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Advancing Multi-grained Alignment for Contrastive
Language-Audio Pre-training
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ABSTRACT
Recent advances have been witnessed in audio-language joint learn-
ing, such as CLAP, that shows much success in multi-modal un-
derstanding tasks. These models usually aggregate uni-modal lo-
cal representations, namely frame or word features, into global
ones, on which the contrastive loss is employed to reach coarse-
grained cross-modal alignment. However, frame-level correspon-
dence with texts may be ignored by the above paradigm, making it
ill-posed on explainability and fine-grained text-audio challenges
(e.g., text-to-audio grounding) which may also undermine perfor-
mances on coarse-grained tasks. In this work, we aim to improve
both coarse- and fine-grained audio-language alignment in large-
scale contrastive pre-training. To unify the granularity and latent
distribution of two modalities, a shared codebook is adopted to rep-
resent multi-modal global features with common bases, and each
internal codeword is regularized to encode modality-shared seman-
tics, bridging the gap between frame and word features. Based
on the above framework, a locality-aware block is involved to pu-
rify local patterns, and a hard-negative guided loss is devised to
boost alignment effects. Extensive experiments on eleven zero-
shot coarse- and fine-grained evaluation protocols suggest that our
model not only surpasses the baseline CLAP significantly but also
yields superior or competitive results compared to current SOTA
works. The code and model will be released upon paper acceptance.

CCS CONCEPTS
• Information systems→ Speech / audio search.

KEYWORDS
Contrastive language-audio pre-training, Zero-shot inference, Audio-
text retrieval, Fine-grained interaction

1 INTRODUCTION
Sound conveys a lot of information in our daily lives. With the
advance of learning theories and data collections [11], large-scale
pre-trained models, such as PANNs [21] and AST [13], have wit-
nessed extraordinary achievements on sound-related challenges,
such as sound classification [38] and sound event detection [26]. De-
spite such success, thesemethods still require downstream tuning to
adapt to novel scenarios and cannot facilitate tasks related to natural
language, e.g., retrieve or generate audio clips [28, 51, 52] according
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(a)

(b)

Speech

Alarm

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s0s

Figure 1: The cosine similarity between frame features of
(a) CLAP, (b) our MGA-CLAP and text features of ten sound
classes. The sample audio contains alarm (2.8s- 4.5s, 5.4s-7.0s)
and speech (0.6s-1.5s, 7.0s-8.3s, 8.9s-10.0s).

to human instructions. Alternatively, Contrastive Language-Audio
Pre-training (CLAP) [9] is introduced to learn general and trans-
ferable representations by associating audio samples with corre-
sponding captions. Consequently, an aligned feature space is built,
making it versatile for several tasks, such as zero-shot audio classi-
fication and retrieval, by simply computing the cosine similarity
between encoded audio and textual features of sound classes [25].

However, during empirical practices, we notice that current
CLAP models lack the capability of capturing the fine-grained
alignment like the relationship between acoustic events and textual
meanings. An example of this phenomenon is depicted in Figure 1
(a). As seen, although the two kinds of events, namely alarm and
speech, are successfully recognized by the original CLAP, the simi-
larity between frame representations and textual sound representa-
tions shows much inconsistency with the real temporal locations
of sound events. For instance, the sound "alarm" is recorded at 2.8s-
4.5s and 5.4s-7.0s, but the corresponding frame-level similarity is
high over the whole clip. This may undermine the model’s explain-
ability and lead to undesirable results on fine-grained cross-modal
understanding tasks, including zero-shot sound event detection and
text-to-audio grounding [53]. Moreover, poor performance can also
be observed in certain cases when conducting coarse-grained tasks
like zero-shot audio tagging and retrieval, since local patterns and
temporal information are potentially ignored by the vanilla CLAP
paradigm. We attribute the above problem to the lack of interac-
tion between frame and word features during CLAP training, as
current CLAP methods reach the cross-modal alignment via solely
the similarity of the global features of each modality.

To mitigate the research gap, we propose to adopt a modality-
shared codebook to encourage the multi-modal features to interact
on a finer granularity. The codebook consists of several learnable

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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codewords, and the weighted summation of them will be utilized
to represent the global features of each modality, so that they are
naturally restricted in the same feature space, making it easier to
learn the alignment. To encode cross-modal shared semantic con-
cepts (e.g., sound events) into each codeword, we further revise
the traditional working scheme of the codebook to compute the
aggregation weights. Practically, we define the affinity scores be-
tween a clip (or a caption) and each codeword as the maximum
cosine similarity between its frame features (or word features) and
the specific codeword. Then, the global feature can be represented
with a small number of codewords by applying sparse constraints
on the affinity scores to avoid noisy activation before using them
as aggregation weights. Through optimizing the contrastive loss,
not only the paired global features can be well-aligned, but also
the frame features of an acoustic event (e.g., "alarm") and the word
features of the corresponding caption can activate the same, small
set of codewords, thereby implicitly building a connection between
fine level multi-modal features. Moreover, we also notice that lo-
cal acoustic patterns may be destroyed by the vanilla transformer
block and devise a novel locality-aware block to ensure high-quality
frame features for codewords aggregation. Finally, a hard-negative
guided contrastive loss is reformulated to mine more discriminative
representations in order to build a better-aligned global latent space.
Equipped with these techniques, our MGA-CLAP reaches a better
fine-grained alignment than the original CLAP without losing its
natural coarse-grained alignment, as shown in Figure 1 (b).

We conduct extensive experiments on both coarse- and fine-
grained audio-text tasks. As for the fine-grained ones, MGA-CLAP
surpasses the original CLAP to a large extent. Specifically, us-
ing WavCaps [30] as the main pre-training dataset, MGA-CLAP
achieves 26.4%/10.1% PSDS1 on zero-shot DESED [41]/AudioSet-
Strong [15] sound event detection tasks, which is 13.3%/6.7% higher
than its baseline CLAP. While for coarse-grained retrieval and tag-
ging tasks, our method also demonstrates noticeable improvements
over CLAP and shows better performance on most evaluation pro-
tocols compared to previous SOTA works which generally require
much more training resources. Besides, several ablation studies are
performed to reveal the effects of each component elaborately. Fi-
nally, we also visualize the semantic meanings of specific codewords
to show their roles in linking different modalities.

2 RELATEDWORK
2.1 Contrastive Language-Audio Pre-training
By pre-training on 400M image-text pairs, CLIP [33] demonstrates
superior performance and transferability on cross-modal vision
problems, such as zero-shot image retrieval and classification. Sev-
eral works, including AudioCLIP [14] and Wav2CLIP [47], try to
leverage visual modality as a bridge to connect text and audio repre-
sentations, achieving promising results on zero-shot audio tagging
tasks. With the collection of large-scale audio caption datasets,
namely AudioCaps [19], Clotho [7] and WavText5K [6], a lot of
works explore contrastive language-audio pre-training without
involving the visual modality. MS-CLAP [9] first obtains aligned
text and audio encoders on a combination of off-the-shelf audio-
text datasets. However, due to the limits of data size, its perfor-
mance is sub-optimal. A few researchers then turn to expand the

scale of audio-text datasets. LAION-Audio-630K [48] and WavCaps
[30], collected and annotated by human professionals and Chat-
GPT respectively, are shown to be more effective for pre-training.
Besides, BLAT [55] proposes to utilize a well-trained model to-
gether with audio tags to automatically generate audio captions for
contrastive pre-training while Cacophony [59] combines an audio
caption model and Large Language Models (LLMs) to expand the
data size to 4M and explore training strategies on such large-scale
dataset. Moreover, the intrinsic shortcomings of CLAP are also stud-
ied. ACBA [46] and CompA [12] enhance CLAP’s compositional
reasoning ability while FLAP [57] devises masking strategies to
improve both the training efficiency and model performance. By
contrast, we notice the unsatisfactory fine-grained alignment of
CLAP and aim to discover both fine-grained and coarse-grained
correspondence solely from audio-text pairs.

2.2 Audio Feature Learning with Codebook
Codebook is the key design in vector quantization [42], which is
widely adopted for both understanding [1] and generation [36]
tasks. During quantization, encoder features will be substituted by
their nearest-neighbor codewords in the codebook, before being
utilized to reconstruct original features by the decoder. Finally, by
querying the learned codebook, a continuous space can then be
transformed into finite discrete tokens. Following this way, modern
neural audio codec models [49, 58] learn to convert the raw wave-
form into several codewords, paving the way for efficient audio
compression [5] and auto-regressive audio generation [44]. Besides,
BEATs [4], the state-of-the-art self-supervised learning approach,
also employs an acoustic tokenizer to quantize spectrograms into
codewords for mask prediction, which demonstrates better perfor-
mance compared to reconstruction methods, namely AudioMAE
[17]. Different from the above, we leverage the codebook to ac-
commodate both text and audio hidden representations instead of
single-modality raw signals, which explicitly constructs a shared
multi-modal feature space for coarse-grained alignment. Moreover,
we dedicatedly redesign the computational rules of the codebook
so that it can help discover the fine-grained correspondence.

2.3 Learning Frame-level Correspondence from
Weak or Caption Supervision

Frame-wise labeling is extremely laborious for audio tasks, hence
learning from partially labeled data (e.g., weak labels or audio cap-
tions) becomes a promising remedy.Weakly supervised sound event
detection [22, 27] aims to recognize the sound event boundary un-
der weak supervision, where only the clip-level annotations are
provided but the exact timestamps are inaccessible. However, it
solely maps acoustic features to a closed label set, which limits its
applications in open-world scenarios. By contrast, learning from
audio captions addresses the aforementioned problem by associ-
ating frame features with general language descriptions. But it is
more challenging due to the intrinsic modality gap. Besides, the
noisy information (non-sound words) contained in the captions
also increases the difficulty. UACA [50] first learns relationships
between sound events and textual phrases from audio captions by
aggregating frame-word similarity matrix to clip-caption similarity,
while WSTAG [54] improves it by leveraging max-mean instead of
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Figure 2: (a) shows the overall pipeline of our MGA-CLAP. (b) illustrates the aggregation mechanism of the codebook. (c)
demonstrates the key difference between the proposed locality-aware block and vanilla transformer block.

mean-mean pooling. However, these works depend on exhaustive
score matching while ignoring complex frame-word interaction,
leading to suboptimal fine-grained alignment when scaling to a
much larger pre-training dataset. In this work, we propose a novel
solution to model the frame-word correspondence, demonstrating
better performance and scalability than [50, 54].

3 METHODOLOGY
3.1 Overview
An overview of our MGA-CLAP is shown in Figure 2 (a). As il-
lustrated before, we introduce a novel modality-shared codebook,
which aggregates frame- and word-level features with shared code-
words. Then, in order to refine the frame-wise features, the locality-
aware block is involved to better capture local patterns. Finally, the
CLAP loss is reformulated to emphasize indistinguishable audio-
text pairs for contrastive optimization. In the following subsections,
we will detail the above three core designs.

3.2 Modality-shared Codebook
3.2.1 Multi-modal Representations in CLAP. CLAP employs a bi-
encoder architecture to learn the aligned feature space for both
modalities. Specifically, assume that we have a batch of audio-text
pairs {(𝑥𝑖 , 𝑦𝑖 )}𝐵𝑖=1, where 𝑥𝑖 , 𝑦𝑖 represent the 𝑖 th audio clip and
its caption, and 𝐵 is the batch size. CLAP audio encoder 𝑓 takes
𝑥𝑖 as input before generating frame representations 𝑃𝑖 = 𝑓 (𝑥𝑖 ) ∈
R𝑇×𝐷 while the text encoder 𝑔 outputs word-level features 𝑄𝑖 =

𝑔(𝑦𝑖 ) ∈ R𝑁×𝐷 according to 𝑦𝑖 , where 𝑁 , 𝐹 and 𝐷 is the number
of frames, words and feature dimensions, respectively. Then, to
obtain the global clip- and caption-level feature, an aggregator
ℎ (𝑎) : R𝑇×𝐷 → R𝐷 is required to map 𝑓 (𝑥𝑖 ) to 𝑝𝑖 , and ℎ (𝑡 ) works

similarly to aggregate 𝑔(𝑦𝑖 ) to 𝑞𝑖 . Finally, the symmetric contrastive
loss is optimized to pull together the global features of paired audios
and texts while pushing away unpaired ones in the latent space,

LCLAP = −
𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒<𝑝𝑖 ,𝑞𝑖>/𝜏∑𝐵
𝑗=1 𝑒

<𝑝𝑖 ,𝑞 𝑗>/𝜏
−

𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒<𝑞𝑖 ,𝑝𝑖>/𝜏∑𝐵
𝑗=1 𝑒

<𝑞𝑖 ,𝑝 𝑗>/𝜏
(1)

where < ·, · > is the inner product function and 𝜏 is a scaling factor.
In the above CLAP paradigm, ℎ (𝑎) and ℎ (𝑡 ) are instantiated by

mean pooling or attention pooling, suggesting that the global fea-
tures are essentially weighted sum of two bases: the audio frames
and language tokens. However, due to the modality gap, the two
bases may exhibit different granularities and semantics thus dis-
tributed in distinct hidden spaces, making it challenging to learn
the coarse-grained alignment. Moreover, the frame and word repre-
sentations are separately aggregated to the global features without
additional interactions, which may increase the difficulty of dis-
covering more granular correspondence (e.g., the frame-to-word,
frame-to-phrase alignment) since only the coarse-level supervision
is accessible in audio-text pairs.

3.2.2 Modality-shared Codebook as the Aggregator. To seek a com-
mon multi-modal hidden space, we introduce a novel modality-
shared codebook as the feature aggregator. By this means, the
global audio feature 𝑝𝑖 and text feature 𝑞𝑖 are represented with
the same set of 𝑀 learnable codewords as 𝑝𝑖 =

∑𝑀
𝑘=1𝑤

(𝑎)
𝑖,𝑘

𝑧𝑘 and

𝑞𝑖 =
∑𝑀
𝑘=1𝑤

(𝑡 )
𝑖,𝑘
𝑧𝑘 , where {𝑧𝑘 |𝑧𝑘 ∈ R𝐷 , 𝑘 = 1, 2, · · ·𝑀} are the

mentioned codewords, and 𝑤 (𝑎)
𝑖,𝑘

,𝑤
(𝑡 )
𝑖,𝑘

are the corresponding ag-
gregation weights of 𝑧𝑘 for clip 𝑥𝑖 and caption 𝑦𝑖 , respectively. To
capture rich local semantics during aggregation, we specially devise
the pipeline to calculate𝑤 (𝑎)

𝑖,: and𝑤 (𝑡 )
𝑖,: as shown in Figure 2 (b).
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Mathematically, given the extracted frame-wise features 𝑃𝑖 of
clip 𝑥𝑖 , we define the affinity score 𝑠 (𝑎)

𝑖,𝑘
between 𝑥𝑖 and 𝑧𝑘 as,

𝑠
(𝑎)
𝑖,𝑘

= max
𝑗

< 𝑃𝑖, 𝑗 , 𝑧𝑘 > /𝜂 (2)

where 𝑃𝑖, 𝑗 ∈ R𝐷 is the 𝑗 th frame feature of 𝑃𝑖 and 𝜂 is a scal-
ing term. Notably, adopting max pooling instead of mean pooling
may uncover momentary sounds even if they only last one frame,
thereby guaranteeing semantic integrality during aggregation.

The affinity scores 𝑠 (𝑎)
𝑖,: are then normalized by the Sparsemax

[29] function, which works similarly to Softmax but encourages
most of the elements in the probability distribution to be 0.

𝑤
(𝑎)
𝑖,: = Sparsemax(𝑠 (𝑎)

𝑖,: ) (3)

By the sparse constraints, 𝑝𝑖 can be represented by only a few
codewords, which helps eliminate the noisy activation and enhance
the interpretability. Similarly, the global text feature 𝑞𝑖 can also be
constructed via the above way.

Finally, we provide an intuitive view of how the proposed para-
digm reaches fine-grained cross-modal alignment. Under the super-
vision of contrastive loss, the similarity of paired samples < 𝑝𝑖 , 𝑞𝑖 >
is supposed to be maximized. However, due to the sparse regular-
ization, the model may have to resort to the same, small set of code-
words to represent the audio 𝑥𝑖 and text𝑦𝑖 to increase < 𝑝𝑖 , 𝑞𝑖 >. Let
𝑘∗ be one of the activated codewords. It then acts as prior targets,
which requires the encoders to refine frame (or word) represen-
tations to maximize 𝑠 (𝑎)

𝑖,𝑘∗ and 𝑠
(𝑡 )
𝑖,𝑘∗ . As a result, the corresponding

frame and word features are then attracted to the same anchor
𝑧𝑘∗ which contains semantic information of specific sound classes,
thereby bridging the gap between multi-modal local features.

3.3 Locality-aware Encoder Block
Obtaining meaningful local representations is crucial, otherwise,
some codewords may be activated by mistake during feature aggre-
gation. Recall that in the vanilla CLAP audio encoder, the outputs of
the last transformer encoder block will be decoupled to produce the
final frame-wise features. Its general architecture can be found in
the upper of Figure 2 (c), which first employs self-attention to con-
sider global contexts. Specifically, let 𝑈 = {𝑢𝑙 |𝑢𝑙 ∈ R𝑑 }𝑇𝑙=1 be the
input sequence of the block, the query, key, value matrices 𝑄,𝐾,𝑉
are first calculated by separate linear projections𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ,

𝑄 =𝑊𝑞𝑈 ,𝐾 =𝑊𝑘𝑈 ,𝑉 =𝑊𝑣𝑈 (4)

Then, to compute output feature 𝑢′
𝑙
for each frame 𝑙 , the q-k atten-

tion is applied as follows,

𝑎𝑡𝑡𝑛_𝑠𝑐𝑜𝑟𝑒𝑙,: = Softmax(< 𝑞𝑙 , 𝐾 > /
√
𝑑) (5)

𝑢′
𝑙
=
∑︁
𝑗

𝑎𝑡𝑡𝑛_𝑠𝑐𝑜𝑟𝑒𝑙, 𝑗 · 𝑣 𝑗 (6)

where 𝑞𝑙 and 𝑣 𝑗 is the 𝑙 th and 𝑗 th vector of 𝑄 and 𝑉 . In this way,
information from other frames 𝑣 𝑗 can be injected into the current
frame 𝑙 by referring to the q-k similarity.

However, according to the mechanism of self-attention [43], we
argue that 𝑣𝑙 computed at each location 𝑙 already captures rich local
semantics. By contrast, obtaining a comprehensive view by atten-
tion aggregation may impurify the local patterns, which may be a
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Figure 3: The q-k (the 1st row) and v-v similarities (the 2nd
row) along time axis of two sample audios. The scores are
detached from the last encoder block of the original CLAP.
And the sound boundary is marked with double sided arrow.

negative for fine-grained alignment. Figure 3 gives two examples
to support our hypothesis. As seen, the v-v similarities (computed
by Softmax(< 𝑣𝑙 ,𝑉 > /

√
𝑑), which is similar to Equation (5)) of the

last block are high within the same sound event while low among
different events, meaning that acoustically dissimilar frames may
exhibit distinct 𝑣 for finer-level discrimination. In comparison, the
q-k similarities show inconsistency with the event boundary.

Inspired by the above, we design the locality-aware block as
shown in Figure 2 (c), which simply removes the q-k attention and
directly leverages the projected value matrix𝑉 as the output feature
sequence𝑈 ′ with other components unchanged. Besides, we only
replace the last block of the audio branch with the locality-aware
block, the reasons are: (1) the transformer receptive fields become
much more global midway through the network as [35] suggest;
(2) since the audio encoder is pre-trained on AudioSet to learn gen-
eral acoustic patterns (a widely-adopted setting of previous CLAP
variants), replacing the last one can retain most prior knowledge.

3.4 Hard Negative Guided Contrastive Loss
Contrastive learning can benefit a lot from in-batch hard negative
samples [37]. For vision-language tasks, several works [23, 45, 56]
tend to resample or manually craft hard negative instances to im-
prove alignment effects, which generally involves more training
costs. In this work, we devise a simple re-weighting approach to
force the modal to pay more attention to hard negative samples
during optimization. The loss function is reformulated as follows,

LHN_CLAP = −
𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒<�̃�𝑖 ,�̃�𝑖>/𝜏

𝑒<�̃�𝑖 ,�̃�𝑖>/𝜏 +∑
𝑗, 𝑗≠𝑖 𝛼𝑖, 𝑗𝑒

<�̃�𝑖 ,�̃� 𝑗>/𝜏

−
𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒<�̃�𝑖 ,�̃�𝑖>/𝜏

𝑒<�̃�𝑖 ,�̃�𝑖>/𝜏 +∑
𝑗, 𝑗≠𝑖 𝛽𝑖, 𝑗𝑒

<�̃�𝑖 ,�̃� 𝑗>/𝜏

(7)
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where𝛼𝑖, 𝑗 , 𝛽𝑖, 𝑗 is the audio-to-text and text-to-audio difficulty scores
for unpaired samples, they are designed so that hard negative pairs
(with higher similarity compared to the average score) are empha-
sized in loss computation, and easier pairs are neglected. As a result,
the model will be forced to learn amore discriminative feature space
to distinguish confusable pairs for multi-grained alignment. The
formula is written as,

𝛼𝑖, 𝑗 =
𝐵𝑒𝛾<�̃�𝑖 ,�̃� 𝑗>/𝜏∑
𝑘 𝑒

𝛾<�̃�𝑖 ,�̃�𝑘>/𝜏
, 𝛽𝑖, 𝑗 =

𝐵𝑒𝛾<�̃�𝑖 ,�̃� 𝑗>/𝜏∑
𝑘 𝑒

𝛾<�̃�𝑖 ,�̃�𝑘>/𝜏
(8)

where 𝛾 is a scaling ratio, the larger it is, the more importance we
attach to the hard negative samples as the distribution of 𝛼𝑖,: and
𝛽𝑖,: can be sharper.

4 EXPERIMENTAL SETUP
4.1 Pre-training
Dataset. We merge WavCaps, the training set of AudioCaps and
Clotho for pre-training, including about 450K audio-text pairs.
Architecture. We employ the pre-trained BERT [18] base model
as the text encoder which contains 110M parameters. While for the
audio encoder, to examine the scalability of the proposed method,
we adopt a patch-wise model HTS-AT (27M) [3] and a frame-wise
AST (86M) [24], all of them are trained on the AudioSet by previous
works and we directly use the checkpoints. Besides, a two-layer
MLP is appended after the encoder, projecting the multi-modal
features into the same dimension 𝐷 = 1024.
Implementation Details. We train our model for 15 epochs with
a batch size of 128 and a learning rate of 5e-5 using the Adam
optimizer. The hyper-parameter 𝜏 is learnable with an initial value
of 0.07 and 𝛾 and𝑀 are fixed to 0.15 and 4096 empirically. Besides,
all the audio clips and captions are randomly cropped or padded
to 10 seconds and 30 words to guarantee the fixed-sized length.
We also resample the waveform to 32KHz and 16KHz for HTS-
AT and AST following the original works. During training, audio
clips with similar durations are grouped within a batch for training
efficiency. Finally, model checkpoints are selected based on their
performance on validation sets after each epoch and the final model
performances are evaluated on corresponding test sets.

4.2 Downstream Evaluation
To comprehensively evaluate the model performance, we conduct
experiments on several coarse-grained tasks (including audio re-
trieval, audio classification, and audio tagging) and fine-grained
tasks (including sound event detection and text-to-audio ground-
ing). Note that for each specific task, we would pre-train a new
model from scratch with a newly constructed dataset excluding all
the overlapped samples in the downstream evaluation, meaning
that the zero-shot inference is performed. Specifically, for tasks
other than retrieval, we directly use sound class names as the input
of the text encoder, which avoids heavy prompt engineering. We
will report the averaged metric of 3 different runs and the detailed
evaluation protocols are provided in Table 1. For single-label and
multi-label classification tasks, Acc and mAP are widely adopted
metrics. For retrieval tasks, R@k is 1 if the positive item appears in
the top k retrieved items for a query [20]. And for detection and
grounding tasks, PSDS1 is more sensitive to the precise localization

Table 1: Evaluation datasets and metrics for each task.

Task Datasets metrics
audio retrieval AudioCaps (AC), Clotho R@1, R@5

audio classification ESC-50 [32], UrbanSound8K
(US8K) [39], VGGSound [2] Acc

audio tagging FSD50K [10], AudioSet (AS) mAP

sound event detection DESED, UrbanSED [40],
AudioSet-Strong (AS-S) PSDS1, PSDS2

text-to-audio grounding TAG [53] PSDSm

Table 2: Performance comparison on zero-shot audio-text
retrieval tasks. Models marked with +/* are based on the HTS-
AT/AST backbone.

AC Clotho
Model Text2Audio Audio2Text Text2Audio Audio2Text

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
FLAP (fusion) 41.5 75.5 53.0 84.1 20.3 46.5 25.5 53.4
Cacophony 41.0 75.3 55.3 83.6 20.2 45.9 26.5 54.1
CLAP+ 39.7 74.5 51.9 82.1 19.5 45.2 23.4 50.7
MGA-CLAP+ 41.8 76.1 54.4 83.6 20.4 46.0 25.3 51.2
CLAP∗ 40.1 74.0 51.8 82.4 18.5 43.3 23.9 51.6
MGA-CLAP∗ 42.2 74.9 53.7 84.3 20.8 45.0 26.5 54.1

Table 3: Performance comparison on zero-shot audio classifi-
cation and tagging tasks. Models marked with +/* are based
on the HTS-AT/AST backbone.

Model ESC-50 US8K VGGSound FSD50K AS
Cacophony 93.4 77.1 27.0 - -
CompA 89.1 85.7 29.5 - -
CLAP+ 94.7 80.7 28.6 52.4 21.1
MGA-CLAP+ 94.9 83.7 31.8 54.5 23.0
CLAP∗ 91.6 76.6 26.8 47.8 16.9
MGA-CLAP∗ 92.0 79.4 29.2 49.7 19.3

of sound events, followed by PSDSm and PSDS2, which may pay
more attention to remove confusion between classes [8].

5 RESULTS
5.1 Model Performance
5.1.1 Performance on Coarse-grained Tasks. We compare our pro-
posed MGA-CLAP not only with the original CLAP but also with
the SOTA model in each separate task. Specifically, for zero-shot
retrieval, we involve FLAP (fusion) [57] and Cacophony [59] for
comparison. The former is trained on LAION-Audio-630K using
a more powerful audio encoder MAViL [16] and employs feature
fusion proposed in [48] to process audios longer than 10s instead
of directly cropping it. And the latter is trained on a 4M audio-
text dataset with LLM re-captioning, which is much larger than
our 450K pairs. While for zero-shot classification, we additionally
involve CompA [12], which leverages an instruction-tuned Flan-
T5-large model (770M) [34] as the text encoder and CompA-661K
(an extension of LAION-Audio-630K) as the pre-training set.

The results concerning coarse-grained retrieval and classifica-
tion tasks are reported in Table 2 and 3, respectively. As for retrieval,
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Table 4: Performance comparison on zero-shot sound event
detection and text-to-audio grounding tasks. Models marked
with +/* are based on the HTS-AT/AST backbone.

DESED UrbanSED AS-S TAG
Model PSDS1 PSDS2 PSDS1 PSDS2 PSDS1 PSDSm
UACA 14.2 53.7 2.3 11.8 3.4 37.5
WSTAG 17.1 54.3 3.9 12.6 4.0 41.7
PACL 17.9 55.6 4.3 14.0 4.9 42.5
CLAP+ 13.1 52.0 1.6 10.6 3.4 34.4
MGA-CLAP+ 26.4 58.9 8.7 19.3 10.1 48.7
CLAP∗ 13.5 48.9 1.7 10.8 4.5 36.9
MGA-CLAP∗ 25.2 55.5 7.6 14.9 10.6 54.8

the proposed MGA-CLAP largely surpasses the original CLAP no
matter which backbone is applied. When compared with current
SOTA methods which involve more training resources, our MGA-
CLAP is also competitive, achieving the best performance on 6 of 8
metrics. And for classification and tagging tasks, similar improve-
ments over the original CLAP can also be observed. Noticeably,
our MGA-CLAP with HTS-AT encoder reaches 31.8% accuracy on
VGGSound, the most complex single-label classification dataset
with 300+ classes, which is 2.3% higher than the previous SOTA,
CompA. These above results underscore MGA-CLAP’s ability to
capture cross-modal alignment between texts and audio, leading
to outstanding performance in versatile classification and retrieval
tasks.

5.1.2 Performance on Fine-grained Tasks. We reimplement and
retrain UACA [50] and WSTAG [54] using the CLAP paradigm
since the original works only experiment on tiny datasets. Besides,
we also reproduce PACL [31], a recent vision-language training
framework, which employs cross-modal attention pooling to align
local features with captions and demonstrates superior performance
on fine-grained visual understanding tasks. All the above methods
are implemented based on the HTS-AT backbone and we keep the
training and evaluation settings consistent with MGA-CLAP.

As mentioned before, the original CLAP cannot uncover fine-
grained alignment between frame features and text descriptions.
As depicted in Table 4, it obtains extremely low scores, especially
on time-sensitive metrics, such as PSDS1 and PSDSm. Although
UCAC and WSTAG attempt to solve this problem, their results
are still unpromising, since the frame-to-word interaction is mod-
eled via simply score pooling. Besides, directly transferring PACL
leads to a better but still suboptimal outcome. As a comparison,
our MGA-CLAP with HTS-AT backbone obtains PSDS1 scores of
26.4%/8.7%/10.1% on DESED/UrbanSED/AudiosSet-Strong eval sets,
which are 2x/5x/3x times those of the original CLAP. When switch-
ing the audio encoder to AST, better performances are witnessed
on datasets containing more queries, such as AS-S and TAG.

5.2 Ablation Study
In this section, we ablate the module designs and hyper-parameter
choices of the proposed MGA-CLAP. All experiments are conducted
based on the HTS-AT backbone.

5.2.1 Ablation Study on Each Sub-module. Table 5 shows the model
performance of the proposed MGA-CLAP trained with or without

Table 5: Ablation study on sub-modules, where MC, LB, and
HN denote modality-shared codebook, locality-aware block,
and hard-negative guided loss, respectively. For retrieval and
detection tasks, we solely list the R@1 and PSDS1 score.

MC LB HN AC T2A AC A2T VGGSound FSD50K DESED AS-S TAG
39.7 51.9 28.6 52.4 13.1 3.4 34.4

✓ 41.0 53.6 30.7 53.5 20.1 7.3 41.7
✓ 39.4 51.8 28.5 52.9 21.2 5.6 41.1

✓ ✓ 41.2 53.7 30.9 53.8 26.5 9.5 47.6
✓ ✓ ✓ 41.8 54.4 31.8 54.5 26.4 10.1 48.7

Figure 4: Model performance on zero-shot retrieval (left) and
detection and grounding (right) tasks with different numbers
of codewords in the modality-shared codebook.

Figure 5: Model performance on zero-shot retrieval (left) and
detection and grounding (right) tasks with different numbers
of locality-aware blocks.

a specific sub-module. As seen, the incorporation of a modality-
shared codebook boosts CLAP’s understanding capabilities on both
coarse-grained and fine-grained tasks, as it not only adopts com-
mon bases to represent global audio and text features but also
links multi-modal local features with shared codewords. However,
solely training with it cannot lead to satisfactory results on fine-
grained tasks due to the inferiority of frame-wise representations.
When further adopting the locality-aware encoder block, the PSDS
scores on DESED, AS-S, and TAG datasets are improved by 5.1%,
2.2%, and 5.9%, respectively, suggesting the necessity of acquir-
ing high-quality frame features. Additionally, simply involving the
locality-aware block can also enhance the model performance on
detection and grounding tasks. Finally, further equipped with the
hard-negative loss, the whole system can achieve optimal results
on each task as it can enhance the contrastive learning scheme.

5.2.2 Ablation Study on the Size of Codebook. We compare the
modality-shared codebook in different sizes in Figure 5. As seen
from the left figure, the R@1 scores on AudioCaps drop significantly
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Figure 6: Model performance on zero-shot retrieval (left) and
detection and grounding (right) tasks with different values
of hyper-parameter 𝛾 .

when the number of codewords𝑀 increases from 4096 to 8192. We
argue that the enlarged codebook may bring about noisy activated
codewords and irrelevant information while aggregating, making
it difficult to retrieve matched pairs. Besides, it is also at risk of un-
derfitting since some codewords may be undertrained. By contrast,
although fewer number of codewords generally leads to slightly
better outcomes on retrieval tasks, its performance on frame-level
tasks decreases a lot as shown in the right figure. The possible rea-
son is that each codeword must convey multiple semantics within
a smaller codebook, thereby disturbing the frame-word interac-
tion while seeking fine-grained alignment. Finally, we choose the
number of codewords𝑀 = 4096 to make a trade-off between multi-
grained tasks.

5.2.3 Ablation Study on the Number of Locality-aware Block. We
conduct parameter analysis on the number of vanilla transformer
blocks to be replaced by the locality-aware ones in Figure 5. It can be
observed that the incorporation of locality-aware blocks contributes
a lot to the enhanced capability due to the refinement of frame-wise
features. Additionally, adopting 1 or 2 locality-aware blocks has
similar effects on the downstream tasks. However, as the number
grows, the performance degradation is witnessed. This is possibly
due to more locality-aware blocks destroying the information flow
and pre-trained knowledge in the transformer backbone.

5.2.4 Ablation Study on the Values of 𝛾 . As stated before, 𝛾 in
Equation (8) controls the difficulty of negative samples with a higher
value paying more attention to harder ones. We then study the
effects of its numerical values in Figure 6. The results indicate that
𝛾 = 0.15 or 𝛾 = 0.10 generally yields better outcomes as a larger
one may overemphasize the hard negative samples and potentially
neglect the relation with other in-batch data points.

5.2.5 Ablation Study on the Design Choice of Codebook. We ablate
the detailed designs, namely the max pooling to compute the affin-
ity scores and the Sparsemax function to normalize aggregation
weights, in the modality shared codebook and provide the related
outcomes in Table 6. As shown, if applying themean pooling instead
of max pooling, some non-salient local cues may be overwhelmed
by the primary sound. Then severe performance drops can be found
in tagging, detection and grounding tasks, where local patterns play
an important role in recognition. And when changing the activa-
tion function to Softmax, the system produces poor results on all
tasks, which is only slightly better than the original CLAP. We

Table 6: Ablation study on designs of the codebook, where
-, (1), (2) denote the current setting, replacing max pooling
with mean pooling, replacing Sparsemax with Softmax.

Design AC T2A AC A2T VGGSound FSD50K DESED AS-S TAG
- 41.8 54.4 31.8 54.5 26.4 10.1 48.7
(1) 40.9 52.9 30.2 52.7 15.3 5.6 39.0
(2) 40.2 52.3 28.5 52.6 13.4 4.1 35.8

Codeword

Id

# 2917

# 3730

# 3830

# 3678

Codeword to Phrase 

Similarity (top 3) 
Codeword to Frame Similarity 

Bark: 0.246

Yip: 0.219

Dog: 0.219

Female speech: 0.185 

Conversation: 0.131 

Speech: 0.126

Male speech: 0.178

Conversation: 0.168

Speech: 0.168

Sewing machine: 0.188

Pulleys: 0.179

Lawn mower: 0.175

Dog: [0.1, 7.7], [9.0, 10.0] Dog: [0.7, 2.7], [4.0, 6.3], [6.8, 9.5]

Female speech: [2.8, 4.6], [5.0, 6.1]
Female speech: [1.8, 2.6], [3.2, 3.9], 

[8.0, 9.2]

Male speech: [8.4, 9.7] Male speech: [0.0, 2.7]

Lawn mover: [1.0, 6.2] Sewing machine: [0.0, 3.4], [7.5, 10.0]

Female speech: [0.0, 1.3], [1.9, 8.7]

Ground truth sound event boundary

Codeword to frame feature similarity 

Figure 7: Visualization of codewords’ role in connecting text
modality (column two) and audio modality (column three).
Notice that the third column shows the ground truth sound
events boundary (dotted box) and the frame-level similarity
with the codeword (solid line) of two example audios.

argue that with Softmax, the aggregation weights are no longer
sparse, introducing many noisy components when representing the
global features. As a result, the semantic meanings of codewords
may be blurred and the connection between frame and word will
be influenced.

5.3 Visualizations
5.3.1 Semantics of Codewords. In this subsection, we try to disclose
the meanings of some representative modality-shared codewords.
For a specific codeword, we first compute its cosine similarity with
textual features of sound classes taken from AudioSet taxonomy to
find out its semantics. Then we compute its cosine similarity with
frame representations to examine if it also correlates with acoustic
features. The results are given in Figure 7. Taking the 1st row as an
example, the 2917th codeword has a large similarity with textual
descriptions related to "dog", suggesting its represented semantics.
Besides, as shown in the two sub-figures, the cosine similarity be-
tween the codeword and frame features also shows synchronization
with the temporal location of sound events. Specifically, the scores
are high when a dog bark is truly presented while low when the
sound is absent. When comparing the 2nd and 3rd rows, it can be
seen that the codeword can encode finer acoustic attributes, such
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Figure 8: Successful examples of achieved fine-grained alignment. For each sub-figure, the frame-level similarity with textual
features of sound classes or detailed captions and the temporal location of sound events are visually depicted.

Figure 9: Failure examples of fine-grained alignment detached from MGA-CLAP.

as the gender of speakers. Finally, as for the 4th row, the semantics
of rare sound classes (e.g., sewing machine) can also be learned
from the MGA-CLAP pipeline. And from the last figure, one can
see that the semantic mapping is salient even under polyphonic
environments.

5.3.2 Fine-grained Alignment. We provide several examples of
MGA-CLAP achieving fine-grained alignment in Figure 8. The cases
show that our method may capture both frame-to-phrase (seen
from the first row) and frame-to-caption (seen from the second
row) correspondence, thereby obtaining promising results on zero-
shot detection and grounding tasks. Surprisingly, it can tell apart
barking and whimpering sounds at frame-level as seen in sub-figure
(e), which are both made by dogs but varied in pitches, suggesting
that the subtle semantics of captions are also well aligned with
acoustic characteristics. Moreover, we also visualize some bad cases
in Figure 9. Currently, our MGA-CLAP may be confused about sim-
ilar sounds such as blender and vacuum cleaner (seen from Figure 9
(a)) and fail to capture long-duration dependency sometimes (seen
from Figure 9 (b)). Moreover, it may omit certain sounds (such as

blender in Figure 9 (c)) especially when multiple acoustic events
take place simultaneously.

6 CONCLUSION
In this work, we devise MGA-CLAP to align audio features with
language descriptions from both coarse-grained and fine-grained
views. To achieve this goal, MGA-CLAP employs a codebook to
construct a shared feature space for cross-modal interaction and
optimize its internal codewords carefully to seek frame-word cor-
respondence. Based on the modality-shared codebook, a novel en-
coder block is designed to enhance the salience of local patterns
while a re-weighting loss term is considered to mine hard-negative
pairs during optimization for better cross-modal alignment. By pre-
training on large audio-text datasets, our MGA-CLAP not only out-
performs the baseline CLAP to a large extent but also yields better
or competitive outcomes on versatile language-audio understand-
ing tasks when compared with current SOTA variants. Through
extensive visualizations and ablation studies, the effectiveness of
proposed designs is verified.
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