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Abstract

Many zeroth-order (ZO) optimization algorithms have been developed to solve
nonconvex minimax problems in machine learning and computer vision areas.
However, existing ZO minimax algorithms have high complexity and rely on some
strict restrictive conditions for ZO estimations. To address these issues, we design
a new unified ZO gradient descent extragradient ascent (ZO-GDEGA) algorithm,
which reduces the overall complexity to O(dϵ−6) to find an ϵ-stationary point of
the function ψ for nonconvex-concave (NC-C) problems, where d is the variable di-
mension. To the best of our knowledge, ZO-GDEGA is the first ZO algorithm with
complexity guarantees to solve stochastic NC-C problems. Moreover, ZO-GDEGA
requires weaker conditions on the ZO estimations and achieves more robust theoret-
ical results. As a by-product, ZO-GDEGA has advantages on the condition number
for the NC-strongly concave case. Experimentally, ZO-GDEGA can generate more
effective poisoning attack data with an average accuracy reduction of 5%. The
improved AUC performance also verifies the robustness of gradient estimations.

1 Introduction

We mainly consider a general regularized minimax problem:

min
x∈Rdx

max
y∈Rdy

{Ψ(x, y) = g(x) + f(x, y)− h(y)}, (1)

where f : Rdx×dy → R is nonconvex in x, concave in y and ℓ-smooth, g : Rdx → R and h : Rdy → R
are convex but maybe nonsmooth functions. The problem (1) appears in many scenarios of machine
learning, such as adversarial attack to regularized deep neural networks, regularized fair learning, and
robust training [7, 13]. In this paper, we focus on the black-box setting of Problem (1), where the
gradients are estimated by only functional values.

In the black-box setting, some evolutionary algorithms such as [46] have achieved good performance.
However, they usually lack complexity analysis and may never converge to a solution due to patholog-
ical behavior [33]. Thus, ZO algorithms with convergence guarantees came into being. For example,
ZO algorithms provide an alternative to higher-order optimization methods for solving robust network
training with gradient or curvature regularization [37, 13]. Besides, ZO algorithms have also made
considerable progress in escaping from saddle points [56].
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As for the black-box problem (1), ZO algorithms provide an access for solving it where the gradients
are computationally infeasible or expensive, such as the Area Under Curve (AUC) maximization [54]
with the ReLU activation and generating poisoning data to evaluate the black-box models [22, 33, 61].
In these scenarios, ZO algorithms become one of the best choices. For example, [33] proposed
ZO-Min-Max for solving NC-strongly concave (NC-SC) data poisoning attack problems.

More practically, it is desired to solve Problem (1) under weaker conditions such as general concavity
and more tolerant smoothing parameters of ZO estimators. But existing ZO algorithms such as
[50] have high overall complexity for NC-C problems, and require picky smoothing parameters to
ensure convergence, which weakens the robustness. On the other hand, the stochastic loss is actually
more common [28]. But there is no ZO algorithm to solve the stochastic NC-C problem (1), which
motivates us to fill this gap. Thus, we summarize our motivations as follows:

• Can we design a ZO algorithm to achieve a lower overall complexity with more weaker requirements
on ZO estimators for NC-C problems?

• Due to the lack of research on stochastic ZO algorithms in the NC-C setting, can we develop a new
stochastic ZO algorithm with theoretical guarantees?

Table 1: Comparison of the overall ZO oracle complexity of single-loop algorithms to find an ϵ-stationary point
of f (Definition 3) or ψ (Definition 2). κ = ℓ/µ denotes the condition number, d = dx + dy and Õ(·) hides
logarithmic terms. Abbreviation: Settings (Set.), Algorithms (Algs.), Regular (Reg.), Theorem (The.).

Set. Algs. f/ψ Reg. 1 µ1, µ2
2 Deterministic Stochastic

NC
-
C

3

[50] f IX , IY O(d−1
x ϵ2), O(d−1

y ϵ3) O(dxϵ
−8+dyϵ

−10) Unknown

[51]
f IX , IY

O(d−0.5
x ϵ2), O(d−0.5

y ϵ) O(dϵ−4) Unknown
ψ O(d−1

x ϵ4), O(d−1
y ϵ2) O(dϵ−8) 4 Unknown

The. 2 ψ g, h O(d−1
x ϵ), O(d−1

y ϵ2) O(dϵ−6) O(dxϵ
−8+dyϵ

−10)

The. 3, 4 ψ g, h O(d−0.5
x ϵ), O(d−0.5

y ϵ) O(dϵ−6) O(dxϵ
−6+dyϵ

−8)

NC
-

SC

[33] f IX , IY O(κ−3d−1
x ϵ)), O(κ−3d−1

y ϵ) — O(κ6dϵ−6)

[19] ψ IX , IY O( ϵ2

dx
√
dκ3

), O( ϵ2

dydκ3 ) — Õ(κ4.5d3/4ϵ−3)

[47] ψ 0, IY O(κ−2d−1.5
x ϵ), O(κ−2d−1.5

y ϵ) O(κ5dϵ−2) O(κ5dϵ−4)

The. 1 ψ g, h O(d−1
x ϵ), O(κ−0.5d−1

y ϵ) O(κ2dϵ−2) O(κ2(dx+κdy)ϵ
−4)

1 About the column “Reg.”, we transform Problem (1) into three models by setting different regularizers g and
h: (i) When g and h are both 0, Problem (1) is transformed into minx maxy Ψ(x, y) = f(x, y). (ii) When
g = IX (·) and h = IY(·), where IC is the indicator function of the convex compact set C, Problem (1) is
transformed into minx∈X maxy∈Y Ψ(x, y) = f(x, y). (iii) When g = IX (·) and h = ∥y∥1, Problem (1)
is transformed into minx∈X maxy Ψ(x, y) = f(x, y)− α∥y∥1.

2 Larger smoothing parameters µ1 and µ2 imply that algorithms can tolerate rougher ZO estimations, which
means stronger robustness. In some cases, robustness has a greater impact on algorithm performance than
overall complexity, as shown in Table 2 below.

3 For NC-C problems, [50, 51] depend on an extra monotonically decreasing regular parameter sequence and
[50] also depends on Assumption 5. Our Theorem 2 does not depend on these assumptions.

4 The work [51] only achieves an ϵ-stationary point of f . According to [31, Proposition 4.12] and our analysis,
[51] requires the overall complexity of O((dx + dy)ϵ

−8) to find an ϵ-stationary point of ψ.

Our contributions. In this paper, we propose a unified algorithm to answer the above two questions.
Our contributions can be summerized as follows.

• We design a unified single-loop ZO-GDEGA algorithm to solve the NC-C minimax problem (1)
faster and more robustly. Specifically, we introduce the idea of continuous-time dynamics to assist in
designing the update rules of dual variable y, which plays a key role in complexity analysis. Moreover,
we analyze ZO-GDEGA by developing a concise theoretical framework, which reduces the overall
complexity of finding a generalized ϵ-stationary point of the function ψ to O((dx + dy)ϵ

−6), even
without the Lipschitz continuity assumption, as shown in Table 1.

• To the best of our knowledge, the stochastic ZO-GDEGA is the first ZO stochastic algorithm
with theoretical guarantees for solving NC-C problems, which for the first time finds a generalized
ϵ-stationary point of ψ with an overall complexity of O(dxϵ

−6 + dyϵ
−8), as shown in Table 1.
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• Our ZO-GDEGA algorithm is more tolerant to the ZO estimations. Specifically, ZO-GDEGA
allows a larger tolerance O(ϵ) for smoothness parameters µ1 and µ2 compared with existing methods,
as shown in Table 1, which enhances the robustness of ZO algorithms.

• As a by-product, ZO-GDEGA applied to NC-SC problems can obtain competitive complexity results
O(κ2(dx + dy)ϵ

−2) and O(κ2(dx + κdy)ϵ
−4) for deterministic and stochastic settings, respectively.

• Finally, the poisoning attack experiment shows that the poisoned data generated by ZO-GDEGA
can reduce the accuracy by 2.1%-7.9% compared to baselines. The AUC maximization task shows
that our algorithms can improve AUC performance by 0.4-5.4 units under rough ZO estimation.

2 Preliminaries and Related Work

This section provides several notations and definitions, and discusses some related works.

2.1 Notations

∥ · ∥ and ∥ · ∥1 denote the ℓ2-norm and ℓ1-norm of a vector, respectively. ∥ · ∥∞ denotes the ℓ∞-norm
of a vector, i.e., ∥x∥∞ = max1≤i≤dx |xi|. We denote a = O(b) if a ≤ Cb for some constant
C > 0, any subgradient of g(·) at x by ∂g(x), a ZO estimator of f(·) at x by ∇̂f(x) for the
gradient ∇f(x), the regularized coupling function by Γ(x, y) := f(x, y)− h(y), the max function
by Φ(x) := maxy{f(x, y)− h(y)} and the regularized max function by ψ(x) := g(x) + Φ(x).

Definition 1. The function f(·, ·) is ℓ-smooth, i.e., ∥∇f(x, y)−∇f(x′, y′)∥ ≤ ℓ∥(x, y)− (x′, y′)∥.

2.2 Related Work

ZO algorithms for nonconvex minimax optimization. For solving NC-SC minimax problems,
some single-loop ZO algorithms have been presented. For example, [33] proposed the ZO-Min-Max
by integrating alternating stochastic Gradient Descent Ascent (GDA) method and ZO estimators,
which finds an ϵ-stationary point with the overall complexity O(κ6dϵ−6), when g(x) = IX (x)
and h(y) = IY(y). [47] proposed the ZO-GDA for solving the deterministic problem (1) with
g(x)≡ 0 and h(y) = IY(y), and the ZO overall oracle complexity is bounded by O(κ5dϵ−2). Its
stochastic variant, ZO-SGDA, can achieve the overall ZO oracle complexity O(κ5dϵ−4). Recently,
[19] proposed an Acc-ZOMDA algorithm based on momentum acceleration techniques and further
reduced the overall ZO oracle complexity. However, these algorithms have relatively strict restrictions
on ZO estimators, as shown in Table 1, which affects their performance, as shown in Table 2.

As for NC-C problems, to the best of our knowledge, the only work proposed in [50] designs a
ZO-AGP algorithm with the ZO oracle complexity O(dxϵ

−8+dyϵ
−10), but it only considers the

deterministic setting when g(x)=IX (x), h(y)=IY(y), and X and Y are two convex compact sets,
which limits its application to some scenarios such as regularized robust neural network training [21].
More recently, a new version of ZO-AGP [51] has been presented during the preparation of our work,
which achieves lower complexity under the same constraints, but its theoretical results are still in
terms of the coupling function f instead of the stronger definition in terms of ψ, as shown in Table 1,
while our analysis is in terms of ψ and achieves lower complexity.

Extragradient methods. The extragradient (EG) method was first proposed in [27] for solving
convex-concave saddle point problems and it adopts the gradient at the current point xt to find an
intermediate point xt+1/2 and then uses the gradient at xt+1/2 to determine the next iteration point
xt+1. Specifically, at iteration t,

xt+1/2 = proxgηx(xt − ηx∇xf(xt)), xt+1 = proxgηx(xt − ηx∇xf(xt+1/2)), (2)

where proxgγ(x) ≜ argminz{g(z) + 1
2γ ∥z − x∥2}. On the one hand, the extra proximal gradient

step guides the optimization process, which allows to escape cycling trajectories of the simultaneous
gradient flow [23] and consider curvature information [40]. Compared with various GDA methods
such as [31, 55], many works have shown the advantages of the first-order (FO) EG structure, such as
handling noisy gradients in the convex-concave [26, 1] and NC-SC(C) [35] settings, but there is no
insight into the ZO setting. On the other hand, in univariate convex optimization, the EG method has
made considerable progress inspired by continuous time dynamic theory, and it can be explained as
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an approximation of the more robust backward-Euler discretization [18], whereas gradient descent is
a variant of the classical forward-Euler discretization [9]. Based on the two facts above, we aim to
explore the performance of the EG structure in ZO minimax optimization to improve both theoretical
and practical performance for solving the black-box problem (1).

Lower bounds for minimax optimization. For minimization problems, the lower bounds on ZO
methods justify that the dependence on the dimension is inevitable without additional assumptions
[12]. For minimax problems, will there be a similar conclusion? So far, researchers focus on the
lower bounds of FO methods. For example, the lower bounds are Ω(ϵ−1) [41] and Ω̃(κ) [58] for
convex-concave (C-C) and SC-SC settings, respectively. For NC-SC problems, there is also a lower
bound for the FO setting [59, 30]. But to the best of our knowledge, there is no work proving a lower
bound for ZO algorithms solving NC minimax problems. This paper focuses on another aspect and
provides the upper bound for ZO algorithms solving NC minimax problems.

Upper bounds for minimax optimization. For the NC-C setting, GDA [31], Alternating GDA
(AGDA) [4] and GDmax [25, 25] are analyzed to guarantee convergence. So far, the best complexity
bound for FO deterministic NC-C problems is O(ϵ−6). The works [60, 20] have further extended to
the stochastic setting. For example, SAPD+ [60] achieved the complexity bound of O(ϵ−6), which
matches that of the deterministic case. For the NC-SC setting, the works [34, 49] proved the advanced
bound of O(κ3ϵ−3). SAPD+ achieved another advanced complexity bound of O(κϵ−4).

In minimizing optimization, the complexity of ZO methods is usually d times that of corresponding
FO methods [12]. In this sense, our results match the upper bound in the deterministic NC-C setting.
Unfortunately, there is no similar conclusion in the minimax optimization yet. On the other hand,
existing ZO methods such as [49, 50] focus on modifying existing FO algorithms, while this paper
focuses on designing ZO minimax algorithms to directly improve performance.

3 ZO-GDEGA for NC-C Problems

In this section, we design a unified single-loop ZO gradient descent extragradient ascent (ZO-
GDEGA) algorithm for solving the NC-C problem (1). The following assumptions are made for our
analysis throughout this section.
Assumption 1. We assume f(x, ·) is concave for a given x.
Assumption 2. [4] The regularizers g and h are proper, convex and lower semicontinuous.

1. Additionally, g is either Lg-Lipschitz continuous on its domain, which is assumed to be open, or
the indicator of a nonempty, convex and closed set. Either of those assumptions guarantees the bound

∥proxgγ(x)− x∥ ≤ γLg (3)

holds for any γ > 0 and all x ∈ dom g (in the case of the indicator the statement is trivially true).

2. Furthermore, h has a bounded domain dom h such that the diameter of dom h is bounded by Dh.

Similar to [4], we also use the extension of the classical Danskin’s theorem based on Assumptions
1 and 2 to guarantee that the solution set Y ∗(x) :=

{
y∗|y∗ ∈ argmaxy{f(x, y) − h(y)}

}
is non-

empty for ∀x ∈ Rdx and Φ(x) is ℓ-weakly convex. Based on these facts, we propose and analyze our
ZO-GDEGA algorithm for solving the NC-C problem (1) in deterministic and stochastic settings.

3.1 ZO-GDEGA in the Deterministic Setting

We first approximate the FO gradient by ZO randomized gradient estimators. Then, we propose the
ZO-GDEGA algorithm to solve the black-box NC-C problem (1). Our algorithms are single-loop and
more easily scalable compared to nested-loop algorithms such as [32].

ZO randomized gradient estimators. We introduce the ZO randomized gradient estimators as follows:
∇̂xf(x, y) =

1
q1

∑q1
i=1

dx(f(x+µ1ui,y)−f(x,y))
µ1

ui,∇̂yf(x, y) =
1
q2

∑q2
i=1

dy(f(x,y+µ2vi)−f(x,y))
µ2

vi,

where {ui}q1i=1 ⊆ Rdx and {vi}q2i=1 ⊆ Rdy are i.i.d. random direction vectors drawn uniformly from
the unit Euclidean spheres, respectively. µ1 and µ2 are smoothing parameters, the conditions on
which are strict in existing algorithms such as [51], while our algorithms allow them to be O(ϵ),
as shown in Table 1. The randomness caused by vectors ui and vi is coupled in the alternating
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updates of x and y and undoubtedly increases the difficulty of complexity analysis. We introduce two
smooth functions fµ1(x, y) = Eu[f(x+ µ1u, y)] and fµ2(x, y) = Ev[f(x, y + µ2v)] to bridge the
ZO estimators and the FO gradient, thereby assisting in complexity analysis as shown in Fig. 1.

Algorithm 1 Deterministic Zeroth-Order Gradient Descent Extragradient Ascent Algorithm

Initialize: x0, z0 = y0, step sizes ηx and ηy .
1: for t = 0, 1, . . . , T − 1 do

2: ∇̂xF (xt) =

{
∇̂xf(xt, zt) for NC-C case;
∇̂xf(xt, yt) for NC-SC case;

; xt+1 = proxgηx(xt − ηx∇̂xF (xt));

3: zt+1 = proxhηy (yt + ηy∇̂yf(xt, yt)); yt+1 = proxhηy (yt + ηy∇̂yf(xt+1, zt+1));
4: end for
5: Randomly draw x̂ from x1, . . . , xT at uniform.

Output: x̂.

To improve performance, we integrate the EG structure and the ZO randomized gradient estimators,
and propose the ZO-GDEGA algorithm. Specifically, it contains a proximal gradient descent step
and two proximal gradient ascent steps, as shown in Algorithm 1.

3.1.1 Update rule of x.

Algorithm 1 updates x by minimizing the following linearized approximation,

xt+1 = argmin
x

{g(x) + ⟨x− xt, ∇̂xf(xt, zt)⟩+ 1
2ηx

∥x− xt∥2}, (4)

where zt is an auxiliary variable and its update rule is given later. Our design for updating xt+1 relies
only on the previous point xt, and does not require xt+1/2 as in the standard EG method (2).

3.1.2 EG update rule of y.

The quality of the solution set Y ∗(x) plays a key role on complexity. To take full advantage of the
EG structure based on the concavity w.r.t. y, we integrate it into the update of y, which guides a new
high-level idea from the continuous-time dynamic perspective.

A high-level idea. Here we show an intuition for the advantages of our algorithm. If h is “simple", in
the sense that the proximal operator has a closed-form solution [6]. Without loss of generality, we
consider the case of h(y) ≡ 0. In this case, the proximal operator becomes the identity transformation.
In fact, one-step ZO estimation w.r.t. y can be viewed as the discretization of the stochastic continuous-
time dynamic Ẏ (t)=∇̂yf(X,Y (t)) with the limit ηy → 0. To get more robust and accurate solutions,
we use the backward-Euler instead of forward-Euler discretization to solve this dynamic. An exact
backward-Euler step implies the discretization yt+1=yt + ηy∇̂yf(xt+1, yt+1), but obtaining yt+1

in such a manner could be computationally prohibitive. Instead, we opt for an extra gradient ascent
step zt+1 = yt+ ηy∇̂yf(xt, yt) to first approximate yt+1 once as shown in the 3rd line of Algorithm
1, which can be viewed as a “trial” step. Then, we use the ZO oracle at point (xt+1, zt+1) to
approximate one-step backward-Euler discretization as shown in the end of the 3rd line, which is one
of the reasons why our ZO-GDEGA algorithm is more robust than [51].

3.1.3 Advantages over Existing Methods.

Compared with existing works, our ZO-GDEGA algorithm has the following three main advantages:

• Stronger robustness. About ZO estimators, ZO-GDEGA can tolerate smoothness parameters
µ1 and µ2 of size O(ϵ), whereas existing ZO algorithms have stricter restrictions on smoothness
parameters such as O(ϵ4) as shown in Table 1, which is the fundamental reason why ZO-GDEGA
improves the robustness. Specific proofs and experimental verifications are in subsequent sections.

• Lower per-iteration complexity. Compared with the standard EG method [35], Algorithm 1 only
uses the EG structure for the update of y instead of both x and y, which reduces per-iteration
complexity and maintains the same iteration complexity as the standard EG method. In fact, our
ZO-GDEGA algorithm is easily extended to an FO method, which still reduces the computation cost
and maintains the corresponding theoretical result. Since this paper mainly focuses on the ZO case,
the FO variant of Algorithm 1 is shown in the Appendix.
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• More extensive applications. The proximal operators generalize the projection operators in existing
works such as [51]. Compared with [21], our ZO-GDEGA does not require additional compactness
of the domains, which significantly extend the applicability.

3.2 ZO-GDEGA in the Stochastic Setting

We consider that f is a stochastic function on a distribution D, i.e., f(x, y) := Eξ∼Df(x, y; ξ), and we
can only access the stochastic function values f(x, y; ξ). In this case, we introduce the stochastic ver-
sion of ZO estimators: ∇̂xf(x, y; I1)= 1

b1

∑b1
j=1∇̂xf(x, y; ζj) =

1
b1

∑b1
j=1

f(x+µ1uj ,y;ζj)−f(x,y;ζj)
µ1/dx

uj

as well as ∇̂yf(x, y; I2), where I1 = {ζj}b1j=1, I2 = {ξj}b2j=1 denote mini-batch sets of b1 and b2
i.i.d. samples. According to [19], EU,I1

[∇̂xf(x, y; I1)]=∇xfµ1
(x, y) and EV,I2

[∇̂yf(x, y; I2)] =
∇yfµ2(x, y) with U={ui}b1i=1 and V ={vi}b2i=1, and we need the common Assumptions 3, 6 and 7
in ZO stochastic optimization. Due to the page limit, we place Assumptions 6 and 7 in the Appendix.
Assumption 3. The variance of the ZO stochastic estimators are bounded, i.e., Eu,ζ∥∇̂xf(x, y; ζ)−
∇xfµ1(x, y)∥2 ≤ σ2

1 , Ev,ξ∥∇̂yf(x, y; ξ)−∇yfµ2(x, y)∥2 ≤ σ2
1 .

Based on the above analysis and Algorithm 1, we design a stochastic variant of ZO-GDEGA, as
shown in Algorithm 2 in the Appendix. The main difference between Algorithms 2 and 1 is that
the ZO estimators are replaced by their stochastic versions. In fact, for NC-C minimax problems,
stochastic ZO-GDEGA is the first stochastic ZO algorithm and we prove its complexity in Section 5.

4 ZO-GDEGA for NC-SC Problems

In this section, we provide two by-products of our ZO-GDEGA algorithm for the NC-SC setting, as
also shown in Algorithms 1 and 2. We design and analyze them based on Assumption 4.
Assumption 4. We assume f(x, ·) is µ-strongly concave in y for a given x. Moreover, the regularizers
g and h are proper, convex and lower semicontinuous.

Based on Assumption 4, we know that the max function Φ(x) is (κ+1)ℓ-smooth, where κ = ℓ/µ ≥ 1
is the condition number, which plays a key role in our analysis. Note that there are two main
differences between our ZO-GDEGA for solving NC-SC and NC-C problems as follows:

• Due to the strong concavity, there is no need to use the intermediate point zt to update xt+1, but
directly use the ZO estimators at the point (xt, yt) to accelerate updating, which contributes to achieve
competitive complexity under weaker restrictions on µ1 and µ2, thereby enhancing robustness.

• The solution set Y ∗(x) is a singleton, which consists of a single element y∗(x), thus we can use
the quantity δt := ∥yt − y∗(xt)∥2 to measure the quality of proximal ZO extragradient ascent steps.

In summary, we propose a unified ZO algorithm for solving black-box NC minimax problems, which
outperforms existing ZO algorithms. Next, we rigorously analyze its complexity.

5 Theoretical Analysis

In this section, we first define two types of generalized ϵ-stationary points as termination criteria.
Then, we provide the complexity results of our ZO-GDEGA to find an ϵ-stationary point.

5.1 Termination Criteria

We generalize two classical definitions of ϵ-stationary point in [31] and [32] as follows.
Definition 2. In the NC-C setting, a point x is an ϵ-stationary point of an ℓ-weakly convex function
ψ if its Moreau envelope2 ψ1/2ℓ(x) satisfies ∥∇ψ1/2ℓ(x)∥ ≤ ϵ; In the NC-SC setting, a point x is an
ϵ-stationary point of a function ψ if dist(0, ∂ψ(x)) ≤ ϵ.
Definition 3. A pair of points (x, y) is an ϵ-stationary point of the coupling function f if we have

∥G(x, y)∥ ≤ ϵ, where G(x, y) =
[
ℓ[x− proxg1/ℓ(x− (1/ℓ)∇xf(x, y))]

ℓ[y − proxh1/ℓ(y + (1/ℓ)∇yf(x, y))]

]
.

2ψ1/2ℓ(x) is the Moreau envelope of ψ(x) if ψ1/2ℓ(x) = minw{ψ(w) + ℓ∥w − x∥2} for each x ∈ Rdx .
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Based on [31, Proposition 4.11 and 4.12], the following two propositions clarify the relationship
between the generalized Definitions 2 and 3.

Proposition 1. Under Assumptions 1 and 2, if a point (x̂, ŷ) is an ϵ2/(ℓDh)-stationary point in terms
of Definition 3, a point x̂ is an O(ϵ)-stationary point in terms of Definition 2.

Proposition 2. Under Assumption 4, if a point (x̂, ŷ) is an ϵ/κ-stationary point in terms of Definition
3, a point x̂ is an O(ϵ)-stationary point in terms of Definition 2.

Thus, we can draw a similar conclusion as in [31]: The ϵ-stationary point definition of ψ is stronger
than that of f . To obtain tighter complexity bounds, we analyze ZO algorithms for the first time
based on ϵ-stationary point definition of ψ (i.e., Definition 2).

5.2 Complexity Analysis for NC-SC Problems

We first analyze the complexity of ZO-GDEGA for the NC-SC setting in deterministic and stochastic
cases. Our analysis is a non-trivial extension of the proofs in [31] due to the following challenges.

Key technical challenges. In this case, bounding
∑T
t=0 δt is a key step. But the proximal operators and

the ZO EG structure make it much more difficult to bound this term than existing works. To address
this challenge, we propose to establish the upper bound on

∑T
t=0 δt in terms of

∑T
i=0 ∥xi − xi+1∥2

(see the Appendix for details), which also reduces the overall complexity’s dependence on κ,
and results in the coefficients of µ2

1 and µ2
2 being only O(1) and O(κ), thereby weakening their

dependence on κ and enhancing robustness. Here we directly give the complexity results.

Theorem 1. We choose stepsizes ηx ≤ 1
256κ2ℓ , ηy = 1

2ℓ , µ1 =O(d−1
x ϵ) and µ2 =O(κ−1/2d−1

y ϵ).
Under Assumption 4, our ZO-GDEGA can find an ϵ-stationary point in terms of Definition 2, i.e.,
min1≤t≤T dist(−∂g(xt),∇Φ(xt))≤ϵ, with the overall ZO oracle complexity O(κ2(dx + dy)ϵ

−2)
for deterministic and O(κ2(dx + κdy)ϵ

−4) for stochastic settings.

Theorem 1 shows that ZO-GDEGA allows for larger µ1 and µ2 than compared algorithms (see Table
1), which means that our algorithms can tolerate rougher ZO estimations. Besides, our complexity
bounds have the weaker κ dependence than them. Thus, even our by-products have some advantages.
Moreover, this analysis also builds a bridge for analyzing the NC-C setting.

5.3 Complexity Analysis for NC-C Problems

In this part, we analyze ZO-GDEGA in the NC-C setting. We provides two perspectives: continuity-
agnostic (more relaxed condition) and continuity-dependent (better bound) analysis.

5.3.1 Continuity-Agnostic Complexity Analysis.

We first analyze the complexity for the NC-C setting based on Theorem 1 and smooth technology in
[38]. By adding a smoothing term, we approximate the NC-C problem (1) with the following NC-SC
model: minxmaxy{Ψ̂(x, y) = g(x) + f̂(x, y)− h(y)}, where f̂(x, y) = f(x, y)− µ̂

2 ∥y − ŷ∥2 and
given arbitrary ŷ ∈ dom h. Based on Theorem 1 and careful selection of µ̂, Theorem 2 ensures that
ZO-GDEGA can find an ϵ-stationary point for the NC-C problem (1).

Theorem 2. Under Assumptions 1 and 2, our ZO-GDEGA applied to the approximate NC-SC model
with µ̂ = O(ϵ2/(ℓD2

h)), can guarantee to generate an ϵ-stationary point xϵ for the NC-C problem
(1), i.e., E∥∇ψ1/2ℓ(xϵ)∥ ≤ ϵ, with overall complexity O((dx+ dy)ϵ

−6) and O(dxϵ
−8 + dyϵ

−10) for
the deterministic and stochastic settings, respectively.

Based on stronger Definition 2, Theorem 2 ensures that our ZO-GDEGA can achieve lower complexity
for NC-C problems without relying on any extra assumptions, such as continuity and decreasing
sequence assumptions, whereas [50, 51] depend on at least one of them. Besides, Theorem 2 inherits
the advantages of our analysis for Theorem 1, i.e., enhancing robustness and reducing complexity.

5.3.2 Better Bounds with Continuity-dependent.

We also analyze our ZO-GDEGA algorithm for solving the NC-C problem (1) under the Lipschitz
continuity assumption, which is common in NC-C optimization such as [31, 35, 43, 4].
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Assumption 5 (Continuity). f(x, y) is G-Lipschitz continuous in x, i.e., for ∀y ∈ dom h, ∀x, x′ ∈
Rdx satisfies that ∥f(x, y)− f(x′, y)∥ ≤ G∥x− x′∥.

In the case of (ii) in Table 1, Assumption 5 follows immediately by the smoothness and choosing
G = ℓ(DX +DY)+ ∥∇xf(xϵ, yϵ)∥, where maxx,x′∈X ∥x−x′∥ ≤ DX and maxy,y′∈Y ∥y− y′∥ ≤
DY . Thus, ZO-GDEGA still work without Assumption 5 in this case. For the general problem (1),
we use G for generalization and give a proof sketch. Detailed proofs are provided in the Appendix.

Proof sketch. We first analyze the recursive relationship between the Moreau envelopes ψ1/2ℓ(xt)
and ψ1/2ℓ(xt+1) based on the ZO gradient descent step. Then, we estimate the tricky error term
∆t = Φ(xt) − Γ(xt, zt) to measure the upper bound of the ZO EG ascent steps. Based on these
results, we obtain the overall complexity for solving the NC-C problem (1). In deterministic and
stochastic settings, we provide tighter results than Theorem 2, respectively.

Proximal EG Ascent

Lemma B.13: Proximal Descent

Lemma B.15: Proximal EG Ascent

Proximal EG Descent

2
1 1( , ) ( , )x t t x t tf x y f x y− −∇ −∇

Our ZO-GDEGAFirst-order EG (Mahdavinia et al., 2022)

1
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Figure 1: Comparison of two proof sketches.

Deterministic Setting. Lemma
B.13 provides the recursive re-
lationship between ψ1/2ℓ(xt+1)
and ψ1/2ℓ(xt). Our algorithms
use more concise ZO estimation
gradient descent step instead of
EG structure to update x. Thus,
the tricky term ∥∇xf(xt, yt)−
∇xf(xt−1, yt−1)∥2 can be re-
moved in our analysis compared
with the standard EG method in [35] as shown in Fig. 1. Lemma B.15 proves that

∑T
t=0 E[∆t] can

be well controlled by carefully choosing ηy . More importantly, our analysis makes the coefficients
of µ2

1 and µ2
2 independent of ϵ, which eases their dependence on ϵ compared with [51], thereby

enhancing the robustness. Now, we begin to provide tighter results.

Theorem 3. Under Assumptions 1, 2 and 5, if q1=dx, q2=dy, ηy=1/(
√
3ℓ), ηx = O(ϵ4), µ1=

O( ϵ√
dx
) and µ2=O( ϵ√

dy
), our deterministic ZO-GDEGA can find an ϵ-stationary point of ψ, i.e.,

1
T+1

∑T
t=0 E∥∇ψ1/2ℓ(xt)∥≤ϵ, for the NC-C setting with the overall complexity O((dx + dy)ϵ

−6).

Theorem 3 shows that our ZO-GDEGA achieves the same overall complexity as Theorem 2 and
further weakens the constraints on smoothing parameters under the continuity assumption. Note that
ZO-GDEGA is the first ZO algorithm with convergence guarantees to find an ϵ-stationary point of ψ.
Meanwhile, our analysis can be easily extended to the stochastic setting.

Stochastic Setting. Due to the page limit, we directly provide results for stochastic ZO-GDEGA.

Theorem 4. Under assumptions 1, 2, 3 and 5, if we choose the suitable parameters such as µ1 = O(ϵ)
and µ2 = O(ϵ), our stochastic ZO-GDEGA algorithm can find an ϵ-stationary point in terms of
Definition 2 with lower overall complexity O(dxϵ

−6 + dyϵ
−8) than Theorem 2.

Theorem 4 shows that the overall complexity can be further reduced, and we can still choose µ1

and µ2 to be O(ϵ) to enhance the robustness. Note that we provide theoretical guarantees for the
stochastic black-box NC-C setting for the first time. In summary, our ZO-GDEGA shows excellent
theoretical properties for solving NC-C problems and competitiveness for solving NC-SC problems.

6 Experiments

In this section, we conduct black-box data poisoning attack and AUC maximization experiments.
Due to the page limit, more experimental details and results are provided in the Appendix. Our codes
are available: https://github.com/Weixin-An/ZO-GDEGA.

6.1 Data Poisoning Attack

Data poisoning attack is one of the most common black-box attack methods [29, 42]. The purpose
of the attacker is: when the model parameter w is well-trained, adding a perturbation δ on the
training data that makes the loss functions as large as possible, and then such poisoned training data
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Figure 2: Comparison of the results for the logistic regression model attacked by poisoned data generated by
ZO-AGP and ZO-GDEGA on the synthetic dataset.
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Figure 3: Comparison of the attack results for data poisoning attack on the large-scale epsilon_test dataset.

(si + δ, ti) will reduce the model accuracy. Therefore, it is usually required for attackers to optimize
the following objective function,

max
∥δ∥∞≤rx

min
w
f1(δ, w) := Ftr(δ, w;Dtr), (5)

where Dtr ≜ Dtr,p ∪ Dtr,c denotes the training dataset including n i.i.d samples, Dtr,p and Dtr,c
denote the poisoned and clean subsets of Dtr, respectively. We choose the cross-entropy loss to
optimize δ and w. Note that Problem (5) can be rewritten as the NC-C (1) by setting g(·) =
I∥δ∥∞≤rx(·), h(·) ≡ 0, and f = −f1. Therefore, it can be solved by our ZO-GDEGA algorithm.

Datasets. We validate ZO-GDEGA on a synthetic dataset and the epsilon_test dataset.

• Synthetic datasets: We generate a dataset D={si, ti}2,000i=1 with feature vector si ∈ R100 from
Gaussian distribution N (0, I) and split it into 70% training and 30% test samples. The label ti = 1

if 1/(1 + e−(s⊤i w
∗+ni)) > 0.5, otherwise ti = 0, where ni ∈ N (0, 10−3) is random noise, and we

set w∗ = 1 as the ground truth.

• The epsilon_test dataset3: It contains 100,000 samples of 2,000 dimensions, and we also split
it into 70% training samples and 30% testing samples.

Experimental Settings & Baselines. We set rx = 2, µ1 = µ2 = 2 × 10−5 and poisoning ratio
|Dtr,p|/|Dtr| = 0.1, and choose mini-batch size b1 = b2 = 100 and b1 = b2 = 10 for the
synthetic and epsilon_test datasets, respectively. The baseline for solving Problem (5) is
ZO-AGP. Note that here we replace the ZO estimators in deterministic ZO-AGP with corresponding
stochastic versions and choose the same hyperparameter settings for a fair comparison.

Results. We use the poisoned data generated by the baselines and our ZO-GDEGA to attack the
training procedure of the logistic regression model, and the experimental results on the synthetic

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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and epsilon_test datasets are shown in Figs. 2 and 3, respectively. The experiment in each
case was carried out in 10 independent trials with random initialization and the shaded area around
the line indicates the standard deviation. From Fig. 2, we find that our ZO-GDEGA can converge
faster than baselines in terms of stationary gap and objective value −f1. From the training accuracy
subfigure, both our ZO-GDEGA and the baselines (black-box attack) converge, and achieve near-
optimal solution compared to the FO-AGP algorithm (white-box attack) [52]. As for testing accuracy,
it can be seen that compared with ZO-AGP, the poisoned data generated by our ZO-GDEGA are
always more effective in reducing the accuracy of the logistic regression model in terms of both
iterations and CPU time, which also confirms that our ZO-GDEGA achieves lower complexity than
ZO-AGP. Besides, under different poisoning ratios, ZO-GDEGA can reduce the model accuracy by
2.1%-7.6% than ZO-AGP in terms of attack performance. From Fig. 3, we observe that ZO-GDEGA
algorithm also performs about 8.0% lower than ZO-AGP on the epsilon_test dataset, which
further verifies the superiority of our algorithm in the large-scale real-world datasets.

6.2 AUC Maximization

AUC is defined as the area under the ROC curve, which is a performance indicator to measure the
pros and cons of a machine learning model. However, it is generally difficult to optimize the AUC
value directly on the training task, but instead optimize the following minimax problem:

min
∥θ∥,∥a∥,∥b∥≤rx,

max
v≤ry

Es∼P[f(θ, a, b, v; s)], (6)

where rx and ry are the radius of the projection balls, s = (s, t) is drawn independently from the
distribution P, and f(θ, a, b, v; s) is defined as in [53]. When we choose the multilayer perception
(MLP) model, Problem (6) becomes a NC-SC problem. The non-differentiable point of the nonlinear
function such as ReLU causes some non-differentiable modules of the classifier, and the ZO algo-
rithms are one of the techniques to solve this issue [15]. Note that our ZO-GDEGA is the first ZO
algorithm to attempt to solve the AUC maximization problem.

Table 2: The average AUC performance with different µ1 and µ2

on the MNIST and Fashion-MNIST datasets, where µ1 = µ2.
Results on dataset ijcnn1 are provided in the Appendix.

Datasets MNIST Fashion-MNIST
µ1(µ2) 0.001 0.01 0.05 0.001 0.01 0.05

ZO-SGDA 91.67 91.81 88.12 91.62 90.19 87.27
ZO-Min-Max 92.25 92.01 88.56 90.80 91.58 83.23
Acc-ZOMDA 92.45 92.58 89.35 92.97 91.65 87.75
ZO-GDEGA 91.60 92.60 89.70 91.97 92.23 88.66

Experimental Settings & Baselines.
We conduct experiments on the MNIST,
Fashion-MNIST and ijcnn1
datasets. Following [54], we use their
training and testing sets but convert
the classes of the data into two classes
by randomly splitting them into two
groups. We implement ZO-SGDA [47],
ZO-Min-Max [33], Acc-ZOMDA [19]
and our ZO-GDEGA to solve Problem
(6) with Leaky ReLU. We choose a
two-layer MLP as the classification model, and set mini-batch b1 = b2 = 256, q1 = q2 = 10,
rx = ry = 2 and step sizes ηx = ηy = 0.1 to train all the methods for 200 epochs.

Results. We show the average AUC performance from 10 independent trials with random initialization
in Table 2. It shows that at small µ1 and µ2, our ZO-GDEGA algorithms perform competitively
compared with the baselines. At larger µ1 and µ2, ZO-GDEGA can improve AUC performance
by 0.4-5.4 units than baselines, which indicates that our algorithms are more robust to smoothing
parameters and robustness may be more important than overall complexity in some cases when using
ZO oracle to approximate gradients.

7 Conclusions and Future Work

In this paper, we proposed a unified ZO-GDEGA algorithm for solving black-box nonconvex minimax
problems, which reduces the overall complexity and improves robustness. The experimental results
match our theoretical analysis, which is reflected by the fact that ZO-GDEGA can obtain more
effective attacks and improve AUC performance robustly. In summary, ZO-GDEGA achieves better
performance than related algorithms and promotes the development of ZO optimization theory. In the
future, we will extend our algorithm to non-smooth and federated learning settings as in [45, 44].
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