent the log- 330

its of the original and the auxiliary model, respec- 331

tively, and α is a hyperparameter that controls 332

the forgetting strength, respectively. This strat- 333

egy offers more precise guidance for intentional 334

forgetting while safeguarding other information. 335

Moreover, Dong et al. [2024] introduced a self- 336

distillation method that assumes tokens like named 337

entities or nouns contain sensitive information re- 338

quiring unlearning. To identify these key tokens, 339

they used a syntactic analysis tool for extraction. 340

The teacher model’s logits were derived by sub- 341

tracting hyperparameter-controlled one-hot vectors 342

for the key tokens from the logits of the original 343

model. 344

Task vectors , defined as τ = θa− θori, steer the 345

model behavior by editing the weight space, thus 346

enabling operations such as negation and addition 347

for applications such as unlearning and multi-task 348

learning. Negating task vectors effectively sup- 349

press behaviors such as mitigating toxic language 350

generation (Ilharco et al., 2023). Liu et al. [2024d] 351

enhanced fine-tuning with modules targeting harm- 352

ful knowledge: guided distortion, random disasso- 353

ciation, and preservation divergence. Ethos (Gao 354

et al., 2024) distinguishes general and undesired 355

knowledge by projecting task vectors onto principal 356

components. By negating only undesired compo- 357

nents, Ethos minimizes collateral damage to model 358

utility, thus achieving unlearning. 359

3.4 Input/Output-based Unlearning 360

Input/output-based unlearning methods offer flex- 361

ibility by using prompt engineering and post- 362

processing without modifying the model weights or 363

the architecture. Liu et al. [2024a] proposed train- 364

ing a prompt classifier to identify prompts within 365

the scope of unlearning and efficiently corrupting 366

them in the embedding space using zeroth-order op- 367

timization. Thaker et al. [2024] showed that simple 368
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Method
Utility

Preservation
Robust

Forgetting
Efficiency

Relabeling-Based Fine-Tuning Low Medium High
Gradient Ascent Low High High
Preference Optimization High Medium High
Reinforcement Learning High Medium High
Representation Engineering High Medium Medium
Locate-Then-Unlearn Methods High High Medium
Contrastive Decoding Medium Medium Low
Task Vector Low Medium Low
Knowledge Distillation Medium Medium Low
Input/Output-based Unlearning High Low High

Table 2: Comparison of various methods in terms of
utility preservation, robust forgetting, efficiency.

guardrails like prompting and input/output filtering369

can effectively support unlearning independently370

or alongside fine-tuning. Pawelczyk et al. [2025]371

proposed in-context unlearning by constructing tai-372

lored prompts, where the labels of the data to be373

forgotten are flipped.374

Summary of Unlearning Methodologies Ta-375

ble 2 provides a comparative overview of existing376

unlearning methodologies, assessing their strengths377

and limitations across three key dimensions: util-378

ity preservation, robust forgetting, and efficiency.379

These methods reflect varying design principles,380

leading to distinct trade-offs. For example, GA381

excels in robustly forgetting target data but sig-382

nificantly compromises utility, often resulting in383

degraded model performance. On the other hand,384

methods like PO and RL strike a more favorable385

balance, achieving high utility with moderate for-386

getting and efficiency, making them appealing for387

scenarios requiring minimal side effects. Locate-388

then-unlearn techniques stand out by offering both389

high utility preservation and strong forgetting capa-390

bilities, although they often involve computation-391

ally intensive attribution analysis. Approaches that392

rely on auxiliary models, such as contrastive decod-393

ing or knowledge distillation, tend to suffer from394

reduced efficiency due to added model complex-395

ity. Overall, the choice of method hinges on the396

specific unlearning goal—whether prioritizing for-397

getting effectiveness, maintaining model utility, or398

optimizing computational cost.399

4 Benchmarks400

This section provides a detailed description of401

the commonly used benchmarks, addressing ar-402

eas such as copyright, privacy, and AI alignment.403

Notably, WMDP and RWKU are designed for404

direct-unlearning, while other benchmarks are used405

within the fine-tuning-then-unlearning paradigm. 406

4.1 Unimodal Benchmarks 407

Who is Harry Potter (WHP) (Eldan et al., 2024) 408

evaluates unlearning of Harry Potter-related in- 409

formation using a dataset combining the original 410

books (2.1M tokens) with synthetic content (1M to- 411

kens). Unlearning effectiveness is assessed through 412

330 Harry Potter-related questions scored with a 413

GPT-4-based evaluation. 414

TOFU (Maini et al., 2024) includes 200 synthetic 415

author profiles with 20 question-answer examples 416

each, ensuring no overlap with existing training 417

data. The benchmark also includes 100 real-world 418

author profiles and 117 world facts, comprehen- 419

sively evaluating model utility after unlearning. 420

WMDP (Li et al., 2024b) comprises 3,668 multiple- 421

choice questions on biosecurity, cybersecurity, and 422

chemical security, curated by experts to evaluate 423

hazardous knowledge while excluding sensitive in- 424

formation. It serves as a benchmark for assessing 425

LLMs’ hazardous knowledge and unlearning meth- 426

ods for AI alignment. 427

RWKU (Jin et al., 2024) includes 200 unlearning 428

targets centered on well-known public figures, com- 429

prising 13,131 multi-level forget probes and 11,379 430

neighbor probes. In addition, it incorporates a wide 431

range of adversarial evaluation methods, includ- 432

ing membership inference attacks (MIA), jailbreak 433

prompts, and others. 434

4.2 Multimodal Benchmarks 435

FIUBench (Ma et al., 2024) comprises 400 syn- 436

thetic faces paired with fictitious private data such 437

as personal backgrounds, health records, crimi- 438

nal histories, phone numbers, occupations and in- 439

comes are randomly assigned. GPT-4o generates 440

20 question-answer pairs for each profile. 441

MLLMU-Bench (Liu et al., 2024b) contains 500 442

fictitious profiles and 153 celebrity profiles, each 443

with 14+ question-answer pairs evaluated in multi- 444

modal (image+text) and unimodal (text-only) set- 445

tings. It features 20.7k questions, with fictitious 446

profiles generated by GPT-4o and real celebrity pro- 447

files reviewed by experts. The test set includes 3.5k 448

paraphrased questions and 500 modified images 449

with pose variations. An additional utility set uses 450

celebrity profiles. 451

CLEAR (Dontsov et al., 2024) focuses on per- 452

son unlearning, characterizing unlearning across 453

textual and visual modalities. It generates con- 454

sistent images through a comprehensive strategy 455
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Benchmark
Data Source

# Volume Traditional Evaluation Adversarial Evaluation
Image Text

WHP (Eldan et al., 2024) - Harry Potter books 330 GPT-Eval/Probability -
TOFU (Maini et al., 2024) - Fictitious Profiles 4,000 Probability/Rouge/TR Paraphrasing
WMDP (Li et al., 2024b) - Safety-related documents 3,668 Probe Accuracy Jailbreak Prompts
RWKU (Jin et al., 2024) - Public figure knowledge 2,4510 Rouge Paraphrasing, Jailbreak Prompts,MIA
(Łucki et al., 2024) - WMDP - Probe Accuracy Relearning,Intervention,Jailbreak Prompts,Pruning
(Lynch et al., 2024) - WHP - GPT-Eval Relearning, Jailbreak Prompts

FIUBench (Ma et al., 2024) Synthetic face images Generated private data 8,000 Rouge/GPT-Eval/TR/EM -
MMUBench (Li et al., 2024a) Common visual concepts Related knowledge 2,000 Rouge/GPT-Eval/EM Paraphrasing, MIA, Jailbreak Prompts
MLLMU-Bench (Liu et al., 2024b) Fictitious and celebrity faces Related profiles 20,754 Accuracy/Rouge Paraphrasing
CLEAR (Dontsov et al., 2024) Synthetic face images Data from TOFU 7,700 TR, Probability, Rouge Paraphrasing

Table 3: Overview of existing benchmarks for LLM unlearning. Some (Łucki et al., 2024; Lynch et al., 2024) focus
on adversarial evaluation using existing datasets. TR: Truth Ration, EM: Exact Match.

and links them to the corresponding author-related456

questions from TOFU. It includes a total of 200 fic-457

titious individuals linked with 3.7k visual question-458

answer pairs and 4k textual question-answer pairs,459

enabling a thorough evaluation of unimodal and460

multi-modal unlearning techniques.461

5 Evaluation Measures462

We group existing measures into two categories.463

Classical evaluation uses standard utility metrics464

to assess forgetting (via performance drop on the465

forget set) and utility preservation (on the retain466

set and world knowledge). Adversarial evaluation467

tests whether forgetting is robust or merely superfi-468

cial suppression.469

5.1 Classical Evaluation470

To evaluate utility preservation and forgetting ef-471

fectiveness, several classical metrics are commonly472

employed. (Probing) Accuracy assesses whether473

the unlearned model maintains its world knowledge474

without performance degradation. GPT-Eval uses475

large language models as evaluators to measure476

multiple dimensions beyond traditional metrics; for477

instance, Ma et al. (2024) employ GPT-4o Mini to478

score correctness, helpfulness, and relevance, pro-479

ducing an overall score between 0 and 1. ROUGE480

quantifies the similarity between generated outputs481

and ground truth responses (Maini et al., 2024;482

Yuan et al., 2024). Probability-based evaluation483

estimates the model’s confidence by computing the484

normalized conditional likelihood of the target out-485

put. Truth Ratio is specially proposed to compare486

the model’s likelihoods of correct versus incorrect487

answers for a given question and has been used in488

many benchmarks (Maini et al., 2024; Ma et al.,489

2024; Dontsov et al., 2024). Specifically, it is the490

ratio of the average normalized conditional prob-491

ability of perturbed incorrect answers ȳ ∈ A to492

that of a paraphrased correct answer ỹ. Both ȳ and493

ỹ can be generated by LLMs. A lower truth ratio 494

indicates better forgetting. It is defined as: 495

Rtruth(y) =

1
|A|

∑
ȳ∈A p(ȳ|x; θunl)

1/|ȳ|

p(ỹ|x; θunl)1/|ỹ|
496

On the retain and world knowledge sets, 497

max(0, 1−Rtruth(y)) is used to measure how well 498

the model preserves relevant information. 499

5.2 Adversarial Evaluation 500

Recent work (Lynch et al., 2024; Ma et al., 2024) 501

emphasize the essence of distinguishing real for- 502

getting from mere suppression, where suppressed 503

knowledge can be recovered via adversarial tech- 504

niques. This motivates the summation of adversar- 505

ial evaluation to capture such subtle distinctions. 506

Input-based evaluation assesses whether a 507

model has truly forgotten information by modify- 508

ing the input rather than probing its internal repre- 509

sentations. Paraphrasing involves rephrasing ques- 510

tions or translating them into other languages (e.g., 511

Spanish or Russian) to test whether the model still 512

recalls unlearned content (Maini et al., 2024; Lynch 513

et al., 2024). Jailbreak prompts attempt to revive 514

forgotten knowledge by providing contextual cues 515

or demonstrations during inference (Lynch et al., 516

2024), or by crafting adversarial inputs. These in- 517

clude both black-box strategies (e.g., role-playing) 518

and white-box methods (e.g., optimized prefixes) 519

to bypass unlearning and extract suppressed infor- 520

mation (Łucki et al., 2024). 521

Logit-based evaluation assesses unlearning ef- 522

fectiveness by analyzing changes in the model’s 523

output distributions—typically probabilities or log- 524

its—before and after unlearning. Kolmogorov- 525

Smirnov Test (KS-Test) measures the divergence 526

between output distributions by comparing their 527

cumulative distribution functions (CDFs). A lower 528

KS statistic indicates greater unlearning success. 529

7



Its non-parametric nature makes it robust across530

various datasets and tasks (Maini et al., 2024; Ma531

et al., 2024). Moreover, Membership Inference532

Attacks (MIAs) determine whether a specific data533

point is part of a model’s training data (member)534

or originates from outside the training set (non-535

member). Hence, it is applied to evaluate unlearn-536

ing efficacy (Jin et al., 2024; Yao et al., 2024). Jin537

et al. [2024] used various MIA methods to assess538

the robustness of unlearning and found that many539

unlearning methods failed under such attacks.540

Model intervention methods evaluate the ro-541

bustness of unlearning by directly modifying the542

model’s parameters, activations, or numerical pre-543

cision—interventions that may inadvertently re-544

verse unlearning and expose residual memoriza-545

tion. Relearning through fine-tuning refers to the546

phenomenon where continued training on benign547

and loosely related data (e.g., "What is avian in-548

fluenza?") causes the model to recover previously549

forgotten knowledge. This suggests that unlearn-550

ing may suppress rather than fully remove the un-551

derlying representations (Hu et al., 2024; Łucki552

et al., 2024). LLM quantization offers another553

perspective, where reducing the model’s preci-554

sion—such as converting weights to 4-bit—can555

increase the likelihood of forgotten content re-556

emerging, thereby weakening the unlearning ef-557

fect (Zhang et al., 2025; Łucki et al., 2024). Sim-558

ilarly, Łucki et al. (2024) evaluate neuron prun-559

ing as a means of assessing residual memoriza-560

tion. Finally, activation intervention techniques561

analyze the model’s internal activations to identify562

and remove the so-called refusal direction—a vec-563

tor derived from differences between the original564

and unlearned models. Suppressing this direction565

reduces refusal behavior and enables the model566

to regenerate responses that were assumed to be567

forgotten (Arditi et al., 2024; Łucki et al., 2024;568

Seyitoğlu et al., 2024; Li et al., 2025b).569

6 Future Directions570

Theoretical frameworks are methodologically571

demanding. Existing LLM unlearning meth-572

ods often lack formal guarantees of effectiveness.573

While locate-then-unlearn approaches (Wu et al.,574

2023; Jia et al., 2024) enhance interpretability, they575

do not establish a rigorous theoretical foundation.576

A crucial future direction is to develop a compre-577

hensive framework that formally defines and en-578

sures its effectiveness. This could involve leverag-579

ing principles from information theory (Jeon et al., 580

2024) and other theoretical approaches to provide a 581

more principled understanding of LLM unlearning. 582

Multimodal unlearning shows promising poten- 583

tial. While numerous multimodal datasets have 584

been introduced for multimodal unlearning, current 585

methods remain largely confined to text-based un- 586

learning approaches (Ma et al., 2024; Liu et al., 587

2024b; Dontsov et al., 2024). Future research 588

should prioritize the development of techniques ca- 589

pable of identifying and isolating modality-specific 590

representations within MLLMs. Moreover, robust 591

evaluation benchmarks are essential for assessing 592

the effectiveness of multimodal unlearning meth- 593

ods in disentangling representations where knowl- 594

edge is intertwined across both texts and images. 595

Real-world complexity is crucial for robust eval- 596

uation. Current unlearning methods primarily 597

focus on removing specific data points from the 598

model, requiring explicit target data points (se- 599

quences) to be provided. However, real-world un- 600

learning requests may differ from this assumption. 601

A significant future direction for LLM unlearning 602

lies in addressing more complex requests, such as 603

entity-level unlearning, which aims to remove all 604

knowledge related to a specific entity across diverse 605

contexts and associations. This involves not only 606

forgetting explicit facts but also erasing implicit or 607

derived knowledge. Choi et al. [2024] introduced 608

datasets to evaluate the effectiveness of algorithms 609

in entity-level unlearning tasks. Looking ahead, 610

even more complex scenarios may emerge, such as 611

removing all information about a specific organiza- 612

tion, or erasing entire domains of knowledge, such 613

as medical or criminal records. 614

7 Conclusion 615

We provided a comprehensive survey of recent ad- 616

vances in LLM unlearning. We began by defining 617

the problem and outlining the foundational settings 618

of LLM unlearning. To offer a structured under- 619

standing, we proposed a novel taxonomy that cate- 620

gorizes existing research from diverse perspectives. 621

We further explored the methodologies used to im- 622

plement unlearning and evaluates the effectiveness 623

of these approaches in achieving the desired for- 624

getting. Finally, we examined the key challenges 625

in the field and identified promising directions for 626

future research, thus offering valuable insights for 627

researchers and practitioners. 628
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Limitations629

This survey mainly has the following limitations:630

No experimental benchmarks Without original631

experiments, this paper cannot offer empirical vali-632

dation of the theories or concepts. This limits the633

paper’s ability to contribute new, verified knowl-634

edge to the field.635

Potential omissions We have made our best ef-636

fort to compile the latest advancements. Due to637

the rapid development in this field, there is still638

a possibility that some important work may have639

been overlooked.640

Ethics and Broader Impact641

We anticipate no significant ethical concerns in our642

work. As a survey of recent progress in this re-643

search area, our study does not involve experimen-644

tal implementation, the use of sensitive datasets, or645

the employment of annotators for manual labeling.646
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