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ABSTRACT

In text-to-speech (TTS) synthesis, diffusion models have achieved promising gen-
eration quality. However, because of the pre-defined data-to-noise diffusion pro-
cess, their prior distribution is restricted to a noisy representation, which provides
little information of the generation target. In this work, we present a novel TTS
system, Bridge-TTS, making the first attempt to substitute the noisy Gaussian
prior in established diffusion-based TTS methods with a clean and determinis-
tic one, which provides strong structural information of the target. Specifically,
we leverage the latent representation obtained from text input as our prior, and
build a fully tractable Schrodinger bridge between it and the ground-truth mel-
spectrogram, leading to a data-to-data process. Moreover, the tractability and
flexibility of our formulation allow us to empirically study the design spaces such
as noise schedules, as well as to develop stochastic and deterministic samplers.
Experimental results on the LJ-Speech dataset illustrate the effectiveness of our
method in terms of both synthesis quality and sampling efficiency, significantly
outperforming our diffusion counterpart Grad-TTS in 50-step/1000-step synthe-
sis and strong fast TTS models in few-step scenarios. Project page (anonymous):
https://bridge-tts.github.io/.

1 INTRODUCTION

Diffusion models, including score-based generative models (SGMs) (Song et al., 2021b) and denois-
ing diffusion probabilistic models (Ho et al., 2020), have been one of the most powerful generative
models across different data generation tasks (Ramesh et al., 2022; Leng et al., 2022; Bao et al.,
2023; Wang et al., 2023). In speech community, they have been extensively studied in waveform
synthesis (Kong et al., 2021; Chen et al., 2021; 2022b), text-to-audio generation (Liu et al., 2023b;c;
Huang et al., 2023b;a), and text-to-speech (TTS) synthesis (Tan et al., 2021; Popov et al., 2021; Shen
et al., 2023). Generally, these models contain two processes between the data distribution and the
prior distribution: 1) the forward diffusion process gradually transforms the data into a known prior
distribution, e.g., Gaussian noise; 2) the reverse denoising process gradually generates data samples
from the prior distribution.

In diffusion-based TTS systems (Popov et al., 2021; Chen et al., 2023; Ye et al., 2023), the text input
is usually first transformed into latent representation by a text encoder, which contains a phoneme
encoder and a duration predictor, and then diffusion models are employed as a decoder to generate
the mel-spectrogram conditioned on the latent. The prior distribution in these systems can be clas-
sified into two types: 1) one is using the standard Gaussian noise to generate target (Huang et al.,
2022; Liu et al., 2022b; Chen et al., 2022c); 2) the other improves the prior to be more informative
of the target. For example, Grad-TTS (Popov et al., 2021) learns the latent representation from the
text encoder with the ground-truth target in training, and takes it as the mean of prior distribution
to obtain a mean-shifted Gaussian. PriorGrad (Lee et al., 2022) utilizes the statistical values from
training data, computing a Gaussian with covariance matrix. DiffSinger (Liu et al., 2022a) employs
an auxiliary model to acquire an intractable prior distribution, enabling a shallow reverse process.
However, because diffusion models pre-specify the noise-additive diffusion process, the prior dis-
tribution of the above systems is confined to a noisy representation, which is not indicative of the
mel-spectrogram.
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Figure 1: An overview of Bridge-TTS built on Schrodinger bridge.

In this work, as shown in Figure 1, we propose a new design to generate mel-spectrogram from
a clean and deterministic prior, i.e., the text latent representation supervised by ground-truth tar-
get (Popov et al., 2021). It has provided structural information of the target and is utilized as the
condition information in both recent diffusion (Chen et al., 2023; Ye et al., 2023) and conditional
flow matching (Guo et al., 2023; Mehta et al., 2023) based TTS systems, while we argue that re-
placing the noisy prior in previous systems with this clean latent can further boost the TTS sample
quality and inference speed. To enable this design, we leverage Schrodinger bridge (Schrödinger,
1932; Chen et al., 2022a) instead of diffusion models, which seeks a data-to-data process rather
than the data-to-noise process in diffusion models. As the original Schrodinger bridge is generally
intractable that hinders the study of the design spaces in training and sampling, we propose a fully
tractable Schrodinger bridge between paired data with a flexible form of reference SDE in alignment
with diffusion models (Ho et al., 2020; Song et al., 2021b).

With the tractability and flexibility of our proposed framework, aiming at TTS synthesis with su-
perior generation quality and efficient sampling speed, we make an investigation of noise schedule,
model parameterization, and training-free samplers, which diffusion models have greatly benefited
from (Hoogeboom et al., 2023; Salimans & Ho, 2022; Song et al., 2021a), while not been thor-
oughly studied in Schrodinger bridge related works. To summarize, we make the following key
contributions in this work:

• In TTS synthesis, we make the first attempt to generate the mel-spectrogram from clean
text latent representation (i.e., the condition information in diffusion counterpart) by means
of Schrodinger bridge, exploring data-to-data process rather than data-to-noise process.

• By proposing a fully tractable Schrodinger bridge between paired data with a flexible form
of reference SDE, we theoretically elucidate and empirically explore the design spaces
of noise schedule, model parameterization, and sampling process, further enhancing TTS
quality with asymmetric noise schedule, data prediction, and first-order bridge samplers.

• Empirically, we attain both state-of-the-art generation quality and inference speed with a
single training session. In both 1000-step and 50-step generation, we significantly outper-
form our diffusion counterpart Grad-TTS (Popov et al., 2021); in 4-step generation, we
accomplish higher quality than FastGrad-TTS (Vovk et al., 2022); in 2-step generation,
we surpass the state-of-the-art distillation method CoMoSpeech Ye et al. (2023), and the
transformer-based model FastSpeech 2 (Ren et al., 2021).
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2 BACKGROUND

2.1 DIFFUSION MODELS

Given a data distribution pdata(x), x ∈ Rd, SGMs (Song et al., 2021b) are built on a continuous-time
diffusion process defined by a forward stochastic differential equation (SDE):

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ p0 = pdata (1)

where t ∈ [0, T ] for some finite horizon T , f : Rd × [0, T ] → Rd is a vector-valued drift term,
g : [0, T ] → R is a scalar-valued diffusion term, and wt ∈ Rd is a standard Wiener process. Under
proper construction of f , g, the boundary distribution pT (xT ) is approximately a Gaussian prior
distribution pprior = N (0, σ2

T I). The forward SDE has a corresponding reverse SDE (Song et al.,
2021b) which shares the same marginal distributions {pt}Tt=0 with the forward SDE:

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt+ g(t)dw̄t, xT ∼ pT ≈ pprior (2)

where w̄t is the reverse-time Wiener process, and the only unknown term ∇ log pt(xt) is the
score function of the marginal density pt. By parameterizing a score network sθ(xt, t) to pre-
dict ∇ log pt(xt), we can replace the true score in Eqn. (2) and solve it reversely from pprior at
t = T , yielding generated data samples at t = 0. sθ(xt, t) is usually learned by the denoising score
matching (DSM) objective (Vincent, 2011; Song et al., 2021b) with a weighting function λ(t) > 0:

Ep0(x0)pt|0(xt|x0)Et

[
λ(t)∥sθ(xt, t)−∇ log pt|0(xt|x0)∥22

]
, (3)

where t ∼ U(0, T ) and pt|0 is the conditional transition distribution from x0 to xt, which is deter-
mined by the pre-defined forward SDE and is analytical for a linear drift f(xt, t) = f(t)xt.

2.2 DIFFUSION-BASED TTS SYSTEMS

The goal of TTS systems is to learn a generative model pθ(x|y) over mel-spectrograms (Mel)
x ∈ Rd given conditioning text y1:L with length L. Grad-TTS (Popov et al., 2021) provides a
strong baseline for TTS with SGM, which consists of a text encoder and a diffusion-based decoder.
Specifically, they alter the Gaussian prior in SGMs to another one p̃enc(z|y) = N (z, I) with infor-
mative mean z, where z ∈ Rd is a latent acoustic feature transformed from a text string y through
the text encoder network E , i.e., z = E(y). The diffusion-based decoder utilizes p̃enc as prior for
SGM and builds a diffusion process via the following modified forward SDE:

dxt =
1
2 (z − xt)βtdt+

√
βtdwt, x0 ∼ p0 = pdata(x|y) (4)

where p0 = pdata(x|y) is the true conditional data distribution and βt is a non-negative noise sched-
ule. The forward SDE in Eqn. (4) will yield xT ∼ pT ≈ p̃enc with sufficient large T (Popov et al.,
2021). During training, the text encoder and the diffusion-based decoder are jointly optimized,
where the encoder is optimized with a negative log-likelihood lossLenc = −Epdata(x|y)[log p̃enc(x|y)]
and the decoder is trained with the DSM objective in Eqn. (3), denoted as Ldiff. Apart from Lenc and
Ldiff, the TTS system also optimizes a duration predictor Â as a part of the encoder that predicts the
alignment map A∗ between encoded text sequence z̃1:L and the latent feature z1:F with F frames
given by Monotonic Alignment Search (Kim et al., 2020), where zj = z̃A∗(j). Denote the duration
prediction loss as Ldp, the overall training objective of Grad-TTS is Lgrad-tts = Lenc + Ldp + Ldiff.

2.3 SCHRODINGER BRIDGE

The Schrodinger Bridge (SB) problem (Schrödinger, 1932; De Bortoli et al., 2021; Chen et al.,
2022a) originates from the optimization of path measures with constrained boundaries:

min
p∈P[0,T ]

DKL(p ∥ pref), s.t. p0 = pdata, pT = pprior (5)

where P[0,T ] is the space of path measures on a finite time horizon [0, T ], pref is the reference path
measure, and p0, pT are the marginal distributions of p at boundaries. Generally, pref is defined by
the same form of forward SDE as SGMs in Eqn. (1) (i.e., the reference SDE). In such a case, the
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SB problem is equivalent to a couple of forward-backward SDEs (Wang et al., 2021; Chen et al.,
2022a):

dxt = [f(xt, t) + g2(t)∇ logΨt(xt)]dt+ g(t)dwt, x0 ∼ pdata (6a)

dxt = [f(xt, t)− g2(t)∇ log Ψ̂t(xt)]dt+ g(t)dw̄t, xT ∼ pprior (6b)

where f and g are the same as in the reference SDE. The extra non-linear drift terms ∇ logΨt(xt)

and∇ log Ψ̂t(xt) are also described by the following coupled partial differential equations (PDEs):{
∂Ψ
∂t = −∇xΨ

⊤f − 1
2 Tr

(
g2∇2

xΨ
)

∂Ψ̂
∂t = −∇x · (Ψ̂f) + 1

2 Tr
(
g2∇2

xΨ̂
) s.t. Ψ0Ψ̂0 = pdata,ΨT Ψ̂T = pprior. (7)

The marginal distribution pt of the SB at any time t ∈ [0, T ] satisfies pt = ΨtΨ̂t. Compared to
SGMs where pT ≈ pprior = N (µ, σ2

T I), SB allows for a flexible form of pprior and ensures the
boundary condition pT = pprior. However, solving the SB requires simulating stochastic processes
and performing costly iterative procedures (De Bortoli et al., 2021; Chen et al., 2022a; Shi et al.,
2023). Therefore, it suffers from scalability and applicability issues. In certain scenarios, such as
using paired data as boundaries, the SB problem can be solved in a simulation-free approach (Som-
nath et al., 2023; Liu et al., 2023a). Nevertheless, SBs in these works are either not fully tractable
or limited to restricted families of pref, thus lacking a comprehensive and theoretical analysis of the
design spaces.

3 BRIDGE-TTS

We extend SB techniques to the TTS task and elucidate the design spaces with theory-grounded
analyses. We start with a fully tractable SB between paired data in TTS modeling. Based on such
formulation, we derive different training objectives and theoretically study SB sampling in the form
of SDE and ODE, which lead to novel first-order sampling schemes when combined with expo-
nential integrators. In the following discussions, we say two probability density functions are the
same when they are up to a normalizing factor. Besides, we assume the maximum time T = 1 for
convenience.

3.1 SCHRODINGER BRIDGE BETWEEN PAIRED DATA

As we have discussed, with the properties of unrestricted prior form and strict boundary condition,
SB is a natural substitution for diffusion models when we have a strong informative prior. In the
TTS task, the pairs of the ground-truth data (x, y) and the deterministic prior z = E(y) given by the
text encoder can be seen as mixtures of dual Dirac distribution boundaries (δx, δz), which simplifies
the solving of SB problem. However, in such a case, the SB problem in Eqn. (5) will inevitably
collapse given a stochastic reference process that admits a continuous density pref

1 at t = 1, since the
KL divergence between a Dirac distribution and a continuous probability measure is infinity.

To tackle this problem, we consider a noisy observation of boundary data points x0,x1 polluted by
a small amount of Gaussian noiseN (0, ϵ21I) andN (0, ϵ22I) respectively, which helps us to identify
the SB formulation between clean data when ϵ1, ϵ2 → 0. Actually, we show that in general cases
where the reference SDE has a linear drift f(xt, t) = f(t)xt (which is aligned with SGMs), SB has
a fully tractable and neat solution when ϵ2 = e

∫ 1
0
f(τ)dτ ϵ1. We formulate the result in the following

theorem.
Proposition 3.1 (Tractable Schrodinger Bridge between Gaussian-Smoothed Paired Data with Ref-
erence SDE of Linear Drift, proof in Appendix A.1). Assume f = f(t)xt, the analytical solution
to Eqn. (7) when pdata = N (x0, ϵ

2I) and pprior = N (x1, e
2
∫ 1
0
f(τ)dτ ϵ2I) is

Ψ̂ϵ
t = N (αta, (α

2
tσ

2 + α2
tσ

2
t )I), Ψϵ

t = N (ᾱtb, (α
2
tσ

2 + α2
t σ̄

2
t )I) (8)

where t ∈ [0, 1],

a = x0 +
σ2

σ2
1
(x0 − x1

α1
), b = x1 +

σ2

σ2
1
(x1 − α1x0), σ2 = ϵ2 +

√
σ4
1+4ϵ4−σ2

1

2 , (9)

and
αt = e

∫ t
0
f(τ)dτ , ᾱt = e−

∫ 1
t
f(τ)dτ , σ2

t =
∫ t

0
g2(τ)
α2

τ
dτ, σ̄2

t =
∫ 1

t
g2(τ)
α2

τ
dτ. (10)
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In the above theorem, αt, ᾱt, σt, σ̄t are determined by f, g in the reference SDE (Eqn. (1)) and are
analogous to the noise schedule in SGMs (Kingma et al., 2021). When ϵ → 0, Ψ̂ϵ

t,Ψ
ϵ
t converge to

the tractable solution between clean paired data (x0,x1):

Ψ̂t = N (αtx0, α
2
tσ

2
t I), Ψt = N (ᾱtx1, α

2
t σ̄

2
t I) (11)

The advantage of such tractability lies in its ability to facilitate the study of training and sampling
under the forward-backward SDEs (Eqn. (6)), which we will discuss in the following sections. Be-
sides, the marginal distribution pt = Ψ̂tΨt of the SB also has a tractable form:

pt = ΨtΨ̂t = N
(

αtσ̄
2
tx0+ᾱtσ

2
tx1

σ2
1

,
α2

t σ̄
2
tσ

2
t

σ2
1

I
)
, (12)

which is a Gaussian distribution whose mean is an interpolation between x0,x1, and variance is zero
at boundaries and positive at the middle. A special case is that, when the noise schedule f(t) = 0
and g(t) = σ > 0, we have pt = N ((1 − t)x0 + tx1, σ

2t(1 − t)I), which recovers the Brownian
bridge used in previous works (Qiu et al., 2023; Tong et al., 2023a;b). Actually, Eqn. (12) reveals
the form of generalized Brownian bridge with linear drift and time-varying volatility between x0

and x1. We put the detailed analysis in Appendix B.1.

3.2 MODEL TRAINING

The TTS task aims to learn a model to generate the Mel x0 given text y. Denote x1 = E(y)
as the latent acoustic feature produced by text encoder E , since the SB is tractable given x0,x1

(∇ logΨ,∇ log Ψ̂ in Eqn. (6) are determined by Eqn. (11)), a direct training approach is to param-
eterize a network xθ to predict x0 given xt at different timesteps, which allows us to simulate the
process of SB from t = 1 to t = 0. This is in alignment with the data prediction in diffusion models,
and we have the bridge loss:

Lbridge = E(x0,y)∼pdata,x1=E(y)Et[∥xθ(xt, t,x1)− x0∥22] (13)

where xt =
αtσ̄

2
t

σ2
1
x0 +

ᾱtσ
2
t

σ2
1
x1 +

αtσ̄tσt

σ1
ϵ, ϵ ∼ N (0, I) by the SB (Eqn. (12)). x1 is also fed into

the network as a condition, following Grad-TTS (Popov et al., 2021).

Analogous to the different parameterizations in diffusion models, there are alternative choices of
training objectives that are equivalent in bridge training, such as the noise prediction corresponding
to ∇ log Ψ̂t (Liu et al., 2023a) or the SB score ∇ log pt, and the velocity prediction related to flow
matching techniques (Tong et al., 2023a;b). However, we find they perform worse or poorly in
practice, which we will discuss in detail in Appendix D. Except for the bridge loss, we jointly
train the text encoder E (including the duration predictor Â) following Grad-TTS. Since the encoder
no longer parameterizes a Gaussian distribution, we simply adopt an MSE encoder loss L′

enc =
E(x0,y)∼pdata∥E(y) − x0∥2. And we use the same duration prediction loss Ldp as Grad-TTS. The
overall training objective of Bridge-TTS is Lbridge-tts = L′

enc + Ldp + Lbridge.

In our framework, the flexible form of reference SDE facilitates the design of noise schedules f, g,
which constitutes an important factor of performance as in SGMs. In this work, we directly trans-
fer the well-behaved noise schedules from SGMs, such as variance preserving (VP). As shown in
Table 1, we set f, g2 linear to t, and the corresponding αt, σ

2
t have closed-form expressions. Such

designs are new in both SB and TTS-related contexts and distinguish our work from previous ones
with Brownian bridges (Qiu et al., 2023; Tong et al., 2023a;b).

Table 1: Demonstration of the noise schedules in Bridge-TTS.

Schedule f(t) g2(t) αt σ2
t

Bridge-gmaxa 0 β0 + t(β1 − β0) 1 1
2
(β1 − β0)t

2 + β0t

Bridge-VP − 1
2
(β0 + t(β1 − β0)) β0 + t(β1 − β0) e−

1
2

∫ t
0 (β0+τ(β1−β0))dτ e

∫ t
0 (β0+τ(β1−β0))dτ − 1

aThe main hyperparameter for the Bridge-gmax schedule is β1, which is exactly the maximum of g2(t).
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3.3 SAMPLING SCHEME

Assume we have a trained data prediction network xθ(xt, t)
1. If we replace x0 with xθ in the

tractable solution of Ψ̂,Ψ (Eqn. (11)) and substitute them into Eqn. (6), which describes the SB with
SDEs, we can obtain the parameterized SB process. Analogous to the sampling in diffusion models,
the parameterized SB can be described by both stochastic and deterministic processes, which we
call bridge SDE/ODE, respectively.

Bridge SDE We can follow the reverse SDE in Eqn. (6b). By substituting Eqn. (11) into it and
replace x0 with xθ, we have the bridge SDE:

dxt =
[
f(t)xt + g2(t)xt−αtxθ(xt,t)

α2
tσ

2
t

]
dt+ g(t)dw̄t (14)

Bridge ODE The probability flow ODE (Song et al., 2021b) of the forward SDE in Eqn. (6a)
is (Chen et al., 2022a):

dxt =
[
f(t)xt + g2(t)∇ logΨt(xt)− 1

2g
2(t)∇ log pt(xt)

]
dt

=
[
f(t)xt +

1
2g

2(t)∇ logΨt(xt)− 1
2g

2(t)∇ log Ψ̂t(xt)
]
dt

(15)

where we have used ∇ log pt(xt) = ∇ logΨt(xt) +∇ log Ψ̂t(xt) since pt = ΨtΨ̂t. By substitut-
ing Eqn. (11) into it and replace x0 with xθ, we have the bridge ODE:

dxt =
[
f(t)xt − 1

2g
2(t)xt−ᾱtx1

α2
t σ̄

2
t

+ 1
2g

2(t)xt−αtxθ(xt,t)
α2

tσ
2
t

]
dt (16)

To obtain data sample x0, we can solve the bridge SDE/ODE from the latent x1 at t = 1 to t = 0.
However, directly solving the bridge SDE/ODE may cause large errors when the number of steps is
small. A prevalent technique in diffusion models is to handle them with exponential integrators (Lu
et al., 2022a;b; Gonzalez et al., 2023), which aims to “cancel” the linear terms involving xt and
obtain solutions with lower discretization error. We conduct similar derivations for bridge sampling,
and present the results in the following theorem.
Proposition 3.2 (Exact Solution and First-Order Discretization of Bridge SDE/ODE, proof in Ap-
pendix A.2). Given an initial value xs at time s > 0, the solution at time t ∈ [0, s] of bridge
SDE/ODE is

xt =
αtσ

2
t

αsσ2
s

xs − αtσ
2
t

∫ t

s

g2(τ)

α2
τσ

4
τ

xθ(xτ , τ)dτ + αtσt

√
1− σ2

t

σ2
s

ϵ, ϵ ∼ N (0, I) (17)

xt =
αtσtσ̄t

αsσsσ̄s
xs +

ᾱtσ
2
t

σ2
1

(
1− σsσ̄t

σ̄sσt

)
x1 −

αtσtσ̄t

2

∫ t

s

g2(τ)

α2
τσ

3
τ σ̄τ

xθ(xτ , τ)dτ (18)

The first-order discretization (with the approximation xθ(xτ , τ) ≈ xθ(xs, s) for τ ∈ [t, s]) gives

xt =
αtσ

2
t

αsσ2
s

xs + αt

(
1− σ2

t

σ2
s

)
xθ(xs, s) + αtσt

√
1− σ2

t

σ2
s

ϵ, ϵ ∼ N (0, I) (19)

xt =
αtσtσ̄t

αsσsσ̄s
xs +

αt

σ2
1

[(
σ̄2
t −

σ̄sσtσ̄t

σs

)
xθ(xs, s) +

(
σ2
t −

σsσtσ̄t

σ̄s

)
x1

α1

]
(20)

To the best of our knowledge, such derivations are revealed for the first time in the context of SB.
We find that the first-order discretization of bridge SDE (Eqn. (19)) recovers posterior sampling (Liu
et al., 2023a) on a Brownian bridge, and the first-order discretization of bridge ODE (Eqn. (20)) in
the limit of σs

σ1
, σt

σ1
→ 0 recovers deterministic DDIM sampler (Song et al., 2021a) in diffusion

models. Besides, we can easily discover that the 1-step case of Eqn. (19) and Eqn. (20) are both
1-step deterministic prediction by xθ. We put more detailed analyses in Appendix B.2.

We can also develop higher-order samplers by taking higher-order Taylor expansions for xθ in the
exact solutions. We further discuss and take the predictor-corrector method as the second-order case
in Appendix C. In practice, we find first-order sampler is enough for the TTS task, and higher-order
samplers do not make any significant difference.

1We omit the condition x1 for simplicity and other parameterizations such as noise prediction can be first
transformed to xθ .
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4 EXPERIMENTS

4.1 TRAINING SETUP

Data: We utilize the LJ-Speech dataset (Ito & Johnson, 2017), which contains 13, 100 samples,
around 24 hours in total, from a female speaker at a sampling rate of 22.05 kHz. The test samples
are extracted from both LJ-001 and LJ-002, and the remaining 12577 samples are used for training.
We follow the common practice, using the open-source tools (Park, 2019) to convert the English
grapheme sequence to phoneme sequence, and extracting the 80-band mel-spectrogram with the
FFT 1024 points, 80Hz and 7600Hz lower and higher frequency cutoffs, and a hop length of 256.

Model training: To conduct a fair comparison with diffusion models, we adopt the same network
architecture and training settings used in Grad-TTS (Popov et al., 2021): 1) the encoder (i.e., text
encoder and duration predictor) contains 7.2M parameters and the U-Net based decoder contains
7.6M parameters; 2) the model is trained with a batch size of 16, and 1.7M iterations in total on a
single NVIDIA RTX 3090, using 2.5 days; 3) the Adam optimizer (Kingma & Ba, 2015) is employed
with a constant learning rate of 0.0001. For noise schedules, we set β0 = 0.01, β1 = 20 for Bridge-
VP (exactly the same as VP in SGMs) and β0 = 0.01, β1 = 50 for Bridge-gmax.

Evaluation: Following previous works (Popov et al., 2021; Liu et al., 2022a; Huang et al., 2022), we
conduct the subjective tests MOS (Mean Opinion Score) and CMOS (Comparison Mean Opinion
Score) to evaluate the overall subjective quality and comparison sample quality, respectively. To
guarantee the reliability of the collected results, we use the open platform Amazon Mechanical Turk,
and require Master workers to complete the listening test. Specifically, the MOS scores of 20 test
samples are given by 25 Master workers to evaluate the overall performance with a 5-point scale,
where 1 and 5 denote the lowest (“Bad”) and highest (“Excellent”) quality respectively. The result
is reported with a 95% confidence interval. Each CMOS score is given by 15 Master workers to
compare 20 test samples synthesized by two different models. Each of the test samples has been
normalized for a fair comparison2. To measure the inference speed, we calculate the real-time factor
(RTF) on an NVIDIA RTX 3090.

Table 2: The MOS comparison with 95% confi-
dence interval given numerous sampling steps.

Model NFE RTF (↓) MOS (↑)

Recording / / 4.10 ± 0.06
GT-Mel + voc. / / 3.93 ± 0.07

FastSpeech 2 1 0.004 3.78 ± 0.07
VITS 1 0.018 3.99 ± 0.07

DiffSinger 71 0.157 3.92 ± 0.06
ResGrad 50 0.135 3.97 ± 0.07
Grad-TTS 50 0.116 3.99 ± 0.07
Ours (VP) 50 0.117 4.09 ± 0.07
Ours (gmax) 50 0.117 4.07 ± 0.07

Grad-TTS 1000 2.233 3.98 ± 0.07
Ours (VP) 1000 2.267 4.05 ± 0.07
Ours (gmax) 1000 2.267 4.07 ± 0.07

Table 3: The MOS comparison with 95% confi-
dence interval in few-step generation.

Model NFE RTF (↓) MOS (↑)

Recording / / 4.12 ± 0.06
GT-Mel + voc. / / 4.01 ± 0.06

FastSpeech 2 1 0.004 3.84 ± 0.07
CoMoSpeech 1 0.007 3.74 ± 0.07

ProDiff 2 0.019 3.67 ± 0.07
CoMoSpeech 2 0.009 3.87 ± 0.07
Ours (gmax) 2 0.009 4.04 ± 0.06

DiffGAN-TTS 4 0.014 3.78 ± 0.07
Grad-TTS 4 0.013 3.88 ± 0.07
FastGrad-TTS 4 0.013 3.87 ± 0.07
ResGrad 4 0.017 4.02 ± 0.06
Ours (gmax) 4 0.013 4.10 ± 0.06

4.2 RESULTS AND ANALYSES

We demonstrate the performance of Bridge-TTS on sample quality and inference speed separately,
which guarantees a more precise comparison between multiple models. In Table 2 and Table 3, the
test samples in LJ-Speech dataset are denoted as Recording, the samples synthesized from ground-
truth mel-spectrogram by vocoder is denoted as GT-Mel+voc., and the number of function evalu-
ations is denoted as NFE. We take the pre-trained HiFi-GAN (Kong et al., 2020)3 as the vocoder,

2https://github.com/slhck/ffmpeg-normalize
3https://github.com/jik876/hifi-gan
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aligned with other baseline settings. More details of baseline models are introduced in Appendix
F. In the sampling process of both tests, Grad-TTS employs ODE sampling and sets the prior dis-
tribution pT = N (z, τ−1

d I) with a temperature parameter τd = 1.5. In Bridge-TTS, we use our
first-order SDE sampler shown in Eqn. (19) with a temperature parameter τb = 2 for the noise
distribution ϵ = N (0, τ−1

b I), which is helpful to the TTS quality in our observation.

Generation quality. Table 2 compares the generation quality between Bridge-TTS and previous
TTS systems. As shown, both Bridge-TTS models outperform three strong diffusion-based TTS
systems: our diffusion counterpart Grad-TTS (Popov et al., 2021), the shallow diffusion model
DiffSinger (Liu et al., 2022a) and the residual diffusion model ResGrad (Chen et al., 2022c). In
comparison with the transformer-based model FastSpeech 2 (Ren et al., 2021) and the end-to-end
TTS system (Kim et al., 2021), we also exhibit stronger subjective quality. When NFE is either 1000
or 50, our Bridge-TTS achieves superior quality. One reason is that the condition information (i.e.,
text encoder output) in TTS synthesis is strong, and the other is that our first-order Bridger sampler
maintains the sample quality when reducing the NFE.

Sampling speed. Table 3 shows the evaluation of sampling speed with the Bridge-TTS-gmax model,
as we observe that it achieves higher quality than the VP-based Bridge-TTS system. To conduct a
fair comparison, we choose the NFE reported in the baseline models. As shown, in 4-step sampling,
we not only outperform our diffusion counterpart Grad-TTS (Popov et al., 2021), FastGrad-TTS
(Vovk et al., 2022) using a first-order SDE sampler, and DiffGAN-TTS (Liu et al., 2022b) by a
large margin, but also achieve higher quality than ResGrad (Chen et al., 2022c) which stands on a
pre-trained FastSpeech 2 (Ren et al., 2021). In 2-step sampling with a RTF of 0.009, we achieve
higher quality than the state-of-the-art fast sampling method CoMoSpeech (Ye et al., 2023). In
comparison with 1-step method, FastSpeech 2 and CoMoSpeech, although our 2-step generation is
slightly slower, we achieve distinctively better quality.

4.3 CASE STUDY

We show a sample when NFE=4 in Figure 2 (a), using our first-order ODE sampler shown in Eqn
(20). As shown, Bridge-TTS clearly generates more details of the target than the diffusion counter-
part Grad-TTS (τd = 1.5). Moreover, we show a 2-step ODE sampling trajectory of Bridge-TTS in
Figure 2 (b). As shown, with our data-to-data generation process, each sampling step is adding more
details to refine the prior which has provided strong information about the target. More generated
samples can be visited in Appendix G.

Grad-TTS (𝜏 = 1.5)

Bridge-TTS (ODE)

Ground-truth mel-spectrogram

First sampling step

Prior Ground-truth mel-spectrogram

Second sampling step

(a) 4-step generation result (b) 2-step ODE sampling trajectory

Figure 2: We show a 4-step ODE generation result of Grad-TTS (Popov et al., 2021) and Bridge-
TTS in the left figure, and a 2-step ODE sampling trajectory of Bridge-TTS in the right one. The
ground-truth mel-spectrogram is shown for comparison.

4.4 ABLATION STUDY

We conduct several comparison studies by showing the CMOS results between different designs of
prior, noise schedule, and sampler when NFE=1000 and NFE=4. The base setup is the Bridge-
gmax schedule, x0 predictor, and temperature-scaled first-order SDE sampler (τb = 2).

Prior. We explore two training strategies that differ in their prior: 1) like Grad-TTS (Popov et al.,
2021), the encoder and decoder part are joint trained from scratch (i.e., mutable prior); 2) the encoder
is first trained with a warm-up stage and then the decoder is trained from scratch (i.e., fixed prior).
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Table 4: CMOS comparison of training
and sampling settings of Bridge-TTS.

Method NFE=4 NFE=1000

Bridge-TTS (gmax) 0 0

w. mutable prior - 0.13 - 0.17
w. constant g(t) - 0.12 - 0.14
w. VP - 0.03 - 0.08

w. SDE (τb = 1) - 0.07 - 0.19
w. ODE - 0.10 + 0.00

It should be noted that in both strategies, the text
encoder is trained with an equivalent objective. As
shown, the latter consistently has better sample qual-
ity across different NFEs. Hence, we adopt it as our
default setting.

Noise schedule. We compare three different configu-
rations for noise schedules: Bridge-gmax, Bridge-VP,
and a simple schedule with f(t) = 0, g(t) = 5 that
has virtually the same maximum marginal variance as
Bridge-gmax, which we refer to as “constant g(t)”. As
shown in Table 4, Bridge-gmax and Bridge-VP have
overall similar performance, while the constant g(t) has noticeably degraded quality than Bridge-
gmax when NFE=1000. Intuitively, the Bridge-gmax and Bridge-VP have an asymmetric pattern of
marginal variance that assigns more steps for denoising, while the constant g(t) yields a symmetric
pattern. Empirically, such an asymmetric pattern of marginal variance helps improve sample quality.
We provide a more detailed illustration of the noise schedules in Appendix E.

Sampling process. For comparison between different sampling processes, the temperature-scaled
SDE (τb = 2) achieves the best quality at both NFE=4 and NFE=1000. Compared with the vanilla
SDE sampling (i.e., τb = 1), introducing the temperature sampling technique for SDE can effectively
reduce artifacts in the background and enhance the sample quality when NFE is large, which is
clearly reflected in the CMOS score in Table 4. Meanwhile, the ODE sampler exhibits the same
quality as the temperature-scaled SDE at NFE=1000, but it has more evident artifacts at NFE=4.

5 RELATED WORK

Diffusion-based TTS Synthesis. Grad-TTS (Popov et al., 2021) builds a strong TTS baseline with
SGMs, surpassing the transformer-based (Ren et al., 2019) and flow-based model (Kim et al., 2020).
In the following works, fast sampling methods are extensively studied, such as improving prior
distribution (Lee et al., 2022), designing training-free sampler (Jeong et al., 2021; Vovk et al., 2022),
using auxiliary model (Liu et al., 2022a; Chen et al., 2022c), introducing adversarial loss (Liu et al.,
2022b; Ko & Choi, 2023), employing knowledge distillation (Huang et al., 2022; Ye et al., 2023),
developing lightweight U-Net (Chen et al., 2023), and leveraging CFM framework (Mehta et al.,
2023; Guo et al., 2023; Guan et al., 2023). However, these methods usually explore to find a better
trade-off between TTS quality and sampling speed than diffusion models instead of simultaneously
improving both of them, and some of these methods require extra procedures, such as data pre-
processing, auxiliary networks, and distillation stage, or prone to training instability. In contrast to
each of the previous methods that study a data-to-noise process, we present a novel TTS system with
a tractable Schrodinger bridge, demonstrating the advantages of the data-to-data process.

Schrodinger bridge. Solving the Schrodinger bridge problem with an iterative procedure to simu-
late the intractable stochastic processes is widely studied (De Bortoli et al., 2021; Wang et al., 2021;
Vargas et al., 2021; Chen et al., 2022a; Peluchetti, 2023; Shi et al., 2023; Liu et al., 2023d). Two
recent works (Liu et al., 2023a; Somnath et al., 2023) build the bridge in image translation and a
biology task, while neither of them investigates the design space discussed in our work, which is of
importance to sample quality and inference speed.

6 CONCLUSIONS

We present Bridge-TTS, a novel TTS method built on data-to-data process, enabling mel-
spectrogram generation from a deterministic prior via Schrodinger bridge. Under our theoreti-
cally elaborated tractable, flexible SB framework, we exhaustively explore the design space of noise
schedule, model parameterization, and stochastic/deterministic samplers. Experimental results on
sample quality and sampling efficiency in TTS synthesis demonstrate the effectiveness of our ap-
proach, which significantly outperforms previous methods and becomes a new baseline on this task.
We hope our work could open a new avenue for exploiting the board family of strong informative
prior to further unleash the potential of generative models on a wide range of applications.
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A PROOFS

A.1 TRACTABLE SCHRODINGER BRIDGE BETWEEN GAUSSIAN-SMOOTHED PAIRED DATA

Proof of Proposition 3.1. First, we conduct a similar transformation to Liu et al. (2023a), which
reverses the forward-backward SDE system of the SB in Eqn. (6) and absorb the intractable term
Ψ̂,Ψ into the boundary condition. On one hand, by inspecting the backward SDE (Eqn. (6b)) and
its corresponding PDE (the second equation in Eqn. (7)), we can discover that if we regard Ψ̂ as
a probability density function (up to a normalizing factor, which is canceled when we compute the
score by operator∇ log), then the PDE of the backward SDE is a realization of the following forward
SDE due to the Fokker-Plank equation (Song et al., 2021b):

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ Ψ̂0, (21)

and its associated density of xt is Ψ̂t. When we assume f(xt, t) = f(t)xt as a linear drift,
then Eqn. (21) becomes a narrow-sense linear SDE, whose conditional distribution Ψ̂t|0(xt|x0)
is a tractable Gaussian, which we will prove as follows.

Specifically, Itô’s formula (Itô, 1951) tells us that, for a general SDE with drift µt and diffusion σt:

dxt = µt(xt)dt+ σt(xt)dwt (22)

If f(x, t) is a twice-differentiable function, then

df(xt, t) =

(
∂f

∂t
(xt, t) + µt(xt)

∂f

∂x
(xt, t) +

σ2
t (xt)

2

∂2f

∂x2
(xt, t)

)
dt+σt(xt)

∂f

∂x
(xt, t)dwt (23)

Denote αt = e
∫ t
0
f(τ)dτ , if we choose f(x, t) = x

αt
, by Itô’s formula we have

d

(
xt

αt

)
=

g(t)

αt
dwt (24)

which clearly leads to the result

xt

αt
− x0

α0
∼ N

(
0,

∫ t

0

g2(τ)

α2
τ

dτI

)
(25)

If we denote σ2
t =

∫ t

0
g2(τ)
α2

τ
dτ , finally we conclude that Ψ̂t|0(xt|x0) = N (αtx0, α

2
tσ

2
t I).

On the other hand, due to the symmetry of the SB, we can reverse the time t by s = 1−t and conduct
similar derivations for Ψ, which finally leads to the result Ψt|1(xt|x1) = N (ᾱtx1, α

2
t σ̄

2
t I).

Since we have Gaussian boundary conditions:

pdata = Ψ̂0Ψ0 = N (x0, ϵ
2I), pprior = Ψ̂1Ψ1 = N (x1, α

2
1ϵ

2I) (26)

Due to the properties of Gaussian distribution, it is intuitive to assume that the marginal distributions
Ψ̂0,Ψ1 are also Gaussian. We parameterize them with undetermined mean and variance as follows:

Ψ̂0 = N (a, σ2I), Ψ1 = N (b, α2
1σ

2I) (27)

Since the conditional transitions Ψ̂t|0,Ψt|1 are known Gaussian as we have derived, the marginals
at any t ∈ [0, 1] are also Gaussian (which can be seen as a simple linear Gaussian model):

Ψ̂t = N (αta, (α
2
tσ

2 + α2
tσ

2
t )I), Ψt = N (ᾱtb, (α

2
tσ

2 + α2
t σ̄

2
t )I) (28)

Then we can solve the coefficients a, b, σ by the boundary conditions. Note that σ̄2
0 = σ2

1 , ᾱ0 = 1
α1

,
and the product of two Gaussian probability density functions is given by

N (µ1, σ
2
1)N (µ2, σ

2
2) = N

(
σ2
2µ1 + σ2

1µ2

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
(29)

15



Under review as a conference paper at ICLR 2024

We have {
Ψ̂0Ψ0 = N (a, σ2I)N (ᾱ0b, (α

2
0σ

2 + α2
0σ̄

2
0)I) = N (x0, ϵ

2I)

Ψ̂1Ψ1 = N (α1a, (α
2
1σ

2 + α2
1σ

2
1)I)N (b, α2

1σ
2I) = N (x1, α

2
1ϵ

2I)
(30)

⇒



(σ2 + σ2
1)a+ σ2 b

α1

2σ2 + σ2
1

= x0

α1σ
2a+ (σ2 + σ2

1)b

2σ2 + σ2
1

= x1

σ2(σ2 + σ2
1)

2σ2 + σ2
1

= ϵ2

⇒



a = x0 +
σ2

σ2
1

(
x0 −

x1

α1

)
b = x1 +

σ2

σ2
1

(x1 − α1x0)

σ2 = ϵ2 +

√
σ4
1 + 4ϵ4 − σ2

1

2

(31)

The proof is then completed by substituting these solved coefficients back into Eqn. (28).

A.2 BRIDGE SAMPLING

First of all, we would like to give some background information about exponential integrators (Calvo
& Palencia, 2006; Hochbruck et al., 2009), which are widely used in recent works concerning fast
sampling of diffusion ODE/SDEs (Lu et al., 2022a;b; Gonzalez et al., 2023). Suppose we have an
SDE (or equivalently an ODE by setting g(t) = 0):

dxt = [a(t)xt + b(t)Fθ(xt, t)]dt+ g(t)dwt (32)

where Fθ is the parameterized prediction function that we want to approximate with Taylor ex-
pansion. The usual way of representing its analytic solution xt at time t with respect to an initial
condition xs at time s is

xt = xs +

∫ t

s

[a(τ)xτ + b(τ)Fθ(xτ , τ)]dτ +

∫ t

s

g(τ)dwτ (33)

By approximating the involved integrals in Eqn. (33), we can obtain direct discretizations
of Eqn. (32) such as Euler’s method. The key insight of exponential integrators is that, it is often bet-
ter to utilize the “semi-linear” structure of Eqn. (32) and analytically cancel the linear term a(t)xt.
This way, we can obtain solutions that only involve integrals of Fθ and result in lower discretization
errors. Specifically, by the “variation-of-constants” formula, the exact solution of Eqn. (32) can be
alternatively given by

xt = e
∫ t
s
a(τ)dτxs +

∫ t

s

e
∫ t
τ
a(r)drb(τ)Fθ(xτ , τ)dτ +

∫ t

s

e
∫ t
τ
a(r)drg(τ)dwτ (34)

or equivalently (assume t < s)

xt = e
∫ t
s
a(τ)dτxs+

∫ t

s

e
∫ t
τ
a(r)drb(τ)Fθ(xτ , τ)dτ+

√
−
∫ t

s

e2
∫ t
τ
a(r)drg2(τ)dτϵ, ϵ ∼ N (0, I)

(35)

Then we prove Proposition 3.2 below.

Proof of Proposition 3.2. First, we consider the bridge SDE in Eqn. (14). By collecting the linear
terms w.r.t. xt, the bridge SDE can be rewritten as

dxt =

[(
f(t) +

g2(t)

α2
tσ

2
t

)
xt −

g2(t)

αtσ2
t

xθ(xt, t)

]
dt+ g(t)dwt (36)

By corresponding it to Eqn. (32), we have

a(t) = f(t) +
g2(t)

α2
tσ

2
t

, b(t) = −g2(t)

αtσ2
t

(37)

The exponents in Eqn. (35) can be calculated as∫ t

s

a(τ)dτ =

∫ t

s

f(τ)dτ +

∫ t

s

(σ2
τ )

′

σ2
τ

dτ =

∫ t

s

f(τ)dτ + log
σ2
t

σ2
s

(38)
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Thus

e
∫ t
s
a(τ)dτ =

αtσ
2
t

αsσ2
s

, e
∫ t
τ
a(r)dr =

αtσ
2
t

ατσ2
τ

(39)

Therefore, the exact solution in Eqn. (35) becomes

xt =
αtσ

2
t

αsσ2
s

xs − αtσ
2
t

∫ t

s

g2(τ)

α2
τσ

4
τ

xθ(xτ , τ)dτ + αtσ
2
t

√
−
∫ t

s

g2(τ)

α2
τσ

4
τ

dτϵ, ϵ ∼ N (0, I) (40)

where ∫ t

s

g2(τ)

α2
τσ

4
τ

dτ =

∫ t

s

(σ2
τ )

′

σ4
τ

dτ =
1

σ2
s

− 1

σ2
t

(41)

Substituting Eqn. (41) into Eqn. (40), we obtain the exact solution in Eqn. (17). If we take the
first-order approximation (i.e., xθ(xτ , τ) ≈ xθ(xs, s) for τ ∈ [t, s]), then we obtain the first-order
transition rule in Eqn. (19).

Then we consider the bridge ODE in Eqn. (16). By collecting the linear terms w.r.t. xt, the bridge
ODE can be rewritten as

dxt =

[(
f(t)− g2(t)

2α2
t σ̄

2
t

+
g2(t)

2α2
tσ

2
t

)
xt +

g2(t)ᾱt

2α2
t σ̄

2
t

x1 −
g2(t)

2αtσ2
t

xθ(xt, t)

]
dt (42)

By corresponding it to Eqn. (32), we have

a(t) = f(t)− g2(t)

2α2
t σ̄

2
t

+
g2(t)

2α2
tσ

2
t

, b1(t) =
g2(t)ᾱt

2α2
t σ̄

2
t

, b2(t) = −
g2(t)

2αtσ2
t

(43)

The exponents in Eqn. (35) can be calculated as∫ t

s

a(τ)dτ =

∫ t

s

f(τ)dτ −
∫ t

s

g2(τ)

2α2
τ σ̄

2
τ

dτ +

∫ t

s

g2(τ)

2α2
τσ

2
τ

dτ

=

∫ t

s

f(τ)dτ +

∫ t

s

(σ̄2
τ )

′

2σ̄2
τ

dτ +

∫ t

s

(σ2
τ )

′

2σ2
τ

dτ

=

∫ t

s

f(τ)dτ +
1

2
log

σ̄2
t

σ̄2
s

+
1

2
log

σ2
t

σ2
s

(44)

Thus
e
∫ t
s
a(τ)dτ =

αtσtσ̄t

αsσsσ̄s
, e

∫ t
τ
a(r)dr =

αtσtσ̄t

ατστ σ̄τ
(45)

Therefore, the exact solution in Eqn. (35) becomes

xt =
αtσtσ̄t

αsσsσ̄s
xs +

ᾱtσtσ̄t

2

∫ t

s

g2(τ)

α2
τστ σ̄3

τ

x1dτ −
αtσtσ̄t

2

∫ t

s

g2(τ)

α2
τσ

3
τ σ̄τ

xθ(xτ , τ)dτ (46)

Due the relation σ2
t+σ̄2

t = σ2
1 , the integrals can be computed by the substitution θt = arctan(σt/σ̄t)∫ t

s

g2(τ)

α2
τστ σ̄3

τ

dτ =

∫ t

s

(σ2
τ )

′

στ σ̄3
τ

dτ

=

∫ θt

θs

1

σ4
1 sin θ cos

3 θ
d(σ2

1 sin
2 θ)

=
2

σ2
1

∫ θt

θs

1

cos2 θ
dθ

=
2

σ2
1

(tan θt − tan θs)

=
2

σ2
1

(
σt

σ̄t
− σs

σ̄s

)
(47)

and similarly ∫ t

s

g2(τ)

α2
τσ

3
τ σ̄τ

dτ =
2

σ2
1

(
σ̄s

σs
− σ̄t

σt

)
(48)

Substituting Eqn. (47) and Eqn. (48) into Eqn. (46), we obtain the exact solution in Eqn. (18). If we
take the first-order approximation (i.e., xθ(xτ , τ) ≈ xθ(xs, s) for τ ∈ [t, s]), then we obtain the
first-order transition rule in Eqn. (20).

17



Under review as a conference paper at ICLR 2024

B RELATIONSHIP WITH BROWNIAN BRIDGE, POSTERIOR SAMPLING AND
DDIM

B.1 SCHRODINGER BRIDGE PROBLEM AND BROWNIAN BRIDGE

For any path measure µ on [0, 1], we have µ = µ0,1µ|0,1, where µ0,1 denotes the joint distribution
of µ0, µ1, and µ|0,1 denotes the conditional path measure on (0, 1) given boundaries x0,x1. A
high-level perspective is that, using the decomposition formula for KL divergence DKL(p ∥ pref) =
DKL(p0,1 ∥ pref

0,1)+DKL(p|0,1 ∥ pref
|0,1) (Léonard, 2014), the SB problem in Eqn. (5) can be reduced

to the static SB problem (De Bortoli et al., 2021; Shi et al., 2023; Tong et al., 2023a;b):

min
p0,1∈P2

DKL(p0,1 ∥ pref
0,1), s.t. p0 = pdata, p1 = pprior (49)

which is proved to be an entropy-regularized optimal transport problem when pref is defined by a
scaled Brownian process dxt = σdwt. We can draw similar conclusions for the more general case
of reference SDE in Eqn. (1) with linear drift f(xt, t) = f(t)xt. Specifically, the KL divergence
between the joint distribution of boundaries is

DKL(p0,1 ∥ pref
0,1) = −Ep0,1 [log p

ref
0,1]−H(p0,1)

= −Ep0
[log pref

0 ]− Ep0,1
[log pref

1|0]−H(p0,1)
(50)

where H(·) is the entropy. As we have proved in Appendix A.1, pref
t|0(xt|x0) = N (αtx0, α

2
tσ

2
t I),

thus

log pref
1|0(x1|x0) = −

∥x1 − α1x0∥22
2α2

1σ
2
1

(51)

Since Ep0
[log pref

0 ] = Epdata [log pdata] is irrelevant to p, the static SB problem is equivalent to

min
p0,1∈P2

Ep0,1(x0,x1)[∥x1 − α1x0∥22]− 2α2
1σ

2
1H(p0,1), s.t. p0 = pdata, p1 = pprior (52)

Therefore, it is an entropy-regularized optimal transport problem when α1 = 1.

While the static SB problem is generally non-trivial, there exists application cases when we can skip
it: when the coupling p0,1 of pdata and pprior is unique and has no room for further optimization. (1)
When pdata is a Dirac delta distribution and pprior is a usual distribution (Liu et al., 2023a). In this
case, the SB is half tractable, and only the bridge SDE holds. (2) When paired data are considered,
i.e., the coupling of pdata and pprior is mixtures of dual Dirac delta distributions. In this case, however,
DKL(p0,1 ∥ pref

0,1) = ∞, and the SB problem will collapse. Still, we can ignore such singularity, so
that the SB is fully tractable, and bridge ODE can be derived.

After the static SB problem is solved, we only need to minimize DKL(p|0,1 ∥ pref
|0,1) in order to solve

the original SB problem. In fact, since there is no constraints, such optimization directly leads to
pt|0,1 = pref

t|0,1 for t ∈ (0, 1). When pref is defined by a scaled Brownian process dxt = σdwt, pref
t|0,1

is the common Brownian bridge (Qiu et al., 2023; Tong et al., 2023a;b). When pref is defined by the
narrow-sense linear SDE dxt = f(t)xtdt + g(t)dwt which we considered, pref

t|0,1 can be seen as
the generalized Brownian bridge with linear drift and time-varying volatility, and we can derive its
formula as follows.

Similar to the derivations in Appendix A.1, the transition probability from time s to time t (s < t)
following the reference SDE dxt = f(t)xtdt+ g(t)dwt is

pref
t|s(xt|xs) = N (xt;αt|sxs, α

2
t|sσ

2
t|sI) (53)

where αt|s, σt|s are the corresponding coefficients to αt, σt, while modifying the lower limit of
integrals from 0 to s:

αt|s = e
∫ t
s
f(τ)dτ , σ2

t|s =

∫ t

s

g2(τ)

α2
τ |s

dτ (54)

We can easily identify that αt|s, σt|s are related to αt, σt by

αt|s =
αt

αs
, σ2

t|s = α2
s(σ

2
t − σ2

s) (55)
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Therefore

pref
t|s(xt|xs) = N

(
xt;

αt

αs
xs, α

2
t (σ

2
t − σ2

s)I

)
(56)

Due to the Markov property of the SDE, we can compute pref
t|0,1 as

pref
t|0,1(xt|x0,x1) =

pref
t,1|0(xt,x1|x0)

pref
1|0(x1|x0)

=
pref
t|0(xt|x0)p

ref
1|t(x1|xt)

pref
1|0(x1|x0)

∝
exp

(
−∥xt−αtx0∥2

2

2α2
tσ

2
t

)
exp

(
−

∥x1−α1
αt

xt∥2
2

2α2
1(σ

2
1−σ2

t )

)
exp

(
−∥x1−α1x0∥2

2

2α2
1σ

2
1

)
∝ exp

(
−∥xt − αtx0∥22

2α2
tσ

2
t

− ∥xt − ᾱtx1∥22
2α2

t σ̄
2
t

)

∝ exp

−∥xt − αtσ̄
2
tx0+ᾱtσ

2
tx1

σ2
1

∥22
2
α2

tσ
2
t σ̄

2
t

σ2
1



(57)

Therefore, pref
t|0,1 = N

(
αtσ̄

2
tx0+ᾱtσ

2
tx1

σ2
1

,
α2

t σ̄
2
tσ

2
t

σ2
1

I
)

, which equals the SB marginal in Eqn. (12).

B.2 POSTERIOR SAMPLING ON A BROWNIAN BRIDGE AND DDIM

Posterior Sampling and Bridge SDE Liu et al. (2023a) proposes a method called posterior
sampling to sample from bridge: when pref is defined by dxt =

√
βtdwt, we can sample

xN−1, . . . ,xn+1,xn, . . . ,x0 at timesteps tN−1, . . . , tn+1, tn, . . . , t0 sequentially, where at each
step the sample is generated from the DDPM posterior (Ho et al., 2020):

p(xn|x0,xn+1) = N
(
xn;

α2
n

α2
n + σ2

n

x0 +
σ2
n

α2
n + σ2

n

xn+1,
σ2
nα

2
n

α2
n + σ2

n

I

)
, (58)

where α2
n =

∫ tn+1

tn
β(τ)dτ is the accumulated noise between two timesteps (tn, tn+1), σ2

n =∫ tn
0

β(τ)dτ , and x0 is predicted by the network.

While they only consider f(t) = 0 and prove the case for discrete timesteps by onerous mathe-
matical induction, such posterior is essentially a “shortened” Brownian bridge. Suppose we already
draw a sample xs ∼ pref

s|0,1, then the sample at time t < s can be drawn from pref
t|0,1,s, which equals

pref
t|0,s due to the Markov property of the SDE. Similar to the derivation in Eqn. (57), such shortened

Brownian bridge is

pref
t|0,s(xt|x0,xs) = N

(
xt;

αt(σ
2
s − σ2

t )x0 +
αt

αs
σ2
txs

σ2
s

,
α2
tσ

2
t (σ

2
s − σ2

t )

σ2
s

I

)
(59)

which is exactly the same as the first-order discretization of bridge SDE in Eqn. (19) when x0 is
predicted by the network xθ(xs, s).

DDIM and Bridge ODE DDIM (Song et al., 2021a) is a sampling method for diffusion models,
whose deterministic case is later proved to be the first-order discretization of certain solution forms
of the diffusion ODE (Lu et al., 2022a;b). Under our notations of αt, σ

2
t , the update rule of DDIM

is (Lu et al., 2022b)

xt =
αtσt

αsσs
xs + αt

(
1− σ2

t

σ2
s

)
xθ(xs, s) (60)

In the limit of σs

σ1
, σt

σ1
→ 0, we have σ̄s

σ1
, σ̄t

σ1
→ 1. Therefore, σ̄t

σ̄s
→ 1, and we can discover

that Eqn. (20) reduces to Eqn. (60).
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Corollary B.1 (1-step First-Order Bridge SDE/ODE Sampler Recovers Direct Data Prediction).
When s = 1 and t = 0, the first-order discretization of bridge SDE/ODE is

x0 = xθ(x1, 1) (61)

C HIGH-ORDER SAMPLERS

We can develop high-order samplers by approximating xθ(xτ , τ), τ ∈ [t, s] with high-order Taylor
expansions. Specifically, we take the second-order case of the bridge SDE as an example. For the
integral

∫ t

s
g2(τ)
α2

τσ
4
τ
xθ(xτ , τ)dτ in Eqn. (17), we can use the change-of-variable λt = − 1

σ2
t

. Since

(λt)
′ = g2(t)

α2
tσ

4
t

, the integral becomes∫ t

s

g2(τ)

α2
τσ

4
τ

xθ(xτ , τ)dτ =

∫ λt

λs

xθ(xτλ , τλ)dλ

≈
∫ λt

λs

xθ(xs, s) + (λ− λs)x
(1)
θ (xs, s)dλ

= (λt − λs)xθ(xs, s) +
(λt − λs)

2

2
x
(1)
θ (xs, s)

(62)

where τλ is the inverse mapping of λτ , x(1)
θ is the first-order derivative of xθ w.r.t λ, and we have

used the second-order Taylor expansion xθ(xτλ , τλ) ≈ xθ(xs, s) + (λ − λs)x
(1)
θ (xs, s). x

(1)
θ

can be estimated by finite difference, and a simple treatment is the predictor-corrector method. We
first compute x̂t by the first-order update rule in Eqn. (19), which is used to estimate x

(1)
θ (xs, s):

x
(1)
θ (xs, s) ≈ xθ(x̂t,t)−xθ(xs,s)

λt−λs
. Substituting it into Eqn. (62), we have

∫ t

s
g2(τ)
α2

τσ
4
τ
xθ(xτ , τ)dτ ≈

(λt − λs)
xθ(xs,s)+xθ(x̂t,t)

2 which literally can be seen as replacing xθ(xs, s) in Eqn. (19) with
xθ(xs,s)+xθ(x̂t,t)

2 . Similar derivations can be done for the bridge ODE. We summarize the second-
order samplers in Algorithm 1 and Algorithm 2.

Algorithm 1 Second-order sampler for the bridge SDE
Input: Number of function evaluations (NFE) 2N , timesteps 1 = tN > tN−1 > · · · > tn >
tn−1 > · · · > t0 = 0, initial condition x1

1: for n = N to 1 do
2: s← tn
3: t← tn−1

4: Prediction: x̂t ← αtσ
2
t

αsσ2
s
xs + αt

(
1− σ2

t

σ2
s

)
xθ(xs, s) + αtσt

√
1− σ2

t

σ2
s
ϵ, ϵ ∼ N (0, I)

5: Correction: xt ← αtσ
2
t

αsσ2
s
xs + αt

(
1− σ2

t

σ2
s

)
xθ(xs,s)+xθ(x̂t,t)

2 + αtσt

√
1− σ2

t

σ2
s
ϵ, ϵ ∼

N (0, I)
6: end for

Output: x0

Algorithm 2 Second-order sampler for the bridge ODE
Input: Number of function evaluations (NFE) 2N , timesteps 1 = tN > tN−1 > · · · > tn >
tn−1 > · · · > t0 = 0, initial condition x1

1: for n = N to 1 do
2: s← tn
3: t← tn−1

4: Prediction: x̂t ← αtσtσ̄t

αsσsσ̄s
xs +

αt

σ2
1

[(
σ̄2
t − σ̄sσtσ̄t

σs

)
xθ(xs, s) +

(
σ2
t − σsσtσ̄t

σ̄s

)
x1

α1

]
5: Correction: xt ← αtσtσ̄t

αsσsσ̄s
xs +

αt

σ2
1

[(
σ̄2
t − σ̄sσtσ̄t

σs

)
xθ(xs,s)+xθ(x̂t,t)

2 +
(
σ2
t − σsσtσ̄t

σ̄s

)
x1

α1

]
6: end for

Output: x0
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D MODEL PARAMETERIZATION

Apart from x0 predictor xθ presented in Section 3.2, we can consider other parameterizations:

• Noise predictor ϵΨ̂θ corresponding to ∇ log Ψ̂t = −xt−αtx0

α2
tσ

2
t

that used in I2SB (Liu et al.,

2023a). The prediction target of ϵΨ̂θ is:

ϵΨ̂θ →
xt − αtx0

αtσt
(63)

• Noise predictor ϵSB
θ corresponding to the score ∇ log pt of the SB. Since ∇ log pt(xt) =

−
xt−

αtσ̄
2
t x0+ᾱtσ

2
t x1

σ2
1

α2
t σ̄2

t σ2
t

σ2
1

, the prediction target of ϵSB
θ is

ϵSB
θ →

xt − αtσ̄
2
tx0+ᾱtσ

2
tx1

σ2
1

αtσ̄tσt

σ1

(64)

• Velocity predictor vθ arising from flow matching techniques (Lipman et al., 2023; Tong
et al., 2023b;a), which aims to directly predict the drift of the PF-ODE:

vθ → f(t)xt −
1

2
g2(t)

xt − ᾱtx1

α2
t σ̄

2
t

+
1

2
g2(t)

xt − αtx0

α2
tσ

2
t

(65)

Empirically, across all parameterizations, we observe that the x0 predictor and the noise predictor
ϵΨ̂θ work well in the TTS task and Table 5 shows that the x0 predictor is generally better in sample
quality. Hence, we adopt the x0 predictor as the default training setup for Bridge-TTS. For the ϵSB

θ
predictor and vθ predictor, we find that they lead to poor performance on the TTS task. We can
intuitively explain this phenomenon by taking a simple case f(t) = 0, g(t) = σ. In this case, we
have xt = (1− t)x0 + tx1 + σ

√
t(1− t)ϵ, ϵ ∼ N (0, I), and the prediction targets are

xθ → x0

ϵΨ̂θ →
xt − x0

σ
√
t

=
√
t(x1 − x0) + σ

√
1− tϵ

ϵSB
θ →

xt − (1− t)x0 − tx1

σ
√
t(1− t)

= ϵ

√
t(1− t)vθ →

(1− 2t)xt − (1− t)x0 + tx1

2
√
t(1− t)

=
√
t(1− t)(x1 − x0) + σ

1− 2t

2
ϵ

(66)

Therefore, ϵSB
θ and vθ both predict ϵ when t → 1, while xθ and ϵΨ̂θ tends to predict x0,x1-related

terms in such scenario. We can conclude that the former way of prediction is harmful on TTS task.

Table 5: CMOS comparison of different parameterizations of Bridge-TTS.

Method NFE=4 NFE=1000

Bridge-TTS (gmax + x0 predictor) 0 0
Bridge-TTS (gmax + ϵΨ̂θ predictor) - 0.15 - 0.12
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E FORWARD PROCESS

In this section, we display the stochastic trajectory of the Bridge-SDE in Eqn. (14) and compare it
with the diffusion counterpart in Eqn. (4). In general, the marginal distribution of these SDEs shares
the form pt = N (xt;wtx0 + w̄tx1, σ̃

2
t I). In Figure 3, we show the scaling factors wt and w̄t for

x0 and x1 and the variance σ̃2
t at time t. As described in Section 4.4, the Bridge-gmax and Bridge-

VP have an asymmetric pattern of marginal variance that uses more steps to denoise towards the
ground truth x0, while the constant g(t) schedule specifies the same noise-additive and denoising
steps. As a comparison, the diffusion-based model only performs denoising steps.
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Figure 3: The scaling factor and variance in Grad-TTS and Bridge-TTS.
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F BASELINE MODELS

Apart from ground-truth recording and the sample synthesized by vocoder from ground-truth mel-
spectrogram, we take seven diffusion-based TTS systems, one end-to-end TTS system, and one
transformer-based TTS model as our baseline models. We follow their official implementation or
the settings reported in their publications to produce the results. We introduce each of our baseline
models below:

1. FastSpeech 2 (Ren et al., 2021) (ICLR 2021) is one of the most popular non-autoregressive
TTS models, and widely used as the baseline in previous diffusion-based TTS systems (Chen et al.,
2022c; Liu et al., 2022a; Ye et al., 2023). Following its original setting, we train the model with
a batch size of 48 sentences and 160k training steps until convergence by using 8 NVIDIA V100
GPU.

2. VITS (Kim et al., 2021) (ICML 2021) provides a strong baseline of end-to-end TTS systems
and is widely taken as a baseline in TTS systems for sample quality comparison. Different from
other baseline models using pre-trained vocoder to generate waveform, VITS directly synthesizes
waveform from text input. In training and testing, we follow their open-source implementation4.

3. DiffSinger (Liu et al., 2022a) (AAAI 2022) is a TTS model developed for TTS synthesis and
text-to-singing synthesis. It is built on denoising diffusion probabilistic models (Ho et al., 2020),
using standard Gaussian noise N (0, I) in the diffusion process. Moreover, an auxiliary model is
trained to enable its shallow reverse process, i.e., reducing the distance between prior distribution
and data distribution. We follow their open-source implementation5, which contains a warm-up
stage for auxiliary model training and a main stage for diffusion model training.

4. DiffGAN-TTS (Liu et al., 2022b)6 develops expressive generator and time-dependent discrimina-
tor to learn the non-Gaussian denoising distribution (Xiao et al., 2022) in few-step sampling process
of diffusion models. Following their publication, we train DiffGAN-TTS with time steps T = 4. For
both the generator and the discriminator, we use the Adam optimizer, with β1 = 0.5 and β2 = 0.9.
Models are trained using a single NVIDIA V100 GPU. We set the batch size as 32, and train models
for 400k steps until loss converges.

5. ProDiff (Huang et al., 2022) (ACM Multimedia 2022) is a fast TTS model using progressive
distillation (Salimans & Ho, 2022). The standard Gaussian noise N (0, I) is used in the diffusion
process and taken as the prior distribution. We use their 2-step diffusion-based student model, which
is distilled from a 4-step diffusion-based teacher model (x0 prediction). We follow their open-source
implementation7.

6. Grad-TTS (Popov et al., 2021)8 (ICML 2021) is a widely used baseline in diffusion models
(Huang et al., 2022; Chen et al., 2022c; 2023; Ye et al., 2023) and conditional flow matching (Mehta
et al., 2023; Guo et al., 2023) based TTS systems. It is established on SGMs, providing a strong
baseline of generation quality. Moreover, it realizes fast sampling with the improved prior distribu-
tionN (µ, I) and the temperature parameter τ = 1.5 in inference. Following its original setting and
publicly available implementation, we train the model with a batch size of 16 and 1.7 million steps
on 1 NVIDIA 2080 GPU. The Adam optimizer is used and the learning rate is set to a constant,
0.0001.

7. FastGrad-TTS (Vovk et al., 2022) (INTERSPEECH 2022) equips pre-trained Grad-TTS (Popov
et al., 2021) with the first-order SDE sampler proposed by (Popov et al., 2022). The Maximum
Likelihood solver reduces the mismatch between the reverse and the forward process. In comparison
with the first-order Euler scheme, this solver has shown improved quality in both voice conversion
and TTS synthesis. We implement it for the pre-trained Grad-TTS model with the Equation (6)-(9)
in its publication.

8. ResGrad (Chen et al., 2022c) is a diffusion-based post-processing module to improve the TTS
sample quality, where the residual information of a pre-trained FastSpeech 2 (Ren et al., 2021) model

4https://github.com/jaywalnut310/vits
5https://github.com/MoonInTheRiver/DiffSinger
6https://github.com/keonlee9420/DiffGAN-TTS
7https://github.com/Rongjiehuang/ProDiff
8https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS
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is generated by a diffusion model. The standard Gaussian noise N (0, I) is used in the diffusion
process and taken as prior. We invite the authors to generate some test samples for us.

9. CoMoSpeech (Ye et al., 2023)9 (ACM Multimedia 2023) is a recent fast sampling method in
TTS and text-to-singing synthesis, achieving one-step generation with the distillation technique in
consistency models (Song et al., 2023). As Grad-TTS is employed as its TTS backbone, the model
usesN (µ, I) as prior distribution and is trained for 1.7 million iterations on a single NVIDIA A100
GPU with a batch size of 16. The Adam optimizer is adopted with a learning rate 0.0001.

G ADDITIONAL RESULTS

G.1 PREFERENCE TEST

Apart from using the MOS test to evaluate sample quality, we conducted a blind preference test
when NFE=1000 and NFE=2, in order to demonstrate our superior generation quality and efficient
sampling process, respectively. In each test, we generated 100 identical samples with two different
models from the test set LJ001 and LJ002, and invited 11 judges to compare their overall subjective
quality. The judge gives a preference when he thinks a model is better than the other, and an identical
result when he thinks it is hard to tell the difference or the models have similar overall quality. In
both preference tests, the settings of noise schedule, model parameterization and sampling process
in Bridge-TTS are gmax = 50, x0 prediction, and first-order SDE sampler with τb = 2, respectively.

In the case of NFE=1000, as shown in Figure 4 (a), when Bridge-TTS-1000 is compared with our
diffusion counterpart Grad-TTS-1000 (Popov et al., 2021) (temperature τd = 1.5), 8 of the 11
invited judges vote for Bridge-TTS-1000, and 3 of them think the overall quality is similar. In our
blind test, none of the 11 judges preferred Grad-TTS-1000 to Bridge-TTS-1000.

In the case of NFE=2, as shown in Figure 4 (b), when Bridge-TTS-2 is compared with state-of-
the-art fast sampling method in diffusion-based TTS systems, CoMoSpeech (1-step generation)
(Ye et al., 2023), 9 of the 11 invited judges vote for Bridge-TTS-2, and 2 of the judges vote for
CoMoSpeech-1. Although Bridge-TTS employs 2 sampling steps while CoMoSpeech-1 only uses
1, the RTF of both methods have been very small (0.007 for CoMoSpeech-1 vs 0.009 for Bridge-
TTS-2), and Bridge-TTS does not require any distillation process. According to our collected feed-
back, 9 judges think the overall quality (e.g., quality, naturalness, and accuracy) of Bridge-TTS is
distinctively better.

(a) (b)

Figure 4: The preference test between Bridge-TTS and diffusion-based TTS systems.

G.2 ADDITIONAL SAMPLES

With the pre-trained HiFi-GAN (Kong et al., 2020) vocoder, we show the 80-band mel-spectrogram
of several synthesized test samples of baseline models and our Bridge-TTS (schedule gmax = 50,
x0 prediction, and temperature τb = 2) below. The mel-spectrogram of ground-truth recording is
shown for comparison.

9https://github.com/zhenye234/CoMoSpeech
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1000-step generation As exhibited in Figure 5 and Figure 6, when NFE=1000, our method gen-
erates higher-quality speech than Grad-TTS (temperature τd = 1.5) built on data-to-noise process,
demonstrating the advantage of our proposed data-to-data process over data-to-noise process in TTS.

Grad-TTS

Recording

Bridge-TTS

Figure 5: The mel-spectrogram of synthesized (NFE=1000) and ground-truth sample LJ001-0006.

Grad-TTS

Bridge-TTS

Recording

Figure 6: The mel-spectrogram of synthesized (NFE=1000) and ground-truth sample LJ002-0029.

25



Under review as a conference paper at ICLR 2024

50-Step Generation In Figure 7, our method shows higher generation quality than Grad-TTS
(Popov et al., 2021). In Figure 8, we continue to use the test sample LJ002-0029 to demonstrate our
performance. As it can be seen, in comparison with NFE=1000 shown in Figure 6, when reducing
NFE from 1000 to 50, Grad-TTS generates fewer details and sacrifices the sample quality, while our
method still generates high-quality samples, outperforming our diffusion counterpart.

Grad-TTS

Bridge-TTS

Recording

Figure 7: The mel-spectrogram of synthesized (NFE=50) and ground-truth sample LJ001-0035.

Grad-TTS

Bridge-TTS

Recording

Figure 8: The mel-spectrogram of synthesized (NFE=50) and ground-truth sample LJ002-0029.
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4-Step Generation In Figure 9, we show our comparison with two baseline models, i.e., Grad-
TTS (Popov et al., 2021) and FastGrad-TTS (Vovk et al., 2022). The latter one employs a first-order
maximum-likelihood solver (Popov et al., 2022) for the pre-trained Grad-TTS, and reports stronger
quality than Grad-TTS in 4-step synthesis. In our observation, when NFE=4, FastGrad-TTS achieves
higher quality than Grad-TTS, while our method Bridge-TTS achieves higher generation quality
than both of them, demonstrating the advantage of our proposed data-to-data process on sampling
efficiency in TTS synthesis.

Grad-TTS

FastGrad-TTS

Bridge-TTS

Recording

Figure 9: The mel-spectrogram of synthesized (NFE=4) and ground-truth sample LJ001-0032.
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2-Step Generation When NFE is reduced to 2, we compare our method Bridge-TTS with the
transformer-based model FastSpeech 2 (Ren et al., 2021) and two diffusion-based TTS systems
using distillation techniques. ProDiff (Huang et al., 2022) employs progressive distillation achieving
2-step generation. CoMoSpeech (Ye et al., 2023) employs consistency distillation achieving 1-step
generation. In our observation, in this case, the RTF of each model has been very small, and the
overall generation quality is reduced. In the subjective test, our Bridge-TTS outperforms the other
three methods. We show a short test sample, LJ001-0002, in Figure 10.

CoMoSpeech (NFE=1)

FastSpeech 2

ProDiff (NFE=2)

Bridge-TTS (NFE=2)

Recording

Figure 10: The mel-spectrogram of synthesized (NFE≤2) and ground-truth sample LJ001-0002.
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