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ABSTRACT

Training on synthetic data can be beneficial for label or data-scarce scenarios.
However, synthetically trained models often suffer from poor generalization in real
domains due to domain gaps. In this work, we make a key observation that the diver-
sity of the learned feature embeddings plays an important role in the generalization
performance. To this end, we propose contrastive synthetic-to-real generalization
(CSG), a novel framework that leverages the pre-trained ImageNet knowledge to
prevent overfitting to the synthetic domain, while promoting the diversity of feature
embeddings as an inductive bias to improve generalization. In addition, we enhance
the proposed CSG framework with attentional pooling (A-pool) to let the model
focus on semantically important regions and further improve its generalization. We
demonstrate the effectiveness of CSG on various synthetic training tasks, exhibiting
state-of-the-art performance on zero-shot domain generalization.

1 INTRODUCTION

Deep neural networks have pushed the boundaries of many visual recognition tasks. However, their
success often hinges on the availability of both training data and labels. Obtaining data and labels can
be difficult or expensive in many applications such as semantic segmentation, correspondence, 3D
reconstruction, pose estimation, and reinforcement learning. In these cases, learning with synthetic
data can greatly benefit the applications since large amounts of data and labels are available at
relatively low costs. For this reason, synthetic training has recently gained significant attention (Wu
et al., 2015; Richter et al., 2016; Shrivastava et al., 2017; Savva et al., 2019).
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Figure 1: An illustration of the domain gen-
eralization protocol on the VisDA-17 dataset,
where real target domain (test) images are as-
sumed unavailable during model training.

Despite many benefits, synthetically trained models often
have poor generalization on the real domain due to large
domain gaps between synthetic and real images. Limi-
tations on simulation and rendering can lead to degraded
synthesis quality, such as aliased boundaries, unrealis-
tic textures, fake appearance, over-simplified lighting
conditions, and unreasonable scene layouts. These is-
sues result in domain gaps between synthetic and real
images, preventing the synthetically trained models from
capturing meaningful representations and limiting their
generalization ability on real images.

To mitigate these issues, domain generalization and adap-
tation techniques have been proposed (Li et al., 2017;
Pan et al., 2018; Yue et al., 2019). Domain adaptation
assumes the availability of target data (labeled, partially
labeled, or unlabeled) during training. On the other hand,
domain generalization considers zero-shot generalization without seeing the target data of real im-
ages, and is therefore more challenging. An illustration of the domain generalization protocol on the
∗Work done during the research internship with NVIDIA.
†Corresponding author.
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VisDA-17 dataset (Peng et al., 2017) is shown in Figure 1. Considering that ImageNet pre-trained
representation is widely used as model initialization, recent efforts on domain generalization show that
such knowledge can be used to prevent overfitting to the synthetic domain (Chen et al., 2018; 2020c).
Specifically, they impose a distillation loss to regularize the distance between the synthetically trained
and the ImageNet pre-trained representations, which improves synthetic-to-real generalization.

The above approaches still face limitations due to the challenging nature of this problem. Taking a
closer look, we observe the following pitfalls in training on synthetic data. First, obtaining photo-
realistic appearance features at the micro-level, such as texture and illumination, is challenging due to
the limits of simulation complexity and rendering granularity. Without special treatment, CNNs tend
to be biased towards textures (Geirhos et al., 2019) and suffer from badly learned representations on
synthetic data. Second, the common lack of texture and shape variations on synthetic images often
leads to collapsed and trivial representations without any diversity. This is unlike training with natural
images where models get sufficiently trained by seeing enough variations. Such a lack of diversity in
the representation makes the learned models vulnerable to natural variations in the real world.

Summary of contributions and results:

• We observe that the diversity of learned feature embedding plays an important role in synthetic-
to-real generalization. We show an example of collapsed representations learned by a synthetic
model, which is in sharp contrast to features learned from real data (Section 2).

• Motivated by the above observation, we propose a contrastive synthetic-to-real generalization
framework that simultaneously regularizes the synthetically trained representation while promoting
the diversity of the learned representation to improve generalization (Section 3.1).

• We further enhance the CSG framework with attentional pooling (A-pool) where feature represen-
tations are guided by model attention. This allows the model to localize its attention to semantically
more important regions, and thus improves synthetic-to-real generalization (Section 3.4).

• We benchmark CSG on various synthetic training tasks including image classification (VisDA-17)
and semantic segmentation (GTA5→ Cityscapes). We show that CSG considerably improves the
generalization performance without seeing target data. Our best model reaches 64.05% accuracy
on VisDA-17 compared to previous state-of-the-art (Chen et al., 2020c) with 61.1% (Section 4).

2 A MOTIVATING EXAMPLE

We give a motivating example to show the significant differences between the features learned on
synthetic and real images. Specifically, we use a ResNet-101 backbone and extract the l2 normalized
feature embedding after global average pooling (defined as v̄). We consider the following three
models: 1) model pre-trained on ImageNet, 2) model trained on VisDA-17 validation set (real images),
and 3) model trained on VisDA-17 training set (synthetic images) 1. Both 2) and 3) are initialized
with ImageNet pre-training, and fine-tuned on the 12 classes defined in VisDA-17.
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(a) ImageNet pre-trained (real).
(Es = 0.2541)
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(b) Trained on VisDA-17 validation
set (real). (Es = 0.3355)
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Figure 2: Feature diversity on VisDA-17 test images in R2 with Gaussian kernel density estimation (KDE).
Darker areas have more concentrated features. Es: hyperspherical energy of features, lower the more diverse.

1For a fair comparison, we make a random subset of the training set with an equal size of the validation set,
since the training set of VisDA-17 is larger than the validation set.
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Visualization of feature diversity. We visualize the normalized representations on a 2-dim sphere.
A Gaussian kernel with bandwidth estimated by Scott’s Rule (Scott, 2015) is applied to estimate the
probability density function. Darker areas have more concentrated features, and if the feature space
(the 2-dim sphere) is covered by dark areas, it has more diversely placed features. In Figure 2, we
can see that the ImageNet pretrained model can widely span the representations on the 2-dim feature
space. The model trained on VisDA-17 validation set can also generate diverse features, although
slightly affected by the class imbalance. However, when the model is trained on the training set
(synthetic images), the features largely collapse to a narrow subspace, i.e., the model fails to fully
leverage the whole feature space. This is clear that training on synthetic images can easily introduce
poor bias to the model and the collapsed representations will fail to generalize to the real domain.

Quantitive measurement of feature diversity. Inspired by (Liu et al., 2018), we also quantitatively
measure the diversity of the feature embeddings using the following hyperspherical potential energy:

Es

(
v̄i|Ni=1

)
=

N∑
i=1

N∑
j=1,j 6=i

es (‖v̄i − v̄j‖) =

{ ∑
i6=j ‖v̄i − v̄j‖−s , s > 0∑
i6=j log

(
‖v̄i − v̄j‖−1

)
, s = 0

(1)

N is the number of examples. The lower the hyperspherical energy (HSE) is, the more diverse the
feature vectors will be scattered in the unit sphere. s is the power factor, and we choose s = 0
in this example. Three training strategies exhibit energies as 0.2541, 0.3355, 0.4408, respectively.
This validates that models trained on real images can capture diverse features, whereas the synthetic
training will lead the model to highly collapsed feature space.

Remarks. A conclusion can be drawn from the above examples: though assisted with ImageNet
initialization, fine-tuning on synthetic images tends to give collapsed features with poor diversity in
sharp contrast to training with real images. This indicates that the diversity of learned representation
could play an important role in synthetic-to-real generalization.

3 CONTRASTIVE SYNTHETIC-TO-REAL GENERALIZATION

We consider the synthetic-to-real domain generalization problem following the protocols of Chen
et al. (2020c). More specifically, the objective is to achieve the best zero-shot generalization on the
unseen target domain real images without having access to them during synthetic training.

3.1 NOTATION AND FRAMEWORK

Our design of the model considers the following two aspects with a “push and pull” strategy:
Pull: Without access to real images, the ImageNet pre-trained model presents the only source of real
domain knowledge that can implicitly guide our training. As a result, we hope to impose some form
of similarity between the features obtained by the synthetic model and the ImageNet pre-trained one.
This helps to overcome the domain gaps from the unrealistic appearance of synthetic images.
Push: Section 2 shows that synthetic training tends to generate collapsed features whereas models
trained on natural images give many diverse ones. We treat this as an inductive bias to improve
synthetic training, by pushing the feature embeddings away from each other across different images.

The above “push and pull” strategy can be exactly formulated with a contrastive loss. This motivates
us to propose a contrastive synthetic-to-real generalization framework as partly inspired by recent
popular contrastive learning methods (He et al., 2020). Figure 3(b) illustrates our CSG framework.
Specifically, we denote the frozen Imagenet pre-trained model as fe,o and the synthetically trained
model fe, where fe is supervised by the task loss Lsyn for the defined downstream task. We denote
the input synthetic image as xa and treat it as an anchor. We treat the embeddings of xa obtained by
fe and fe,o as anchor and positive embeddings, denoting them as za and z+, respectively. Following
a typical contrastive approach, we define K negative images {x−1 , · · · ,x

−
K} for every anchor xa,

and denote their corresponding embeddings as {z−1 , · · · , z
−
K}. Similar to the design in (Chen et al.,

2020d), we define h/h̃ : RC → Rc as the nonlinear projection heads with a two MLP layers and
a ReLU layer between them. The CSG framework regularizes fe in a contrastive manner: pulling
za and z+ to be closer while pushing za and {z−1 , · · · , z

−
K} apart. This regularizes the model by

preventing its representation from deviating too far from that of a pre-trained ImageNet model and
yet encouraging it to learn task-specific information from the synthetic data.
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Figure 3: (a) Previous work (Chen et al., 2018; 2020c) consider “learning without forgetting” which minimizes
a distillation loss between a synthetic model and an ImageNet pre-trained one (either on features or model
parameters) to avoid catastrophic forgetting. (b) The proposed CSG framework with a “push and pull” strategy.

Even though having connections to recent self-supervised contrastive representation learning meth-
ods (Oord et al., 2018; Wu et al., 2018; Chen et al., 2020a; He et al., 2020; Chen et al., 2020b; Jiang
et al., 2020), our work differs in the following aspects: 1) Self-supervised learning and the addressed
task are ill-posed in different manners - the former lacks the constraints from semantic labels, whereas
the latter lacks the support of data distribution. 2) As a result, the motivations of contrastive learning
are different. Our work is also related to the contrastive distillation framework in (Tian et al., 2020a).
Again, the two works differ in both task and motivation despite the converging techniques.

3.2 AUGMENTATION

Augmentation has been an important part of effective contrastive learning. By perturbing or providing
different views of the representations, augmentation forces a model to focus more on the mid-level
and high-level representations of object parts and structures which are visually more realistic and
reliable. To this end, we follow existing popular approaches to create augmentation at different levels:

Image augmentation. We consider image-level augmentation using RandAugment (Cubuk et al.,
2020) where a single global control factor M is used to control the augmentation magnitude. We
denote the transform operators of image-level augmentation as T (·).

Model augmentation. We adopt a mean-teacher (Tarvainen & Valpola, 2017) styled moving average
of a model to create different views of feature embeddings. Given an anchor image xa andK negative
images {x−1 , · · · ,x

−
K}, we compute the embeddings as follows:

za = fe ◦ g ◦ h(T (xa)), z+ = fe,o ◦ g ◦ h̃(T (xa)), z−k = fe,o ◦ g ◦ h̃(T (x−k )), (2)

where g : RC×h×w → RC is a pooling operator transforming a feature map into a vector. Follow-
ing (He et al., 2020), we define h̃(·) as an exponential moving average of the h(·) across different
iterations. Such difference in h(·) and h̃(·) leads to augmented views of embeddings.

3.3 CONTRASTIVE LOSS

We use InfoNCE loss (Wu et al., 2018) to formulate the “push and pull” strategy:

LNCE = − log
exp (za · z+/τ)

exp (za · z+/τ) +
∑

z− exp (za · z−/τ)
, (3)

where τ = 0.07 is a temperature hyper-parameter in our work. Together, we minimize the combination
of the synthetic task loss and LNCE during our transfer learning process:

L = LTask + λLNCE (4)

Specifically, LTask is the synthetic training task objective. For example, LTask is a cross-entropy loss
of a vector over the 12 defined classes on VisDA-17, whereas it is a per-pixel dense cross-entropy
loss on GTA5. λ is a balancing factor controlling the strength of the Contrastive Learning.
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Multi-layer contrastive learning. We are curious that on which layer(s) should we apply contrastive
learning to achieve best generalization. We therefore propose a multi-layer CSG framework with
different groups (combinations) of layer, denoted as G:

LNCE =
∑
l∈G

Ll
NCE =

∑
l∈G

− log
exp

(
zl,a · zl,+/τ

)
exp (zl,a · zl,+/τ) +

∑
zl,− exp (zl,a · zl,−/τ)

(5)

We conduct an ablation in Section 4.1.2 to study the generalization performance with respect to
different G on ResNet-1012. Note that the non-linear projection heads hl(·)/h̃l(·) are layer-specific.

Cross-task dense contrastive learning. Semantic segmentation presents a new form of task with
per-pixel dense prediction, and the task naturally requires pixel-wise dense supervision LTask. Unlike
image classification, an image in semantic segmentation could contain rich amounts of objects. We
therefore make LNCE spatially denser in semantic segmentation to make it more compatible with the
dense task loss LTask. Specifically, the NCE losses are applied on cropped feature map patches:

LNCE =
∑
l∈G

Nl∑
i=1

Ll,i
NCE =

∑
l∈G

Nl∑
i=1

− 1

Nl
log

exp
(
zl,a
i · z

l,+
i /τ

)
exp

(
zl,a
i · z

l,+
i /τ

)
+
∑

zl,−
i

exp
(
zl,a
i · z

l,−
i /τ

) (6)

where we crop xa into local patches xa
i with za

i = fe ◦ g ◦ h(T (xa
i )). Similar for x−. In practice,

we crop x into Nl = 8× 8 = 64 local patches during segmentation training.

3.4 A-POOL: ATTENTIONAL POOLING FOR IMPROVED REPRESENTATION
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Figure 4: (a) For each input image, A-pool computes an attention matrix a based on the inner product between
the global average pooled feature vector v̄ and vector at each position v:,i,j (v̄,v:,i,j ∈ RC). (b) Example of
four generated reweighting matrices on different images. Note that the values are defined as the ratio of the
attention over uniform weight. The attention is visualized with upsampling to match the input size (224×224).

The purpose of the pooling function g(·) and the non-linear projection head h(·) is to project a high
dimensional feature map v from RC×h×w to a low-dimensional embedding in Rc. With the feature
pooled by g(·) being more informative, we could also let the contrastive learning focus on more
semantically meaningful representations. Inspired by recent works showing CNN’s capability of
localizing salient objects (Zhou et al., 2016; Zhang et al., 2018) with only image-level supervision,
we propose an attentional pooling (A-pool) module to improve the quality of the pooled feature.

As shown in Figure 4(a), given a feature map v we first calculate its global average pooled vector
v̄ = g(v) = 1

hw [
∑

i,j v1,i,j , · · · ,
∑

i,j vC,i,j ], i ∈ [1, h], j ∈ [1, w], we then define the attention

score for each pixel at (i, j) as ai,j =
〈v:,i,j ,v̄〉∑

i′,j′ 〈v:,i′,j′ ,v̄〉
(i′ ∈ [1, h], j′ ∈ [1, w]) and use this score

as the weight term in global pooling. Specifically, we define A-pool operator as v̂ = ga(v) =
[
∑

i,j v1,i,j · ai,j , · · · ,
∑

i,j vC,i,j · ai,j ]. This attention-weighted pooling procedure can effectively
shift the focus of the pooled feature vector to the semantically salient regions, leading to more
meaningful contrastive learning. In Figure 4(b), we plot the attention as the ratio of new attention
score a over uniform weights (i.e., the uniform score used in global average pooling as 1

h×w . For
example, a value 1.5 in Figure 4(b) indicates an attention score of 1.5

h×w ). Note that if any spatially-
related augmentation is applied, the attention used for fe,o as described in section 3.4 will be
calculated by fe, since fe is the one adapted to the source domain with better attention.

2We follow the design by He et al. (2016) to group the convolution operators with the same input resolution
as a layer which results in four layer groups in ResNet-101.
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4 EXPERIMENT

We follow (Chen et al., 2020c) to evaluate on two popular benchmarks: VisDA-17→COCO (classifi-
cation) and GTA5→Cityscapes (segmentation). Codes is available at https://github.com/
NVlabs/CSG.

4.1 IMAGE CLASSIFICATION

Dataset. The VisDA-17 dataset (Peng et al., 2017) provides three subsets (domains), each with the
same 12 object categories. Among them, the training set (source domain) is collected from synthetic
renderings of 3D models under different angles and lighting conditions, whereas the validation set
(target domain) contains real images cropped from the Microsoft COCO dataset (Lin et al., 2014).

Implementation. For VisDA-17, we choose ImageNet pretrained ResNet-101 (He et al., 2016) as
the backbone. We fine-tune the model on the source domain with SGD optimizer of learning rate
1 × 10−4, weight decay 5 × 10−4, and momentum 0.9. Batch size is set to 32, and the model is
trained for 30 epochs. λ for LNCE is set as 0.1.

4.1.1 MAIN RESULTS

We compare with different distillation strategies in Table 1, including feature l2 regularization (Chen
et al., 2018), parameter l2 regularization, importance weighted parameter l2 regularization (Zenke
et al., 2017), and KL divergence (Chen et al., 2020c). All these approaches try to retain the ImageNet
domain knowledge during the synthetic training, without feature diversity being explicitly promoted.
One could see, CSG significantly improves generalizaiton performance over these baselines.

We also verify that CSG promotes diverse representations, and that the diversity is correlated with
generalization performance. To this end, we quantitatively measure the hyperspherical energy defined
in Equation 1 on the feature embeddings extracted by different methods. From Table 1, one can see
that the baseline suffers from the highest energy, and under different power settings, CSG consistently
achieves the lowest energies. Table 1 indicates that a method that achieves lower HSE can better
generalize from synthetic to the real domain. This confirms our motivation that forcing the model to
capture more diversely scattered features will achieve better generalization performance.

Table 1: Generalization performance and hyperspherical energy of the features extracted by different models
(lower is better). Dataset: VisDA-17 (Peng et al., 2017) validation set. Model: ResNet-101.

Model Power Accuracy (%)
0 1 2

Oracle on ImageNet3 - - - 53.3
Baseline (vanilla synthetic training) 0.4245 1.2500 1.6028 49.3

Weight l2 distance (Kirkpatrick et al., 2017) 0.4014 1.2296 1.5302 56.4
Synaptic Intelligence (Zenke et al., 2017) 0.3958 1.2261 1.5216 57.6

Feature l2 distance (Chen et al., 2018) 0.3337 1.1910 1.4449 57.1
ASG (Chen et al., 2020c) 0.3251 1.1840 1.4229 61.1

CSG (Ours) 0.3188 1.1806 1.4177 64.05

4.1.2 ABLATION STUDY

We perform ablation studies (Table 2, 3, 4) on the VisDA-17 image classification benchmark (Peng
et al., 2017).

Augmentation. We study different magnitudes of RandAugment (Cubuk et al., 2020) in our scenario
(Section 3.2), as summarized in Table 2. By tuning the global magnitude control factor M , we
observe that too strong augmentations deteriorate generalization (e.g. M = 12, 18, 24), while mild
augmentation brings limited help (M = 3). A moderate augmentation (M = 6) can improve
contrastive learning.

3The oracle is obtained by freezing the ResNet-101 backbone while only training the last new fully-connected
classification layer on the VisDA-17 source domain (the FC layer for ImageNet remains unchanged). We use the
PyTorch official model of ImageNet-pretrained ResNet-101.
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Figure 5: An illustration of model attention by GradCAM
(Selvaraju et al., 2017) on the VisDA-17 validation set.

Multi-layer Contrastive Learning. Since
features from the high-level layers are di-
rectly responsible for the downstream classi-
fication or other vision tasks, we suspect the
last layer in the feature extractor fe would
be the most important. We conduct an ab-
lation study on generalization performance
with different layer combinations for multi-
layer contrastive learning (Section 3.3). From
Table 3, one can see that applying LNCE on
layer 3 and 4 are most effective. Therefore,
in our work we set G = {3, 4}
A-pool. Table 4 shows that with attention
guided pooling (Section 3.4), A-pool can further improve the generalization performance, compared
with the vanilla global average pooling (GAP).

Table 2: Ablation with M .

M Accuracy

0 (no aug.) 60.86
3 61.36
6 62.88

12 62.61
18 62.00

Table 3: Ablation with G.

Layer Groups G Accuracy (%)

4 62.88
3+4 63.77

2+3+4 62.66
1+2+3+4 62.30

Table 4: Ablation w./w.o. A-pool.
GAP: global average pooling.

Pooling Accuracy (%)

GAP 63.77
A-pool 64.05

4.1.3 CSG BENEFITS VISUAL ATTENTION

We further show the Grad-CAM3 attention on VisDA-17 validation set (Figure 5). We can see that
our CSG framework also contributes to better visual attention on unseen real images.

4.2 SEMANTIC SEGMENTATION

Dataset. GTA5 (Richter et al., 2016) is a vehicle-egocentric image dataset collected in a computer
game with pixel-wise semantic labels. It contains 24,966 images with a resolution of 1052×1914.
There are 19 classes that are compatible with the Cityscapes dataset (Cordts et al., 2016).
Cityscapes (Cordts et al., 2016) contains urban street images taken on a vehicle from some European
cities. There are 5,000 images with pixel-wise annotations. The images have a resolution of
1024×2048 and are labeled into 19 semantic categories.

Implementation. We study DeepLabv2 (Chen et al., 2017) with both ResNet-50 and ResNet-101
backbone. The backbones are pre-trained on ImageNet. We also use SGD optimizer, with learning
rate as 1× 10−3, weight decay as 5× 10−4, and momentum are 0.9. Batch size is set to six. We crop
the images into patches of 512×512 and train the model with multi-scale augmentation (0.75 ∼ 1.25)
and horizontal flipping. The model is trained for 50 epochs, and λ for LNCE is set as 75.

4.2.1 MAIN RESULTS

We also evaluate the generalization performance of our CSG on semantic segmentation. In particular,
we treat the GTA5 training set as the synthetic source domain and train segmentation models on it.
We then treat the Cityscapes validation sets as real target domains, where we directly evaluate the
synthetically trained models. We can see that in Table 5, CSG achieves the best performance gain.
IBN-Net Pan et al. (2018) improves domain generalization by carefully mix the instance and batch
normalization in the backbone, while Yue et al. (2019) transfers the real image styles from ImageNet
to synthetic images. However, Yue et al. (2019) requires ImageNet images during synthetic training,
and also implicitly leverages ImageNet labels as auxiliary domains.

3Grad-CAM visualization method (Selvaraju et al., 2017): https://github.com/utkuozbulak/
pytorch-cnn-visualizations
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Table 5: Comparison to previous domain generalization methods for segmentation (GTA5→ Cityscapes).

Methods Backbone mIoU % mIoU ↑ %

No Adapt

ResNet-50

22.17 7.47IBN-Net (Pan et al., 2018) 29.64

No Adapt 32.45 4.97Yue et al. (Yue et al., 2019) 37.42

No Adapt 25.88 3.77ASG (Chen et al., 2020c) 29.65

No Adapt 25.88 9.39CSG (ours) 35.27

No Adapt

ResNet-101

33.56 8.97Yue et al. (Yue et al., 2019) 42.53

No Adapt 29.63 3.16ASG (Chen et al., 2020c) 32.79

No Adapt 29.63 9.25CSG (ours) 38.88

4.2.2 FEATURE DIVERSITY ON SEGMENTATION WITH BALANCED TRAINING SET

We further conduct visualization and quantitative measures of feature diversity on the segmentation
task. Similar to section 2, we randomly sample a subset of the GTA5 training set to match the size of
the Cityscapes training set. We again have similar observations: models trained on real images have
relatively diverse features, and synthetic training leads to collapsed features. Here we get lower Es

than classification since we follow the setting in Eq. 6 to study dense-level features. This leads to a
larger total number of features on segmentation than classification.
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Figure 6: Feature diversity on Cityscapes test images in R2 with Gaussian kernel density estimation (KDE).
Darker areas have more concentrated features. Es: hyperspherical energy of features, lower the more diverse.

4.2.3 VISUAL RESULTS

By visualizing the segmentation results (Figure 7), we can see that as our CSG framework achieves
better mIoU on unseen real images from the Cityscapes validation set, the model produces segmen-
tation with much higher visual quality. In contrast, the baseline model suffers from much more
misclassification.

5 RELATED WORK

Domain generalization considers the problem of generalizing a model to the unseen target domain
without leveraging any target domain images (Muandet et al., 2013; Gan et al., 2016). The core
challenge is how to close the domain gap and align feature spaces from different domains, without
even seeing the target domain’s data. Muandet et al. (2013) proposed to use MMD (Maximum Mean
Discrepancy) to align the distributions from different source domains and train their network with
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road sidewalk building wall fence pole traffic lgt traffic sgn vegetation ignored
terrain sky person rider car truck bus train motorcycle bike

Figure 7: Generalization results on GTA5→ Cityscapes. Rows correspond to sample images in Cityscapes
validation set. From left to right, columns correspond to original images, ground truth, predication results of
baseline (DeepLabv2-ResNet50 Chen et al. (2017)), and prediction by model trained with our CSG framework.

adversarial learning. Li et al. (2017) built separate networks for each source domain and used shared
parameters for testing. By using a meta-learning approach on split training sets, Li et al. (2018)
further improved generalization performance. Instance Normalization and Batch Normalization are
carefully integrated into the backbone network by Pan et al. (2018) to boost network generalization.
Differently, Yue et al. (2019) proposed to transfer information from the real domain as image styles to
synthetic images. Most recently, (Chen et al., 2020c) formulated domain generalization as a life-long
learning problem (Li & Hoiem, 2017), and try to avoid the catastrophic forgetting about the ImageNet
pre-trained weights and to retain real-domain knowledge during transfer learning.

Contrastive learning. Noise contrastive estimation loss (Wu et al., 2018) recently becomes a
predominant design choice for self-supervised contrastive representation learning (Hjelm et al., 2018;
Oord et al., 2018; Hénaff et al., 2019; Tian et al., 2019; He et al., 2020; Misra & Maaten, 2020;
Chen et al., 2020a). Studies show that self-supervised models can serve as powerful initializations
for downstream tasks, even outperforming supervised pre-training on several. Besides engineering
improvements, key factors towards better contrastive learning include employing large numbers of
negative examples and designing more semantically meaningful augmentations to create different
views of images. This leads to both maximize the mutual information between two views of the same
instance and pushing examples from different instances apart (Tian et al., 2020b). As also observed by
Wang & Isola (2020), contrastive learning tends to align the features belonging to the same instance,
while scattering the normalized learned features on a hypersphere. However, most work focus on the
representation learning for a real-to-real transfer learning setting where the main focus is to improve
the performance of the downstream tasks. While having connections to these methods, our work
pursues a different task with different motivations despite the converging techniques.

6 CONCLUSIONS

Motivated by the observation that models trained on synthetic images tend to generate collapsed
feature representation, we make a hypothesis that the diversity of feature representation plays an im-
portant role in generalization performance. Taking this as an inductive bias, we propose a contrastive
synthetic-to-real generalization framework that simultaneously regularizes the synthetically trained
representations while promoting the diversity of the features to improve generalization. Experiments
on VisDA-17 validate our hypothesis, showing that the diversity of features correlates with general-
ization performance across different models. Together with the multi-scale contrastive learning and
attention-guided pooling strategy, the proposed framework outperforms previous state-of-the-arts
on VisDA-17 with sizable gains, while giving competitive performance and the largest relative
improvements on GTA5→Cityscapes without bells and whistles.
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