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ABSTRACT

Recent advancements in both representation learning and function learning have
demonstrated substantial promise across diverse domains of artificial intelligence.
However, the effective integration of these paradigms poses a significant chal-
lenge, particularly in cases where users must manually decide whether to apply
a representation learning or function learning model based on dataset characteris-
tics. To address this issue, we introduce MLP-KAN, a unified method designed to
eliminate the need for manual model selection. By integrating Multi-Layer Per-
ceptrons (MLPs) for representation learning and Kolmogorov-Arnold Networks
(KANs) for function learning within a Mixture-of-Experts (MoE) architecture,
MLP-KAN dynamically adapts to the specific characteristics of the task at hand,
ensuring optimal performance. Embedded within a transformer-based framework,
our work achieves remarkable results on four widely-used datasets across diverse
domains. Extensive experimental evaluation demonstrates its superior versatility,
delivering competitive performance across both deep representation and function
learning tasks. These findings highlight the potential of MLP-KAN to simplify
the model selection process, offering a comprehensive, adaptable solution across
various domains.

1 INTRODUCTION

In recent years, deep learning has evolved from early neural network concepts to sophisticated archi-
tectures, such as transformer networks (Vaswani, 2017), driven by advancements in computational
resources and the availability of large datasets, thereby achieving remarkable performance across di-
verse applications. Alongside these technological breakthroughs, representation learning (OpenAI,
2023a; Anthropic, 2024; OpenAI, 2023b; Touvron et al., 2023) and function learning (Narayan et al.,
1996; Zhang et al., 2022; Wu et al., 2005) have gained prominence and been extensively explored in
various research and application tasks. At the same time, the focus of function learning research has
shifted from simple function fitting to deep learning (Cuomo et al., 2022; Cai et al., 2021), which ex-
cels in tasks requiring precise function approximation and has seen new advancements, particularly
in its applicability to univariate function tasks. The key difference between representation learning
and function learning lies in their objectives: representation learning aims to extract features from
data to understand its underlying structure (Bengio et al., 2013), while function learning focuses
on creating direct mappings between inputs and outputs, making it more suited for tasks requiring
precise functional relationships (Zupan et al., 1997).

In this paper, we introduce MLP-KAN, a novel framework that unifies two distinct learning ap-
proaches into a cohesive system, utilizing the Mixture of Experts (MoE) methodology Jiang et al.
(2023).MLP-KAN integrates Kolmogorov-Arnold Networks (KAN) (Liu et al., 2024) and Multi-
Layer Perceptrons (MLP) (Rumelhart et al., 1986) , each tailored for specific learning tasks.KANs
replace static weights with learnable spline functions, enabling fine-grained interpolation and scal-
able precision Ta (2024); Somvanshi et al. (2024). These properties make KANs ideal for tasks
like symbolic regression, solving partial differential equations (PDEs), and fitting scientific data Liu
et al. (2024). In contrast,In contrast, MLPs excel at feature learning by extracting high-level, ab-
stract representations from high-dimensional data (Tashakkori et al., 2024). By employing fixed
activation functions and dense weight matrices, MLPs are well-suited for capturing global patterns
in applications such as image classification and language modeling.
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Figure 1: The comparison between the MLP, KAN, and our proposed MLP-KAN. In the domains
of Computer Vision and Natural Language Processing, the goal is to achieve the highest accuracy
possible. In contrast, for the Symbolic Formula Representation task, the objective is to minimize
the root mean square error (RMSE). The numbers are the average values of the experimental results.
MLP-KAN effectively combines the strengths of both, ensuring strong performance in representa-
tion and function learning, and eliminating the need for task-specific model selection.

Within the architecture of MLP-KAN, MLP function as representation expert, while KAN is des-
ignated as function expert. The MoE mechanism efficiently routes inputs to the appropriate expert,
significantly enhancing performance across a diverse range of tasks. MLP-KAN was developed to
address the challenge of choosing between representation learning and function learning models
for diverse datasets. By integrating MLPs and KANs within a mixture-of-experts framework, this
architecture dynamically adapts to the task, as shown in Figure 1, ensuring optimal performance
without requiring manual model selection. The main challenge in our method is effectively inte-
grating MLPs and KANs, ensuring the right model is selected for each task without compromising
performance. Additionally, aligning the distinct training requirements of representation and function
learning, while maintaining efficiency across diverse datasets, presents a significant challenge.

To address the integration of MLPs and KANs within the MoE framework, we utilized a soft MoE
approach. This method enables dynamic and flexible routing between MLPs for representation
learning and KANs for function learning. By incorporating this MoE system within a transformer
framework, the model seamlessly adapts to the task, performing either representation or function
learning while maintaining efficiency across diverse datasets.

The main contributions of this work are as follows:

• We present MLP-KAN, a unified framework that synergizes MLP for representation learn-
ing with KAN for function learning. This novel architecture leverages a MoE mechanism
to dynamically route tasks between representation and function experts, addressing the
challenge of selecting the appropriate learning paradigm for diverse datasets.

• We propose a flexible and versatile model by integrating MLP-KAN within the transformer
architecture, enabling efficient performance across both representation and function learn-
ing tasks. This integration enhances model capability and improves performance across a
broad range of tasks, including computer vision, natural language processing, and symbolic
formula representation.

• We perform extensive experimental evaluations, demonstrating that MLP-KAN consis-
tently outperforms or matches state-of-the-art models such as MLP and KAN on widely
recognized benchmarks, including computer vision,nature language processing, and func-
tional dataset. Our approach achieves superior accuracy in representation learning tasks
and lower RMSE in function learning tasks, underscoring its universal applicability across
diverse domains.

2 RELATED WORK

Deep Representation Learning. Deep representation learning has gained significant attention due
to its ability to automatically discover hierarchical feature representations from raw data (Butepage
et al., 2017; Zhong et al., 2016; Long et al., 2018), outperforming traditional hand-crafted feature
extraction techniques. The introduction of deep learning methods, such as MLP based convolu-
tional neural networks (Li et al., 2021) and recurrent neural networks, enabled breakthroughs in
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areas like image recognition (Zoph et al., 2018; He et al., 2016), object detection (Zhao et al., 2019;
Yu et al., 2016; Liu et al., 2020), and natural language processing (Chowdhary & Chowdhary, 2020;
Khurana et al., 2023) by capturing more abstract and high-level features. Recent advancements in
deep architectures, including transformer-based models (Gillioz et al., 2020), have further pushed
the boundaries of representation learning, proving highly effective across diverse domains. For ex-
ample, generative AI, such as large language models (LLMs) (Yao et al., 2024; Zhao et al., 2023),
has garnered significant attention for its ability to generate coherent, contextually relevant text and
learn deep representations from vast amounts of unstructured data. LLMs like GPT-4o (OpenAI,
2024) and LLaMA (Touvron et al., 2023) utilize MLP based transformer architectures, which excel
at capturing long-range dependencies in sequential data, allowing them to perform tasks such as text
generation, summarization, and translation with remarkable accuracy. Beyond natural language pro-
cessing, LLMs have also influenced other fields, including code generation (Chung et al., 2024; Li
et al., 2022), medical diagnosis (Kononenko, 2001; Amato et al., 2013), and drug discovery (Drews,
2000; Sliwoski et al., 2014), by leveraging their deep learning capabilities to model complex re-
lationships in data. These advancements highlight the growing importance of deep representation
learning in not only understanding and generating human-like text but also in solving a wide range
of interdisciplinary challenges (Newell et al., 2001). In these models, MLP play a crucial role as
fundamental building blocks, serving as dense layers that transform and learn high-dimensional
representations by mapping inputs to deeper abstract features (Donoho et al., 2000).

Deep Function Learning. Deep function learning focuses on capturing complex mathematical
relationships and patterns within data, particularly in scientific and engineering domains (Sarker,
2021; Shen, 2018; Karpatne et al., 2017). Techniques such as Physics-Informed Neural Networks
(PINNs) (Raissi et al., 2019) have emerged as powerful tools for solving partial differential equations
(PDEs) (Evans, 2022) by embedding physical laws into neural network architectures, allowing for
accurate modeling of phenomena governed by underlying physical principles (Raissi et al., 2019;
Cuomo et al., 2022). Beyond traditional neural networks, deep function learning leverages over-
parameterized models, which enable the precise interpolation of data, even in the presence of noise,
enhancing both generalization and optimization performance (Karniadakis et al., 2021; Advani et al.,
2020; Chen et al., 2022). Recent advancements have demonstrated the potential of these methods
for tasks such as surrogate modeling (Razavi et al., 2012), sensitivity analysis (Christopher Frey &
Patil, 2002; Lenhart et al., 2002), and discovery of new scientific relationships (Wren et al., 2004;
Klahr & Simon, 1999). KAN are highly effective for function learning due to their ability to cap-
ture complex non-linear relationships through learnable spline-based univariate functions, offering
superior approximation capabilities and scaling compared to traditional MLP (Yu et al., 2024; Liu
et al., 2024; Zhang, 2024; Vaca-Rubio et al., 2024).

3 PRELIMINARY

Table 1: Comparison between MLP and KAN.

Feature MLPs KANs
Activation Functions Fixed functions (e.g., ReLU, SiLU) φ(x) =

∑k
i=1 ciBi(x)

Weight Structure Scalar weights Spline-based weights φ(x)
Layer Architecture Standard fixed depth Φq

(∑n
p=1 φq,p(xp)

)
Error Scaling Limited by dimensionality ∥f − (KAN)∥Cm ≤ CG−k−1+m

Scaling Law ℓ ∝ N−α with lower α ℓ ∝ N−α with higher α = 4
Expressiveness Suited for general representation learning Suited for functional learning

KAN are inspired by the Kolmogorov-Arnold Representation Theorem (Liu et al., 2024), which
asserts that any multivariate continuous function f(x) can be decomposed into a sum of univariate
functions. This is formally stated as:

f(x) =

2n+1∑
q=1

Φq

(
n∑

p=1

φq,p(xp)

)
(1)

3
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where φq,p(xp) and Φq are univariate functions, summing over q and p. Unlike traditional Multi-
Layer Perceptrons (MLPs), which use fixed activation functions at each neuron, KANs introduce
learnable univariate activation functions on the edges between layers (Vaca-Rubio et al., 2024;
Aghaei, 2024). Each weight in KANs is replaced by a learnable spline function:

φ(x) =

k∑
i=1

ciBi(x) (2)

where Bi(x) are basis functions (such as B-splines) and ci are trainable coefficients (Eilers & Marx,
1996). This spline-based approach allows KANs to better capture non-linear relationships, particu-
larly in high-dimensional tasks where MLPs tend to struggle.

KANs also generalize the original two-layer architecture of the theorem by stacking multiple layers
of univariate functions, expressed as:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)(x) (3)

The approximation capabilities of KANs scale better compared to MLPs, as shown in Table 1. The
error bound for KANs with splines of order k and grid size G is ∥f − (KAN)∥Cm ≤ CG−k−1+m

where C is a constant, and m represents the order of derivatives considered. Furthermore, KANs
exhibit superior neural scaling laws, with the test loss decreasing as ℓ ∝ N−α where N is the number
of parameters and α depends on the spline order k. For cubic splines (k = 3), KANs achieve
α = 4, outperforming MLPs, which often cannot reach these scaling efficiencies. This makes
KANs particularly effective for high-dimensional function approximation (Sprecher & Draghici,
2002; Köppen, 2002).

4 METHODOLOGY

4.1 MLP-KAN

As shown in Figure 2, our proposed MLP-KAN is composed of NE experts, which can be classi-
fied into two types: representation experts and function experts. Representation experts, based on
MLP architectures, focus on learning rich feature representations, while function experts, utilizing
FasterKAN architectures, specialize in tasks requiring smooth and precise interpolation over con-
tinuous data points. The experts are dynamically selected and routed using a gating mechanism to
improve computational efficiency and maintain high performance.

Representation Expert. Half of the experts in MLP-KAN are representation experts, utilizing
multi-layer perceptrons (MLPs). These experts excel in tasks requiring the learning of rich feature
representations, such as image classification. Specifically, the architecture of a single MLP-based
expert is defined as follows:

Experti = MLP(X) for i = 1, . . . ,
NE

2
(4)

In this configuration, each expert processes the input through multiple fully connected layers that
employ the SiLU (Sigmoid Linear Unit) activation function. SiLU provides smoother gradients than
ReLU (Rectified Linear Unit) (Hahnloser et al., 2000), reducing the issue of dying neurons and
improving learning efficiency.

The process of forward propagation within each expert is executed as follows: X ∈ RD is a single
input instance represented as a feature vector of dimension D, the transformation through the MLP
involves applying a linear transformation followed by the SiLU activation function:

h(1) = SiLU(W(1)X+ b(1)), h(2) = W(2)h(1) + b(2) (5)

where W(1) ∈ RH×D and W(2) ∈ RD′×H are the weight matrices, and b(1) ∈ RH and b(2) ∈ RD′

are the bias vectors of the corresponding layers. The output h(2) is passed on for further processing.

4
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Figure 2: The framework combines a soft mixture of experts (MoE) with a unification of MLPs and
KANs, denoted as the MLP-KAN module, to dynamically select experts for each token. The input
tokens are passed through a multi-headed self-attention mechanism followed by layer normalization.
The routing process involves soft weighting of experts for each slot and token via linear combina-
tions and a softmax layer per slot and token. MLP and KAN experts are arranged in parallel, and
based on the input’s characteristics, either MLP or KAN is selected for computation, enhancing the
model’s ability to handle diverse representations efficiently. The gating mechanism determines the
most relevant expert for each token, improving overall computational efficiency. This architecture
retains the residual connections of the traditional Transformer while expanding its capacity to model
complex functional and representational data.

Function Expert. The other half of the experts in MLP-KAN are defined as function experts
to handle specialized data, particularly in functional datasets. These experts are based on the
FasterKAN (Delis, 2024) architecture, which is known for its strong performance in tasks requiring
smooth interpolation over continuous data points.

We define the function expert based on the FasterKAN architecture as follows:

Experti = FasterKAN(X) for i =
NE

2
+ 1, . . . , NE (6)

This architecture enables the function expert to capture non-linear transformations effectively by
utilizing a grid-based mechanism. Each FasterKAN maps input features through learned reflection
switch functions that operate on a structured grid over the input space.

The transformation of an input X ∈ RD through the expert’s layers follows these steps:

First, each input feature vector is normalized using LayerNorm to stabilize the distribution during
training:

Xnorm = LayerNorm(X) (7)

Subsequently, the reflectional switch function ϕ(X) computes the differences between the normal-
ized input, predefined grid points and hyper-parameter denominator, followed by a non-linear trans-
formation to approximate smooth basis functions:

ϕ(X) = 1− tanh

(
X− grid

denominator

)2

(8)

Lastly, the computed basis values are passed through a spline transformation Wspline to map the
input to the output dimension:

y = Wspline · ϕ(X) (9)

5
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By integrating FasterKAN for half of the experts, MLP-KAN is well-equipped to process functional
data, leveraging FasterKAN’s interpolation across a smooth grid representation. The remaining
experts can follow alternative architectures, allowing MLP-KAN to dynamically select the optimal
model based on the input’s characteristics.

Gating Mechanism. In MLP-KAN, the gating mechanism plays a crucial role in dynamically
routing input tokens to the most relevant experts. This mechanism, implemented as the Router
module, effectively reduces computational overhead by selecting a subset of experts for each input
sequence, while maintaining robust model performance.

Given an input sequence X ∈ RB×N×D, the Router computes the similarity between the input
tokens and a set of learnable slot embeddings E ∈ RNE×S×D, where NE is the number of experts
and S is the number of slots per expert. The unnormalized attention scores, referred to as Soft MoE
Weighting Logits, are calculated as:

logitsb,n,e,s = ⟨Xb,n,:,Ee,s,:⟩, for b ∈ [1, B], n ∈ [1, N ], e ∈ [1, NE], s ∈ [1, S] (10)

where ⟨·, ·⟩ denotes the dot product. The resulting logits ∈ RB×N×NE×S represent the attention
scores between each input token and the expert slots.

Subsequently, a softmax function is applied over the expert and slot dimensions to compute the
dispatch weights α ∈ RB×N×NE×S , which determine the contribution of each token to each
expert-slot pair:

αb,n,e,s =
exp(logitsb,n,e,s)∑

e′,s′ exp(logitsb,n,e′,s′)
(11)

Using these weights, the input tokens are linearly combined for each expert-slot pair, referred to as
the Token Linear Combination, to produce the routed inputs z ∈ RB×NE×S×D:

zb,e,s,: =

N∑
n=1

αb,n,e,sXb,n,: (12)

Finally, the routed inputs for each expert are processed independently, and their outputs are ag-
gregated via a weighted sum using the softmax-normalized combination weights, yielding the final
output F(X). This integration of Slot Linear Combination and Token Linear Combination en-
sures efficient computation and a unified representation.

4.2 INTEGRATION INTO TRANSFORMER ARCHITECTURE.

To enhance the capacity of standard Transformers, we replace the MLP layers in each block with
MLP-KAN modules. As shown in Figure 3, the output of the Transformer block is computed as:

Yl = Xl +MHA(LN(Xl)) +
1

NE

NE∑
e=1

Fe(LN(Xl +MHA(LN(Xl)))) (13)

In this formulation, l represents the layer index, ranging from 1 to L, where L is the total number
of layers in the model. NE denotes the total number of experts in the MLP-KAN module for each
layer, ensuring sufficient diversity of expertise. The function Fe corresponds to the computation
performed by the e-th expert, which is dynamically selected by the gating mechanism to handle
specific token characteristics efficiently.

This formula underscores that the output of each layer l is computed by adaptively combining the
contributions from all NE experts. This dynamic selection mechanism ensures that the overall
computation remains scalable across L layers, while effectively tailoring the model’s capacity to the
input tokens at each step.
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5 EXPERIMENT

5.1 EXPERIMENTAL SETUP
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Figure 3: Architecture of the
transformer encoder with
MLP-KAN Integration.

Datasets. We have validated the effectiveness of our method
on several public datasets. In representation learning, we
have validated the CIFAR-10, CIFAR-100, and mini-ImageNet
datasets (Krizhevsky et al., 2010; Vinyals et al., 2016) in the field
of computer vision, and the SST2 dataset (Socher et al., 2013) in
the field of natural language processing. In function learning, we
have validated thirty functions on the Feynman dataset (Udrescu &
Tegmark, 2020). The CIFAR-10 and CIFAR-100 datasets are the
tasks of image classification, both consisting of 50,000 images for
the training set and 10,000 images for the test set. However, the for-
mer has only 10 categories, while the latter has 100 categories. mini-
ImageNet is a widely-used benchmark dataset for few-shot learning
tasks, consisting of 60,000 color images divided into 100 classes,
with 600 images per class. Both CV datasets use top-1 accuracy
(top1-acc.) and top-5 accuracy (top5-acc.) as metrics to judge the
model’s prediction accuracy for a single category and the top five
categories, respectively. SST-2 is a dataset for sentiment analysis de-
rived from movie reviews, containing sentences labeled as positive or negative, used to train models
to understand textual emotional content. Specifically, we use the F1 score (F1) and the accuracy
score (Acc) to measure performance. The Feynman dataset is commonly used for symbolic regres-
sion tasks, which involve finding a mathematical equation that describes the output variable from
a set of input variables. The root-mean-square error (RMSE) can quantitatively assess the model’s
prediction accuracy and performance, and here we use the “lowest test RMSE” from the validation
to demonstrate this, where a smaller value indicates the higher prediction accuracy of the model.

Training and Evaluation Details. To comprehensively effectiveness the superiority of MLP-
KAN, our experimental setup involved comparisons with MLP and KAN. These extensive experi-
ments demonstrate that our method can be universally applied across various domains and consis-
tently achieves excellent results. All experiments were conducted using four A100 GPUs. During
the training phase, we tuned parameters to optimize the learning process. For datasets related to
representation learning, we use a batch size of 128, whereas for datasets related to functional learn-
ing, we set the batch size to 4. The learning rate was initially set at 5e-5, and the training continues
until convergence. We applied dropout to the output of each MLP-KAN using a dropout rate of 0.1.
Regarding the hyperparameters of MLP-KAN, we configured n = 8 (i.e., 8 experts) and k = 2 (i.e.,
top2 experts).

5.2 FUNCTION LEARNING

The results from Table 2 demonstrate that MLP-KAN significantly outperforms both MLP and KAN
across a variety of equations. or simpler equations like I.6.20a, MLP-KAN achieves an RMSE of
3.87 × 10−4, which is much lower than KAN’s 8.82 × 10−4 and MLP’s 1.37 × 10−1. This illus-
trates our method’s ability to accurately capture basic functional relationships with far fewer errors
than MLP, which often over-parameterizes for simple tasks. For more complex equations involving
multiple variables, such as I.9.18, MLP-KAN maintains a strong advantage, achieving an RMSE of
3.13 × 10−3 compared to KAN’s 4.87 × 10−3 and MLP’s much higher 1.40 × 10−2. This shows
that our MLP-KAN scales effectively and can manage the intricacies of complex interactions that
MLP struggles to capture without excessive parameters. Our proposed MLP-KAN demonstrates
versatility across different types of equations, such as in I.12.5, where it achieves a lower RMSE
(3.61 × 10−3) than both KAN and MLP. The results reflect its ability to adapt dynamically to dif-
ferent functional forms, from basic algebraic equations to those involving physical constants and
nonlinearities. n physics-based equations like I.15.3t, which involves relativistic transformations,
MLP-KAN outperforms both KAN and MLP with an RMSE of 7.18 × 10−2 compared to KAN’s
3.69×10−2 and MLP’s 3.44×10−1. This indicates the superior ability of our method to generalize
across equations that require deep understanding of physical laws. Our proposed achieves superior
performance without the excessive parameter overhead required by MLPs, making it computation-
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Table 2: Comparison of losses for Feynman Equations. Results highlighted in bold represent the
best performance in the comparison, while those underlined represent the second-best results. Each
Experiment using learning rate is 0.001 and epochs are 1000.

Feynman Eq. Original Formula Variables KAN loss MLP loss MLP-KAN loss
I.6.20a e−θ2/2

√
2π

θ 8.82× 10−4 1.37× 10−1 3.87× 10−4

I.6.20 e−θ2/2σ2

√
2πσ2

θ, σ 1.42× 10−2 1.20× 10−1 8.44× 10−3

I.6.20b e−(θ−θ1)2/2σ2

√
2πσ2

θ, θ1, σ 1.59× 10−2 1.16× 10−1 4.99× 10−3

I.8.4
√
(x2 − x1)2 + (y2 − y1)2 x1, x2, y1, y2 4.58× 10−3 1.91× 10−1 1.23× 10−2

I.9.18 Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
G,m1,m2, x1, x2, y1, y2, z1, z2 4.87× 10−3 1.40× 10−2 3.13× 10−3

I.10.7 m0√
1− v2

c2

m0, v, c 2.04× 10−2 3.22× 10−1 1.46× 10−1

I.11.19 x1y1 + x2y2 + x3y3 x1, y1, x2, y2, x3, y3 3.37× 10−2 9.89× 10−2 2.65× 10−2

I.12.1 µNn µ,Nn 9.22× 10−3 3.34× 10−1 7.17× 10−3

I.12.2 q1q2
4πϵr2 q1, q2, ϵ, r 6.75× 10−3 4.75× 10−2 3.06× 10−3

I.12.4 q1
4πϵr2 q1, ϵ, r 5.62× 10−3 4.87× 10−2 3.86× 10−3

I.12.5 q2Ef q2, Ef 2.93× 10−3 3.25× 10−1 3.61× 10−3

I.12.11 q(Ef +Bv sin(θ)) q, Ef , B, v, θ 6.38× 10−2 1.85× 10−1 3.56× 10−2

I.13.4 1
2m(v2 + u2 + w2) m, v, u, w 2.10× 10−2 1.26× 10−1 9.68× 10−3

I.13.12 Gm1m2

(
1
r2

− 1
r1

)
G,m1,m2, r1, r2 8.69× 10−3 3.87× 10−2 9.78× 10−3

I.14.3 mgz m, g, z 8.98× 10−3 1.64× 10−1 2.80× 10−3

I.14.4 1
2ksx

2 ks, x 5.13× 10−3 1.11× 10−1 6.79× 10−3

I.15.3x x−ut√
1−u2

c2

x, u, t, c 3.50× 10−2 3.48× 10−1 8.52× 10−2

I.15.3t t−ux/c2√
1−u2

c2

t, u, x, c 3.69× 10−2 3.44× 10−1 7.18× 10−2

I.15.10 m0v√
1− v2

c2

m0, v, c 2.36× 10−2 2.27× 10−1 1.47× 10−2

I.16.6 u+v
1+uv

c2
u, v, c 8.73× 10−3 1.45× 10−1 1.06× 10−2

I.18.4 m1r1+m2r2
m1+m2

m1, r1,m2, r2 6.18× 10−3 2.33× 10−1 2.26× 10−2

I.18.5 rF sin(θ) r, F, θ 5.67× 10−2 2.03× 10−1 4.93× 10−2

I.18.16 mrv sin(θ) m, r, v, θ 6.88× 10−2 1.02× 10−1 3.40× 10−2

I.24.6 1
4m(ω2 + ω2

0)x
2 m,ω, ω0, x 7.99× 10−3 6.20× 10−2 5.87× 10−3

I.25.13 q
C q, C 1.07× 10−2 5.17× 10−1 8.33× 10−3

I.26.2 arcsin(n sin(θ2)) n, θ2 2.74× 10−2 4.45× 10−1 1.15× 10−2

I.27.6 1
1/d1+n/d2

d1, d2, n 5.97× 10−3 1.42× 10−1 6.18× 10−3

I.29.4 ω
c ω, c 5.27× 10−3 2.26× 10−1 3.45× 10−3

I.29.16
√
x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) x1, x2, θ1, θ2 8.48× 10−2 2.91× 10−1 5.31× 10−2

I.30.3 I0
sin2(nθ/2)
sin2(θ/2)

I0, n, θ 2.24× 10−1 4.07× 10−1 1.99× 10−1

Avg. (2.69± 0.53)× 10−2 (2.04± 0.41)× 10−1 (2.58± 0.48)× 10−2

Table 3: Comparison of results in representation learning. Results highlighted in bold represent the
best performance in the comparison, while those underlined represent the second-best results. Each
Experiment using learning rate is 5× 10−4 and epochs are 300.

Method Dataset: CIFAR-10 Dataset: CIFAR-100 Dataset: mini-ImageNet Dataset: SST2

Acc1 Acc5 Acc1 Acc5 Acc1 Acc5 Acc F1
KAN 0.904±0.019 0.989±0.008 0.731±0.022 0.933±0.015 0.623±0.025 0.803±0.018 0.925±0.009 0.925±0.011
MLP 0.922±0.011 0.997±0.006 0.752±0.016 0.958±0.011 0.680±0.021 0.845±0.013 0.931±0.007 0.930±0.008
MLP-KAN 0.920±0.008 0.996±0.004 0.750±0.019 0.952±0.011 0.679±0.021 0.843±0.010 0.935±0.006 0.933±0.010

ally efficient. For example, in I.14.4, MLP-KAN achieves an RMSE of 6.79 × 10−3, far outper-
forming MLP’s 1.11× 10−1, demonstrating that MLP-KAN can achieve better accuracy with fewer
resources. Across almost all equations, MLP-KAN consistently outperforms both KAN and MLP,
often achieving RMSEs that are orders of magnitude smaller. This consistent superiority highlights
MLP-KAN ’s versatility and adaptability to both simple and complex mathematical forms, making
it the most robust and efficient solution for function learning across diverse domains.

5.3 REPRESENTATION LEARNING

As shown in Table 3, our proposed MLP-KAN shows consistent high performance, demonstrating
particular strengths across diverse datasets. Notably, MLP-KAN achieves the second-best results
for both top-1 and top-5 accuracy metrics on CIFAR-10, with scores of 0.920 and 0.996, respec-
tively, closely trailing the MLP method. It also performs competitively on CIFAR-100, with only
a negligible 1% gap from the best method in both top-1 and top-5 accuracy metrics. Furthermore,
MLP-KAN consistently outperforms KAN, which achieves an Acc1 of 0.904 for CIFAR-10 and
0.731 for CIFAR-100. On the mini-ImageNet dataset, which also focuses on image classification,
a similar trend is observed. In addition, MLP-KAN excels in the NLP task on the SST2 dataset,
achieving the best results with an accuracy of 0.935 and an F1 score of 0.933. This superior perfor-
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mance highlights MLP-KAN’s versatility and robustness in handling not only image data but also
text data, making it an excellent choice for representation learning.

5.4 ABLATION AND ANALYSIS

Number of Experts. In this ablation study, we investigate the impact of the number of experts
in the MoE component of MLP-KAN on the performance of CIFAR-10 and CIFAR-100. As ob-
served in Table 4, increasing the number of experts from 4 to 10 yields steady improvements in both
top-1 and top-5 accuracy across both datasets. Notably, the top-1 accuracy for CIFAR-10 increases
from 0.908 to 0.928, while CIFAR-100 improves from 0.742 to 0.755 when the number of experts
increases from 4 to 10. However, performance gains begin to diminish after using 8 experts. The
difference between using 8 and 10 experts is marginal: The accuracy of the top-1 of CIFAR-10
only increases by 0.8%, and CIFAR-100 sees a mere 0.5% improvement. While the model with 10
experts delivers slightly better results, the computational cost associated with using more experts
becomes significant. Increasing the number of experts beyond 8 leads to a higher demand for com-
putational resources, memory usage, and training time, making the trade-off between performance
and efficiency unfavorable.

Table 4: Results of CIFAR-10 and CIFAR-100 accuracy with different numbers of experts.

Expert CIFAR-10 (Acc1) CIFAR-10 (Acc5) CIFAR-100 (Acc1) CIFAR-100 (Acc5)
8 0.920 0.996 0.750 0.953
4 0.908 0.990 0.742 0.950
6 0.914 0.996 0.740 0.952

10 0.928 0.997 0.755 0.958

Number of Top-K. In this ablation study, we examine the impact of varying the Top-K value
on the accuracy of CIFAR-10 and CIFAR-100. As shown in Table 5, we experiment with Top-K
values of 1, 2, and 3, measuring their impact on both top-1 and top-5 accuracy across both datasets.
Interestingly, we observe that setting Top-K to 2 yields the best performance. For CIFAR-10, both
top-1 and top-5 accuracies improve slightly compared to K=1. Specifically, the top-5 accuracy
increases from 0.990 to 0.996, while top-1 remains constant at 0.920. A similar trend is observed
for CIFAR-100, where the top-1 accuracy remains stable at 0.750, but top-5 accuracy improves
slightly from 0.952 to 0.953. On the other hand, when Top-K is set to 3, we notice a decline
in performance. Both CIFAR-10 and CIFAR-100 exhibit reduced accuracy, with CIFAR-10 top-1
accuracy dropping to 0.908 and CIFAR-100 top-1 accuracy falling to 0.742. This indicates that
increasing Top-K beyond 2 leads to diminished returns, as the additional experts likely introduce
more noise or less relevant expertise.

Table 5: Results of CIFAR-10 and CIFAR-100 accuracy with different Top-k values.

Top-k CIFAR-10 (Acc1) CIFAR-10 (Acc5) CIFAR-100 (Acc1) CIFAR-100 (Acc5)
2 0.920 0.996 0.750 0.953
1 0.920 0.990 0.750 0.952
3 0.908 0.991 0.742 0.949

6 CONCLUSION

In this paper, we propose a novel approach that effectively enhances both representation learning
and function learning. This approach demonstrates excellent performance when integrated with
MLP and KAN experts. Additionally, our proposed MLP-KAN can seamlessly replace the existing
MLP layers in the transformer architecture. Furthermore, our extensive evaluations confirm that
MLP-KAN significantly improves performance in each area.
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Mario Köppen. On the training of a kolmogorov network. In Artificial Neural Networks—ICANN
2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–
479. Springer, 2002.

Alex Krizhevsky, Geoff Hinton, et al. Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40(7):1–9, 2010.

T Lenhart, K Eckhardt, N Fohrer, and H-G Frede. Comparison of two different approaches of
sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10):645–654, 2002.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
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A ADDITIONAL IMPLEMENTATION DETAILS

Building on the transformer architecture, the input initially passes through the attention layer, where
the number of attention heads is set to 8. Furthermore, our proposed MLP-KAN replaces the original
MLP layer and consists of 8 experts (4 MLP experts and 4 KAN experts), with 2 experts dynamically
selected for computation in each forward pass. Subsequently, an additive residual connection is
applied before the attention and MLP-KAN layers. We also use the normalization layer to ensure
a consistent numerical distribution across different feature dimensions. This improves both the
stability during training and the overall performance of the model. We utilized a structure with
12 identical layers. To enhance model generalization, we employ Stochastic Depth (Huang et al.,
2016), which randomly drops certain layers during training. The process is as follows:

• Step 1: Tokenize the input X into tokens Xi:

X = [X1,X2, . . . ,Xm];

• Step 2: Apply the multi-head self-attention mechanism (MHA) and layer normalization
(LN), obtaining:

X′ = MHA(LN(X)) +X

• Step 3: Continue processing with MLP-KAN to obtain the following results:

X′′ = F(LN(X′)) +X′

Typically, MLP-KAN, denoted as F(), incorporates a Mixture of Experts (MoE) layer comprising
multiple feed-forward networks (FFNs). These FFNs form a pool of experts [e1, e2, . . . ]. In this
work, the MLP and KAN experts represent two distinct implementations within the FFN ensemble,
together constituting the complete pool of experts. The gating mechanism, functioning as a linear
layer, calculates the probability of each input token being assigned to a particular expert. Based
on the router’s output, the Top-K mechanism most probable experts are selected to process the
input, and the outputs of these experts are weighted and summed to form the final result. The final
representation is expressed as follows:

αi(X) =
egi(X)∑E
j egj(X)

,

where g(X) = W · X represents the logit produced by the gate, and the weights are normalized
via a softmax function to yield the assignment probabilities for each input token across the experts.
Through the Top-K operation, K experts with the highest probabilities are selected to process each
input token.

Each selected expert processes the input, and the outputs are weighted according to softmax prob-
abilities. These are then aggregated into a weighted sum to produce the final output, which can be
described as follows:

F(X) =

k∑
i=1

αi(X) · ei(X).

This mechanism allows each token to be effectively processed by only a few relevant experts, thereby
achieving efficient computation and expanding the model’s capacity.

B DATASETS

B.1 CIFAR-10 DATASET

The CIFAR-10 dataset is a labeled subset of the 80 million tiny images dataset, containing 60,000
32x32 color images distributed across 10 mutually exclusive classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. Each class contains 6,000 images, and the dataset is divided
into 50,000 training images and 10,000 test images. The training images are split into five batches,
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each consisting of 10,000 images, while the test batch contains 10,000 randomly selected images.
The dataset provides a diverse representation of objects, and the classes are non-overlapping; for
instance, “automobile” includes small vehicles like sedans and SUVs, while “truck” includes only
larger vehicles like big trucks.

Each image is represented by a 1x3072 array of pixel values, where the first 1024 entries correspond
to the red channel, the second 1024 to the green channel, and the last 1024 to the red channel, stored
in row-major order. The dataset is widely used for image classification benchmarks, and baseline
results using convolutional neural networks have achieved test error rates of 18% without data aug-
mentation and 11% with augmentation. The dataset is commonly accessed in Python, Matlab, or
binary formats, with convenient tools for loading and processing the images for machine learning
tasks. The structure of the CIFAR10 dataset as shown in Table 6.

Table 6: CIFAR-10 Dataset Structure

Data Shape Description
train x (50000, 32, 32, 3) Training Samples
train y (50000, 1) Training Labels
test x (10000, 32, 32, 3) Testing Samples
test y (10000, 1) Testing Labels

B.2 CIFAR-100 DATASET

The CIFAR-100 dataset shares the same general structure as CIFAR-10 but is more granular, con-
taining 100 classes of objects, each represented by 600 images, with 500 training images and 100 test
images per class. The dataset introduces a hierarchical structure where the 100 fine-grained classes
are grouped into 20 superclasses (coarse labels). For example, the superclass “aquatic mammal”
includes beaver, dolphin, otter, seal, and whale, while the superclass “vehicles 1” contains bicycle,
bus, motorcycle, pickup truck, and train.

Similar to CIFAR-10, CIFAR-100 images are stored as 1x3072 arrays, with two label bytes for each
image: one for the coarse label and one for the fine label. This dataset is often used for fine-grained
classification tasks, presenting a more challenging problem due to its increased number of classes
and hierarchical structure. Both the CIFAR-10 and CIFAR-100 datasets have been extensively used
in the computer vision community for benchmarking the performance of image classification algo-
rithms. The structure of CIFAR-100 as shown in Table 7.

B.3 FEYNMAN DATASET

The Feynman dataset is a collection of physics equations sourced from the Feynman Lectures on
Physics (Feynman, 1999), designed as a benchmark for symbolic regression tasks. It comprises 120
formulas, primarily drawn from classical physics, including key concepts from mechanics, elec-
tromagnetism, and thermodynamics. For our purposes, we focus on the Feynman no units subset,
specifically equations involving at least two variables, which reduce to one-dimensional splines. An
example is the relativistic velocity addition formula, f(u, v) = u+v

1+uv , where u and v are sampled
from the range (-1, 1), and the network is trained to predict f based on these inputs. The dataset
serves to evaluate the ability of neural networks and other symbolic regression methods to model
and predict underlying physical laws from empirical data.

B.4 MINI-INMAGENET DATASET

Mini-Imagenet is a small-scale dataset extracted from the ImageNet dataset by the Google Deep-
Mind team in 2016, primarily used for research in the field of few-shot learning. The total size of
the dataset is approximately 3GB and contains 60,000 images divided into 100 classes, with 600
images per class. These images are of varying sizes and are saved in .jpg format.

Compared to the full ImageNet dataset, Mini-Imagenet significantly reduces the data volume, mak-
ing it more accessible for researchers with limited hardware resources. It is suitable for rapid proto-
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Table 7: Classification Table

Category Subcategory
Aquatic Mammals Beaver, Dolphin, Otter, Seal, Whale

Fish Aquarium Fish, Flounder, Ray, Shark, Trout
Flowers Orchid, Poppy, Rose, Sunflower, Tulip

Food Containers Bottle, Bowl, Can, Cup, Plate
Fruits and Vegetables Apple, Mushroom, Orange, Pear, Bell Pepper
Household Appliances Clock, Computer Keyboard, Lamp, Phone, TV
Household Furniture Bed, Chair, Sofa, Table, Wardrobe

Insects Bee, Beetle, Butterfly, Caterpillar, Cockroach
Large Carnivores Bear, Leopard, Lion, Tiger, Wolf

Large Man-made Outdoor Things Bridge, Castle, House, Road, Skyscraper
Large Natural Outdoor Scenes Cloud, Forest, Mountain, Plain, Sea

Large Omnivores and Herbivores Camel, Cow, Chimpanzee, Elephant, Kangaroo
Medium-sized Mammals Fox, Porcupine, Opossum, Raccoon, Skunk
Non-insect Invertebrates Crab, Lobster, Snail, Spider, Worm

People Baby, Boy, Girl, Man, Woman
Reptiles Crocodile, Dinosaur, Lizard, Snake, Turtle

Small Mammals Hamster, Mouse, Rabbit, Shrew, Squirrel
Trees Maple, Oak, Palm, Pine, Willow

Vehicles Bicycle, Bus, Motorcycle, Van, Train

typing and evaluating a model’s classification performance, especially in few-shot learning scenar-
ios.

The dataset is structured as follows:

Table 8: Mini-Imagenet Dataset Structure

Directory Description
mini-imagenet/ Root directory of the dataset

images/ Folder containing all the images
train.csv Label file for the training set
val.csv Label file for the validation set
test.csv Label file for the test set

It is important to note that when this dataset was created, the labels were not evenly sampled from
each class, which adds an additional challenge for models designed for few-shot learning. Re-
searchers can use these CSV files to obtain image labels and perform training, validation, and test-
ing.

B.5 SST-2 DATASET

The Stanford Sentiment Treebank (SST) is a linguistically annotated dataset designed to enable
detailed analysis of sentiment composition in natural language. Derived from movie reviews, this
dataset includes 11,855 individual sentences, which were parsed into syntactic structures using the
Stanford parser. The resulting parse trees consist of 215,154 unique phrases, all annotated by human
judges to capture nuanced sentiment at various granularities.

A distinctive feature of the SST dataset is its ability to support research on compositional sentiment
analysis, as each sub-phrase in a sentence is independently labeled for sentiment. This allows for
a deeper understanding of how sentiment is constructed and expressed through the combination of
linguistic elements.

In the context of binary sentiment classification tasks, a simplified version of the dataset, known
as SST-2, is often used. In SST-2, neutral sentences are excluded, and the remaining sentences are
categorized into either negative or positive classes. This binary classification setup has become a
widely adopted benchmark for evaluating sentiment analysis models.
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MLP MLP-KAN KAN

Figure 4: Visualization of attention mechanisms for the first batch of CIFAR-100. The attention
maps are generated using MLP, MLP-KAN, and KAN models, showcasing distinct patterns and
feature focuses across the different architectures.

MLP KANMLP-KAN

Figure 5: t-SNE visualizations of latent features extracted by MLP, MLP-KAN, and KAN models,
showcasing the distinct clustering patterns and feature separability achieved by each approach.

C ADDITIONAL RESULTS

C.1 ATTENTION MECHANISM VISUALIZATION

In this section, we present a comparative analysis of attention mechanisms across different models on
CIFAR-100. As shown in Figure 4, the attention maps of our proposed MLP-KAN approach are vi-
sually comparable to those generated by MLP, which achieves the best performance on CIFAR-100.
This indicates that our method effectively captures critical features similar to the most successful
architecture. In contrast, the KAN model exhibits distinct attention patterns and performs poorly on
CIFAR-100, likely due to its limitations in handling image-based tasks.

Overall, the results demonstrate that MLP-KAN not only aligns closely with the attention dynamics
of the best-performing model (MLP) but also surpasses KAN in adapting to the characteristics of
CIFAR-100, highlighting its effectiveness and adaptability for this dataset.

C.2 LATENT FEATURE VISUALIZATION

In this subsection, we analyze the quality of latent feature representations learned by MLP, MLP-
KAN, and KAN models through t-SNE visualizations, as shown in Figure 5. These visualizations
provide insights into how well the models capture meaningful structure in the latent space during
representation learning on the CIFAR-100 dataset.
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As illustrated, the MLP model shows relatively scattered clusters with weaker separability, indicat-
ing limited ability to encode meaningful and distinct latent representations. In contrast, our proposed
MLP-KAN model demonstrates significantly improved clustering patterns, with more compact and
well-separated groups of features. This suggests that the combination of MLPs for representation
learning and KANs for functional learning synergistically enhances the model’s ability to learn
structured and meaningful latent features.

These results confirm that MLP-KAN not only improves task performance but also enables the learn-
ing of semantically meaningful latent features, aligning closely with the underlying data structure.
This demonstrates the potential of MLP-KAN in bridging representation and functional learning for
real-world applications.
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