

The

Institute

Regularising the VAEs latent space by a gene of interest facilitates data interpretation and analysis

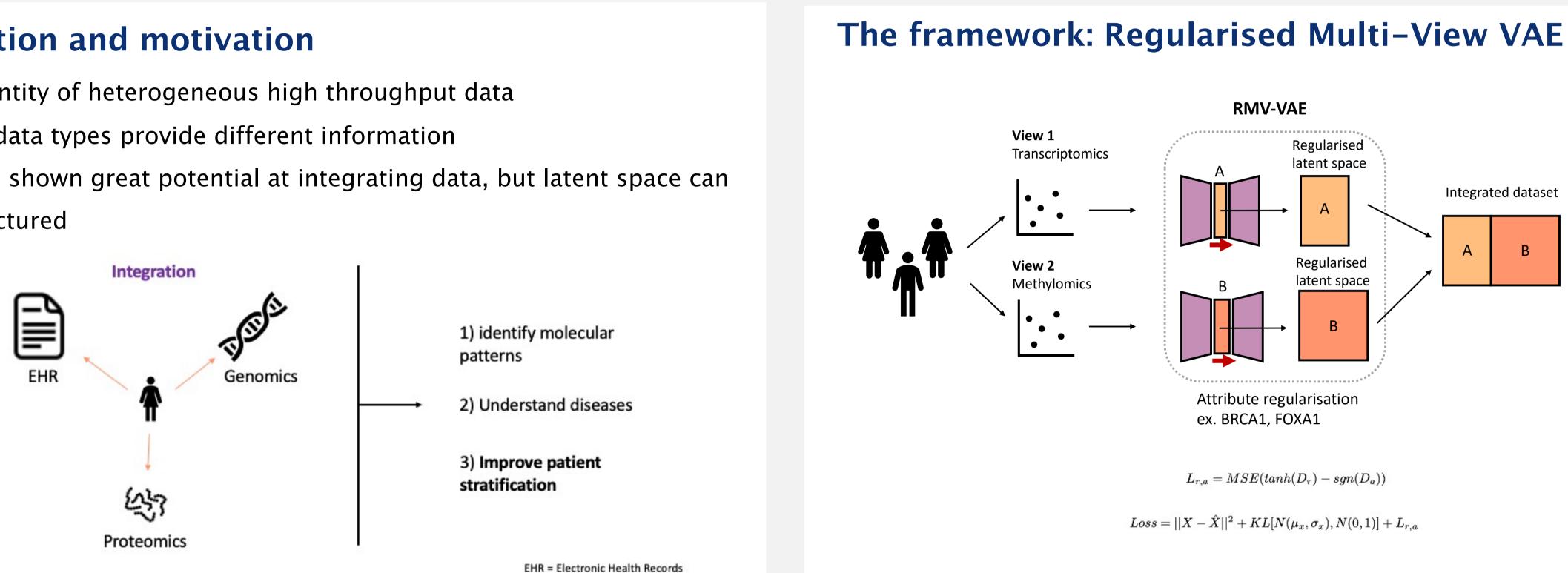
Sara Masarone^{1, 2}

- 2) The Alan Turing Institute

Introduction and motivation

Alan Turing

- Large quantity of heterogeneous high throughput data
- Different data types provide different information
- VAEs have shown great potential at integrating data, but latent space can be unstructured



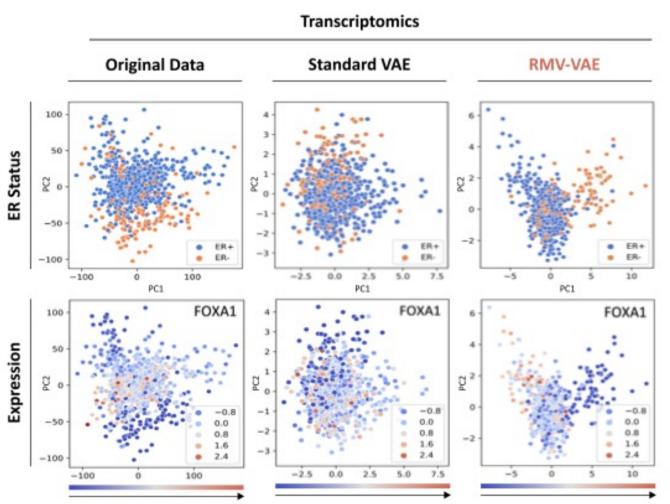
Case study 1: Breast cancer (only showing transcriptomics here)

(Example: Integrating transcriptomics + methylomics)

Transcriptomics **RMV-VAE Original Data** Standard VAE Surviv BRCA1

- Breast cancer is a relatively common type of cancer
- **BRCA1** is known to be a central player in breast cancer survival

ER status (established clinical groups)



- metastatic programs

Survival

Queen Mary University of London and The Alan Turing Institute

• Aggressive phenotypes of ER+ breast cancer are known to be driven by FOXA1 augmentation and expression • This leads to activation of key mechanisms that promote

Case study 1: can we predict survival and ER status?

Transcriptomics + methylomics

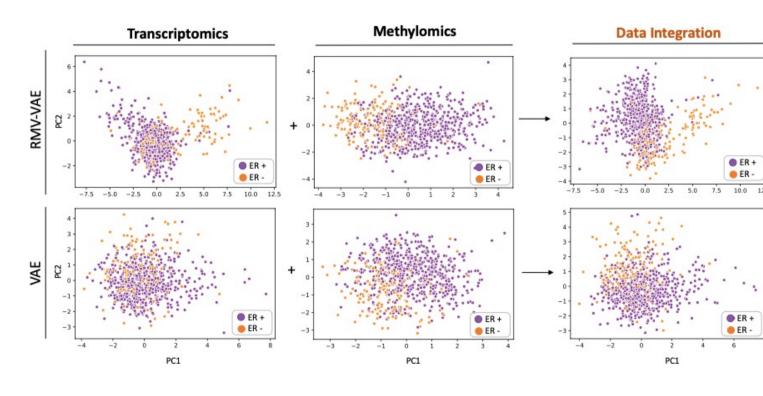


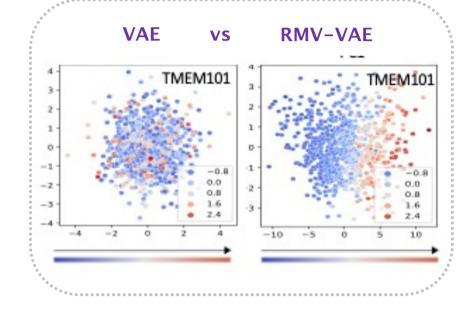
Table 1: Results: predicting survival and ER status in breast cancer

Model	Survival (acc.)	ER (acc.)	Survival (AUC)	ER (AUC)
RMV-VAE transcriptomics (t)	0.86 ± 0.01	0.81 ± 0.06	0.59 ± 0.10	0.69 ± 0.04
RMV-VAE methylomics (m)	0.82 ± 0.02	0.84 ± 0.03	0.54 ± 0.05	0.88 ± 0.04
RMV-VAE (t+m)	0.87 ± 0.01	$\textbf{0.88} \pm 0.02$	0.62 ± 0.11	$\textbf{0.91}\pm0.05$
VAE transcriptomics (t)	0.84 ± 0.03	0.71 ± 0.03	0.55 ± 0.04	0.66 ± 0.03
VAE methylomics (m)	0.81 ± 0.01	0.88 ± 0.02	0.58 ± 0.04	0.89 ± 0.03
VAE (t+m)	$\textbf{0.85}\pm0.02$	$\textbf{0.87} \pm 0.02$	$\textbf{0.56} \pm 0.05$	$\textbf{0.89} \pm 0.03$

https://saramasarone.github.io

A motivating example

Predictions



- VAEs often produce unstructured latent spaces
- Hard to relate clinically established groups to the generated embeddings
- Ex. TMEM101 gene is important in breast cancer so regularizing by this gene can help scientists better understand the data

Case study 2: Pancreatic Adenocarcinoma (PAAD)

- PAAD is a cancer that is difficult to identify and treat
- Experiment with 181 patients
- Integrating using RMV-VAE allowed to obtain better survival predictions

Table 2: Results: predicting survival in pancreatic cancer (accuracy and AUC)

Model	Survival (acc., std)	Survival (AUC, std)
RMV-VAE counts (c)	0.6 ± 0.04	0.65 ± 0.07
RMV-VAE methylations (m)	0.54 ± 0.06	0.57 ± 0.10
\mathbf{RMV} - \mathbf{VAE} - (c + m)	0.62 ± 0.1	$\textbf{0.65} \pm 0.08$
VAE counts (c)	0.59 ± 0.05	0.58 ± 0.07
VAE methylations (m)	0.57 ± 0.06	0.54 ± 0.11
VAE - (c + m)	$\textbf{0.59} \pm 0.04$	$\textbf{0.57} \pm 0.10$

Conclusions

RMV–VAE allows to regularize the embeddings by genes of interest Increased performance on test cases