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Abstract
It is imperative for Large language models001
(LLMs) to follow instructions with elaborate002
requirements (i.e. Complex Instructions Fol-003
lowing). Yet, it remains under-explored how004
to enhance the ability of LLMs to follow com-005
plex instructions with multiple constraints. To006
bridge the gap, we initially study what train-007
ing data is effective in enhancing complex con-008
straints following abilities. We found that train-009
ing LLMs with instructions containing multi-010
ple constraints enhances their understanding011
of complex instructions, especially those with012
lower complexity levels. The improvement013
can even generalize to compositions of out-of-014
domain constraints. Additionally, we further015
propose methods addressing how to obtain and016
utilize the effective training data. Finally, we017
conduct extensive experiments to prove the ef-018
fectiveness of our methods in terms of overall019
performance, training efficiency, and general-020
ization abilities under four settings.021

1 Introduction022

Large language models (LLMs) have become the023

backbone for real-world applications (Anil et al.,024

2023; Touvron et al., 2023; Achiam et al., 2023).025

Given natural language instructions, LLMs can026

solve unseen tasks with few or no examples (Brown027

et al., 2020). The capability of LLMs to accurately028

understand instructions and convey the desired out-029

put, known as Instruction Following (Lou et al.,030

2024), is crucial for the safety (Mu et al., 2023)031

and reliability (Zhou et al., 2023a) of LLMs.032

It is imperative for LLMs to follow instructions033

with elaborate requirements (Yin et al., 2023; Xu034

et al., 2023) (i.e. Complex Instructions), such as035

formatting specifications outlined in Fig. 1. On one036

hand, the ability to follow detailed instructions alle-037

viates the need for annotating samples, which can038

be costly and challenging for intricate tasks (Zeng039

et al., 2023a). On the other hand, complex instruc-040

tions hardly appear in the training data (Zhou et al.,041
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Figure 1: Real-world applications generally involve
instructions with multiple constraints (i.e. Complex
Instructions), posing challenges for models.

2024). Hence, the ability to follow complex in- 042

structions demonstrates models to have better gen- 043

eralization ability to unseen tasks (Yin et al., 2023). 044

Specifically, satisfying the multiple constraints 045

in the instructions simultaneously (i.e. Constraints 046

Following) poses a significant challenge in com- 047

plex instruction following (Jiang et al., 2023; He 048

et al., 2024). As shown in Fig. 1, whether models 049

can satisfy the multiple constraints in the instruc- 050

tions determines their ability to follow complex 051

instructions. Hence, in our work, we explore com- 052

plex instruction following by examining LLMs’ 053

ability to follow instructions with multiple con- 054

straints (Yin et al., 2023; Lou et al., 2024). On one 055

hand, human instructions are subjective and am- 056



Make a short introduction 
and list a few popular songs 
from the album: Back To 
Black. There should be exactly
two paragraphs in your 
response, separated by the
markdown divider: ***. Do
not say the word "popular" in
the response and answer in
lowercase letters only. The 
response should end with the
phrase "love their song!".

… Released in 2006, ... \n\nSome tracks include …These 
songs leave an impact on listeners who love their song!

Generation

Back to Black is a … by Amy Winehouse, ... ***
Here are some popular tracks … I love their song!

back to black is a … by amy winehouse, ... *** 
here are some standout  tracks … i love their song!

back to black is a …  by amy winehouse, ... *** 
here are some popular tracks … i love their song!
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Figure 2: The framework of our study. We first study what training data is effective in enhancing complex instruction
following abilities via an empirical study. Then, we design a discrimination-based method to address how to obtain
the data. Finally, we propose a method for effectively utilizing positive and negative samples obtained through the
discrimination-based method.

biguous, while constraints within these instructions057

facilitate the automatic evaluation of instruction058

following ability (Zhou et al., 2023a; Wang et al.,059

2024). On the other hand, the compositional na-060

ture of constraints enables the automatic creation061

of instructions with unseen compositions of con-062

straints (Zhou et al., 2023b; Yao et al., 2023). These063

instructions hardly appear in the training data, thus064

effectively assessing the model’s ability to general-065

ize to unseen tasks (Aksu et al., 2023).066

Complex constraints following is a challenging067

task for LLMs (Jiang et al., 2023; He et al., 2024;068

Qin et al., 2024). As shown in Fig. 1, even ad-069

vanced LLMs struggle to meet the four specified070

constraints in complex instructions. However, it071

remains under-explored how to enhance LLMs to072

follow multi-constraint complex instructions. First,073

the existing works on constraints following mainly074

focus on evaluation without proposing methods075

for enhancement (Jiang et al., 2023; Chen et al.,076

2024; Xia et al., 2024). Additionally, even when the077

improvement methods are proposed, they mainly078

consider instructions with few constraints, thereby079

failing to showcase the complexity of human in-080

structions in practical applications (Chen et al.,081

2022; Zhang et al., 2023; Wang et al., 2024). More-082

over, although some studies construct complex in-083

structions with multiple constraints and fine-tune084

LLMs on them (Aksu et al., 2023; Sun et al., 2024),085

one key research question remains under-explored:086

What training data is effective in enhancing com-087

plex constraint-following abilities? This leads088

to two follow-up questions: (1) How to obtain the089

effective training data? and (2) How to utilize090

the data effectively?091

In this work, we systematically study how to092

enhance the ability of LLMs to follow complex in- 093

structions, with the framework shown in Fig. 2. We 094

initially explore the effective training data for this 095

purpose through an empirical study. We found that 096

training LLMs on instructions containing multi- 097

ple constraints (compositional data) enhances their 098

understanding of complex instructions more effec- 099

tively than training on atomic constraints (atomic 100

data). Moreover, the improvement in performance 101

is related to the number of constraints, the model 102

size (§3), and can even generalize to the composi- 103

tions of out-of-domain constraints found in §5.3.1. 104

To obtain high-quality compositional data, we 105

generate initial output via a student model (vanilla 106

model) and then correct via a teacher model (ad- 107

vanced model), termed the Discrimination method. 108

This approach yields higher-quality output than us- 109

ing the teacher model to generate directly. To lever- 110

age the positive and negative samples collected dur- 111

ing the Discrimination method, we introduce a con- 112

trastive method with reinforcement learning fine- 113

tuning (RLFT) (Rafailov et al., 2023). Our method 114

surpasses the SFT training paradigm on the instruc- 115

tion following benchmark (Zhou et al., 2023a) with 116

fewer training steps. It also demonstrates superior 117

generalization across out-of-domain, in-domain, 118

and adversarial settings while preserving overall 119

capabilities. 120

Overall, our contributions are mainly three-fold: 121

(1) We systematically improve LLMs’ instruction- 122

following ability by exploring effective training 123

data. (2) We design a discrimination-based method 124

to obtain effective training data. We also propose a 125

method for utilizing positive and negative samples 126

obtained through this approach. (3) We conduct 127

extensive experiments to prove the effectiveness 128
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and efficiency of our method. We also validate its129

generalization ability under four settings.130

2 Related Work131

2.1 Instruction Following132

There are various perspectives for assessing the133

ability of LLMs to follow instructions. A line of134

work perturbs the answer space to assess whether135

the model truly understands instructions or recites136

the answer (Zeng et al., 2023b; Li et al., 2023a;137

Wu et al., 2023). Another line of work exempli-138

fies models’ ability to follow instructions by incor-139

porating verifiable constraints within them, such140

as lexical, numerical, format, and semantic con-141

straints (Sun et al., 2023; Jiang et al., 2023). These142

constraints can be compositional, allowing one in-143

struction to contain multiple constraints simultane-144

ously (Aksu et al., 2023; Zhou et al., 2023b; Yao145

et al., 2023). Such complex instructions containing146

multiple user-specified constraints present greater147

challenges for LLMs to follow (He et al., 2024; Qin148

et al., 2024). Our work falls into this latter category.149

The existing works on constraints following solely150

either focus on evaluation (Chen et al., 2024; Xia151

et al., 2024) or only consider instructions with few152

constraints (Chen et al., 2022; Zhang et al., 2023;153

Chen and Wan, 2023; Wang et al., 2024). Different154

from existing works, we systematically investigate155

how to enhance complex instructions with multiple156

constraints.157

2.2 Complex Instruction Tuning158

Complex Instructions can refer to instructions that159

involve more reasoning steps (Mukherjee et al.,160

2023), intricate input (Zhou et al., 2024), or mul-161

tiple constraints (Luo et al., 2023a). Many studies162

have demonstrated that fine-tuning with complex163

instructions can boost performance in tasks such164

as instruction following (Xu et al., 2023), reason-165

ing (Mitra et al., 2023), or code generation (Luo166

et al., 2023b). However, our work differs from167

these studies in two main aspects. First, we fo-168

cus on improving LLMs’ ability to follow com-169

plex instructions containing multiple constraints,170

which is crucial for the practicality and safety of171

LLMs (Zhou et al., 2023a; Mu et al., 2023). Fur-172

thermore, traditional supervised fine-tuning (SFT)173

uses only positive samples, whereas we use both174

positive and negative samples to enhance the com-175

plex instruction-following ability of LLMs effec-176

tively and efficiently.177

3 Empirical Studies 178

A common approach to improve LLMs’ ability 179

to follow complex instructions is to construct cor- 180

responding instances and fine-tune the LLMs on 181

them (Aksu et al., 2023; Sun et al., 2024). Yet, 182

one key research question remains under-explored: 183

What training data is effective in enhancing com- 184

plex constraint-following abilities? 185

To enhance the LLM’s capacity to follow com- 186

plex instructions, two types of training data can be 187

utilized: (1) Initially train models to understand 188

atom constraints (atomic data), enabling them to 189

resolve compositional constraints (compositional 190

data) automatically. (2) Train models with composi- 191

tional data, leading them to understand instructions 192

with atomic or varying compositions of constraints 193

spontaneously. Examples are shown in Fig. 2. 194

To compare these training data types, we split 195

the instructions in existing instructions following 196

benchmarks (Zhou et al., 2023a; Jiang et al., 2023) 197

into training and test sets. The training set contains 198

atomic data (mostly with 1 constraint) and com- 199

positional data (mostly with over 3 constraints). 200

Original benchmarks lack corresponding outputs, 201

we first generate them via GPT-3.5-turbo. To im- 202

prove the quality of the training set, we further 203

filter the datasets to only keep outputs that satisfy 204

all instruction constraints using GPT-3.5-turbo and 205

rules for training. The remaining data forms the 206

test set. Details on data construction and statistics 207

are provided in the Appx. A.1. 208

We compare three methods: (1) Backbone, the 209

backbone model without further training. (2) Atom 210

and (3) Composition, continue training the back- 211

bone model with atomic data and compositional 212

data respectively. To prevent models from catas- 213

trophic forgetting (McCloskey and Cohen, 1989), 214

we mix training data with ShareGPT data (Chiang 215

et al., 2023) for Atom and Composition checkpoint. 216

We leverage two backbone models (Zheng et al., 217

2024; Touvron et al., 2023) and adopt two accuracy 218

metrics (Zhou et al., 2023a; Jiang et al., 2023): 219

accins =
1

m

m∑
i=1

n∏
j=1

cji , acccon =
1

mn

m∑
i=1

n∑
j=1

cji , 220

where cji equals 1 if the j-th constraint of the i-th 221

instruction is satisfied, otherwise 0. Overall, achiev- 222

ing Instruction-level accuracy (accins) is more chal- 223

lenging than Constraint-level accuracy (acccon). 224
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Backbone Methods Level 1 Level 2 Level 3 Level 4 Level 5 Avg.

Vicuna-7B-V1.5(Zheng et al., 2024)
Backbone 39.07 44.71 37.28 30.93 19.06 34.21
Atom 39.17 39.50 42.07 30.23 16.97 33.59
Comp 39.44 55.90 47.49 22.27 16.65 36.35

LLaMA2-13B-Chat(Touvron et al., 2023)
Backbone 33.10 41.71 42.26 23.89 22.07 32.61
Atom 38.99 39.78 36.61 20.74 14.83 30.19
Comp 37.02 44.66 42.55 21.62 22.36 33.64

Table 1: The Instruction-level accuracy of backbone models without further training (Backbone), training with
atomic data (Atom), and compositional data (Comp) on FollowBench. Level x indicates there are x constraints
in the instructions. Avg. indicates the average performance across 5 levels. The results are evaluated by GPT-4
using the FollowBench prompt template. The bold and underlined represent the first and second rankings among
the open-source LLMs, respectively.

Backbone Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

Vicuna-7B-V1.5
Backbone 27.87 15.91 74.07 44.09 48.57 80.00 30.69 10.71 40.00 26.89 37.47
Atom 29.50 31.82 48.14 63.44 36.19 25.00 31.68 16.07 40.00 27.17 37.29
Comp 37.70 50.00 40.74 55.91 36.19 25.00 32.67 14.29 50.00 28.85 38.76

LLaMA2-13B-Chat
Backbone 42.62 11.36 81.48 55.91 45.71 15.00 32.67 00.00 25.00 25.77 36.38
Atom 42.62 00.00 37.04 54.84 42.86 35.00 34.65 12.50 37.50 26.33 35.83
Comp 40.98 02.27 66.67 54.84 38.10 50.00 36.63 16.07 40.00 26.05 37.84

Table 2: The performance of backbone models without further training (Backbone), training with atomic data
(Atom), and compositional data (Comp) on IFEval. The I-level and C-level denote the Instruction-level and
Constraint-level accuracy respectively.

The performance of the three methods on the test225

sets is shown in Tab. 1 and Tab. 2. First, with regard226

to the overall performance, training with composi-227

tional data generally surpasses both the backbone228

model and atomic data training. This demonstrates229

that training with compositional data can gener-230

ally enhance models’ ability to follow complex231

instructions. Surprisingly, according to Tab. 1,232

training with atomic data (mostly with 1 constraint)233

can generally decrease performance compared to234

the backbone model for instructions with more than235

1 constraint. Also, training with compositional data236

(usually 3 to 5 constraints) boosts performance on237

instructions with 1 to 3 constraints significantly but238

shows less enhancement or even a decline for those239

with 4 to 5 constraints. This suggests that training240

with compositional data (instructions with multi-241

ple constraints) can better generalize to lower-level242

complex instructions (instructions with fewer con-243

straints). Moreover, this effect is more pronounced244

in smaller LLMs (7B), likely due to their weaker245

generalization ability (Magister et al., 2022; Fu246

et al., 2023). Later in §5.3.1, we found that training247

with compositional data can even generalize to the248

compositions of out-of-domain constraints.249

We have found that training with compositional250

data can better enhance LLM’s ability to follow251

complex instructions compared with atomic data. A252

follow-up research question is how to obtain high-253

quality compositional data? Existing datasets254

either only provide compositional instructions with- 255

out output (Zhou et al., 2023a; Jiang et al., 2023) or 256

directly generate responses using advanced LLMs 257

and refine them manually (Sun et al., 2024). 258

We compare the outputs generated by three 259

methods: (1) Vanilla: Output generated directly 260

using backbone model. (2) Generation: Out- 261

put generated directly using GPT-3.5-turbo. (3) 262

Discrimination: First, we identify the constraints 263

that Vanilla outputs failed to adhere to using test 264

scripts (Zhou et al., 2023a). Then, we rectify the 265

Vanilla outputs constraints by constraints using 266

GPT-3.5-turbo (The framework is shown in Fig. 2 267

and please refer to §4.2 for details). With regard to 268

the complex instructions, the instructions in IFE- 269

val (Zhou et al., 2023a) originally had only 1 to 3 270

constraints, which were not complex enough. We 271

construct 1500 complex instructions, each with 3 272

to 5 constraints from IFEval that are objective and 273

can be automatically verified (Please refer to §4.1 274

for details). We leverage LLaMA2-13B-chat (Tou- 275

vron et al., 2023) as the backbone and evaluate the 276

performance of the three methods using the test 277

script from Zhou et al. (2023a). 278

As shown in Tab. 3, using the generation method, 279

outputs from advanced LLMs (Generation) are 280

of higher quality than those from weaker LLMs 281

(Vanilla). However, the outputs from weaker 282

LLMs then refined by advanced LLMs (Discrim- 283

ination) significantly outperform the outputs 284
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Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

Vanilla 21.19 08.89 77.26 56.67 61.60 10.60 30.85 00.26 16.84 06.40 41.33
Generation 56.50 30.37 68.95 74.96 72.29 33.01 52.91 36.76 79.51 21.53 62.68
Discrimination 66.56 25.00 68.11 68.27 77.32 81.95 52.27 70.90 85.60 35.04 68.30

Table 3: The performance of different methods on IFEval.

generated by advanced LLMs directly (Genera-285

tion). We believe this is because slight changes in286

the instruction (i.e. constraint) can cause substan-287

tial output differences, which the discrimination-288

based method captures better than the generation-289

based method.290

4 Method291

According to §3, we propose a discrimination-292

based method to obtain effective training data. A293

subsequent question is how to effectively utilize294

the data obtained through the discrimination-295

based method? Hence, we introduce a reinforce-296

ment learning fine-tuning (RLFT) based method297

that leverages both positive and negative samples298

to improve complex instruction following. The299

framework is shown in Fig. 2.300

4.1 Complex Instruction Synthesis301

According to §3, the effective training data is com-302

plex instructions with multiple constraints (com-303

positional data). To obtain compositional data, we304

first collect seed instructions from three widely305

used instruction-tuning datasets. Then, we rewrite306

the instructions to incorporate multiple constraints.307

To ensure the coverage and diversity of the seed308

instructions, we consider three sources: (1) Open309

Assistant (Köpf et al., 2024): human-written in-310

structions when interacting with chatbots. We only311

consider rank 0 instructions (annotated by humans312

as the highest quality) and the first turn of the con-313

versation (Li et al., 2023b). (2) Self-Instruct (Wang314

et al., 2022a): 175 manually written instructions315

covering diverse topics to facilitate instruction gen-316

eration for new tasks. (3) Super-Natural (Wang317

et al., 2022b): A collection of natural language318

processing (NLP) tasks formatted with human in-319

structions. We first exclude tasks with finite output320

sets using rules (e.g., classification, tagging), since321

the outputs are too simple for the corresponding in-322

structions to incorporate constraints. This leaves us323

with 318 remaining tasks. Next, we randomly se-324

lect one instruction for each task. From these three325

sources, we finally gather 1500 seed instructions.326

Subsequently, we integrate constraints into these327

seed instructions. Initially, we randomly sample 3 328

to 5 constraints and utilize the provided scripts to 329

resolve conflicts among the constraints provided 330

by Zhou et al. (2023a). Next, given that, semanti- 331

cally equivalent but textually distinct instructions 332

can substantially affect model outcomes (Yan et al., 333

2024; Chen et al., 2024), we employ eight diverse 334

expressions to describe each type of constraint. 335

Specifically, we manually select three common de- 336

scriptions from the test set as seed descriptions, 337

generate five similar descriptions using GPT-3.5- 338

turbo, and refine them manually. For each sampled 339

constraint ci, we randomly select one description 340

di from the description pool and append it to the 341

instructions, formulated as: 342

Ic = LLM(Is ⊕ di ⊕ ...⊕ dn), 343

where Is, Ic and di denote the seed instruction, 344

its corresponding synthesized complex instruction, 345

and appended constraint using a specific descrip- 346

tion, respectively. The number of constraints n 347

ranges from 3 to 5. 348

4.2 Teacher Correction 349

As introduced in §3, we propose a discrimination- 350

based approach for obtaining the output, shown to 351

be more effective than directly generating output 352

with advanced LLMs. The details of this approach 353

are as follows. 354

Initially, we utilize LLaMA2-13B-Chat (Tou- 355

vron et al., 2023) (student model) to generate 356

results for our synthesized complex instructions. 357

Then, we utilize the test scripts from Zhou et al. 358

(2023a) to identify the constraints the model failed 359

to follow since the constraints are objective and au- 360

tomatically verifiable. Finally, we adopt advanced 361

LLMs (teacher model) GPT-3.5-turbo to correct 362

the failed constraints one by one. 363

Specifically, each complex instruction Ic con- 364

tains multiple constraints. In §4.2, we utilize 365

the test script to pinpoint the f constraints C = 366

{c1, c2, ..., cf} that the student model’s vanilla out- 367

put ov fails to follow. The teacher model sequen- 368

tially corrects these failed constraints, yielding an 369
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output set O = {ov, o1, o2, ..., of}:370

o1 = LLM(ov, c1), . . . , of = LLM(of−1, cf ),371

where GPT-3.5-turbo is employed as the teacher372

model with prompts sourced from Tab. 9.373

4.3 Contrastive Method374

During §4.2, for each instruction Ic, we can375

gather positive sample set {of} and negative sam-376

ples set {o1, ..., of−1}. Supervised fine-tuning377

(SFT) solely utilizes positive samples successfully378

meeting constraints specified in complex instruc-379

tions (Radford et al., 2019; Howard and Ruder,380

2018). However, negative samples from §4.2, fail-381

ing to meet certain constraints, also offer valuable382

supervision signals. Hence, we leverage the pos-383

itive and negative samples through reinforcement384

learning fine-tuning (Rafailov et al., 2023).385

Specifically, given the output set O =386

{ov, o1, o2, ..., of} for each complex instruction387

Ic, we can form a training dataset D comprising388

f contrastive triplets: D = {I(i)c , o
(i)
i , of}fi=1 =389

{(Ic, ov, of ), (Ic, o1, of ), ..., (Ic, of−1, of )}. In390

each training triplet, the final corrected output of391

(positive sample) is preferred over oi (negative sam-392

ple), as of follows more constraints specified in the393

complex instruction Ic. Following this, Direct Pref-394

erence Optimization (DPO) (Rafailov et al., 2023)395

can be applied to model the preference informa-396

tion. The loss function is a maximum likelihood397

objective for the language model parameters πθ.398

LDPO(πθ;πref) = −E(Ic,of ,oi)∼D[logσ(βlog
πθ(of |Ic)
πθ(of |Ic)

399

−βlog
πref(oi|Ic)
πref(oi|Ic)

)],400

where the reference model parameter πref is set to401

πθ initially and remains fixed throughout training.402

β is a hyperparameter and σ is the sigmoid function.403

The goal of LDPO is to maximize the log probability404

of preferred output of relative to the dispreferred405

output oi.406

However, solely relying on LDPO may lead to407

low probabilities for both chosen and rejected out-408

puts, yet with a significant disparity between them.409

Therefore, we additionally integrate the SFT loss410

LSFT to constrain πθ from deviating from the pre-411

ferred data distribution (Xu et al., 2024; Hejna et al.,412

2023):413

LSFT(πθ) = −E(Ic,of )∼D[log πθ(of |Ic)].414

Finally, our training procedure is to optimize LDPO 415

and LSFT jointly: 416

LOurs = LDPO + LSFT. 417

5 Experiments 418

We conduct experiments to verify the effectiveness 419

of our method, focusing on overall performance, 420

training efficiency, and generalization ability. 421

5.1 Experiment Setup 422

Models. Our baselines comprise popular open- 423

source and close-source LLMs. With regard to 424

our framework, utilizing synthesized complex in- 425

structions (§4.1), we compare three methods: (1) 426

Ours-13B-Generation directly generates output 427

with GPT-3.5-turbo and trains the backbone model 428

via supervised fine-tuning (SFT). (2) Ours-13B- 429

Discrimination generates output via the backbone 430

model then refines with GPT-3.5-turbo (§4.2), and 431

trains the backbone model via SFT. (3) Ours-13B- 432

Contrastive utilizes DPO for training to model 433

positive and negative samples (§4.3). The back- 434

bone model for all three methods is LLaMA2-13B- 435

Chat, with the instructions of training data being 436

the same; only the output of training data and train- 437

ing paradigms differ. Specifically, continuous train- 438

ing may cause catastrophic forgetting (McCloskey 439

and Cohen, 1989). To address this, we utilize the 440

replay strategy (Ke and Liu, 2022), mixing the train- 441

ing data with 10000 ShareGPT data (Chiang et al., 442

2023) to maintain the general abilities of models 443

during training. 444

Evaluation. We evaluate all models on IFE- 445

val (Zhou et al., 2023a), a widely-used instruction- 446

following benchmark. The test set consists of 541 447

samples, each containing 1 to 3 constraints. All the 448

constraints are objective and can be automatically 449

verified, such as length constraints and detectable 450

formats. The metrics are the same as §3. 451

5.2 Results 452

Overall Performance. The performance on IFE- 453

val is presented in Tab. 4. First, using the same 454

backbone model, Ours-13B-Generation performs 455

worse than many popular open-source models (Vi- 456

cuna, WizardLM), even when the constraints in the 457

test set have been seen in the instructions. This 458

highlights the difficulty in obtaining high-quality 459

output for complex instructions. Next, Ours-13B- 460

discrimination achieves significant performance im- 461

provement, indicating that discrimination surpasses 462
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Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

LLaMA2-13B-Chat (Touvron et al., 2023) LLaMA2 37.08 07.69 83.02 60.51 57.06 25.81 37.76 00.00 29.85 29.94 42.21
LLaMA2-70B-Chat (Touvron et al., 2023) LLaMA2 42.70 24.62 79.25 63.69 68.71 16.13 39.86 12.12 62.69 38.45 50.36
Qwen-14B-Chat (Bai et al., 2023) Qwen 57.30 23.08 75.47 57.96 58.28 83.87 33.57 21.21 68.66 37.89 51.08
Vicuna-13B-V1.5 (Zheng et al., 2024) LLaMA2 56.18 32.31 75.47 62.42 57.06 93.55 42.66 16.67 64.18 42.33 53.48
WizardLM-13B-V1.2 (Xu et al., 2023) LLaMA2 49.44 16.92 75.47 67.52 66.26 83.87 46.85 15.15 64.18 43.07 54.56
OpenChat-13B-V3.2 (Wang et al., 2023) LLaMA2 49.44 26.15 88.68 68.15 66.26 87.10 47.55 19.70 71.64 46.03 57.43

Ours-13B-Generation LLaMA2 64.04 20.00 66.04 70.06 53.99 35.48 44.06 21.21 74.63 41.22 52.88
Ours-13B-Discrimination LLaMA2 60.67 06.15 79.25 64.97 60.12 96.77 43.36 51.52 79.10 46.21 57.43
Ours-13B-Contrastive LLaMA2 65.17 10.77 84.91 66.88 60.74 93.55 47.55 43.94 86.57 48.24 59.71

PaLM2-S* (Anil et al., 2023) PaLM N/A N/A N/A N/A N/A N/A N/A N/A N/A 43.07 55.76
GPT3.5-turbo GPT 58.43 70.77 88.68 88.54 71.17 98.35 53.85 18.18 76.12 58.96 68.47
GPT4* (Achiam et al., 2023) GPT N/A N/A N/A N/A N/A N/A N/A N/A N/A 76.89 83.57

Table 4: The overall performance of models on IFEval (each with 1 to 3 constraints). The asterisk (*) indicates
that the results are directly sourced from IFEval. N/A denotes that IFEval does not provide the results for specific
constraints.

Models ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

LLaMA2-13B-Chat 17.86 00.00 68.42 58.54 61.43 27.27 34.43 00.00 27.03 09.50 42.27
WizardLM-13B-V1.2 16.67 13.64 56.58 53.66 64.29 100.00 40.98 17.39 48.65 14.00 47.20
OpenChat-13B-V3.2 25.00 00.00 76.32 56.71 61.43 86.36 35.25 15.22 55.41 16.50 49.07

Ours-13B-Discrimination 48.81 00.00 67.11 50.61 58.57 90.91 36.89 60.87 67.57 15.00 53.33
Ours-13B-Contrastive 35.71 04.55 63.16 50.61 65.00 86.36 47.54 63.04 79.73 19.00 55.73

Table 5: The performance of models on instructions within the same constraint category (each with 3 to 5 constraints)
but with varying phrasing and detailed requirements, assessing our methods’ in-domain generalization ability.

Models ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

LLaMA2-13B-Chat 25.71 08.70 67.44 47.41 60.71 28.00 26.92 02.38 21.90 01.00 40.15
WizardLM-13B-V1.2 28.57 00.00 54.26 50.00 66.67 72.00 34.62 15.48 52.38 07.00 46.60
OpenChat-13B-V3.2 31.43 04.35 62.79 56.03 60.71 72.00 31.73 23.81 49.52 07.30 47.64

Ours-13B-Discrimination 51.43 04.35 57.36 35.34 65.48 48.00 31.25 59.52 69.52 05.00 49.53
Ours-13B-Contrastive 40.95 08.70 50.39 45.69 72.22 64.00 37.50 55.95 74.29 07.50 53.05

Table 6: The performance of models on more challenging complex instructions with 6 to 7 constraints. The
adversarial setting stress tests the generalization ability of LLMs in following complex instructions.
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Figure 3: The performance of training efficiency
(left) and out-of-domain generalization (right). D
and C denote Ours-13B-Discrimination and Ours-13B-
Contrastive respectively.

the generative paradigm in achieving high-quality463

output. Moreover, Ours-13B-contrastive performs464

the best, proving that our method excels in captur-465

ing subtle variations in complex instructions for the466

output.467

Training Efficiency. We compare the training468

efficiency of Ours-13B-Discrimination and Ours-469

13B-Contrastive. Both use the same training data470

but employ different training methods: the for-471

mer uses the next-token-prediction generation ap-472

proach, while the latter uses our contrastive ob- 473

jective. As shown in Fig. 3 (left), Ours-13B- 474

Contrastive achieves better performance with the 475

same training steps and ultimately outperforms bet- 476

ter than Ours-13B-Discrimination. This proves 477

that our method utilizing both positive and negative 478

samples can enhance complex instruction follow- 479

ing ability more effectively and efficiently. 480

5.3 Generalization Experiments 481

We investigate the generalizability of our frame- 482

work from four perspectives. 483

5.3.1 Out-of-Domain Generalization 484

We investigate whether the ability to follow com- 485

plex instructions extends to unseen constraints. 486

To achieve this, we evaluate models on an- 487

other instruction-following benchmark Follow- 488

Bench (Jiang et al., 2023), which has the following 489

features to outline: (1) It contains almost entirely 490

different constraints from IFEval, such as style sce- 491

nario, and example constraints. (2) It includes com- 492
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plex instructions of five difficulty levels. The diffi-493

culty level is denoted by incrementally increasing494

the same type of constraint to a seed instruction at495

each level. (3) Specifically, to mirror real-world496

scenarios, it introduces a Mixed Category. Instruc-497

tions within this category encompass multiple con-498

straints, akin to the compositional data in our study499

while incorporating different constraints.500

As shown in Fig. 3 (right), first, the performance501

of our methods generally drops compared to the502

backbone model when tested on individual, unseen503

constraints. This suggests that models training with504

certain constraints can hardly generalize to unseen505

constraints directly. However, surprisingly, our506

methods show a remarkable 12.92% improvement507

in performance in the Mixed Category. This proves508

that tuning with compositional data enhances the509

models’ capacity to follow instructions covering510

multiple constraints, even if these constraints differ511

greatly from those in the training set.512

5.3.2 In-Domain Generalization513

We construct a new test set to evaluate our methods’514

in-domain generalization, focusing on the same515

constraint but with varied wording and specific re-516

quirements. First, we select 200 instructions from517

the Open Assistant dataset (introduced in §4.1) not518

in our training set. Next, we randomly choose 3519

to 5 constraints from IFEval, pair them with de-520

scriptions from our description pool (§4.1), and521

utilize GPT-3.5-turbo to paraphrase them, ensuring522

distinct descriptions from the training data. Addi-523

tionally, we manually adjust specific requirements524

in the instructions, changing symbols (e.g., "sepa-525

rated by 6 asterisk symbols ******" to "separate526

the responses with 6 hash signs: ######") and for-527

mats (e.g., "wrap the entire output in JSON format"528

to "I want the entire output in XML format"). As529

shown in Tab. 5, Ours-13B-Contrastive remains530

the top performer. Additionally, the performance531

gap between Ours-13B-Contrastive and the best532

open-source model (OpenChat-13B-V3.2) has in-533

creased from 2.28 to 6.66. These results highlight534

the robustness of our method in handling complex535

instructions across different phrasing and detailed536

requirements within the same constraint category.537

5.3.3 Adversarial Setting538

We compare models’ performance on more chal-539

lenging complex instructions with increased con-540

straints. This adversarial setting stress tests the gen-541

eralization capacity of LLMs in following complex542

Models ARC
(25-shot)

HellaSwag
(10-shot)

MMLU
(5-shot)

TruthfulQA
(0-shot) Avg.

LLaMA2-13B-Chat 59.04 81.94 54.64 44.12 59.94
WizardLM-13B-V1.2 59.04 82.21 54.64 47.27 60.79
OpenChat-13B-V3.2 59.64 82.68 56.68 44.49 60.87

Ours-13B-Discrimination 56.74 78.39 53.01 48.17 59.08
Ours-13B-Contrastive 57.76 79.95 53.79 48.15 59.91

Table 7: The performance of models on general tasks.

instructions. Specifically, we utilize the same 200 543

seed instructions from §5.3.2 and the method intro- 544

duced in §4.1 to append 6 to 7 constraints to the 545

seed instructions. These new instructions are chal- 546

lenging since our training data contains 3 to 5 con- 547

straints. As shown in Tab. 6, Ours-13B-Contrastive 548

outperforms all other models and significantly per- 549

forms better than Ours-13B-Discrimination. This 550

demonstrates our method utilizing positive and neg- 551

ative samples generalizes better to complex instruc- 552

tions than SFT only utilizing positive samples. 553

5.3.4 General Ability 554

We test whether training with our synthesized com- 555

plex instructions compromises LLMs’ general abil- 556

ity. To achieve this, we evaluate models on four 557

widely adopted benchmarks, reflecting the mod- 558

els’ knowledge capability (MMLU (Hendrycks 559

et al., 2020), TruthfulQA (Lin et al., 2021), 560

ARC (Clark et al., 2018)), complex reasoning (Hel- 561

laSwag (Zellers et al., 2019)). As shown in Tab. 7, 562

our methods perform on par with other open-source 563

LLMs, validating that our methods enhance the 564

complex instructions following ability while main- 565

taining the models’ general ability. 566

6 Conclusion 567

In this paper, we systematically study how to en- 568

hance the ability of LLMs to follow complex in- 569

structions. Initially, we study effective training 570

data and methods for obtaining high-quality data 571

through two empirical studies. Based on our find- 572

ings, we introduce a method utilizing positive 573

and negative samples to enhance LLMs’ complex 574

instruction-following capability. Our experiments 575

show that our method more effectively and effi- 576

ciently captures subtle instruction differences lead- 577

ing to significant output changes compared to the 578

traditional supervised fine-tuning (SFT). Addition- 579

ally, we evaluate the generalization capabilities of 580

our framework through extensive experiments. 581

8



7 Limitations582

We analyze the limitations of our work as follows.583

First, we investigate complex instruction-following584

by testing LLMs’ ability to adhere to instructions585

with multiple constraints. Even if the model meets586

all the constraints simultaneously, it may not fully587

follow complex instructions due to reasoning or588

knowledge limitations. However, we see com-589

plex constraint-following as a significant challenge590

worth studying. In constructing the training data,591

we primarily use hard constraints from IFEval, al-592

though real-world scenarios often include soft con-593

straints like semantic constraints. We focus on hard594

constraints because they can be objectively and au-595

tomatically evaluated, and we believe experiments596

based on them can yield valuable insights into com-597

plex instruction-following.598
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Benchmark Type Training Set Test Set

L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg.

FollowBench

Example 31 20 17 16 16 100 9 20 23 24 24 100
Content 16 15 17 15 12 75 9 10 8 10 13 50
Situation 14 13 13 13 13 66 8 9 9 9 9 44
Style 19 19 18 18 16 90 11 11 12 12 14 60
Format 20 19 17 18 16 90 10 11 13 12 14 60
Mixed 14 10 11 7 6 48 3 7 6 10 11 37
Total 114 96 93 87 79 469 50 68 71 77 85 351

IFEval One-cons - - - - - 92 - - - - - 213
Multi-cons - - - - - 92 - - - - - 144

Table 8: The statistic of the datasets constructed in the
empirical study

A Appendix873

A.1 Details of Empirical Studies874

In §3, we first investigate what training data is ef-875

fective in enhancing complex constraints following876

ability. To achieve this, we split the instructions in877

the existing instruction following benchmarks, i.e.,878

Followbench (Jiang et al., 2023) and IFEval (Zhou879

et al., 2023a) into the training and test sets. The880

training sets consist of two types of data: (1) Com-881

positional data: From IFEval, we utilize all the882

instructions with more than one constraint and all883

level-4 and level-5 instructions from Followbench.884

(2) Atomic data: From IFEval, we use only one-885

constraint instructions. From Followbench, we use886

all level-1 and part of level-2 instructions to ensure887

an equal number of compositional and atomic data888

for fair comparison.889

After collecting the instructions, we first employ890

GPT3.5-turbo to generate the answers to the cor-891

responding instructions. To improve the quality892

of the training data, we filter the samples from893

Followbench by prompting GPT3.5-turbo (We use894

the evaluation prompt from the original paper) and895

those from IFEval via its provided test scripts.896

The statistics of our training set and test set are897

provided in Tab. 8. It can be seen that there is a898

distribution shift between the training set and test899

set from FollowBench. This may be because we use900

outputs satisfying all instruction constraints judged901

by GPT-3.5-turbo for training, with the rest as the902

test set. Consequently, the test set can be more903

challenging than the training data, especially for904

instructions with more constraints (level 4, level 5).905

This can partially explain the results that training906

with compositional data boosts performance on907

instructions with 1 to 3 constraints but lowers it on908

those with 4 to 5 constraints.909

A.2 Complex Structure Synthesis 910

As stated in §4.1, we employ GPT3.5-turbo to 911

diversify the description for the same constraint. 912

The corresponding prompt is shown in Tab. 10. It 913

is worth noting that, for the keyword constraint, 914

we prompt GPT3.5-turbo to brainstorm some key- 915

words related to the instruction, shown in Tab. 11. 916

Then, we randomly select one of them and incor- 917

porate it into the diversified description to form 918

the final instruciton, e.g., your response should not 919

include the word “architecture". 920

A.3 Case study 921

We present some cases of complex instruction fol- 922

lowing in Tab. 12 and Tab. 13. Given the com- 923

plex instructions with multiple constraints, we 924

present the outputs generated by GPT3.5-turbo and 925

LLaMA2-13B-Chat and a list to indicate whether 926

they have followed the specific constraint or not. 927

Constraints incorporated in the instruction are 928

underlined sequentially. 929

A.4 Implemention details 930

We utilize 2 NVIDIA A800 80GB GPUs to con- 931

duct all the experiments. DeepSpeed ZeRO stage 932

1 is adopted for both SFT and DPO training. We 933

set the batch size to 4 for each GPU. All the meth- 934

ods utilizing SFT are trained for 2 epochs with the 935

initial learning rate set to 3e-5 and the gradient ac- 936

cumulation step set to 4. The warm-up steps are 937

set to 300. As for the training of methods utilizing 938

DPO, the beta value is set to 0.1. DPO is trained for 939

2 epochs with the initial learning rate set to 5e-4 940

and the gradient accumulation step also set to 4. 941

We apply cosine learning rate scheduler and Adam 942

optimizer to both models, and their maximum se- 943

quence length is set to 2048. 944
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/* Task prompt */
You are provided with a response which is generated by a LLM and a constraint that the response is asked to follow. Now, you
have known that the response does not follow the constraint. You are designated as a corrector to correct the response. You
should make as minimal revisions as possible so that it follows the constraint. For example, you should not change the case of
the word if you are not asked. To fulfil this task, you are expected to provide your analysis and a revised response which has
followed the constraint.

/* Example */
—INPUT—
Response:
«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code:
012». Andorra is a small, independent principality located in the Pyrenees mountains. The ISO code is a three-digit number
that represents countries. I hope this information is helpful! Do you agree?
Constraint:
The very last sentence of your response should be "Hope you agree with me."
—OUTPUT—
Analysis:
The last sentence of the response is "Do you agree?". I need to change it to "Hope you agree with me." to follow the constraint.
Revised response:
«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code:
012».Andorra is a small, independent principality located in the Pyrenees mountain. The ISO code is a three-digit number that
represents countries. I hope this information is helpful! Hope you agree with me.

/* Input */
—INPUT—
Response:
{Given_response}
Constraint:
{Given_constraint}
—OUTPUT—

Table 9: The prompts for correcting the response generated by the model to follow a specific constraint. The
information that requires manual input is highlighted.

/* Task prompt */
You are provided with a <constraint> in an instruction. As a prompt engineer, your task is to rephrase the provided <constraint>
to make it more diverse. You ought to provide five more variants of the <constraint>. Make sure your revision does not change
the meaning of the original <constraint>.

/* Example */
—INPUT—
<constraint>:
Your response should contain at least 3 sentences.
—OUTPUT—
variants:
1. Respond with at least three sentences
2. Use at least 3 sentences in your reply
3. Your entire response should include at least three sentences
4. Organize your entire response in at least 3 sentences
5. Please make sure the response is at least 3 sentences long

/* Input */
—INPUT—
<constraint>:
{Given_constraint}
—OUTPUT—
variants:

Table 10: The prompts for diversifying the descriptions of a given constraint. We utilize one-shot in-context learning
to enhance the performance. The information that requires manual input is highlighted.
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/* Task prompt */
You are provided with an <instruction>. Your object is to come up some keywords that may be used to answer the <instruction>.
They are usually related to the task described in the <instruction>. you should output your thinking process and the keywords
you come up with.

/* Example */
—INPUT—
<instruction>:
Explain Generative Adversarial Networks (GANs) to me using bullet points. Do not contain any commas in your response.
—OUTPUT—
Thinking process:
The <instruction> asks to explain GANs, hence, ’architecture’, ’training’ and ’generator’ may be appropriate keywords to use
in the answer.
Keywords:
[’architecture’, ’training’, ’generator’]

/* Input */
—INPUT—
<instruction>:
{Given_instruction}
—OUTPUT—

Table 11: The prompts for brainstorming some related keywords of a given instruction. The information that
requires manual input is highlighted.

Instruction
Describe the content of the article in a brief manner. A study published earlier this year by Zee and her team exam-
ined the role of light in sleep for healthy adults in their 20s. Sleeping for only one night with a dim light, such as
a TV set with the sound off, raised the blood sugar and heart rate of the young people during the sleep lab experi-
ment. An elevated heart rate at night has been shown in prior studies to be a risk factor for future heart disease and
early death, while higher blood sugar levels are a sign of insulin resistance, which can ultimately lead to type 2 dia-
betes. (1) The answer should be in at least 4 sections with each section starting with section X (where X is 1, 2, 3,...). The an-
swer should be (2) written in English, with all letters lowercased. Respond with (3) less than 73 words.

GPT3.5-turbo

/* Output */
section 1: study by zee and team on light’s impact on sleep for young adults
section 2: sleeping with dim light raised blood sugar and heart rate
section 3: higher blood sugar levels indicate insulin resistance and risk of type 2 diabetes.

/* Followed list */
[False, True, True]

LLaMA2-13B-Chat

/* Output */
section 1: Introduction
the article discusses the impact of light on sleep and its effects on healthy adults in their 20s.
section 2: Experiment Findings
the study found that sleeping with a dim light, such as a TV with the sound off, raised blood sugar and heart rate levels during
the sleep lab experiment.
section 3: Risk Factors
elevated heart rate at night has been linked to future heart disease and early death, while higher blood sugar levels can lead to
insulin resistance and type 2 diabetes.
section 4: Conclusion
the study highlights the importance of a dark, quiet sleep environment for optimal sleep and overall health.

/* Followed list */
[True, False, False]

Table 12: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 1).

14



Instruction
Summarize a meeting from the given list of bullet points. Be sure to convert shorthand into a first-hand account. Rose: Analyze
data and presents findings
John: propose new idea
Jane: appointed to head project
Tom: need more time to fix a software bug.
(1) End it with a postscript starting with P.S.. (2) The very end of your entire response should read exactly like: That is all you need!.
Your answer must also (3) contain at least 2 placeholders (an example of a placeholder is [address]).

GPT3.5-turbo

/* Output */
During the meeting, Rose analyzed data and presented her findings. John proposed a new idea for the project, while Jane was
appointed to head the project. Tom mentioned that he needed more time to fix a software bug.
P.S. [Address] That is all you need!

/* Followed list */
[True, True, False]

LLaMA2-13B-Chat

/* Output */
Sure, I’d be happy to help! Here’s a summary of the meeting based on the provided bullet points:
The meeting began with Rose presenting her findings after analyzing the data. She shared some insightful observations and
conclusions, which were well-received by the team.
Next, John proposed a new idea that he believed would benefit the project. He explained his reasoning and provided some
supporting evidence for his proposal.
After John’s proposal, Jane was appointed as the head of the project. She expressed her gratitude for the opportunity and
outlined her vision for the project’s success.
Tom then reported that he needed more time to fix a software bug. He explained that the bug was more complex than initially
thought and required additional time to resolve.
In conclusion, the meeting was productive and successful. The team made progress on several fronts, including data analysis,
proposal development, and project leadership.
P.S. That is all you need!
[Address] - the physical location of the meeting [Data] - the specific data that Rose analyzed
[Software bug] - the technical issue that Tom is working to resolve

/ Followed list /
[True, False, False]

Table 13: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 2).

Models ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

LLaMA2-13B-Chat 51.69 15.38 83.02 67.52 67.48 41.94 47.55 9.09 58.21 41.22 53.00
Qwen-14B-Chat 58.43 23.08 75.47 58.60 60.12 83.87 36.36 25.76 74.63 40.11 53.00
Vicuna-13B-V1.5 60.67 44.62 75.47 64.97 61.35 93.55 48.95 22.73 67.16 46.95 58.03
WizardLM-13B-V1.2 57.30 21.54 75.47 70.70 70.55 93.55 55.94 25.76 71.64 49.72 60.55
OpenChat-13B-V3.2 58.43 35.38 88.68 71.34 68.10 90.32 58.04 24.24 74.63 51.02 62.59

Ours-13B-generation 66.29 26.15 66.04 73.25 59.51 35.48 49.65 27.27 82.09 46.03 57.31
Ours-13B-discrimination 69.66 12.31 79.25 67.52 62.58 96.77 49.65 54.55 80.60 50.83 61.27
Ours-13B-contrastive 69.66 16.92 84.91 68.15 66.87 93.55 51.05 57.58 88.06 52.13 63.91

GPT3.5-turbo 66.29 75.38 88.68 89.17 74.23 100.00 65.03 24.24 86.57 63.96 73.62

Table 14: The performance of models on different constraints of the IFEval. To alleviate this false negative problem,
following (Zhou et al., 2023a), we use three variants of the model response to calculate a more loose accuracy
score. Instruction-level accuracy and Constraint-level accuracy indicate the capacity of the model to follow the
whole instruction and each constraint, respectively. The bold and underlined denote the first and second rankings,
respectively.
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