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Abstract

Diffusion models have become a leading method for generative modeling of both
image and scientific data. As these models are costly to train and evaluate, re-
ducing the inference cost for diffusion models remains a major goal. Inspired by
the recent empirical success in accelerating diffusion models via the parallel sam-
pling technique [1], we propose to divide the sampling process into O(1) blocks
with parallelizable Picard iterations within each block. Rigorous theoretical anal-
ysis reveals that our algorithm achieves Õ(poly log d) overall time complexity,
marking the first implementation with provable sub-linear complexity w.r.t. the
data dimension d. Our analysis is based on a generalized version of Girsanov’s
theorem and is compatible with both the SDE and probability flow ODE imple-
mentations. Our results shed light on the potential of fast and efficient sampling
of high-dimensional data on fast-evolving modern large-memory GPU clusters.

1 Introduction

Diffusion and probability flow based models [2–11] are now state-of-the-art in many fields, such
as computer vision and image generation [12–22], natural language processing [23, 24], audio and
video generation [25–29], optimization [30, 31], sampling and learning of fixed classes of distribu-
tions [32–41], solving high-dimensional partial differential equations [42–46], and more recently
several applications in physical, chemical and biological fields [47–63]. For a more comprehen-
sive list of related work, one may refer to the following review papers [64–66]. While there are
already many variants, such as denoising diffusion probabilistic models (DDPMs) [7], score-based
generative models (SGMs) [9], diffusion schrödinger bridges [67], stochastic interpolants and flow
matching [2–4], etc., the recurring idea is to design a stochastic process that interpolates between the
data distribution and some simple distribution, along which score functions or alike are learned by
neural network-based estimators, and then perform inference guided by the learned score functions.

Due to the sequential nature of the sampling process, the inference of high-quality samples from
diffusion models often requires a large number of iterations and, thus, evaluations of the neural
network-based score function, which can be computationally expensive [68]. Efforts have been
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Work Implementation Measure Approx. Time Complexity

[91, Theorem 2] SDE TV(p0, q̂T )
2 Õ(dδ−1)

[95, Theorem 2] SDE DKL(pη‖q̂T−η) Õ(d2δ−2)

[98, Corollary 1] SDE DKL(pη‖q̂T−η) Õ(dδ−2)

[102, Theorem 3] ODE w/UMLC correction TV(pη, q̂T−η)
2 Õ(

√
dδ−1)

Theorem 3.3 SDE w/parallel sampling DKL(pη∥q̂T−η) Õ(poly log(dδ−2))

Theorem 3.5 ODE w/parallel sampling TV(pη, q̂T−η)
2 Õ(poly log(dδ−2))

Table 1: Comparison of the approximate time complexity (cf. Definition 2.1) of different implemen-
tations of diffusion models. η is a small parameter that controls the smooth approximation of the
data distribution (cf. Section 3.1.1).

made to accelerate this process by resorting to higher-order or randomized numerical schemes [69–
75], augmented dynamics [76], adaptive step sizes [77], operator learning [78], restart sampling [79],
self-consistency [80, 81] and knowledge distillation [82–84]. Recently, several empirical works [1,
85] leverage the Picard iteration and triangular Anderson acceleration to parallelize the sampling
procedure of diffusion models and achieve empirical success in large-scale image generation tasks.
Some other recent work [86, 87] also combine the parallel sampling technique with the randomized
midpoint method [88] to accelerate the inference of diffusion models.

This efficiency issue is closely related to the problem of bounding the required number of steps
and evaluations of score functions to approximate an arbitrary data distribution on Rd to δ-accuracy,
which has been analyzed extensively in the literature [89–106]. In terms of the dependency on the
dimension d, the current state-of-the-art result for the SDE implementation of diffusion models is
Õ(d) [98], improved from the previous Õ(d2) bound [95]. [102] gives a Õ(

√
d) bound for the proba-

bility flow ODE implementation by considering a predictor-corrector scheme with the underdamped
Langevin Monte Carlo (UMLC) algorithm.

In this work, we aim to provide parallelization strategies, rigorous analysis, and theoretical guaran-
tees for accelerating the inference process of diffusion models. The time complexity of previous
implementations of diffusion models has been largely hindered by the discretization error, which
requires the step size to scale with Õ(1/d) for the SDE implementation and Õ(1/

√
d) for the prob-

ability flow ODE implementation. We show that the inference process can be first divided into
O(1) blocks with parallelizable evaluations of the score function within each, and thus reduce the
overall time complexity to Õ(poly log d). We provide the first implementation of diffusion mod-
els with poly-logarithmic complexity, a significant improvement over the current state-of-the-art
polynomial results that sheds light on the potential fast and efficient sampling of high-dimensional
distributions with diffusion models on fast-developing memory-efficient modern GPU clusters.

1.1 Contributions

• We propose parallelized inference algorithms for diffusion models in both the SDE and proba-
bility flow ODE implementations (PIADM-SDE/ODE) with exponential integrators, a shrinking
step size scheme towards the data end, and the early stopping technique;

• We provide a rigorous convergence analysis of PIADM-SDE, showing that our parallelization
strategy yields a diffusion model with Õ(poly log d) approximate time complexity;

• We show that our strategy is also compatible with the probability flow ODE implementation, and
PIADM-ODE could improve the space complexity from Õ(d2) to Õ(d3/2) while maintaining
the poly-logarithmic time complexity.

2 Preliminaries

In this section, we briefly recapitulate the framework of score-based diffusion models, define nota-
tions, and discuss related work.
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2.1 Diffusion Models

In score-based diffusion models, one considers a diffusion process (xs)s≥0 in Rd governed by the
following stochastic differential equation (SDE):

dxs = βs(xs)ds+ σsdws, with x0 ∼ p0, (2.1)

where (ws)s≥0 is a standard Brownian motion, and p0 is the target distribution that we would like to
sample from. The distribution of xs is denoted by ps. Once the drift βs(·), the diffusion coefficient
σs, and a sufficiently large time horizon T are specified, (2.1) also corresponds to a backward
process ( ⃗xt)0≤t≤T for another arbitrary diffusion coefficient (υs)s≥0 [107]:

d ⃗xt =

[
− ⃗βt( ⃗xt) +

⃗σt ⃗σ⊤
t + ⃗υt ⃗υ⊤

t

2
∇ log ⃗pt( ⃗xt)

]
dt+ ⃗υtdwt, (2.2)

where ⃗∗t denotes ∗T−t, with ⃗p0 = pT and ⃗pT = p0.

For notational simplicity, we adopt a simple choice of the drift and the diffusion coefficients in what
follows: βt(x) = − 1

2x, σt = Id, and υ = υId, under which (2.1) is an Ornstein-Uhlenbeck (OU)
process converging exponentially to its stationary distribution, i.e. pT ≈ p̂T := N (0, Id), and (2.1)
and (2.2) reduce to the following form:

dxs = −
1

2
xsds+ dws, and d ⃗xt =

[
1

2
⃗xt +

1 + υ2

2
∇ log ⃗pt( ⃗xt)

]
dt+ υdwt. (2.3)

In practice, the score function ∇ ⃗pt( ⃗xt) is often estimated by a neural network (NN) sθt (xt), where
θ represents its parameters, by minimizing the denoising score-matching loss [108, 109]:

L(θ) := Ext∼pt

[∥∥∇ log pt(xt)− sθt (xt)
∥∥2]

= Ex0∼p0

[
Ext∼pt|0(xt|x0)

[∥∥∥∥xt − x0e
−t/2

1− e−t
− sθt (xt)

∥∥∥∥2
]]

,
(2.4)

and the backward process in (2.3) is approximated by the following SDE thereafter:

dyt =

[
1

2
yt +

1 + υ2

2
sθt (yt)

]
dt+ υdwt, with y0 ∼ N (0, Id). (2.5)

Implementations. Diffusion models admit multiple implementations depending on the choice of
the parameter υ in the backward process (2.2). The SDE implementation with υ = 1 is widely
used in the literature for its simplicity and efficiency [10], while recent studies [102] claim that the
probability flow ODE implementation with υ = 0 may exhibit better time complexity. We refer
to [102, 110] for theoretical and [111, 112] for empirical comparisons of different implementations.

2.2 Parallel Sampling

Parallel sampling algorithms have been actively explored in the literature, including the parallel
tempering method [113–115] and several recent studies [116–118]. For diffusion models, the idea of
parallel sampling is based on the Picard iteration [119, 120] for solving nonlinear ODEs. Suppose
we have an ODE dxt = ft(xt)dt and we would like to solve it for t ∈ [0, T ], then the Picard
iteration is defined as follows:

x
(0)
t ≡ x0, and x

(k+1)
t := x0 +

∫ t

0

fs(x
(k)
s )ds, for k ∈ [0 : K − 1]. (2.6)

Under assumptions on the Lipschitz continuity of ft, the Picard iteration converges to the true so-
lution exponentially fast, in the sense that ‖‖x(k)

t − xt‖‖L∞([0,T ]) ≤ δ with K = O(log δ−1)
iterations. Unlike high-order ODE solvers, the Picard iteration is intrinsically parallelizable: for any
t ∈ [0, T ], the computation of x(k+1)

t relies merely on the values of the most recent iteration x
(k)
t .

With sufficient computational sources parallelizing the evaluations of f , the computational cost of
solving the ODE no longer scales with T but with the number of iterations K.
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Recently, this idea has been applied to both the Langevin Monte Carlo (LMC) and the underdamped
Langevin Monte Carlo (UMLC) contexts [121]. Roughly speaking, it is proposed to simulate the
Langevin diffusion process dxt = −∇V (xt)dt+dwt with the following iteration resembling (2.6):

x
(0)
t ≡ x0, and x

(k+1)
t := x0 −

∫ t

0

∇V (x
(k)
t )ds+wt, for k ∈ [0 : K − 1], (2.7)

where all iterations share a common Wiener process (wt)t≥0.

It is shown that for well-conditioned log-concave distributions, parallelized LMC would achieve
an iteration depth of K = Õ(poly log d) that matches the indispensable time horizon T =

Õ(poly log d) to achieve exponential ergodicity (cf. [121, Theorem 13]). This promises a signif-
icant speedup in sampling high-dimensional distributions from the standard LMC of T = Õ(d)
iterations, hindered by the o(1/d) step size as imposed by the discretization error and now evaded
by the parallelization.

2.3 Approximate Time Complexity

A similar situation is expected in diffusion models, where the application bottleneck is largely the
inference process with sequential iterations and expensive evaluations of the learned score function
sθt (·), which is often parametrized by large-scale NNs. Despite several unavoidable costs involv-
ing pre- and post-processing, data storage and retrieval, and arithmetic operations, we define the
following notion of the approximate time complexity of the inference process of diffusion models:

Definition 2.1 (Approximate time complexity). For a specific implementation of diffusion mod-
els (2.5), we define the approximate time complexity of the sampling process as the number of
unparallelizable evaluations of the learned NN-based score function sθt (·).

This definition coincides with the notion of the number of steps required to reach a certain accuracy
in [95, 91], iteration complexity in [98, 102], etc. in the previous theoretical studies of diffusion
models. We have adopted this notion in Table 1 for a comparison of the current state-of-the-art re-
sults and our bounds in this work. We will use the notion of space complexity likewise to denote the
approximate required storage during the inference. Trivially, the space complexity of the sequential
implementation is O(d). Should no confusion occur, we omit the dependency of the complexities
above on the accuracy threshold δ, etc., during our discussion, as we focus on applications of diffu-
sion models to high-dimensional data distributions, following the standard practice in the literature.

3 Main Results

Inspired by the acceleration achieved by the parallel sampling technique in LMC and ULMC, we
aim to accommodate parallel sampling into the theoretical analysis framework of diffusion models.
The benefit of the parallel sampling technique in this scenario has been recently confirmed by up
to 14× acceleration achieved by the ParaDiGMS algorithm [1] and ParaTAA [85], where several
practical compromises are made to mitigate GPU memory constraints and theoretical guarantees are
still lacking.

In this section, we will propose Parallelized Inference Algorithms for Diffusion Models with both
the SDE and probability flow ODE implementations, namely the PIADM-SDE (Algorithm 1) and
PIADM-ODE (Algorithm 2), and present theoretical guarantees of our algorithms, including the
approximate time complexity and space complexity, for both implementations in Section 3.1 and
Section 3.2, respectively. Due to the large number of notations used in the presentation, we give an
overview of notations in Appendix A.1 for readers’ convenience.

3.1 SDE Implementation

We first focus on the approximation, parallelization strategies, and error analysis of diffusion mod-
els with the SDE implementation, i.e. the forward and backward process (2.3) and its approximata-
tion (2.5) with υ = 1. We will show that PIADM-SDE achieves an Õ(poly log d) approximate time
complexity with Õ(d2) space complexity.
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Outer Iterations n: N = O(log d) blocks
q̂0 ≈ N (0, Id) q̂tN ≈ pdata

h0 h1 hn−1 hN−1 η

O(1)

k = 0

k = 1

k = K

Õ(d−1) or Õ(d−1/2)

...
...

Mn = Õ(d) or Õ(
√
d) parallalizable steps

q̂tn q̂tn+1

Inner
Iterations k:
K = Õ(log d)

depth

ϵn,0 ϵn,1 ϵn,M−1

Figure 1: Illustration of PIADM-SDE/ODE. The outer iterations are divided into O(log d) blocks
of O(1) length. Within each block, the inner iterations are parallelized with Õ(d) steps for SDE (cf.
Theorem 3.3), or Õ(

√
d) for probability flow ODE implementation (cf. Theorem 3.5). The overall

approximate time complexity is KN = Õ(poly log d). brown, green, blue, and red curves represent
the computation graph at t = tn + τn,m for m = 1, 2,Mn − 1,Mn.

3.1.1 Algorithm

PIADM-SDE is summarized in Algorithm 1 and illustrated in Figure 1. The main idea behind
our algorithm is the fact that (2.5) can be efficiently solved by the Picard iteration within a period
of O(1) length, transferring Õ(d) sequential computations to a parallelizable iteration of depth
Õ(log d). In the following, we introduce the numerical discretization scheme of our algorithm and
the implementation of the Picard iteration in detail.

Step Size Scheme. In our algorithm, the time horizon T is first segmented into N blocks of length
(hn)

N−1
n=0 , with each hn ≤ h := T/N = Ω(1), forming a grid (tn)

N
n=0 with tn =

∑n
j=1 hj . For

any n ∈ [0 : N − 1], the n-th block is further discretized into a grid (τn,m)Mn
m=0 with τn,0 = 0 and

τn,Mn
= hn. We denote the step size of the m-th step in the n-th block as ϵn,m = τn,m+1 − τn,m,

and the total number of steps in the n-th block as Mn.

For the first N − 1 blocks, we simply use the unique discretization, i.e. hn = h, ϵn,m = ϵ, and
Mn = M := h/ϵ, for n ∈ [0 : N − 2] and m ∈ [0 : M − 1]. Following [95, 98], to curb the
potential blow-up of the score function as t → T , which is shown by [98] for 0 ≤ s < t < T to be
of the order

E
[∫ t

s

‖∇ log ⃗pτ ( ⃗xτ )−∇ log ⃗ps( ⃗xs)‖2dτ
]
≲ d

(
t− s

T − t

)2

,

we apply early stopping at time tN = T − η, where η is chosen in a way such that the O(√η)
2-Wasserstein distance between ⃗pT and its smoothed version ⃗pT−η that we aim to sample from
alternatively, is tolerable for the downstream tasks. We also impose the exponential decay of the step
size towards the data end in the last block. To be specific, we let hN−1 = h − δ, and discretize the
interval [tN−1, tN ] = [(N − 1)h, T − η] into a grid (τN−1,m)

MN−1

m=0 with step sizes (ϵN−1,m)MN−1
m=0

satisfying
ϵN−1,m ≤ ϵ ∧ ϵ (h− τN−1,m+1) . (3.1)

As shown in Lemma B.7, this exponential decaying step size scheme towards the data end is crucial
to bound the discretization error in the last block.

For the simplicity of notations, we introduce the following indexing function: for τ ∈ [tn, tn+1], we
define In(τ) to be the unique integer such that

∑In(τ)
j=1 ϵn,j ≤ τ <

∑In(τ)+1
j=1 ϵn,j . We also define
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Algorithm 1: PIADM-SDE

Input: ŷ0 ∼ q̂0 = N (0, Id), a discretization scheme (T , (hn)
N
n=1 and (τn,m)n∈[1:N ],m∈[0:M ])

satisfying (3.1), the depth of iteration K, the learned NN-based score function sθt (·).
Output: A sample ŷtN ∼ q̂tN ≈ ⃗pT .

1 for n = 0 to N − 1 do
2 ŷ

(0)
tn,τn,m

← ŷtn , ξm ∼ N (0, Id) for m ∈ [0 : Mn] in parallel;
3 for k = 0 to K − 1 do
4 ŷ

(k)
tn,0
← ŷtn ;

5 for m = 0 to Mn in parallel do
6

ŷ
(k+1)
tn,τn,m

← e
τn,m

2 ŷ
(k)
tn,0

+
∑m−1

j=0 e
τn,m−τn,j+1

2

[
2 (eϵn,j − 1) sθtn+τn,j

(ŷ
(k)
tn,τn,j

) +
√
eϵn,j − 1ξj

]
;

(3.4)

7 end
8 end
9 ŷtn+1 ← ŷ

(K)
tn,τn,Mn

;
10 end

a piecewise function g such that gn(τ) =
∑In(τ)

j=1 ϵn,j . It is easy to check that under the uniform
discretization for n ∈ [1 : N − 1], we have In(τ) = bτ/ϵc and gn(τ) = bτ/ϵcϵ.

Exponential Integrator. For each step τ ∈ [tn + τn,m, tn + τn,m+1], we use the following expo-
nential integrator scheme [73], as the numerical discretization of the SDE (2.5):

ŷtn,τn,m+1 = eϵn,m/2ŷtn,τn,m + 2
(
eϵn,m/2 − 1

)
sθtn+τn,m

(ŷtn+τn,m) +
√
eϵn,m − 1ξ,

where ξ ∼ N (0, Id). Lemma B.3 shows its equivalence to approximating (2.5) as

dŷtn,τ =

[
1

2
ŷtn,τ + sθtn+τn,m

(ŷtn,τn,m)

]
dτ + dwtn+τ , for τ ∈ [τn,m, τn,m+1]. (3.2)

Remark 3.1. One could also implement a straightforward Euler-Maruyama scheme instead of
the exponential integrator (3.4), where an additional high-order discretization error term would
emerge [95, Theorem 1], which we believe would not affect the overall Õ(poly log d) time complex-
ity with parallel sampling.

Picard Iteration. Within each block, we apply Picard iteration of depth K. As shown by
Lemma B.3, the discretized scheme (3.4) implements the following iteration for k ∈ [0 : K − 1]:

dŷ
(k+1)
tn,τ =

[
1

2
ŷ
(k+1)
tn,τ + sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

)]
dτ + dwtn+τ , for τ ∈ [0, hn]. (3.3)

We denote the distribution of ŷ(K)
tn,τ by q̂tn+τ . As proved in Lemma B.6, the iteration above would

converge to (3.2) in each block exponentially fast, which given a sufficiently accurate learned score
estimation sθt should be close to the true backward SDE (2.3). One should also notice that the
Gaussians ξm are only sampled once and used for all iterations.

The parallelization for (3.4) in Algorithm 1 should be understood as that for any k ∈ [0 : K − 1],
each sθtn+τn,j

(ŷ
(k)
tn,τn,j

) for j ∈ [0 : Mn] is evaluated in parallel, with subsequent floating-point
operations comparably negligible, resulting in the overall O(NK) approximate time complexity.

3.1.2 Assumptions

Our theoretical analysis will be built on the following mild assumptions on the regularity of the data
distribution and the numerical properties of the neural networks:
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Assumption 3.1 (L2([0, tN ]) δ-accurate learned score). The learned NN-based score sθt is δ2-
accurate in the sense of

E ⃗p

[
N−1∑
n=0

Mn−1∑
m=0

ϵn,m

∥∥∥sθtn+τn,m

(
⃗xtn+τn,m

)
−∇ log ⃗ptn+τn,m

(
⃗xtn+τn,m

)∥∥∥2] ≤ δ22 . (3.5)

Assumption 3.2 (Regular and normalized data distribution). The data distribution p0 has finite
second moments and is normalized such that covp0(x0) = Id.
Assumption 3.3 (Bounded and Lipschitz learned NN-based score). The learned NN-based score
function sθt has bounded C1 norm, i.e. ‖‖sθt (·)‖‖L∞([0,T ]) ≤Ms with Lipschitz constant Ls.
Remark 3.2. Assumption 3.1 and the finite moment assumption in Assumption 3.2 are standard
assumptions across previous theoretical works on diffusion models [91, 95, 102], while we adopt
the normalization Assumption 3.2 from [98] to simplify true score function-related computations (cf.
Lemma A.8). Assumption 3.3 can be easily satisfied by truncation, ensuring computational stability.
Notice that the exponential integrator, one actually applies Picard iteration to e−t/2sθt , a relaxation
of Assumption 3.1 might be possible, which is left for future work.

3.1.3 Theoretical Guarantees

The following theorem summarizes our theoretical analysis for PIADM-SDE (Algorithm 1):
Theorem 3.3 (Theoretical Guarantees for PIADM-SDE). Under Assumptions 3.1, 3.2, and 3.3,
given the following choices of the order of the parameters

T = O(log(dδ−2)), h = Θ(1), N = O
(
log(dδ−2)

)
,

ϵ = Θ
(
d−1δ2 log−1(dδ−2)

)
, M = O

(
dδ−2 log(dδ−2)

)
, K = Õ(log(dδ−2)),

and let L2
shne

7
2hn � 1, δ2 ≲ δ, T ≲ log η−1, the distribution q̂tN that PIADM-SDE (Algorithm 1)

generates samples from satisfies the following error bound:

DKL(pη‖q̂tN ) ≲ de−T + dϵT + δ22 + dTe−K ≲ δ2,

with a total of KN = Õ
(
log2(dδ−2)

)
approximate time complexity and dM = Õ

(
d2δ−2

)
space

complexity for parallalizable δ-accurate score function computations.
Remark 3.4. We would like to make the following remarks on the result above:

• The acceleration from Õ(d) to Õ(poly log d) is at the cost of a trade-off with extra memory cost
of M = Õ(d) for computing and updating {sθtn+τn,j

(ŷ
(k)
tn,τn,m

)}m∈[0:Mn] simultaneously during
each Picard iteration;

• Compared with log-concave sampling [121], M being of order Õ(d) instead of Õ(
√
d) therein

is partly due to the time independence of the score function∇ log p(·) in general sampling tasks.
Besides, the scaling M = Õ(d) agrees with the current state-of-the-art dependency [98] for the
SDE implementation of diffusion models;

• As mentioned above, the scale of the step size ϵ within one block is still confined to Θ(1/M) =

Θ̃ (1/d). The block length h, despite being required to be small compared to 1/Ls, is of order
Θ(1), resulting in only Θ(log d) blocks and thus Õ(poly log d) total iterations.

3.1.4 Proof Sketch

The detailed proof of Theorem 3.3 is deferred to Section B. The pipeline of the proof is to (a) first
decompose the error DKL( ⃗ptN ‖q̂tN ) into blockwise errors using the chain rule of KL divergence; (b)
bound the error in each block by invoking Girsanov’s theorem; (c) sum up the errors in all blocks.

The key technical challenge lies in Step (b). Different from all previous theoretical works [91,
95, 102], the Picard iteration in our algorithm generates K paths recursively in each block using
the learned score sθt . And therefore the final path (ŷ

(K)
tn,τ )τ∈[0,hn] depends on all previous paths

(ŷ
(k)
tn,τ )τ∈[0,hn] for k ∈ [0 : K − 1], ruling out a direct change of measure argument from the
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naïve application of Girsanov’s theorem. To this end, we need a more sophisticated mathematical
framework of stochastic processes, as given in Appendix A.2. We define the measurable space
(Ω,F) with filtrations (Ft)t≥0 to specify the probability measures on (Ω,F) of each Wiener process,
and resort to one of the most general forms of Girsanov’s theorem ( [122, Theorem 8.6.6]). For
example, in the n-th block, we apply the following change of measure procedure:

1. Let q|Ftn
be the measure where wt(ω) is the shared Wiener process in the Picard iteration (3.3)

for any k ∈ [0 : K − 1];

2. Define another process dw̃tn+τ (ω) = dwtn+τ (ω) + δtn(τ, ω)dτ , where

δtn(τ, ω) := sθtn+gn(τ)
(ŷ

(K−1)
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
(K)
tn+τ (ω));

3. Invoke Girsanov’s theorem, which yields that the Radon-Nikodym derivative of the measure
⃗p|Ftn

with respect to q|Ftn
satisfies

log
d ⃗p|Ftn

dq|Ftn

(ω) = −
∫ hn

0

δtn(τ, ω)
⊤dwtn+τ (ω)−

1

2

∫ hn

0

‖δtn(τ, ω)‖2dτ ;

4. Conclude that (w̃tn+τ )τ≥0 is a Wiener process under the measure ⃗p|Ftn
and thus (3.3) at

iteration K satisfies the following SDE:

dŷ
(K)
tn,τ (ω) =

[
1

2
ŷ
(K)
tn,τ (ω) +∇ log ⃗ptn+τ

(
ŷ
(K)
tn,τ (ω)

)]
dτ + dw̃tn+τ (ω),

i.e. the true backward SDE (2.3) with the true score function for τ ∈ [tn, tn+1].
One should notice that this change of measure argument will cause an additional term in the bound
of the discrepancy between the first iteration ŷ

(1)
tn,τ and the initial condition ŷ

(0)
tn,τ in Lemma B.5.

However, due to the exponential convergence of the Picard iteration, this term does not affect the
overall error bound.

3.2 Probability Flow ODE Implementation

In this section, we will show that our parallelization strategy is also compatible with the probabil-
ity ODE implementation of diffusion models, i.e. the forward and backward process (2.3) and its
approximatation (2.5) with υ = 0. We will demonstrate that PIADM-ODE (Algorithm 2) further
improves the space complexity from Õ(d2) to Õ(d3/2) while maintaining the same Õ(poly log d)
approximate time complexity.

3.2.1 Algorithm

Due to the space limit, we refer the readers to Section C.1 and Algorithm 2 for the details of our
parallelization of the probability flow ODE formulation of diffusion models. PIADM-ODE keeps
the discretization scheme detailed in Section 3.1.1 that divides the time horizon T into N blocks
and uses exponential integrators for all updating rules. Notably, PIADM-ODE has the following
distinctions compared with PIADM-SDE (Algorithm 1):

• Instead of applying Picard iteration to the backward SDE as in (3.2), we apply Picard iteration
to the probability flow ODE as in (C.3) within each block, which does not require sampling i.i.d.
Gaussians to simulate a Wiener process;

• The most significant difference is the adoption of an additional corrector step [102] after running
the probability flow ODE with Picard iteration within one block. During the corrector step,
one augments the state space with a Gaussian that represents the initial momentum and then
simulates an underdamped Langevin dynamics for O(1) time with the learned NN-based score
function at the time of the block end;

• We then further parallelize the underdamped Langevin dynamics in the corrector step so that
it can also be accomplished with O(log d) approximate time complexity, as a naïve implemen-
tation would result in Õ(

√
d) [121], which is incompatible with our desired poly-logarithmic

guarantee.
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3.2.2 Assumptions

Due to technicalities specific to this implementation, we need first to modify Assumption 3.1 and add
assumption on the Lipschitzness of the true score functions ∇ log pt, which is a common practice
in related literature [95, 102]. Recent work on the probability flow ODE implementation [103, 105]
also adopts stronger assumptions compared to the SDE implementation.
Assumption 3.1’ (L∞([0, tN ]) δ-accurate learned score). For any n ∈ [0 : N − 1] and m ∈ [0 :
Mn − 1], the learned NN-based score sθtn,τn,m

is δ∞-accurate in the sense of

E ⃗ptn+τn,m

[∥∥∥sθtn+τn,m

(
⃗xtn+τn,m

)
−∇ log ⃗ptn+τn,m

(
⃗xtn+τn,m

)∥∥∥2] ≤ δ2∞.

Assumption 3.4 (Bounded and Lipschitz true score). The true score function∇ log pt has bounded
C1 norm, i.e. ‖‖∇ log pt(·)‖‖L∞([0,T ]) ≤Mp with Lipschitz constant Lp.

Further relaxations on Assumption 3.4 to time-dependent assumptions accommodating the blow-up
to the data end (e.g. [94, Assumption 1.5]) are left for further work.

3.2.3 Theoretical Guarantees

Our results for PIADM-ODE are summarized in the following theorem:
Theorem 3.5 (Theoretical Guarantees for PIADM-ODE). Under Assumptions 3.1’, 3.2, 3.3, and 3.4,
given the following choices of the order of the parameters

T = O(log(dδ−2)), h = Θ(1), N = O(log(dδ−2)),

ϵ = Θ
(
d−1/2δ log−1(d−1/2δ−1)

)
, M = O(d1/2δ−1 log(d1/2δ−1)), K = Õ(log(dδ−2)),

for the outer iteration and

T † = O(1) ≲ L−1/2
p ∧ L−1/2

s , h† = Θ(1), N † = O(1),

ϵ† = Θ(d−1/2δ), M † = O(d1/2δ−1), K† = O(log(dδ−2)),

for the inner iteration during the corrector step, and let L2
sh

2eh ∨ L2
sh

†2eh
†
/γ � 1, δ∞ ≲

δ log−1(dδ−2), and γ ≳ L
1/2
p , then the distribution q̂tN that PIADM-ODE (Algorithm 2) gener-

ates samples from satisfies the following error bound:

TV(pη, q̂tN )2 ≲ de−T + dϵ2T 2 + (T 2 +N2)δ2∞ + dN2e−K ≲ δ2,

with a total of (K +K†N†)N = Õ
(
log2(dδ−2)

)
approximate time complexity and d(M ∨M†) =

Θ̃
(
d3/2δ−1

)
space complexity for parallalizable δ-accurate score function computations.

The reduction of space complexity by the probability flow ODE implementation is intuitively owing
to the fact that the probability flow ODE process is a deterministic process in time rather than a
stochastic process as in the SDE implementation, getting rid of the O(ϵ) term derived by Itô’s
symmetry. This allows the discretization error to be bounded with O(ϵ2) instead (cf. Lemma B.7
and C.5).

3.2.4 Proof Sketch

The details of the proof of Theorem 3.5 are provided in Section C. Along with the complexity bene-
fits the deterministic nature of the probability flow ODE may bring, the analysis is technically more
involved than that of Theorem 3.3 and requires an intricate interplay between statistical distances.
Several major challenges and our corresponding solutions are summarized below:

• The error of the parallelized algorithm within each block may now only be bounded by 2-
Wasserstein distance (cf. Theorem C.7) instead of any f -divergence that admits data processing
inequality as in the SDE case by Girsanov’s theorem. The additional corrector step exactly han-
dles this issue and would intuitively translate 2-Wasserstein proximity to TV distance proximity
(cf. Lemma C.18), allowing the decomposition of the overall error into each block;
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• For the corrector step, the underdamped Langevin dynamics as a second-order dynamics requires
only O(

√
d) steps to converge, instead of O(d) steps in its overdamped counterpart. We then

adapt the parallelization technique mentioned in Section 2.2 to conclude that it can be accom-
plished with O(log d) approximate time complexity (cf. Theorem C.17). The error caused by
the approximation to the true score and numerical discretization within this step is bounded in
KL divergence by invoking Girsanov’s theorem(Theorem A.4) as in the proof of Theorem 3.3;

• Different from the SDE case, where the chain rule of KL divergence can easily decouple the ini-
tial distribution and the subsequent dynamics, we need several interpolating processes between
the implementation and the true backward process in this case. The final guarantee is in TV dis-
tance as it connects with the KL divergence via Pinsker’s inequality and admits data processing
inequality. We refer the readers to Figure 2 for an overview of the proof pipeline, as well as the
notations and intuitions of the auxiliary and interpolating processes appearing in the proof.

4 Discussion and Conclusion

In this work, we have proposed novel parallelization strategies for the inference of diffusion models
in both the SDE and probability flow ODE implementations. Our algorithms, namely PIADM-
SDE and PIADM-ODE, are meticulously designed and rigorously proved to achieve Õ(poly log d)
approximate time complexity and Õ(d2) and Õ(d3/2) space complexity, respectively, marking the
first inference algorithm of diffusion and probability flow based models with sub-linear approximate
time complexity. Our algorithm intuitively divides the time horizon into several O(1) blocks and
applies Picard iteration within each block in parallel, transferring the time complexity into space
complexity. Our analysis is built on a sophisticated mathematical framework of stochastic processes
and provides deeper insights into the mathematical theory of diffusion models.

Our findings echo and corroborate the recent empirical work [1, 85] that parallel sampling tech-
niques significantly accelerate the inference process of diffusion models. Theoretical exploration of
the adaptive block window scheme therein presents an interesting future research potential. Possible
future work also includes the investigation of how to apply our parallelization framework to other
variants of diffusion models, such as the discrete [23, 123–133] and multi-marginal [134] formula-
tions. Although we anticipate implementing diffusion models in parallel may introduce engineering
challenges, e.g. scalability, hardware compatibility, memory bandwidth, etc., we believe that our
theoretical contributions lay a solid foundation that not only supports but also motivates the empiri-
cal development of parallel inference algorithms for diffusion models since advancements continue
in GPU power and memory efficiency.
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A Mathematical Background

In this section, we will summarize used notations and rigorous mathematical framework of Itô pro-
cesses as necessary in the proofs. We will also present several technical lemmas for later reference.

A.1 Notations

We adopt the following notations throughout the paper:

Notation Description
[a : b] The set {a, a+ 1, . . . , b}
Id Identity matrix in Rd×d

⃗∗t ∗T−t

∗̂ Used to denote quantities produced by the algorithm
∗̃ Used to denote quantities related to the auxiliary processes
∗† Used to denote quantities related to the corrector step
‖ · ‖ The Euclidean norm of a vector

≲ or ≳ The inequality holds up to a constant factor
� Absolute continuity (for measures)/ much less than (for quantities)

(xt)t≥0 The forward process of the diffusion model (2.3)
( ⃗xt)t∈[0,T ] The backward process of the diffusion model (2.3)
(yt)t∈[0,T ] The approximate backward process of the diffusion model (2.5)
ŷ
(k)
tn,τn,m

The approximate value of the approximate process yt at time tn+τn,m
after k iterations in the (n+ 1)-th block

ŷtn The value of the approximate process yt at time tn
q̂tn The distribution of ŷtn
zt1:t2 The path (zt)t∈[t1,t2] of the process zt

Df (· ‖ ·) The f -divergence between two distributions
DKL(· ‖ ·) The KL divergence between two distributions
TV (· , ·) The total variation distance between two distributions
W2(·, ·) The 2-Wasserstein distance between two distributions

Table 2: Summary of notations

A.2 Preliminaries

Theorem A.1 (Properties of f -divergence). Suppose p and q are two probability measures on a
common measurable space (Ω,F) with p� q. The f -divergence between p and q is defined as

Df (p‖q) = EX∼q

[
f

(
dp

dq

)]
, (A.1)

where dp
dq is the Radon-Nikodym derivative of p with respect to q, and f : R+ → R is a convex

function. In particular, Df (· ‖ ·) coincides with the KullbackLeibler (KL) divergence when f(x) =
x log x and Df (· ‖ ·) = TV coincides with the total variation (TV) distance when f(x) = 1

2 |x− 1|.
For the f -divergence defined above, we have the following properties:

1. (Data-processing inequality). Suppose H is a sub-σ-algebra of F , the following inequality
holds

Df (p|H ‖ q|H) ≤ Df (p ‖ q);
for any f -divergence Df (·‖·).

2. (Chain rule). Suppose X is a random variable generating a sub-σ-algebra FX of F , and
p(·|X)� q(·|X) holds for any value of X , then

DKL(p‖q) = DKL(p|FX
‖q|FX

) + EFX
[DKL(p(·|X)‖q(·|X))].
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In this paper, we consider a probability space (Ω,F , p) on which (wt(ω))t≥0 is a Wiener process
in Rd. The Wiener process (wt(ω))t≥0 generates the filtration {Ft}t≥0 on the measurable space
(Ω,F). For an Itô process zt(ω) with the following governing SDE:

dzt(ω) = α(t, ω)dt+Σ(t, ω)dwt(ω),

for any time t, we denote the marginal distribution of zt by pt, i.e.

pt := p
(
z−1
t (·)

)
, where zt : Ω→ Rm, ω 7→ zt(ω),

as well as the path measure of the process zt in the sense of

pt1:t2 := p
(
z−1
t1:t2(·)

)
, where zt1:t2 : Ω→ C([t1, t2],Rm), ω 7→ (zt(ω))t∈[t1,t2].

For the sake of simplicity, we define the following class of functions:
Definition A.2. For any 0 ≤ t1 < t2, we define V(t1, t2) as the class of functions f(t, ω) :
[0,+∞)× Ω→ R such that

1. f(t, ω) is B × F -measurable, where B is the Borel σ-algebra on Rd;

2. f(t, ω) is Ft-adapted for all t ≥ 0;

3. The following Novikov condition holds

E
[
exp

∫ t2

t1

f2(t, ω)dt

]
< +∞,

and V = ∩t>0V(0, t). For vectors and matrices, we say it belongs to Vn(t, ω) or Vm×n(t, ω) if
each component of the vector or each entry of the matrix belongs to V(t, ω).
Remark A.3. Novikov’s condition appeared in the third requirement is often relaxed to the squared
integrability condition in the general definition of Itô processes, which requires

E
[∫ t2

t1

f2(t, ω)dt

]
< +∞.

Here, we adopt the more restricted condition in the spirit of its necessity for Girsanov’s theorem to
hold, as we shall see later.

Similar to previous work [102], here we can avoid checking Novikov’s condition throughout our
proofs below by using the approximation argument presented in [91]. A review of Girsanov can
be found in textbooks like in [122, 135]. We will present the following generalized version of
Girsanov’s theorem:
Theorem A.4 (Girsanov’s Theorem [122, Theorem 8.6.6]). Let α(t, ω) ∈ Vm, Σ(t, ω) ∈ Vm×n,
and (wt(ω))t≥0 be a Wiener process on the probability space (Ω,F , q). For t ∈ [0, T ], suppose
zt(ω) is an Itô process with the following SDE:

dzt(ω) = α(t, ω)dt+Σ(t, ω)dwt(ω), (A.2)

and there exist processes δ(t, ω) ∈ Vn and β(t, ω) ∈ Vm such that

1. Σ(t, ω)δ(t, ω) = α(t, ω)− β(t, ω);

2. The process Mt(ω) as defined below is a martingale with respect to the filtration {Ft}t≥0 and
probability measure q:

Mt(ω) = exp

(
−
∫ t

0

δ(s, ω)⊤dws(ω)−
1

2

∫ t

0

‖δ(s, ω)‖2ds
)
,

then there exists another probability measure p on (Ω,F) such that

1. p� q with the Radon-Nikodym derivative
dp

dq
(ω) = MT (ω),
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2. The process w̃t(ω) as defined below is a Wiener process on (Ω,F , p):

w̃t(ω) = wt(ω) +

∫ t

0

δ(s, ω)ds,

3. Any continuous path in C([t1, t2],Rm) generated by the process zt satisfies the following SDE
under the probability measure p:

dz̃t(ω) = β(t, ω)dt+Σ(t, ω)dw̃t(ω). (A.3)

Corollary A.5. Suppose the conditions in Theorem A.4 hold, then for any t1, t2 ∈ [0, T ] with
t1 < t2, the path measure of the SDE (A.3) under the probability measure p in the sense of pt1:t2 =
p
(
z−1
t1:t2(·)

)
is absolutely continuous with respect to the path measure of the SDE (A.2) in the sense

of qt1:t2 = q
(
z−1
t1:t2(·)

)
. Moreover, the KL divergence between the two path measures is given by

DKL(pt1:t2‖qt1:t2) = DKL(pt1‖qt1) + Eω∼p|Ft1

[
1

2

∫ t2

t1

‖δ(t, ω)‖2dt
]

(A.4)

Proof. First, by Theorem A.1, we have

DKL(pt1:t2‖qt1:t2) = DKL(p|Ft1
‖q|Ft1

)+Ez∼p|Ft1

[
DKL

(
p(z̃−1

t1:t2(·))|z̃t1 = z̃)‖q(z̃−1
t1:t2(·))|z̃t1 = z̃)

)]
.

From Girsanov’s theorem (Theorem A.4), we have that the measure p|Ft1
is absolutely continuous

with respect to q|Ft1
, which allows us to compute the second term above as follows:

DKL

(
p(z̃−1

t1:t2(·)|z̃t1 = z̃)‖q(z̃−1
t1:t2(·)|z̃t1 = z̃)

)
= Ez̃t1:t2

[
log

dp(z̃−1
t1:t2(·)|z̃t1 = z)

dq(z̃−1
t1:t2(·)|z̃t1 = z)

]
= Eω∼p|Ft1

[
log

dp|Ft1

dq|Ft1

]

= Eω∼p|Ft1

[
−
∫ t2

t1

δ(t, ω)⊤dwt(ω)−
1

2

∫ t2

t1

‖δ(t, ω)‖2dt
]

= Eω∼p|Ft1

[
−
∫ t2

t1

δ(t, ω)⊤ (dw̃t(ω)− δ(t, ω)dt)− 1

2

∫ t2

t1

‖δ(t, ω)‖2dt
]

= Eω∼p|Ft1

[
1

2

∫ t2

t1

‖δ(t, ω)‖2dt
]
,

and therefore

DKL(pt1:t2‖qt1:t2) = DKL(pt1‖qt1) + Eω∼p|Ft1

[
1

2

∫ t2

t1

‖δ(t, ω)‖2dt
]
,

which completes the proof.

A.3 Helper Lemmas

Lemma A.6 ([98, Lemma 2]). For the backward process (2.3), we have for 0 ≤ s < t < T ,

d

dt

(
E
[
‖∇ log ⃗pt( ⃗xt)−∇ log ⃗ps( ⃗xs)‖2

])
≤ 1

2
E
[
‖∇ log ⃗ps( ⃗xs)‖2

]
+ E

[
‖∇2 log ⃗pt( ⃗xt)‖2F

]
.

Lemma A.7 ([98, Lemma 3]). For the forward process (2.3), we have for 0 ≤ t < T ,

E [∇ log pt(xt)] ≤ dσ−2
t , and E

[
‖∇2 log pt(xt)‖2F

]
≤ dσ−4

t + 2
d

dt

(
σ−4
t E [trΣt]

)
,

where the posterior covariance matrix Σt := covp0|t(x0) and σ2
t = 1−e−t. Moreover, the posterior

covariance matrix Σt satisfies
E [trΣt] ≲ d ∧ dσ2

t .
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Lemma A.8. For any n ∈ [0 : N − 1] and τ ∈ [0, hn], under the assumption covp0(x0) = Id, we
have

E
[
‖ ⃗xtn‖2

]
≤ 2d, (A.5)

and

E
[
‖ ⃗xtn − ⃗xtn+τ‖2

]
≤ 3d. (A.6)

Proof. Conditioned on x0, we have that

⃗xtn = xT−tn ∼ N
(
e−

1
2 (T−tn)x0, (1− e−(T−tn))Id

)
,

and

⃗xtn+τ = xT−tn−τ ∼ N
(
e−

1
2 (T−tn−τ)x0, (1− e−(T−tn−τ))Id

)
for any τ ∈ [0, hn]. Therefore, we have

E
[
‖ ⃗xtn‖2

]
= E

[
E
[
‖xT−tn‖2

∣∣x0

]]
≤ E

[
E
[
‖xT−tn − e−

1
2 (T−tn)x0‖2

∣∣x0

]
+ ‖e− 1

2 (T−tn)x0‖2
]

≤ d(1− e−(T−tn)) + e−(T−tn)E[‖x0‖2] ≤ 2d.

Taking the difference between them then implies that for any τ ∈ [0, hn],

E
[
‖ ⃗xtn − ⃗xtn+τ‖2

]
= E

[
E
[
‖xT−tn − xT−tn−τ‖2 |x0

]]
≤ d(2− e−(T−tn) − e−(T−tn−τ))

+
(
e−

1
2 (T−tn) − e−

1
2 (T−tn−τ)

)2
E[‖x0‖2]

≤ 2d+ e−(T−tn−τ)(1− e−
1
2 τ )2E[‖x0‖2] ≤ 3d.

Lemma A.9 (Lemma 9 in [95]). For q̂0 ∼ N (0, Id) and ⃗p0 = pT is the distribution of the solution
to the forward process (2.3), we have

TV( ⃗p0, q̂0)
2 ≤ DKL( ⃗p0‖q̂0) ≲ de−T .

B Details of SDE Implementation

In this section, we will present the missing proofs for Theorem 3.3. For readers’ convenience, we
reiterate the backward process (2.3)

d ⃗xt =

[
1

2
⃗xt +∇ log ⃗pt( ⃗xt)

]
dt+ dwt, with ⃗x0 ∼ pT , (B.1)

and its approximate version (2.5) with the learned score function

dyt =

[
1

2
yt + sθt (yt)

]
dt+ dwt, with y0 ∼ N (0, Id).

The filtration Ft refers to the filtration of the SDE (B.1) up to time t.
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B.1 Auxiliary Process

We would like first to consider the errors that Algorithm 1 may cause within one block of update.
To this end, we consider the following auxiliary process for τ ∈ [0, hn] conditioned on the filtration
Ftn at time tn:
Definition B.1 (Auxiliary Process). For any n ∈ [0 : N − 1], we define the auxiliary process
(ŷ

(k)
tn,τ )τ∈[0,hn] as the solution to the following SDE recursively for k ∈ [0 : K − 1]:

dŷ
(k+1)
tn,τ (ω) =

[
1

2
ŷ
(k+1)
tn,τ (ω) + sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

(ω)
)]

dτ + dwtn+τ (ω), (B.2)

with the initial condition
ŷ
(0)
tn,τ (ω) ≡ ŷtn(ω) for τ ∈ [0, hn], and ŷ

(k)
tn,0

(ω) ≡ ŷtn(ω) for k ∈ [1 : K] (B.3)

where ŷtn(ω) = ŷ
(K)
tn−1,τn−1,Mn−1

(ω) if n ∈ [1 : N − 1] and ŷt0(ω) ∼ N (0, Id).

The iteration should be perceived as a deterministic procedure to each event ω ∈ Ω, i.e. each
realization of the Wiener process (wt)t≥0. The following lemma clarifies this fact and proves the
well-definedness and parallelability of the iteration in (B.2).

Lemma B.2. The auxiliary process (ŷ(k)
tn,τ (ω))τ∈[0,hn] is Ftn+τ -adapted for any k ∈ [0 : K] and

n ∈ [0 : N − 1].

Proof. Since the initialization ŷ
(0)
tn,τ (ω) ≡ ŷtn(ω) for τ ∈ [0, hn], where ŷtn(ω) is Ftn -adapted, it

is obvious that ŷ(0)
tn,τ (ω) is Ftn+τ -adapted. Now suppose that (ŷ(k)

tn,τ (ω))τ∈[0,hn] is Ftn+τ -adapted,
since gn(τ) ≤ τ , we have the following Itô integral well-defined and Ftn+τ -adapted:∫ τ

0

sθtn+gn(τ ′)

(
ŷ
(k)
tn,gn(τ ′)(ω)

)
dτ ′,

and therefore (B.2) has a unique strong solution (ŷ
(k+1)
tn,τ (ω))τ∈[0,hn] that is also Ftn+τ -adapted.

The lemma follows by induction.

Lemma B.3 (Equivalence between (3.4) and (B.2)). For any n ∈ [0 : N−1], the update rule (3.4) in
Algorithm 1 is equivalent to the exact solution of the auxiliary process (B.2) for any k ∈ [0 : K − 1]
and τ ∈ [0, hn].

Proof. The dependency on ω will be omitted in the proof below.

Rewriting (B.2) and multiplying e−
τ
2 on both sides yield

d
[
e−

τ
2 ŷ

(k+1)
tn,τ

]
= e−

τ
2

[
dŷ

(k+1)
tn,τ − 1

2
ŷ
(k+1)
tn,τ dτ

]
= e−

τ
2

[
sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

)
dτ + dwtn+τ

]
.

Integrating on both sides from 0 to τ implies

e−
τ
2 ŷ

(k+1)
tn,τ − ŷ

(k+1)
tn,0

=

∫ τ

0

e−
τ′
2

(
sθtn+gn(τ ′)

(
ŷ
(k)
tn,gn(τ ′)

)
dτ ′ + dwtn+τ ′

)

=

Mn∑
m=0

∫ τ∧τn,m+1

τ∧tn,m

e−
τ′
2 sθtn+τn,m

(
ŷ
(k)
tn,τn,m

)
dτ ′ +

∫ τ

0

e−
τ′
2 dwtn+τ ′

=

Mn∑
m=0

2
(
e−

τ∧τn,m
2 − e−

τ∧τn,m+1
2

)
sθtn+τn,j

(
ŷ
(k)
tn,τn,m

)
+

∫ τ

0

e−
τ′
2 dwtn+τ ′ ,

and then multiplying e
τ
2 on both sides above yields

ŷ
(k+1)
tn,τ = e

τ
2 ŷ

(k+1)
tn,0

+

Mn∑
m=0

2
(
e

τ∧τn,m+1−τ∧τn,m

2 − 1
)
e

0∨(τ−τn,m+1)

2 sθtn+τn,m

(
ŷ
(k)
tn,τn,m

)
+

Mn∑
m=0

∫ τ∧τn,m+1

τ∧τn,m

e
τ−τ′

2 dwtn+τ ′ ,
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where, by Itô isometry, we have

∫ τ∧τn,m+1

τ∧τn,m

e
τ−τ′

2 dwtn+τ ′ ∼ N
(
0,
(
eτ∧τn,m+1−τ∧τn,m − 1

)
e0∨(τ−τn,m+1)Id

)
for τ > τn,m and equals to 0 otherwise. Plugging in τ = τj,m gives us (3.4), as desired.

B.2 Errors within Block

We shall invoke Girsanov’s theorem (Theorem A.4) in the procedure as detailed below:

1. Setting (A.2) in Theorem A.4 as the auxiliary process (B.2) at iteration K, where wt(ω) is a
Wiener process under the measure q|Ftn

;

2. Defining another process w̃tn+τ (ω) governed by the following SDE:

dw̃tn+τ (ω) = dwtn+τ (ω) + δtn(τ, ω)dτ,

where

δtn(τ, ω) := sθtn+gn(τ)
(ŷ

(K−1)
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
(K)
tn+τ (ω)), (B.4)

and computing the Radon-Nikodym derivative of the measure ⃗p|Ftn
with respect to q|Ftn

as

d ⃗p|Ftn

dq|Ftn

(ω) := exp

(
−
∫ hn

0

δtn(τ, ω)
⊤dwtn+τ (ω)−

1

2

∫ hn

0

‖δtn(τ, ω)‖2dτ

)
,

3. Concluding that (B.2) at iteration K under the measure q|Ftn
satisfies the following SDE:

dŷ
(K)
tn,τ (ω) =

[
1

2
ŷ
(K)
tn,τ (ω) +∇ log ⃗ptn+τ

(
ŷ
(K)
tn,τ (ω)

)]
dτ + dw̃tn+τ (ω),

with (w̃tn+τ )τ≥0 being a Wiener process under the measure ⃗p|Ftn
. If we replace ŷ

(K)
tn,gn(τ)

(ω)

by ⃗xtn+τ (ω), one should notice (B.5) is immediately the original backward SDE (2.3) with the
true score function on t ∈ [tn, tn+1]:

d ⃗xtn+τ (ω) =

[
1

2
⃗xtn+τ (ω) +∇ log ⃗ptn+τ ( ⃗xtn+τ (ω))

]
dτ + dw̃tn+τ (ω). (B.5)

Remark B.4. The applicability of Girsanov’s theorem here relies on the Fτ -adaptivity of
sθtn+gn(τ)

(
ŷ
(K−1)
tn,gn(τ)

(ω)
)

established by Lemma B.2. One should notice the change of measure
procedure above depends on the number of iterations K, and different K would lead to different
transform (B.4).

Then Corollary A.5 provides the following computation

DKL( ⃗ptn+1
‖q̂tn+1

) ≤ DKL( ⃗ptn:tn+1
‖q̂tn:tn+1

)

= DKL( ⃗ptn‖q̂tn) + Eω∼q|Ftn

[
1

2

∫ hn

0

‖δtn(τ, ω)‖2dτ

]
,

(B.6)
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where the first inequality is by the data-processing inequality (Theorem A.1). Now, the problem
remaining is to bound the discrepancy quantified by∫ hn

0

‖δtn(τ, ω)‖2dτ

=

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷ

(K−1)
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
(K)
tn,τ (ω))

∥∥∥2 dτ
≤ 3

(∫ hn

0

∥∥∥∇ log ⃗ptn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)
−∇ log ⃗ptn+τ

(
ŷ
(K)
tn,τ (ω)

)∥∥∥2 dτ︸ ︷︷ ︸
:=Atn (ω)

+

∫ hn

0

∥∥∥sθtn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)
−∇ log ⃗ptn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)∥∥∥2 dτ︸ ︷︷ ︸

:=Btn (ω)

+

∫ hn

0

∥∥∥sθtn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷ
(K−1)
tn,gn(τ)

(ω)
)∥∥∥2 dτ).

(B.7)

Before we continue our proof, we would like first to provide the following lemma bounding the
behavior of the auxiliary process (B.2) when k = 0 for τ ∈ [0, hn].
Lemma B.5. For any n ∈ [0 : N − 1], suppose the initialization ŷtn in (B.3) of the auxiliary
process (B.2) follows the distribution of ⃗xtn ∼ ⃗ptn , then the following estimate holds

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[
‖ŷ(1)

tn,τ (ω)− ŷ
(0)
tn,τ (ω)‖

2
]

≤ hne
7
2hn

(
M2

s + 2d
)
+ 3e

7
2hnEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

+ 3e
7
2hnhnL

2
s sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,τ (ω)− ŷ

(K−1)
tn,τ (ω)

∥∥∥2] .
(B.8)

Proof. Let ztn,τ = ŷ
(1)
tn,τ − ŷ

(0)
tn,τ . For k = 0, we can rewrite (B.2) as

dztn,τ =

[
1

2

(
ztn,τ + ŷ

(0)
tn,τ

)
+ sθtn+gn(τ)

(
ŷ
(0)
tn,gn(τ)

)]
dτ + dwtn+τ ,

By applying Itô’s lemma and plugging in the expression of wtn+τ given by Theorem A.4, we have

d‖ztn,τ‖2 =

[
‖ztn,τ‖2 + z⊤

tn,τ ŷ
(0)
tn,τ + 2z⊤

tn,τs
θ
tn+gn(τ)

(
ŷ
(0)
tn,gn(τ)

)
+ d

]
dτ

+ 2z⊤
tn,τ

(
dw̃tn+τ (ω)− δtn(τ, ω)dτ

)
,

(B.9)

By integrating from 0 to τ and taking the expectation on both sides of (B.9), we obtain that
Eω∼ ⃗p|Ftn

[
‖ztn,τ‖2

]
= Eω∼ ⃗p|Ftn

[∫ τ

0

(
‖ztn,τ ′‖2 + z⊤

tn,τ ′ ŷ
(0)
tn,τ ′ + 2z⊤

tn,τ ′sθtn+gn(τ ′)

(
ŷ
(0)
tn,gn(τ ′)

)
+ d

)
dτ ′

]

+ 2Eω∼ ⃗p|Ftn

[∫ τ

0

z⊤
tn,τ ′

(
dw̃tn+τ ′(ω)− δtn(τ

′, ω)dτ ′
)]

,

and by AM-GM, we further have
Eω∼ ⃗p|Ftn

[
‖ztn,τ‖2

]
≤ Eω∼ ⃗p|Ftn

[∫ τ

0

[
7

2
‖ztn,τ ′‖2 + 1

2

∥∥∥ŷ(0)
tn,τ ′

∥∥∥2 + ∥∥∥sθtn+gn(τ ′)

(
ŷ
(0)
tn,gn(τ ′)

)∥∥∥2 + d+ ‖δtn(τ, ω)‖2
]
dτ ′

]

≤
∫ τ

0

Eω∼ ⃗p|Ftn

[
7

2
‖ztn,τ ′‖2 + ‖δtn(τ, ω)‖2

]
dτ ′ +

(
1

2
E
[∥∥∥ŷ(0)

tn,τ

∥∥∥2]+M2
s + d

)
τ,
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where δtn(τ, ω) is defined in (B.4). Similar to (B.7), we may use triangle inequality to upper bound
‖δtn(τ, ω)‖2, which implies that for any τ ∈ [0, hn]

Eω∼ ⃗p|Ftn

[
‖ztn,τ‖2

]
≤ 7

2

∫ τ

0

Eω∼ ⃗p|Ftn

[
‖ztn,τ ′‖2

]
dτ ′ +

(
1

2
E
[∥∥∥ŷ(0)

tn,τ

∥∥∥2]+M2
s + d

)
τ

+ 3Eω∼ ⃗p|Ftn

[∫ τ

0

∥∥∥sθtn+gn(τ)
(ŷ

(K−1)
tn,gn(τ)

(ω))− sθtn+gn(τ)
(ŷ

(K)
tn,gn(τ)

(ω))
∥∥∥2 dτ ′]

+ 3Eω∼ ⃗p|Ftn

[∫ τ

0

∥∥∥sθtn+gn(τ)
(ŷ

(K)
tn,gn(τ)

(ω))−∇ log ⃗ptn,gn(τ)(ŷ
(K)
tn,gn(τ)

(ω))
∥∥∥2 dτ ′]

+ 3Eω∼ ⃗p|Ftn

[∫ τ

0

∥∥∥∇ log ⃗ptn+gn(τ)(ŷ
(K)
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
(K)
tn+τ (ω))

∥∥∥2 dτ ′]
≤ 7

2

∫ τ

0

Eω∼ ⃗p|Ftn

[
‖ztn,τ ′‖2

]
dτ ′ +

(
1

2
E
[∥∥∥ŷ(0)

tn,τ

∥∥∥2]+M2
s + d

)
τ

+ 3L2
s

∫ τ

0

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,gn(τ ′)(ω)− ŷ

(K−1)
tn,gn(τ ′)(ω)

∥∥∥2] dτ ′ + 3Eω∼ ⃗p|Ftn
[Atn(ω) +Btn(ω)] ,

where in the second inequality above, we have used the fact that sθt (·) is Ls-Lipschitz for any t. By
Grönwall’s inequality, we have that for any τ ∈ [0, hn]

Eω∼ ⃗p|Ftn

[
‖ztn,τ‖2

]
≤ e

7
2 τ

[(
1

2
E
[∥∥∥ŷ(0)

tn,τ

∥∥∥2]+M2
s + d

)
τ

]
+ 3e

7
2 τEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

+ 3e
7
2 τL2

s

∫ τ

0

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,gn(τ ′)(ω)− ŷ

(K−1)
tn,gn(τ ′)(ω)

∥∥∥2] dτ ′.
(B.10)

By assumption, ŷ(0)
tn,τ = ŷtn follows the distribution of ⃗xtn ∼ ⃗ptn , which allows us to bound the

second moment of ŷtn for any n ∈ [0 : N ] by Lemma A.8:

E
[
‖ŷtn‖2

]
= E

[
‖ ⃗xtn‖2

]
≤ 2d.

Substituting (A.5) into (B.10) then yields that for any τ ∈ [0, hn]

Eω∼q|Ftn

[
‖ztn,τ‖2

]
≤ τe

7
2 τ
(
M2

s + 2d
)
+ 3e

7
2 τEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

+ 3τe
7
2 τL2

s sup
τ ′∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,τ ′(ω)− ŷ

(K−1)
tn,τ ′ (ω)

∥∥∥2] .
Taking supremum with respect to τ ∈ [0, hn] on both sides above completes our proof.

As utilized in the proof of the existence of solutions of SDEs, the following lemma demonstrates the
exponential convergence of the iteration defined in (B.2).
Lemma B.6 (Exponential convergence of Picard iteration in PIADM-SDE). For any n ∈ [0, N ], sup-
pose the initialization ŷtn in (B.3) of the auxiliary process (B.2) follows the distribution of ⃗xtn ∼ ⃗ptn ,
then the two ending terms ŷ(K)

tn,τ and ŷ
(K−1)
tn,τ of the sequence {ŷ(k)

tn,τ}k∈[0:K−1] satisfy the following
exponential convergence rate

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,τ (ω)− ŷ

(K−1)
tn,τ (ω)

∥∥∥2
2

]

≤
(
L2
shne

2hn
)K−1

he
7
2hn

(
M2

s + 2d
)

1− 3 (L2
shne2hn)

K−1
e

7
2hnhnL2

s

+
3
(
L2
shne

2hn
)K−1

e
7
2hnEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

1− 3 (L2
shne2hn)

K−1
e

7
2hnhnL2

s

.

Proof. For each ω ∈ Ω conditioned on the filtration Ftn , subtracting (B.2) from the process as
defined by

dŷ
(k)
tn,τ (ω) =

[
1

2
ŷ
(k)
tn,τ (ω) + sθtn+gn(τ)

(
ŷ
(k−1)
tn,gn(τ)

(ω)
)]

dτ + dwtn+τ (ω), (B.11)
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we have

d
(
ŷ
(k+1)
tn,τ (ω)− ŷ

(k)
tn,τ (ω)

)
=

[
1

2

(
ŷ
(k+1)
tn,τ (ω)− ŷ

(k)
tn,τ (ω)

)
+ sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷ
(k−1)
tn,gn(τ)

(ω)
)]

dτ,

where the diffusion term dwtn+τ cancels each other out. Now we may use the formula above to

compute derivative d
dτ ′

∥∥∥ŷ(k+1)
tn,τ ′ (ω)− ŷ

(k)
tn,τ ′(ω)

∥∥∥2 explicitly, integrate it from τ ′ = 0 to τ , and
obtain the following inequality∥∥∥ŷ(k+1)

tn,τ (ω)− ŷ
(k)
tn,τ (ω)

∥∥∥2
=

∫ τ

0

2
(
ŷ
(k+1)
tn,τ ′ (ω)− ŷ

(k)
tn,τ ′(ω)

)⊤ (
sθtn+gn(τ ′)

(
ŷ
(k)
tn,gn(τ ′)(ω)

)
− sθtn+gn(τ ′)

(
ŷ
(k−1)
tn,gn(τ ′)(ω)

))
dτ ′

+

∫ τ

0

∥∥∥ŷ(k+1)
tn,τ ′ (ω)− ŷ

(k)
tn,τ ′(ω)

∥∥∥2 dτ ′
≤ 2

∫ τ

0

∥∥∥ŷ(k+1)
tn,τ ′ (ω)− ŷ

(k)
tn,τ ′(ω)

∥∥∥2 dτ ′
+

∫ τ

0

∥∥∥sθtn+gn(τ ′)

(
ŷ
(k)
tn,gn(τ ′)(ω)

)
− sθtn+gn(τ ′)

(
ŷ
(k−1)
tn,gn(τ ′)(ω)

)∥∥∥2 dτ ′
≤ 2

∫ τ

0

∥∥∥ŷ(k+1)
tn,τ ′ (ω)− ŷ

(k)
tn,τ ′(ω)

∥∥∥2 dτ ′ + L2
s

∫ τ

0

∥∥∥ŷ(k)
tn,gn(τ ′)(ω)− ŷ

(k−1)
tn,gn(τ ′)(ω)

∥∥∥2 dτ ′.
By Grönwall’s inequality, we have∥∥∥ŷ(k+1)

tn,τ (ω)− ŷ
(k)
tn,τ (ω)

∥∥∥2 ≤ L2
se

2τ

∫ τ

0

∥∥∥ŷ(k)
tn,gn(τ ′)(ω)− ŷ

(k−1)
tn,gn(τ ′)(ω)

∥∥∥2 dτ ′. (B.12)

Taking expectation on both sides above further implies that for any τ ∈ [0, hn],

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(k+1)
tn,τ (ω)− ŷ

(k)
tn,τ (ω)

∥∥∥2]
≤ L2

se
2τ

∫ τ

0

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(k)
tn,gn(τ ′)(ω)− ŷ

(k−1)
tn,gn(τ ′)(ω)

∥∥∥2] dτ ′
≤ L2

sτe
2τ sup

τ ′∈[0,τ ]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(k)
tn,τ ′(ω)− ŷ

(k−1)
tn,τ ′ (ω)

∥∥∥2] .
(B.13)

Furthermore, we take supremum over τ ∈ [0, hn] on both sides above and iterate (B.12) over k ∈ N,
which indicates

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(k+1)
tn,τ (ω)− ŷ

(k)
tn,τ (ω)

∥∥∥2]
≤ L2

shne
2hn sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(k)
tn,τ (ω)− ŷ

(k−1)
tn,τ ′ (ω)

∥∥∥2]
≤
(
L2
shne

2hn
)k

sup
τ∈[0,hn]

E
[∥∥∥ŷ(1)

tn,τ (ω)− ŷ
(0)
tn,τ (ω)

∥∥∥2]
≤
(
L2
shne

2hn
)k

he
7
2hn

(
M2

s + 2d
)
+ 3

(
L2
shne

2hn
)k

e
7
2hnEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

+ 3
(
L2
shne

2hn
)k

e
7
2hnhnL

2
s sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,τ (ω)− ŷ

(K−1)
tn,τ (ω)

∥∥∥2] ,

(B.14)
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where the last inequality follows from Lemma B.5. By rearranging the inequality above, setting
k = K − 1 and using the assumption that L2

shne
2hn � 1, we obtain

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ(K)
tn,τ (ω)− ŷ

(K−1)
tn,τ (ω)

∥∥∥2]

≤

(
L2
shne

2hn
)K−1

he
7
2hn

(
M2

s + 2d
)
+ 3

(
L2
shne

2hn
)K−1

e
7
2hnEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

1− 3 (L2
shne2hn)

K−1
e

7
2hnhnL2

s

,

(B.15)
as desired.

The following lemma from [98] bounds the expectation of the term Atn(ω) in (B.7):

Lemma B.7 ([98, Section 3.1]). We have

Eω∼ ⃗p|Ftn
[Atn(ω)] ≲ ϵdhn, for n ∈ [0 : N − 2], and Eω∼ ⃗p|Ftn

[
AtN−1

(ω)
]
≲ ϵd log η−1,

where η is the parameter for early stopping.

Proof. Notice that

Eω∼ ⃗p|Ftn
[Atn(ω)]

=Eω∼ ⃗p|Ftn

[∫ hn

0

∥∥∥∇ log ⃗ptn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)
−∇ log ⃗ptn+τ

(
ŷ
(K)
tn,gn(τ)

(ω)
)∥∥∥2 dτ]

=Eω∼ ⃗p|Ftn

[
Mn∑
m=0

∫ τn,m+1

τn,m

∥∥∥∇ log ⃗ptn+τn,m

(
ŷ
(K)
tn,τn,m

(ω)
)
−∇ log ⃗ptn+τ

(
ŷ
(K)
tn,τ (ω)

)∥∥∥2 dτ] ,
=

Mn∑
m=0

∫ τn,m+1

τn,m

Eω∼ ⃗p|Ftn

[∥∥∥∇ log ⃗ptn+τn,m

(
⃗xtn+τ (ω)

)
−∇ log ⃗ptn+τ

(
⃗xtn+τ (ω)

)∥∥∥2] dτ,
where for the last equality, we use the fact that the process ŷ(K)

tn,τ (ω) follows the backward SDE with
the true score function under the measure ⃗p. In the following, we drop the superscript ω ∼ ⃗p|Ftn

of
the expectation for simplicity.

By Lemma A.6 and A.7, we have

E
[∥∥∥∇ log ⃗ptn+τn,m

(
⃗xtn+τ (ω)

)
−∇ log ⃗ptn+τ

(
⃗xtn+τ (ω)

)∥∥∥2]
≤
∫ τ

0

(
1

2
E
[
‖∇ log ⃗ptn+τn,m

(
⃗xtn+τn,m(ω)

)
‖2
]
+ E

[
‖∇2 log ⃗ptn+τ ′

(
⃗xtn+τ ′(ω)

)
‖2F
])

dτ ′

≤
∫ τ

0

(
1

2
d ⃗σ−2

τ ′ + d ⃗σ−4
τ ′

)
dτ ′ +

(
⃗σ−4
tn+τn,m

E
[
tr ⃗Σtn+τn,m

]
− ⃗σ−4

tn+τE
[
tr ⃗Σtn+τ

])
,

Now noticing that
⃗σ2
t = σ2

T−t ≲ T − t,

we further have∫ τn,m+1

τn,m

E
[∥∥∥∇ log ⃗ptn+τn,m

(
⃗xtn+τ (ω)

)
−∇ log ⃗ptn+τ

(
⃗xtn+τ (ω)

)∥∥∥2] dτ
≲
∫ τn,m+1

τn,m

∫ τ ′

0

d

(T − tn − τn,m+1)2
dτ ′dτ +

ϵn,m

(
E
[
tr ⃗Σtn+τn,m

]
− E

[
tr ⃗Σtn+τn,m+1

])
(T − tn − τn,m)2

≲d
ϵ2n,m

(T − tn − τn,m+1)2
+

ϵ
(
E
[
tr ⃗Σtn+τn,m

]
− E

[
tr ⃗Σtn+τn,m+1

])
T − tn − τn,m

,
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and thus

Mn∑
m=0

∫ τn,m+1

τn,m

E
[∥∥∥∇ log ⃗ptn+τn,m

(
⃗xtn+τ (ω)

)
−∇ log ⃗ptn+τ

(
⃗xtn+τ (ω)

)∥∥∥2] dτ
≲d

Mn∑
m=0

ϵ2n,m
(T − tn − τn,m+1)2

+

Mn∑
m=0

ϵ

T − tn − τn,m

(
E
[
tr ⃗Σtn+τn,m

]
− E

[
tr ⃗Σtn+τn,m+1

])

≤dϵ2Mn +
ϵE
[
tr ⃗Σtn+τn,0

]
T − tn − τn,0

+

Mn∑
m=0

ϵϵn,mE
[
tr ⃗Σtn+τn,m

]
(T − tn − τn,m+1)(T − tn − τn,m)

≤dϵ2Mn + ϵd+ dϵ2Mn ≲ dϵ2Mn.

For n ∈ [0, N − 2], we have Mnϵ = hn and thus Eω∼ ⃗p|Ftn
[Atn(ω)] ≲ ϵdhn, and for n = N − 1,

we have

MN ≲
∫ h

η

1

ϵτ
dτ = log η−1ϵ−1

and thus Eω∼ ⃗p|Ftn

[
AtN−1

(ω)
]
≲ ϵ2dMn ≲ ϵd log η−1.

B.3 Overall Error Bound

Proof of Theorem 3.3. We first continue the computation in (B.6) and (B.7):

DKL( ⃗ptn+1
‖q̂tn+1

) ≤ DKL( ⃗ptn‖q̂tn) + Eω∼ ⃗p|Ftn

[
1

2

∫ hn

0

‖δtn(τ, ω)‖2dτ

]
≤DKL( ⃗ptn‖q̂tn) + 3Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

+3Eω∼ ⃗p|Ftn

[∫ hn

0

∥∥∥sθtn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷ
(K−1)
tn,gn(τ)

(ω)
)∥∥∥2 dτ]

≤DKL( ⃗ptn‖q̂tn) + 3Eω∼ ⃗p|Ftn

[
Atn(ω) +Btn(ω) + L2

s

∫ hn

0

∥∥∥ŷ(K)
tn,gn(τ)

(ω)− ŷ
(K−1)
tn,gn(τ)

(ω)
∥∥∥2 dτ]

≤DKL( ⃗ptn‖q̂tn) + 3Eω∼ ⃗p|Ftn

[
Atn(ω) +Btn(ω) + hnL

2
s sup
τ∈[0,hn]

∥∥∥ŷ(K)
tn,τ (ω)− ŷ

(K−1)
tn,τ (ω)

∥∥∥2] .
Then plugging in the result of Lemma B.6, we have

DKL( ⃗ptn+1
‖q̂tn+1

)

≤DKL( ⃗ptn‖q̂tn) + 3Eω∼ ⃗p|Ftn
[Atn(ω) +Btn(ω)] + 3hnL

2
s

(
L2
shne

2hn
)K−1

he
7
2hn

(
M2

s + 2d
)

1− 3 (L2
shne2hn)

K−1
e

7
2hnhnL2

s

+hnL
2
s

9
(
L2
shne

2hn
)K−1

e
7
2hnEω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)]

1− 3 (L2
shne2hn)

K−1
e

7
2hnhnL2

s

≲DKL( ⃗ptn‖q̂tn) +
1 + e−Khne

hn

1− e−Khnehn
Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)] + e−Kh2
ne

hnd

≲DKL( ⃗ptn‖q̂tn) + Eω∼ ⃗p|Ftn
[Atn(ω) +Btn(ω)] + e−Kh2

ne
hnd,

where we used the assumption that L2
shne

7
2hn � 1.
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The term
∑N−1

n=0 Eω∼ ⃗p|Ftn
[Btn(ω)] is bounded by Assumption 3.1 as

N−1∑
n=0

Eω∼ ⃗p|Ftn
[Btn(ω)]

≤Eω∼ ⃗p|Ftn

[
N−1∑
n=0

∫ hn

0

∥∥∥sθtn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)
−∇ log ⃗ptn+gn(τ)

(
ŷ
(K)
tn,gn(τ)

(ω)
)∥∥∥2 dτ]

=Eω∼ ⃗p|Ftn

[
N−1∑
n=0

Mn−1∑
m=0

ϵn,m

∥∥∥sθtn+τn,m

(
ŷ
(K)
tn,τn,m

(ω)
)
−∇ log ⃗ptn+τn,m

(
ŷ
(K)
tn,τn,m

(ω)
)∥∥∥2]

=Eω∼ ⃗p|Ftn

[
N−1∑
n=0

Mn−1∑
m=0

ϵn,m

∥∥∥sθtn+τn,m

(
⃗xtn+τ (ω)

)
−∇ log ⃗ptn+τn,m

(
⃗xtn+τ (ω)

)∥∥∥2] ≤ δ22 ,

where the last equality is because the process ŷ
(K)
tn,τ (ω) under measure ⃗p follows the backward

SDE (B.5).

Thus, by Theorem A.1 and plugging in the iteration relations above

DKL(pη‖q̂tN ) = DKL( ⃗ptN ‖q̂tN )

≤DKL( ⃗p0‖q̂0) +
N−1∑
n=0

(
Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)] + e−Kh2
ne

hnd
)

≤DKL( ⃗p0‖q̂0) +
N−2∑
n=0

ϵdhn + ϵd log η−1 +

N−1∑
n=0

Eω∼ ⃗p|Ftn
[Btn(ω)] + e−Kh2

ne
hndN

≤de−T + ϵd(T + log η−1) + δ22 + e−KdT ≤ de−T + ϵdT + δ2 + e−KdT,

as T ≳ log η−1, hn ≲ 1, and δ2 ≲ δ, and then it is straightforward to see that the following choices
of parameters

T = O(log(dδ−2)), h = Θ(1), N = O
(
log(dδ−2)

)
,

ϵ = Θ
(
d−1δ2 log−1(dδ−2)

)
, M = O

(
dδ−2 log(dδ−2)

)
,

K = Õ(log(dδ−2)),

would yield an overall error of O(δ2).

C Details of Probability Flow ODE Implementation

In this section, we provide the details of the parallelized algorithm for the probability flow ODE
formulation of diffusion models. We first introduce the algorithm and define the necessary notations,
then discuss the error analysis during the predictor and corrector steps, respectively, and finally
provide the proof of Theorem 3.5.

C.1 Algorithm

In the parallelized inference algorithm for diffusion models in the probability flow ODE formulation,
we adopt the same discretization scheme as in Section 3.1.1 and the exponential integrator for all
updating rules. For each block, we first run a predictor step, which consists of running the probability
flow ODE in parallel. Then we run a corrector step, which runs an underdamped Langevin dynamics
in parallel to correct the distribution of the samples. The algorithm is summarized In Algorithm 2.

Parallelized Predictor Step The parallelization strategies in the predictor step are similar to those
in the SDE algorithm (Algorithm 1). The only difference here is that instead of applying Picard
iteration to the backward SDE as in (3.2), we apply Picard iteration to the probability flow ODE
as in (C.3), which does not require i.i.d. samples from standard Gaussian distribution. As shown
in Lemma C.3, the update rule in the predictor step (C.1) in Algorithm 2 is equivalent to running

29



Algorithm 2: PIADM-ODE

Input: ŷ0 ∼ q̂0 = N (0, Id), a discretization scheme (T , (hn)
N
n=1 and (τn,m)n∈[1:N ],m∈[0:Mn])

satisfying (3.1), parameters for the corrector step (T †,N†, h†, M†, ϵ†), the depth of
iteration K and K†, the learned NN-based score sθt (·).

Output: A sample ŷT ∼ q̂T ≈ ⃗pT .
1 for n = 0 to N − 1 do
2 ▷ Predictor Step (Section C.2)
3 ŷ

(0)
tn,τn,m

← ŷtn for m ∈ [0 : Mn];
4 for k = 1 to K do
5 ŷ

(k)
tn,0
← ŷtn ;

6 for m = 1 to Mn in parallel do
7

ŷ
(k)
tn,τn,m

←1

2
e

τn,m
2 ŷ

(k−1)
tn,0

+
1

2

∑m−1
j=0 e

τn,m−τn,j+1
2 (eϵn,j − 1) sθtn+τn,j

(ŷ
(k−1)
tn,τn,j

)

(C.1)

8 end
9 end

10 ▷ Corrector Step (Section C.3)
11 û

(0)
tn,0
← ŷ

(K)
tn,hn

and v̂
(0)
tn,0
∼ N (0, Id);

12 for n† = 0 to N† − 1 do
13 (û

(0)

tn,n†h†,m†ϵ†
, v̂

(0)

tn,n†h†,m†ϵ†
)← (ûtn,n†h† , v̂tn,n†h†) for m† ∈ [0 : M†];

14 for k† = 1 to K† do
15 (û

(k†)

tn,n†h†,0
, v̂

(k†)

tn,n†h†,0
)← (ûtn,n†h† , v̂tn,n†h†);

16 ξj† ∼ N
(
0, 2γ(1 + γ−2)(1− e−γϵ†)2e−2γ((M†−j†+1)ϵ†)Id

)
for

j† ∈ [0 : M†];
17 for m† = 1 to M† in parallel do
18 û(k†)

tn,n†h†,m†ϵ†

v̂
(k†)

tn,n†h†,m†ϵ†

← G(m†ϵ†)

û(k†−1)

tn,n†h†,0

v̂
(k†−1)

tn,n†h†,0


+

m−1∑
j†=0

G((m† − j† − 1)ϵ†)
(
Id −G(ϵ†)

) [ 0

sθtn+1
(û

(k†−1)

tn,n†h†,j†ϵ†
)

]

+

m−1∑
j†=0

G((m† − j† − 1)ϵ†)

[
0
ξj†

]
;

(C.2)

19 end
20 end
21 (ûtn,(n†+1)h† , v̂tn,(n†+1)h†)← (û

(K†)

tn,n†h†,h† , v̂
(K†)

tn,n†h†,h†);
22 end
23 ŷtn+1

← ûtn,T † ;
24 end
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q̂tn = q̂tn,0 q̂tn,hn
= π̂û

tn,0
π̂û
tn,T † = q̂tn+1

ŷ
(k)
tn,τ

(
û
(k)

tn,n†h†,τ† , v̂
(k)

tn,n†h†,τ†

)

⃗ptn

q̃tn,hn
= πu

tn,0 = π̃ũ
tn,0

π̃ũ
tn,T †

πu
tn,T †

ỹ
(k)
tn,τ

(
ũ
(k)

tn,n†h†,τ† , ṽ
(k)

tn,n†h†,τ†

)

(
utn,n†h†+τ† ,vtn,n†h†+τ†

)

⃗ptn+1
= π∗,u∗

tn,0
π∗,u∗

tn,T † = ⃗ptn+1

⃗xtn+τ (
u∗
tn,n†h†+τ† ,v

∗
tn,n†h†+τ†

)

W2(q̃tn,hn
, ⃗ptn+1

)
(Theorem C.7)

DKL(πtn,T †‖π̃tn,T †)
(Theorem C.17)

TV(πtn,T † , ⃗ptn+1
)

(Lemma C.18)

TV(π̂û
tn,T † , π̃

ũ
tn,T †)

(Theorem A.1)

Figure 2: Illustration of the proof pipeline of Theorem 3.5 for PIADM-ODE within the n-th block.

the auxiliary predictor process (C.3). The auxiliary predictor process takes in the result from the
previous corrector step (or the initialization if n = 0) and outputs ŷ(K)

tn,hn
as the initialization for the

next corrector step.

Parallelized Corrector Step The parallelization of the underdamped Langevin dynamics is simi-
lar to that mentioned in Section 2.2. Given a sample resulting from the predictor step, we initialize
the auxiliary corrector process (Definition C.8) which is an underdamped Langevin dynamics with
the initialization ûtn,0 = y

(K)
tn,hn

and the augmented variable v̂tn,0 ∼ N (0, Id) representing the
momentum.

We run the underdamped Langevin dynamics for time T †, which is set to be of order Ω(1) so that it
is large enough to correct the distribution of the samples (cf. Lemma C.18) while being comparably
short to ensure numerical stability (cf. Theorem C.17). Following a similar strategy as in Section 2.2
and in Algorithm 1, we further divide the time horizon T † into N† blocks with step size h†, and
for each block the block length h† into M† steps with step size ϵ†. Within each block, we run
the underdamped Langevin dynamics in parallel for K† iterations. As shown in Lemma C.9, the
update rule in the corrector step (C.2) in Algorithm 2 is equivalent to running the auxiliary corrector
process (C.11).

In the following subsections, we proceed to provide theoretical guarantees for the algorithm.

C.2 Parallelized Predictor Step

Definition C.1 (Auxiliary Predictor Process). For any n ∈ [0 : N − 1], we define the auxiliary
predictor process (ŷ

(k)
tn,τ )τ∈[0,hn] as the solution to the following ODE recursively for k ∈ [0 :

K − 1]:

dŷ
(k+1)
tn,τ =

[
1

2
ŷ
(k+1)
tn,τ +

1

2
sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

)]
dτ, (C.3)

with the initial condition

ŷ
(0)
tn,τ ≡ ŷtn for τ ∈ [0, hn], and y

(k)
tn,0
≡ ŷtn for k ∈ [1 : K] (C.4)

where ŷtn = ûtn−1,N†h† if n ∈ [1 : N −1] and ŷt0 ∼ N (0, Id). We will also denote the probability

distribution of ŷ(K)
tn,τ as q̂tn,τ .
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Definition C.2 (Interpolating Process). For any n ∈ [0 : N −1], we define the interpolating process
(ỹ

(k)
tn,τ )τ∈[0,hn] as the solution to the following ODE recursively for k ∈ [0 : K − 1]:

dỹ
(k+1)
tn,τ =

[
1

2
ỹ
(k+1)
tn,τ +

1

2
sθtn+gn(τ)

(
ỹ
(k)
tn,gn(τ)

)]
dτ, (C.5)

with initial condition
ỹ
(0)
tn,τ ≡ ỹ

(0)
tn,0

for τ ∈ [0, hn], and ỹ
(k)
tn,0
≡ ỹ

(0)
tn,0

for k ∈ [1 : K],

where ỹ
(0)
tn,0
∼ ⃗ptn . We will also denote the probability distribution of ỹ(K)

tn,τ as q̃tn,τ .

Similar to the equivalence between (3.4) and (B.2), we have the following lemma:
Lemma C.3 (Equivalence between (C.1) and (C.3)). For any n ∈ [0 : N − 1], the update rule (C.1)
in Algorithm 2 is equivalent to the exact solution of (C.3) for any k ∈ [0 : K − 1] and τ ∈ [0, hn].

Proof. Rewriting (C.3) and multiplying e−
τ
2 on both sides yield

d
[
e−

τ
2 ŷ

(k+1)
tn,τ

]
= e−

τ
2

[
dŷ

(k+1)
tn,τ − 1

2
ŷ
(k+1)
tn,τ dτ

]
=

e−
τ
2

2
sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

)
dτ

Integrating on both sides from 0 to τ implies

e−
τ
2 ŷ

(k+1)
tn,τ − ŷ

(k+1)
tn,0

=

∫ τ

0

e−
τ
2

2
sθtn+gn(τ ′)

(
ŷ
(k)
tn,gn(τ ′)

)
dτ ′

=
1

2

Mn∑
m=0

∫ τ∧τn,m+1

τ∧tn,m

e−
τ′
2 sθtn+τn,m

(
y
(k)
tn,τn,m

)
dτ ′

=

Mn∑
m=0

(
e−

τ∧τn,m
2 − e−

τ∧τn,m+1
2

)
sθtn+τn,j

(
ŷ
(k)
tn,τn,m

)
,

and then multiplying e
τ
2 on both sides above yields

ŷ
(k+1)
tn,τ = e

τ
2 ŷ

(k+1)
tn,0

+

Mn∑
m=0

(
e

τ∧τn,m+1−τ∧τn,m

2 − 1
)
e

0∨(τ−τn,m+1)

2 sθtn+τn,m

(
ŷ
(k)
tn,τn,m

)
.

Plugging in τ = τn,m gives us (C.1), as desired.

Lemma C.4 (Error between the interpolating process and the true process). Under the Picard itera-
tion, we have that the ending process {ŷ(K)

tn,τ}τ∈[0,hn] satisfies the following exponential convergence
rate

sup
τ∈[0,hn]

E
[∥∥∥ỹ(K)

tn,τ − ⃗xtn+τ

∥∥∥2] ≤ 3d

(
h2
ne

hn+
3
2L2

s

2

)K

+
ehn+

3
2hn/2

1− h2
ne

hn+
3
2L2

s/2

(
hnδ

2
∞ + E[Dtn ]

)
,

where

Dtn :=

∫ hn

0

∥∥∥sθtn+gn(τ ′)

(
⃗xtn+gn(τ ′)

)
− sθtn+τ ′( ⃗xtn+τ ′)

∥∥∥2 dτ ′.
Proof. Recall that the backward true process { ⃗xtn+τ}τ∈[0,hn] satisfies the following backward SDE
within one block

d ⃗xtn+τ =

[
1

2
⃗xtn+τ +

1

2
∇ log ⃗ptn+τ ( ⃗xtn+τ )

]
dτ. (C.6)

By subtracting (C.6) from (C.5), we obtain that
d

dτ

(
ỹ
(k+1)
tn,τ − ⃗xtn+τ

)
=

1

2

[
ỹ
(k+1)
tn,τ − ⃗xtn+τ

]
+

1

2

[
sθtn+gn(τ)

(
ỹ
(k)
tn,gn(τ)

)
− sθtn+gn(τ)

( ⃗xtn+gn(τ))
]

+
1

2

[
sθtn+gn(τ)

( ⃗xtn+gn(τ))−∇ log ⃗ptn+gn(τ)( ⃗xtn+gn(τ))
]

+
1

2

[
∇ log ⃗ptn+gn(τ)( ⃗xtn+gn(τ))−∇ log ⃗ptn+τ ( ⃗xtn+τ )

]
.

(C.7)
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Then by

d
∥∥∥ỹ(k+1)

tn,τ ′ − ⃗xtn+τ ′

∥∥∥2 = 2
(
ỹ
(k+1)
tn,τ ′ − ⃗xtn+τ ′

)⊤
d
(
ỹ
(k+1)
tn,τ ′ − ⃗xtn+τ ′

)
,

and integrating for τ ′ ∈ [0, hn], we have∥∥∥ỹ(k+1)
tn,τ − ⃗xtn+τ

∥∥∥2
=

∫ τ

0

(
ỹ
(k+1)
tn,τ ′ − ⃗xtn+τ ′

)⊤ (
sθtn+gn(τ ′)

(
ỹ
(k)
tn,gn(τ ′)

)
− sθtn+gn(τ ′)( ⃗xtn+gn(τ ′))

)
dτ ′

+

∫ τ

0

(
ỹ
(k+1)
tn,τ ′ − ⃗xtn+τ ′

)⊤ (
sθtn+gn(τ ′)( ⃗xtn+gn(τ ′))−∇ log ⃗ptn+gn(τ ′)( ⃗xtn+gn(τ ′))

)
dτ ′

+

∫ τ

0

(
ỹ
(k+1)
tn,τ ′ − ⃗xtn+τ ′

)⊤ (
∇ log ⃗ptn+gn(τ ′)( ⃗xtn+gn(τ ′))−∇ log ⃗ptn+τ ′( ⃗xtn+τ ′)

)
dτ ′

+

∫ τ

0

∥∥∥ỹ(k+1)
tn,τ ′ − ⃗xtn+τ ′

∥∥∥2 dτ ′.
Using AM-GM inequality and taking expectations on both sides, we further upper bound the sum-
mation above as

E
[∥∥∥ỹ(k+1)

tn,τ − ⃗xtn+τ

∥∥∥2]
≤
(
1 +

3

2hn

)∫ τ

0

E
[∥∥∥ỹ(k+1)

tn,τ ′ − ⃗xtn+τ ′

∥∥∥2] dτ ′
+
hn

2

∫ τ

0

E
[∥∥∥sθtn+gn(τ ′)

(
ỹ
(k)
tn,gn(τ ′)

)
− sθtn+gn(τ ′)( ⃗xtn+gn(τ ′))

∥∥∥2] dτ ′
+
hn

2

∫ τ

0

E
[∥∥∥sθtn+gn(τ ′)( ⃗xtn+gn(τ ′))−∇ log ⃗ptn+gn(τ ′)( ⃗xtn+gn(τ ′))

∥∥∥2] dτ ′
+
hn

2
E
[ ∫ τ

0

∥∥∥∇ log ⃗ptn+gn(τ ′)( ⃗xtn+gn(τ ′))−∇ log ⃗ptn+τ ′( ⃗xtn+τ ′)
∥∥∥2 dτ ′︸ ︷︷ ︸

≤Dtn

]

≤
(
1 +

3

2hn

)∫ τ

0

E
[∥∥∥ỹ(k+1)

tn,τ ′ − ⃗xtn+τ ′

∥∥∥2] dτ ′ + hn

2

(
τδ2∞ + E [Dtn ]

)
+
L2
shn

2

∫ τ

0

E
[∥∥∥ỹ(k)

tn,gn(τ ′) − ⃗xtn+gn(τ ′)

∥∥∥2] dτ ′,
where the last equality is by Assumption 3.1’.

Applying Grönwall’s inequality, we have

E
[∥∥∥ỹ(k+1)

tn,τ − ⃗xtn+τ

∥∥∥2]
≤e(1+

3
2hn

)τL2
shn

2

∫ τ

0

E
[∥∥∥ỹ(k)

tn,gn(τ ′) − ⃗xtn+gn(τ ′)

∥∥∥2] dτ ′ + e(1+
3

2hn
)τhn

2

(
τδ2∞ + E[Dtn ]

)
≤τe(1+

3
2hn

)τL2
shn

2
sup

τ ′∈[0,τ ]

E
[∥∥∥ỹ(k)

tn,τ ′ − ⃗xtn+τ ′

∥∥∥2]+ e(1+
3

2hn
)τhn

2

(
τδ2∞ + E[Dtn ]

)
,

(C.8)
and by taking supremum

sup
τ∈[0,hn]

E
[∥∥∥ỹ(k+1)

tn,τ − ⃗xtn+τ

∥∥∥2]
≤h2

ne
hn+

3
2L2

s

2
sup

τ ′∈[0,τ ]

E
[∥∥∥ỹ(k)

tn,τ ′ − ⃗xtn+τ ′

∥∥∥2]+ ehn+
3
2hn

2

(
hnδ

2
∞ + E[Dtn ]

) (C.9)
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Given that constant hn is sufficiently small, which ensures L2
shne

5
2hn � 1, iterating the above

inequality for k ∈ [0 : K − 1] gives us that

sup
τ∈[0,hn]

E
[∥∥∥ỹ(K)

tn,τ − ⃗xtn+τ

∥∥∥2]

≤

(
h2
ne

hn+
3
2L2

s

2

)K

sup
τ∈[0,hn]

E
[∥∥∥ỹ(0)

tn,τ − ⃗xtn+τ

∥∥∥2]+ ehn+
3
2hn/2

1− h2
ne

hn+
3
2L2

s/2

(
hnδ

2
∞ + E[Dtn ]

)
,

Notice that by Lemma A.8, we have

E
[∥∥∥ŷ(0)

tn,τ − ⃗xtn+τ

∥∥∥2] = E
[
‖ ⃗xtn − ⃗xtn+τ‖2

]
≤ 3d,

substituting which into (C.9) then gives us that

sup
τ∈[0,hn]

E
[∥∥∥ỹ(K)

tn,τ − ⃗xtn+τ

∥∥∥2] ≤ 3d

(
h2
ne

hn+
3
2L2

s

2

)K

+
ehn+

3
2hn/2

1− h2
ne

hn+
3
2L2

s/2

(
hnδ

2
∞ + E[Dtn ]

)
,

as desired.

Now it remains to bound Ctn and Dtn in Lemma C.4. We first bound Dtn using the following
lemma:
Lemma C.5. For any n ∈ [0 : N − 1], we have that

E [Dtn ] ≲ dϵ2hn.

Proof. For any n ∈ [0 : N − 2], we have T − tn+1 ≳ O(1) and thus by [102, Corollary 1] that

E
[∥∥∥∇ log ⃗ptN−1+τn,m

( ⃗xtN−1+τn,m
)−∇ log ⃗ptN−1+τ ′( ⃗xtN−1+τ ′)

∥∥∥2] ≲ dϵ2n,m,

for any τ ′ ∈ [τn,m, τn,m+1], and thus

E [Dtn ] =

∫ hn

0

E
[∥∥∥∇ log ⃗ptn+gn(τ ′)( ⃗xtn+gn(τ ′))−∇ log ⃗ptn+τ ′( ⃗xtn+τ ′)

∥∥∥2] dτ ′
=

Mn∑
m=0

∫ τn,m+1

τn,m

E
[∥∥∥∇ log ⃗ptn+τn,m

( ⃗xtn+τn,m
)−∇ log ⃗ptn+τ ′( ⃗xtn+τ ′)

∥∥∥2] dτ ′
≲

Mn∑
m=0

dϵ2n,mϵn,m ≤ dϵ2hn.

For n = N − 1, notice that by the step size schedule (cf. Section 3.1.1) and suppose ϵ ≤ 1/2, we
have

T − τ

2
≤ T − gn(τ) ≤ T − τ,

and then again [102, Corollary 1] states

E
[∥∥∥∇ log ⃗ptn+ϵn,m

( ⃗xtn+ϵn,m
)−∇ log ⃗ptn+τ ′( ⃗xtn+τ ′)

∥∥∥2] ≲ dϵ2n,m
T − τn,m

,

and thus

E
[
DtN−1

]
=

∫ hN−1

0

E
[∥∥∥∇ log ⃗ptN−1+gn(τ ′)( ⃗xtN−1+gn(τ ′))−∇ log ⃗ptN−1+τ ′( ⃗xtN−1+τ ′)

∥∥∥2] dτ
=

MN−1∑
m=0

∫ τn,m+1

τn,m

E
[∥∥∥∇ log ⃗ptN−1+τn,m

( ⃗xtN−1+gn(τ ′))−∇ log ⃗ptN−1+τ ′( ⃗xtN−1+τ ′)
∥∥∥2] dτ ′

≲
MN−1∑
m=0

dϵ2n,m
T − τn,m

ϵn,m ≤
MN−1∑
m=0

dϵ2n,mϵ ≲
∫ T−tN−1

δ∞

dτdτ ≲ dϵ2hN−1.
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Remark C.6. The above lemma is able to achieve a better dependency on ϵ compared to Lemma B.7,
because the backward process ( ⃗xt)t∈[0,T ] is now a deterministic process in the probability flow
ODE formulation, instead of a stochastic process as in the SDE formulation as in Lemma B.7. Thus,
intuitively applying Cauchy-Schwarz rather than Itô symmetry gives us a O(ϵ2)-dependency rather
than O(ϵ)-dependency.

Theorem C.7. Under Assumptions 3.1’, 3.2, 3.3, and 3.4, then the distribution q̃tn,hn
that the

parallelized predictor step generates samples from satisfies the following error bound:

W2(q̃tn,hn
, ⃗ptn+1

)2 ≲ de−K + h2
nδ

2
∞ + dϵ2h2

n,

for n ∈ [0 : N − 1].

Proof. By the definition of 2-Wasserstein distance, we have for any coupling of ỹ(K)
tn,hn

and ⃗xtn+hn
,

W2(q̃tn,hn
, ⃗ptn+1

)2 ≤ E
[∥∥∥ỹ(K)

tn,hn
− ⃗xtn+hn

∥∥∥2] ,
and therefore

W2(q̃tn,hn
, ⃗ptn+1

)2 ≤ E
[∥∥∥ỹ(K)

tn,hn
− ⃗xtn+hn

∥∥∥2] ≤ sup
τ∈[0,hn]

E
[∥∥∥ỹ(K)

tn,τ − ⃗xtn+τ

∥∥∥2]

≤3d

(
h2
ne

hn+
3
2L2

s

2

)K

+
ehn+

3
2hn/2

1− h2
ne

hn+
3
2L2

s/2

(
hnδ

2
∞ + E[Dtn ]

)
≲de−K + h2

nδ
2
∞ + dϵ2h2

n,

where for the second to last inequality we used Lemma C.4, the last inequality is due to Lemma C.5
and the assumption h2

ne
hnL2

s � 1.

C.3 Parallelized Corrector Step

After each predictor step, we run the corrector step forO(1) time to reduce the error. Particularly, we
apply the Parallelized underdamped Langevin dynamics algorithm [121] to the corrector step, which
yields O(1) approximate time complexity compared to the ordinary implementation of the ULMC
dynamics as in [102]. In the following, we will drop the dependency on ω for notational simplicity,
and we refer readers to Appendix A.2 and B.2 to review the change of measure arguments and the
application of Girsanov’s theorem A.4. We will also use a general notation ∗† to distinguish the time
in the backward process and the inner time in the corrector step of the n-th block.

We first define the true underdamped Langevin dynamics (utn,t† ,vtn,t†)t≥0:{
dutn,t† = vtn,t†dt

†

dvtn,t† = −γvtn,t†dt
† −∇ log ⃗ptn+1

(utn,t†)dt
† +
√
2γdbtn,t† ,

(C.10)

with initial condition utn,0 ≡ ỹ
(K†)
tn,hn

from the predictor step and vtn,0 ∼ N (0, Id), where
(btn,t†)t≥0 is a Wiener process. We may also write the system of SDEs above in the following
matrix form:

d

[
utn,t†

vtn,t†

]
=

[[
0 Id
0 −γId

] [
utn,t†

vtn,t†

]
−
[

0
∇ log ⃗ptn+1

(utn,t†)

]]
dt† +

[
0 0
0
√
2γId

]
d

[
b′tn,t†
btn,t†

]
.

We run this underdamped Langevin dynamics until the pre-determined time horizon T †. We also
define the joint probability distribution of (utn,t† ,vtn,t†) at time t as πtn,t†(utn,t† ,vtn,t†) and its
marginal on utn,t† as πu

tn,t†
(utn,t†).

Similar to the parallelizing strategy in Section 3.1.1, we discretize the time interval [0, T †] into N†

blocks with length h† = T †/N†. Within the n-th block, we further divide the block [n†h†, (n+1)h†]
into M† steps, each with step size ϵ† = h†/M†.
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Definition C.8 (Auxiliary corrector process). For any n† ∈ [0 : N† − 1], we define the auxiliary

corrector process (û
(k†)

tn,n†h†,τ†)τ†∈[0,h†] as the solution to the following SDE recursively for k† ∈
[0 : K† − 1]:{

dû
(k+1)

tn,n†h†,τ† = v̂
(k+1)

tn,n†h†,τ†dτ
†,

dv̂
(k+1)

tn,n†h†,τ† = −γv̂(k+1)

tn,n†h†,τ†dτ
† − stn+1

(
û
(k†)

tn,n†h†,gn(τ†)

)
dτ † +

√
2γdbtn,n†h†+τ†

(C.11)

with the initial condition{
û
(0)

tn,n†h†,τ† ≡ ûtn,n†h†

v̂
(0)

tn,n†h†,τ† = v̂tn,n†h†
for τ † ∈ [0, h†], and

û
(k†)

tn,n†h†,τ† ≡ ûtn,n†h†

v̂
(k†)

tn,n†h†,0
≡ v̂tn,n†h†

for k ∈ [1 : K†],

(C.12)
where

ûtn,n†h† := û
(K†)

tn,(n†−1)h†,h† , v̂tn,n†h† := v̂
(K†)

tn,(n†−1)h†,h†

for n† ∈ [1 : N† − 1], and

ûtn,0 = y
(K)
tn,hn

, v̂tn,0 ∼ N (0, Id).

We define the joint probability distribution of (ûtn,t† , v̂tn,t†) at time t as π̂tn,t†(ûtn,t† , v̂tn,t†) and
its marginal on ûtn,t† as π̂û

tn,t†
(ûtn,t†). We will also denote the resulting probability distribution of

π̂û
tn,T † as q̂tn+1

.

Lemma C.9 (Equivalence between (C.2) and (C.11)). For any n† ∈ [0 : N† − 1], the update rule
in Algorithm 2 is equivalent to the exact solution of the auxiliary process (C.11) for any k† ∈ [0 :
K† − 1] and τ † ∈ [0, h†].

Proof. Without loss of generality, we will prove the lemma for m† = M†. The proof for m† ∈ [0 :
M† − 1] can be done similarly.

We first rewrite (C.2) into the matrix form:

d

ũ(k†)

tn,n†h†,τ†

ṽ
(k†)

tn,n†h†,τ†

 =

[0 Id
0 −γId

]ũ(k†)

tn,n†h†,τ†

ṽ
(k†)

tn,n†h†,τ†

− [ 0

stn+1

(
ũ
(k†)

tn,n†h†,gn(τ†)

)] dτ †

+

[
0 0
0
√
2γId

]
d

[
b′tn,n†h†+τ†

btn,n†h†+τ†

]
.

(C.13)

Define the time-dependent matrix G(·) as

G(t†) :=

[
Id

1−e−γt†

γ Id

0 e−γt†Id

]
= exp

((
0 Id
0 −γId

)
t†
)
, (C.14)

satisfying that
d

dt†
G(t†) =

[
0 Id
0 −γId

]
G(t†) = G(t†)

[
0 Id
0 −γId

]
.

Now we multiply G(−τ †) on both sides of (C.13) to obtain:

d

G(−τ †)

ũ(k†)

tn,n†h†,τ†

ṽ
(k†)

tn,n†h†,τ†

 =−G(−τ †)

[
0

stn+1

(
ũ
(k†)

tn,n†h†,gn(τ†)

)] dτ †
+G(−τ †)

[
0 0
0
√
2γId

]
d

[
b′tn,n†h†+τ†

btn,n†h†+τ†

]
.
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Integrating on both sides from 0 to h† and multiplying G(h†) on both sides, we haveũ(k†)

tn,n†h†,τ

ṽ
(k†)

tn,n†h†,τ

−G(h†)

ũ(k†)

tn,n†h†,0

ṽ
(k†)

tn,n†h†,0


=−

∫ h†

0

G(h† − τ †
′
)

[
0

stn+1

(
ũ
(k†)

tn,n†h†,g(τ†′)

)] dτ †′
+

∫ h†

0

G(h† − τ †
′
)

[
0 0
0
√
2γId

]
d

[
b′
tn,n†h†+τ†′

btn,n†h†+τ†′

]

=−
M†−1∑
m†=0

∫ (m†+1)ϵ†

m†ϵ†
G(h† − τ †

′
)dτ †

′
[

0

stn+1

(
ũ
(k†)

tn,n†h†,m†ϵ†

)]

+

M†−1∑
m†=0

∫ (m†+1)ϵ†

m†ϵ†
G(h† − τ †

′
)

[
0 0
0
√
2γId

]
d

[
b′
tn,n†h†+τ†′

btn,n†h†+τ†′

]

=−
M†−1∑
m†=0

(
G(ϵ†)− Id

)
G((M† −m† − 1)ϵ†)

[
0

stn+1

(
ũ
(k†)

tn,n†h†,m†ϵ†

)]

+

M†−1∑
m†=0

∫ (m†+1)ϵ†

m†ϵ†
G(h† − τ †

′
)

[
0 0
0
√
2γId

]
d

[
b′
tn,n†h†+τ†′

btn,n†h†+τ†′

]
.

By Itô isometry, we have∫ (m†+1)ϵ†

m†ϵ†
G(h† − τ †

′
)

[
0 0
0
√
2γId

]
d

[
b′
tn,n†h†+τ†′

btn,n†h†+τ†′

]
∼N

(
0,

[
0 0
0
√
2γId

]
G((M† −m† − 1)ϵ†)⊤

(
G(ϵ†)− Id

)⊤
(
G(ϵ†)− Id

)
G((M† −m† − 1)ϵ†)

[
0 0
0
√
2γId

])

∼

[
0

N
(
0, 2γ(1 + γ−2)(1− e−γϵ†)2e−2γ(M†−m†+1)ϵ†)Id

)]
,

as desired

Definition C.10 (Interpolating corrector process). For any n† ∈ [0 : N† − 1], we define the interpo-

lating corrector process (û(k†)

tn,n†h†,τ†)τ†∈[0,h†] as the solution to the following SDE recursively for
k† ∈ [0 : K† − 1]:{

dũ
(k+1)

tn,n†h†,τ† = ṽ
(k+1)

tn,n†h†,τ†dτ
†,

dṽ
(k+1)

tn,n†h†,τ† = −γṽ(k+1)

tn,n†h†,τ†dτ
† − stn+1

(
ũ
(k†)

tn,n†h†,gn(τ†)

)
dτ † +

√
2γdbtn,n†h†+τ†

(C.15)

with the initial condition{
ũ
(0)

tn,n†h†,τ† ≡ ũtn,n†h†

ṽ
(0)

tn,n†h†,τ† = ṽtn,n†h†
for τ † ∈ [0, h†], and

ũ
(k†)

tn,n†h†,τ† ≡ ũtn,n†h†

ṽ
(k†)

tn,n†h†,0
≡ ṽtn,n†h†

for k ∈ [1 : K†],

(C.16)
where

ũtn,n†h† := ũ
(K†)

(n†−1)h†,h† , ṽtn,n†h† := ṽ
(K†)

(n†−1)h†,h†

for n† ∈ [1 : N† − 1], and

ũtn,0 = ỹ
(K)
tn,hn

, ṽtn,0 ∼ N (0, Id).
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We define the joint probability distribution of (ũtn,t† , ṽtn,t†) at time t as π̃tn,t†(ũtn,t† , ṽtn,t†) and
its marginal on ũtn,t† as π̃ũ

tn,t†
(ũtn,t†).

We invoke Girsanov’s theorem (Theorem A.4) again by the following procedure

1. Setting (A.2) as the auxiliary process (C.15) at iteration K†, where btn,t†(ω) is a Wiener pro-
cess under the measure Q;

2. Defining another process b̃tn,n†h†+τ† governed by the following SDE:

db̃tn,n†h†+τ† = dbtn,n†h†+τ† − ϕtn,n†h†(τ †)dτ †, (C.17)

where

ϕtn,n†h†(τ †) =
1√
2γ

(
stn+1

(ũ
(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(ũ
(K†)

tn,n†h†,τ†)

)
(C.18)

and computing the Radon-Nikodym derivative of the measure P with respect to Q as

dP

dQ
= exp

(∫ h†

0

ϕtn,n†h†(τ †)⊤dbtn,n†h†+τ† − 1

2

∫ h†

0

‖ϕnh(τ
†)‖2dτ †

)
; (C.19)

3. Concluding that (C.15) at iteration K† under the measure Q satisfies the following SDE:dũ
(K†)

n†h†,τ† = ṽ
(K†)

n†h†,τ†dτ
†

dṽ
(K†)

tn,n†h†,τ† = −γṽ(K†)

tn,n†h†,τ†dτ
† −∇ log ⃗ptn+1

(ũ
(K†)

n†h†,τ†)dτ
† +
√
2γdb̃tn,n†h†+τ† ,

(C.20)
with (b̃tn,n†h†+τ†)τ†≥0 being a Wiener process under the measure P . If we replace

(ũ
(K†)

n†h†,τ† , ṽ
(K†)

n†h†,τ†) by (utn,n†h†+τ† ,vtn,n†h†+τ†), one should notice (C.20) is immediately
the original backward SDE (C.10) with the true score function on t ∈ [n†h†, (n+ 1)h†]:{
dutn,n†h†+τ† = vtn,n†h†+τ†dτ †

dvtn,n†h†+τ† = −γvtn,n†h†+τ†dτ † −∇ log ⃗ptn+1
(utn,n†h†+τ†)dτ † +

√
2γdb̃tn,n†h†+τ† .

(C.21)
We further define the joint probability distribution of (utn,t† ,vtn,t†) at time t as
πtn,t†(utn,t† ,vtn,t†) and its marginal on utn,t† as πu

tn,t†
(utn,t†).

Remark C.11. The application of Girsanov’s theorem A.4 is by writing the system of SDEs in the
matrix form.
Definition C.12 (Stationary process). Under the P -measure that is defined by the Radon-Nikodym
derivative (C.19), we may define a stationary underdamped Langevin process for n† ∈ [0 : N† − 1]
and τ † ∈ [0, h†] as{

du∗
tn,n†h†+τ† = v∗

tn,n†h†+τ†dτ
†,

dv∗
tn,n†h†+τ† = −γv∗

tn,n†h†+τ†dτ
† −∇ log ⃗ptn+1

(u∗
n†h†+τ†)dτ

† +
√
2γdb̃tn,n†h†+τ† ,

(C.22)
with the initial condition u∗

tn,n†h† ∼ ⃗ptn+1
and v∗

tn,n†h† ∼ N (0, Id). We define the joint proba-
bility distribution of (u∗

tn,t†
,v∗

tn,t†
) at time t as π∗

tn,t†
(u∗

tn,t†
,v∗

tn,t†
) and its marginal on u∗

tn,t†
as

π∗,u∗

tn,t†
(u∗

tn,t†
).

Thus, from Corollary A.5, we have that
DKL(πtn,n†h†‖π̃tn,n†h†)

≤DKL(πtn,(n−1)h†‖π̃tn,(n−1)h†) +

N†−1∑
n=0

DKL(πtn,n†h†:(n+1)h†‖π̃tn,n†h†:(n+1)h†)

≤DKL(πtn,(n−1)h†‖π̃tn,(n−1)h†)

+
1

4γ
EP

[∫ h†

0

∥∥∥∥stn+1
(ũ

(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(ũ
(K†)

tn,n†h†,τ†)

∥∥∥∥2 dτ †
]
.

(C.23)
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By triangle inequality, we have∫ h†

0

∥∥∥∥stn+1
(ũ

(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(ũ
(K†)

tn,n†h†,τ†)

∥∥∥∥2 dτ †
≤5
∫ h†

0

∥∥∥∥stn+1
(ũ

(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)− stn+1

(ũ
(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)

∥∥∥∥2 dτ †
+5

∫ h†

0

∥∥∥∥stn+1
(ũ

(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)− stn+1

(u∗
tn,n†h†+⌊ τ†

ϵ†
⌋ϵ†

)

∥∥∥∥2 dτ †
+5

∫ h†

0

∥∥∥∥stn+1
(u∗

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(u∗
tn,n†h†+⌊ τ†

ϵ†
⌋ϵ†

)

∥∥∥∥2 dτ †
+5

∫ h†

0

∥∥∥∥∇ log ⃗ptn+1
(u∗

tn,n†h†+⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(u∗
tn,n†h†,τ†)

∥∥∥∥2 dτ †
+5

∫ h†

0

∥∥∥∇ log ⃗ptn+1
(u∗

tn,n†h†+τ†)−∇ log ⃗ptn+1
(ũ

(K†)

tn,n†h†,τ†)
∥∥∥2 dτ †

≤ 5L2
s

∫ h†

0

∥∥∥∥ũ(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− ũ

(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2 dτ †
+5

(
L2
s

∫ h†

0

∥∥∥∥ũ(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− u∗

tn,n†h†+⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2 dτ † + L2
p

∫ h†

0

∥∥∥ũ(K†)

tn,n†h†,τ† − u∗
tn,n†h†+τ†

∥∥∥2 dτ †)︸ ︷︷ ︸
:=E

tn,n†h†

+5h†δ2∞ + 5L2
p

∫ h†

0

∥∥∥∥u∗
tn,n†h†+⌊ τ†

ϵ†
⌋ϵ†
− u∗

tn,n†h†+τ†

∥∥∥∥2 dτ †︸ ︷︷ ︸
:=F

tn,n†h†

,

(C.24)
where we used the Lipschitz continuity of the learned score function (Assumption 3.3) and the true
score function (Assumption 3.4), and the δ∞-accuracy of the learned score function at each time
step (Assumption 3.1’).

Now we proceed to bound the terms in the error decomposition (C.24). We first bound the Ftn,n†h†

term by the following lemma:
Lemma C.13. For any n ∈ [0 : N − 1] and τ † ∈ [0, h†], we have

EP

[∥∥∥∥u∗
tn,n†h†+⌊ τ†

ϵ†
⌋ϵ†
− u∗

tn,n†h†+τ†

∥∥∥∥2
]
≤ dϵ†

2
,

and therefore
EP

[
Ftn,n†h†

]
≤ dh†ϵ†

2
.

Proof. By the definition of (u∗
tn.n†h†+τ ,v

∗
tn,n†h†+τ ) as the stationary underdamped Langevin dy-

namics (C.22), we have

EP

[∥∥∥∥u∗
tn,n†h†+⌊ τ†

ϵ†
⌋ϵ†
− u∗

tn,n†h†+τ†

∥∥∥∥2
]
= EP

∥∥∥∥∥
∫ τ†

⌊ τ†
ϵ†

⌋ϵ†
v∗
tn,n†h†+τ†′dτ †

′
∥∥∥∥∥
2


≤ ϵ†
∫ τ†

⌊ τ†
ϵ†

⌋ϵ†
EP

[∥∥∥v∗
tn,n†h†+τ†′

∥∥∥2] dτ †′ ≤ dϵ†
2
,

where the first inequality follows from Cauchy-Schwarz inequality and the last inequality is by the
fact that

v∗
tn,n†h†+τ†′ ∼ N (0, Id), for any τ †

′ ∈ [0, h†].
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Consequently, we have

EP

[
Ftn,n†h†

]
=

∫ h†

0

EP

[∥∥∥∥u∗
tn,n†h†+⌊ τ†

ϵ†
⌋ϵ†
− u∗

tn,n†h†+τ†

∥∥∥∥2
]
dτ † ≤ dh†ϵ†

2
.

The term Etn,n†h† can be bounded with the following lemma:

Lemma C.14. For any n† ∈ [0 : N† − 1], suppose that γ ≲ L
−1/2
p and T † ≲ L

−1/2
p , then we have

the following inequality for any τ † ∈ [0, h†]

EP

[∥∥∥ũ(K†)

tn,n†h†,τ† − u∗
tn,n†h†+τ†

∥∥∥2] ≲ W 2
2 (q̃tn,hn

, ⃗ptn+1
),

and therefore
EP

[
Etn,n†h†

]
≲ h†(L2

s + L2
p)W

2
2 (q̃tn,hn

, ⃗ptn+1
).

Proof. Recall that under the measure P , ũ(K†)

tn,n†h†,τ† follows the dynamics of utn,n†h†,τ† (C.21) for
τ † ∈ [0, h†], which coincides with that of u∗

tn,n†h†+τ† . As the only difference between the two
processes utn,n†h†,τ† and u∗

tn,n†h†+τ† is the initial condition, we can invoke Lemma 10 proved
in [102] to deduce that

EP

[∥∥∥ũ(K†)

tn,n†h†,τ† − u∗
tn,n†h†+τ†

∥∥∥2] ≲ W 2
2 (πtn,n†h† , ⃗ptn+1

),

where the assumption that γ ≲ L
−1/2
p and T † ≲ L

−1/2
p is required.

Now notice that u∗
tn,n†h†+τ† and utn,n†h†,τ† also follow the same dynamics with the true score

function for τ † ∈ [0, n†h†], for any coupling of u∗
tn,n†h† and utn,n†h† , we have

W 2
2 (πtn,n†h† , ⃗ptn+1

) ≤ E
[
‖utn,n†h† − u∗

tn,n†h†‖2
]

≤W 2
2 (πtn,0, ⃗ptn+1

) = W 2
2 (q̃tn,hn

, ⃗ptn+1
),

where the last equality is again by [102, Lemma 10].

Therefore, we have

EP

[
Etn,n†h†

]
=

∫ h†

0

EP

[
L2
s

∥∥∥∥ũ(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− u∗

tn,n†h†+⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2 + L2
p

∥∥∥ũ(K†)

tn,n†h†,τ† − u∗
tn,n†h†+τ†

∥∥∥2] dτ †
≤h†(L2

s + L2
p)W

2
2 (q̃tn,hn

, ⃗ptn+1
).

Now, we provide lemmas that are used to bound the first term in (C.24).
Lemma C.15. For any n† ∈ [0 : N† − 1], we have the following estimate:

sup
τ†∈[0,h†]

EP

[∥∥∥ũ(1)

tn,n†h†,τ† − ũ
(0)

tn,n†h†,τ†

∥∥∥2]

≤5L2
sh

†e(3+γ)h†

2γ
sup

τ†∈[0,h†]

EP

[∥∥∥ũ(K†−1)

tn,n†h†,τ† − ũ
(K†)

tn,n†h†,τ†

∥∥∥2]

+
5h†e(3+γ)h†

2γ
EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]
+ h†2e(3+γ)h† (

3γd+M2
s

)
+ h†e2h

†
d.
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Proof. Let µtn,n†h†,τ† := ũ
(1)

tn,n†h†,τ† − ũ
(0)

tn,n†h†,τ† and νtn,n†h†,τ† := ṽ
(1)

tn,n†h†,τ† − ṽ
(0)

tn,n†h†,τ† .
Then for k = 0, we may rewrite (C.15) as followsdµtn,n†h†,τ† =

(
νtn,n†h†,τ† + ṽ

(0)

tn,n†h†,τ†

)
dτ †

dνtn,n†h†,τ† = −γ(νtn,n†h†,τ† + ṽ
(0)

tn,n†h†,τ†)dτ
† − stn+1

(ũ
(0)

tn,n†h†,τ†)dτ
† +
√
2γdbtn,n†h†+τ†

(C.25)
On the one hand, by using the first equation in (C.25), we may compute the derivative

d

dτ †
′
∥∥µtn,n†h†,τ†′

∥∥2 = 2µ⊤
tn,n†h†,τ†′

(
νtn,n†h†,τ†′ + ṽ

(0)

tn,n†h†,τ†′

)
and integrate it for τ †′ ∈ [0, τ †], which yields

∥∥µtn,n†h†,τ†
∥∥2 = 2

∫ τ†

0

µ⊤
tn,n†h†,τ†′(νtn,n†h†,τ†′ + ṽ

(0)

tn,n†h†,τ†′)dτ
†′

≤2
∫ τ†

0

∥∥µtn,n†h†,τ†′
∥∥2 dτ †′ + ∫ τ†

0

∥∥νtn,n†h†,τ†′
∥∥2 dτ †′ + ∫ τ†

0

∥∥∥ṽ(0)

tn,n†h†,τ†′

∥∥∥2 dτ †′.
Applying Gronwall’s inequality, we have∥∥µtn,n†h†,τ†

∥∥2 ≤ e2τ
†

(∫ τ†

0

∥∥νtn,n†h†,τ†′
∥∥2 dτ †′ + ∫ τ†

0

∥∥∥ṽ(0)

tn,n†h†,τ†′

∥∥∥2 dτ †′) .

We then take expectation with respect to the path measure P and then the supremum with respect to
τ † ∈ [0, h†], implying that

sup
τ†∈[0,h†]

EP

[∥∥µtn,n†h†,τ†
∥∥2]

≤ sup
τ†∈[0,h†]

(
e2τ

†
∫ τ†

0

EP

[∥∥νtn,n†h†,τ†′
∥∥2] dτ †′ + e2τ

†
∫ τ†

0

EP

[∥∥∥ṽ(0)

tn,n†h†,τ†′

∥∥∥2] dτ †′)
≤ h†e2h

†
sup

τ†∈[0,h†]

EP

[∥∥νtn,n†h†,τ†′
∥∥2]+ h†e2h

†
d.

(C.26)

On the other hand, by applying Itô’s lemma and plugging in the expression of btn,n†h†+τ† given
by (C.17), we have

d‖νtn,n†h†,τ†‖2

=−

[
2γ‖νtn,n†h†,τ†‖2 + 2γν⊤

tn,n†h†,τ† ṽ
(0)

tn,n†h†,τ† + 2ν⊤
tn,n†h†,τ†stn+1

(
ũ
(0)

tn,n†h†,τ†

)
− 2γd

]
dτ †

+2ν⊤
tn,n†h†,τ†

√
2γ
(
db̃tn,n†h†+τ† + ϕtn,n†h†(τ †)dτ †

)
,

(C.27)

Then similarly, we may compute the derivative of ‖νtn,n†h†,τ†‖2, integrate it for τ † ∈ [0, h†], and
take the supremum with respect to τ † to obtain

EP

[
‖νtn,n†h†,τ†‖2

]
=EP

[
−
∫ τ†

0

(
2γ‖νtn,n†h†,τ†′‖2 + 2γν⊤

tn,n†h†,τ†′ ṽ
(0)

tn,n†h†,τ†′ − 2γd

)
dτ †

′
]

+EP

[
−
∫ τ†

0

2ν⊤
tn,n†h†,τ†′stn+1

(
ũ
(0)

tn,n†h†,τ†′

)
dτ †

′
]

+2
√
2γEP

[∫ τ†

0

ν⊤
tn,n†h†,τ†′

(
db̃tn,n†h†+τ†′ + ϕtn,n†h†(τ †

′
)dτ †

′)]
.
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By Itô’s lemma, this equals to
EP

[
‖νtn,n†h†,τ†‖2

]
=EP

[
−
∫ τ†

0

(
2γ‖νtn,n†h†,τ†′‖2 + 2γν⊤

tn,n†h†,τ†′ ṽ
(0)

tn,n†h†,τ†′ − 2γd

)
dτ †

′
]

+EP

[
−
∫ τ†

0

2ν⊤
tn,n†h†,τ†′stn+1

(
ũ
(0)

tn,n†h†,τ†′

)
+ 2
√
2γν⊤

tn,n†h†,τ†′ϕtn,n†h†(τ †
′
)dτ †

′
]
.

Applying AM-GM gives
EP

[
‖νtn,n†h†,τ†‖2

]
≤
∫ τ†

0

EP

[
(1 + γ)‖νtn,n†h†,τ†′‖2 + ‖ϕtn,n†h†(τ †

′
)‖2
]
dτ †

′

+

∫ τ†

0

EP

[
γ
∥∥∥ṽ(0)

tn,n†h†,τ†′

∥∥∥2 + ∥∥∥stn+1

(
ũ
(0)

tn,n†h†,τ†′

)∥∥∥2 + 2γd

]
dτ †

′

≤
∫ τ†

0

EP

[
(1 + γ)‖νtn,n†h†,τ†′‖2 + ‖ϕtn,n†h†(τ †

′
)‖2
]
dτ †

′
+

(
γE
[∥∥∥ṽ(0)

tn,n†h†,0

∥∥∥2]+M2
s + 2γd

)
τ †

=(1 + γ)

∫ τ†

0

EP

[
‖νtn,n†h†,τ†′‖2

]
dτ †

′
+

∫ τ†

0

EP

[
‖ϕtn,n†h†(τ †

′
)‖2
]
dτ †

′
+ τ †

(
3γd+M2

s

)
,

where in the last equality, we used the initialization of the auxiliary corrector process ṽ(0)

tn,n†h†,0
∼

N (0, Id).

Again, we apply Gronwall’s inequality to the above inequality and take the supremum with respect
to τ † ∈ [0, h†] to obtain

sup
τ†∈[0,h†]

EP

[
‖νtn,n†h†,τ†‖2

]
≤e(1+γ)h†

∫ h†

0

EP

[
‖ϕtn,n†h†(τ †)‖2

]
dτ † + h†e(1+γ)h† (

3γd+M2
s

)
≤e(1+γ)h†

2γ
EP

[∫ h†

0

∥∥∥∥stn+1(ũ
(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(ũ
(K†)

tn,n†h†,τ†)

∥∥∥∥2 dτ †
]

+ h†e(1+γ)h† (
3γd+M2

s

)
,

(C.28)

and for the difference term within the expectation, we decompose it again by the triangle inequality
in (C.24), i.e.∫ h†

0

∥∥∥∥stn+1
(ũ

(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(ũ
(K†)

tn,n†h†,τ†)

∥∥∥∥2 dτ †
≤5L2

s

∫ h†

0

∥∥∥∥ũ(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− ũ

(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2 dτ † + 5Etn,n†h† + 5h†δ2∞ + 5L2
pFtn,n†h† ,

to obtain that
sup

τ†∈[0,h†]

EP

[
‖νtn,n†h†,τ†‖2

]
≤5L2

se
(1+γ)h†

2γ
EP

[∫ h†

0

∥∥∥∥ũ(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− ũ

(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2 dτ †
]

+
5e(1+γ)h†

2γ
EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]
+ h†e(1+γ)h† (

3γd+M2
s

)
≤5L2

se
(1+γ)h†

2γ
h† sup

τ†∈[0,h†]

EP

[∥∥∥∥ũ(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− ũ

(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2
]

+
5e(1+γ)h†

2γ
EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]
+ h†e(1+γ)h† (

3γd+M2
s

)
,
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substituting which into (C.26) completes our proof of this Lemma.

Lemma C.16 (Exponential convergence of Picard iteration in the corrector step of PIADM-ODE).
For any n† ∈ [0, N † − 1], then the two ending terms ũ

(K†)

n†h†,τ† and ũ
(K†)

n†h†,τ† of the sequence

{ũ(k†)

n†h†,τ†}k†∈[0:K†−1] satisfy the following exponential convergence rate

sup
τ†∈[0,h†]

EP

[∥∥∥ũ(K†)

n†h†,τ† − ũ
(K†−1)

n†h†,τ†

∥∥∥2]

≤CK†

(
5h†e(3+γ)h†

2γ
EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]
+ h†2e(3+γ)h† (

3γd+M2
s

)
+ h†e2h

†
d

)
,

(C.29)
where the coefficient

CK† =

(
L2
sh

†2eh
†

2γ

)K†−1/1− 5L2
sh

†e(3+γ)h†

2γ

(
L2
sh

†2eh
†

2γ

)K†−1
 .

Proof. We subtract the dynamics of ũ(k+1)

n†h†,τ† and ũ
(k)

n†h†,τ† in (C.15) to obtain

d
(
ũ
(k+1)

n†h†,τ† − ũ
(k†)

n†h†,τ†

)
=
(
ṽ
(k+1)

n†h†,τ† − ṽ
(k†)

n†h†,τ†

)
dτ †.

Then, we use the formula above to compute the derivative

d

dτ †
′

∥∥∥ũ(k+1)

n†h†,τ†′ − ũ
(k†)

n†h†,τ†′

∥∥∥2 = 2
(
ũ
(k+1)

n†h†,τ†′ − ũ
(k†)

n†h†,τ†′

)⊤ (
ṽ
(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

)
and integrate for τ †′ ∈ [0, τ †] to obtain∥∥∥ũ(k+1)

n†h†,τ† − ũ
(k†)

n†h†,τ†

∥∥∥2
=2

∫ τ†

0

(
ũ
(k+1)

n†h†,τ†′ − ũ
(k†)

n†h†,τ†′

)⊤ (
ṽ
(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

)
dτ †

′

≤
∫ τ†

0

∥∥∥ũ(k+1)

n†h†,τ†′ − ũ
(k†)

n†h†,τ†′

∥∥∥2 dτ †′ + ∫ τ†

0

∥∥∥ṽ(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

∥∥∥2 dτ †′
Applying Grönwall’s inequality gives us that∥∥∥ũ(k+1)

n†h†,τ† − ũ
(k†)

n†h†,τ†

∥∥∥2 ≤ eτ
†
∫ τ†

0

∥∥∥ṽ(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

∥∥∥2 dτ †′
and taking the supremum with respect to τ † ∈ [0, h†] on both sides above implies

sup
τ†∈[0,h†]

EP

[∥∥∥ũ(k+1)

n†h†,τ† − ũ
(k†)

n†h†,τ†

∥∥∥2] ≤ h†eh
†

sup
τ†∈[0,h†]

EP

[∥∥∥ṽ(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

∥∥∥2] .
(C.30)

We then apply a similar argument for ṽ(k+1)

n†h†,τ† − ṽ
(k†)

n†h†,τ† as well

d
(
ṽ
(k+1)

tn,n†h†,τ† − ṽ
(k†)

tn,n†h†,τ†

)
=− γ

(
ṽ
(k+1)

tn,n†h†,τ† − ṽ
(k†)

tn,n†h†,τ†

)
dτ † −

(
stn+1

(ũ
(k†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)− stn+1

(ũ
(k−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)

)
dτ †,
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integrate which for τ † ∈ [0, τ †] to obtain∥∥∥ṽ(k+1)

n†h†,τ† − ṽ
(k†)

n†h†,τ†

∥∥∥2
=−

∫ τ†

0

2γ
∥∥∥ṽ(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

∥∥∥2 dτ †′
−2
∫ τ†

0

(
ṽ
(k+1)

n†h†,τ†′ − ṽ
(k†)

n†h†,τ†′

)⊤(
stn+1

(ũ
(k†)

tn,n†h†,⌊ τ†′

ϵ†
⌋ϵ†

)− stn+1
(ũ

(k−1)

tn,n†h†,⌊ τ†′

ϵ†
⌋ϵ†

)

)
dτ †

′

≤ 1

2γ

∫ τ†

0

∥∥∥∥stn+1
(ũ

(k†)

tn,n†h†,⌊ τ†′

ϵ†
⌋ϵ†

)− stn+1
(ũ

(k−1)

tn,n†h†,⌊ τ†′

ϵ†
⌋ϵ†

)

∥∥∥∥2 dτ †′
≤L2

s

2γ

∫ τ†

0

∥∥∥∥ũ(k†)

tn,n†h†,⌊ τ†′

ϵ†
⌋ϵ†
− ũ

(k−1)

tn,n†h†,⌊ τ†′

ϵ†
⌋ϵ†

∥∥∥∥2 dτ †′.
And then taking the supremum with respect to τ † ∈ [0, h†] on both sides above implies

sup
τ†∈[0,h†]

EP

[∥∥∥ṽ(k+1)

n†h†,τ† − ṽ
(k†)

n†h†,τ†

∥∥∥2] ≤ h†L2
s

2γ
sup

τ†∈[0,h†]

EP

[∥∥∥ũ(k†)

tn,n†h†,τ† − ũ
(k−1)

tn,n†h†,τ†

∥∥∥2]
(C.31)

Substituting (C.31) into (C.30) and iterating over k ∈ [1 : K† − 1], we obtain that

sup
τ†∈[0,h†]

EP

[∥∥∥ũ(K†)

n†h†,τ† − ũ
(K†−1)

n†h†,τ†

∥∥∥2] ≤ L2
sh

†2eh
†

2γ
sup

τ†∈[0,h†]

EP

[∥∥∥ũ(K†−1)

tn,n†h†,τ† − ũ
(K†−2)

tn,n†h†,τ†

∥∥∥2]

≤

(
L2
sh

†2eh
†

2γ

)K†−1

sup
τ†∈[0,h†]

EP

[∥∥∥ũ(1)

tn,n†h†,τ† − ũ
(0)

tn,n†h†,τ†

∥∥∥2]

≤

(
L2
sh

†2eh
†

2γ

)K†−1
5h†e(3+γ)h†

2γ
EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]

+

(
L2
sh

†2eh
†

2γ

)K†−1 (
h†2e(3+γ)h† (

3γd+M2
s

)
+ h†e2h

†
d
)

+

(
L2
sh

†2eh
†

2γ

)K†−1
5L2

sh
†e(3+γ)h†

2γ
sup

τ†∈[0,h†]

EP

[∥∥∥ũ(K†−1)

tn,n†h†,τ† − ũ
(K†)

tn,n†h†,τ†

∥∥∥2] ,
where we plug in the results from Lemma C.15 in the last inequality. Rearranging the inequality
above completes our proof.

Theorem C.17. Under Assumptions 3.1’, 3.2, 3.3, and 3.4, given the following choices of the order
of the parameters

T † = O(1), N † = O(1), h† = Θ(1)

M† = Θ(d1/2δ−1), ϵ† = Θ(d−1/2δ), K† = O(log(dδ−2))

and let

L2
sh

†2eh
†

2γ
� 1, γ ≲ L−1/2

p , T † ≲ L−1/2
p ∧ L−1/2

s , δ∞ ≲ δ

then the distribution π̃tn,T † satisfies the following error bound:

DKL(πtn,T †‖π̃tn,T †) ≲T †W 2
2 (q̃tn,hn

, ⃗ptn+1
) + T †δ2∞ + dT †ϵ†

2
+ e−K†

T †h†d

≲W 2
2 (q̃tn,hn

, ⃗ptn+1
) + δ2,

with a total of K†N† = O
(
log(dδ−2)

)
approximate time complexity and M = Θ

(
d1/2δ−2

)
space

complexity for parallalizable δ-accurate score function computations.
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Proof. Now, we continue the computation by plugging the decomposition in (C.24) and all the error
bounds derived above into the equation. First for the last term in (C.23)

EP

[∫ h†

0

∥∥∥∥stn+1
(ũ

(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
)−∇ log ⃗ptn+1

(ũ
(K†)

tn,n†h†,τ†)

∥∥∥∥2 dτ †
]

≤5L2
sh

† sup
τ†∈[0,h†]

EP

[∥∥∥∥ũ(K†−1)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†
− ũ

(K†)

tn,n†h†,⌊ τ†
ϵ†

⌋ϵ†

∥∥∥∥2
]
+ 5EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]

≤5

(
1 + L2

sh
†CK†

5h†e(3+γ)h†

2γ

)
EP

[
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]

+5L2
sh

†CK†

(
h†2e(3+γ)h† (

3γd+M2
s

)
+ h†e2h

†
d
)
,

where the last inequality is by Lemma C.16. We further substitute Lemma C.14 and C.13 into (C.23)
to obtain

DKL(πtn,n†h†‖π̃tn,n†h†)

≤DKL(πtn,(n−1)h†‖π̃tn,(n−1)h†) + 5
2γ + L2

sCK†5h†2e(3+γ)h†

4γ2
EP

[
Etn,n†h† + h†δ2∞ + L2

pFtn,n†h†
]

+
5L2

sh
†CK†

2γ

(
h†2e(3+γ)h† (

3γd+M2
s

)
+ h†e2h

†
d
)

≲DKL(πtn,(n−1)h†‖π̃tn,(n−1)h†)

+5
2γ + L2

sCK†5h†2e(3+γ)h†

4γ2

(
h†(L2

s + L2
p)W

2
2 (q̃tn,hn , ⃗ptn+1

) + h†δ2∞ + dh†ϵ†
2
)

+
5L2

sh
†CK†

2γ

(
h†2e(3+γ)h† (

3γd+M2
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)
+ h†e2h

†
d
)

≲DKL(πtn,(n−1)h†‖π̃tn,(n−1)h†) + h†W 2
2 (q̃tn,hn , ⃗ptn+1

) + h†δ2∞ + dh†ϵ†
2
+ e−K†

h†2d,

and then sum over n to obtain

DKL(πtn,T †‖π̃tn,T †) = DKL(πtn,N†h†‖π̃tn,N†h†)

≲DKL(πtn,0‖π̃tn,0) +N†h†W 2
2 (q̃tn,hn , ⃗ptn+1

) +N†h†δ2∞ + dN †h†ϵ†
2
+ e−K†

N†h†2d

=T †W 2
2 (q̃tn,hn

, ⃗ptn+1
) + T †δ2∞ + dT †ϵ†

2
+ e−K†

T †h†d.

Then, it is straightforward to see that when the following order of the parameters holds

T † = O(1), h† = Θ(1), N † = O(1),
ϵ† = Θ(d−1/2δ), M † = O(d1/2δ−1), K† = O(log(dδ−2))

and δ∞ ≤ δ, we have

DKL(πtn,T †‖π̃tn,T †) ≲ W 2
2 (q̃tn,hn

, ⃗ptn+1
) + δ2.

Lemma C.18. Suppose T † ≲ L
−1/2
p , then we have

TV(πtn,T † , ⃗ptn+1
) ≤

√
DKL(πtn,T †‖ ⃗ptn+1

) ≲ 1

L
1
4
p (T †)

3
2

W2(πtn,0, ⃗ptn+1
) ≲ W2(q̃tn,hn , ⃗ptn+1

).

Proof. A complete proof of the Lemma above is presented in [102, Lemma 9], which is derived
based on [136, Corollary 4.7 (1) ].
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C.4 Overall Error Bound

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. Notice that the interpolating corrector process (ũtn,n†h†,τ† , ṽtn,n†h†,τ†) is
constructed to follow the same dynamics as the auxiliary corrector process (ûtn,n†h†,τ† , v̂tn,n†h†,τ†)
in the corrector step. Therefore, we have by data processing inequality that

TV(π̂û
tn,T † , π̃

ũ
tn,T †) ≤ TV(π̂û

tn,0, π̃
ũ
tn,0) = TV(q̂tn,hn

, q̃tn,hn
), (C.32)

and again, since the interpolating predictor process ỹtn,n†h† is constructed to follow the same dy-
namics as the auxiliary predictor process ŷtn,n†h† in the predictor step, we further have by data
processing inequality that

TV(q̂tn,hn
, q̃tn,hn

) ≤ TV(q̂tn,0, q̃tn,0) = TV(q̂tn , ⃗ptn). (C.33)

Furthermore, applying triangle inequality, Pinsker’s inequality along with Theorem C.17 and Theo-
rem C.7 proved above, we may upper bound the second term above as follows

TV(πtn,T † , π̃tn,T †)2 ≲ DKL(πtn,T †‖π̃tn,T †) ≲ W 2
2 (q̃tn,hn , ⃗ptn+1

) + δ2 (C.34)

Summarizing the above inequalities, we have

TV(π̃ũ
tn,T † , ⃗ptn+1

)2 = TV(π̃ũ
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tn,T †)
2
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2
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2
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≲ W 2
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, ⃗ptn+1
) + δ2 +W 2

2 (q̃tn,hn
, ⃗ptn+1

)

≲ de−K + h2
nδ

2
∞ + dϵ2h2

n + δ2,

(C.35)

where the second last inequality is deduced from Theorem C.17 and Lemma C.18 and the last in-
equality is derived via Theorem C.7. Therefore, for any n ∈ [0 : N−1], applying triangle inequality
along with data processing inequality (cf. Theorem A.1) yields

TV(q̂tn+1
, ⃗ptn+1

) = TV(π̂û
tn,T † , ⃗ptn+1

)

≤ TV(π̂û
tn,T † , π̃

ũ
tn,T †) + TV(π̃ũ

tn,T † , ⃗ptn+1
)

≤ TV(qtn , ⃗ptn) + d1/2e−K/2 + hnδ∞ + d1/2ϵhn + δ.

(C.36)

where the last inequality is derived by plugging in (C.32), (C.33) and (C.36). Applying Lemma A.9
and summing the inequalities above further give us that

TV(q̂tN , pη) = TV(q̂tN , ⃗ptN )

≲ TV(q̂0, ⃗p0) +

N−1∑
n=0

(
d1/2e−

K
2 + hnδ + d1/2ϵhn + δ

)
≲ d1/2e−T/2 +Nd1/2e−K/2 + Tδ∞ + d1/2ϵT + δN.

(C.37)

By setting the parameters

T = O(log(dδ−2)), h = Θ(1), N = O(log(dδ−2)),

ϵ = Θ
(
d−1/2δ log−1(d−1/2δ−1)

)
, M = O(d1/2δ−1 log(d1/2δ−1)), K = Õ(log(dδ−2)),

and letting δ∞ ≲ δT−1 ≲ δ log−1(dδ−2), we finally obtained the upper bound

TV(q̂tN , pη)
2 ≲ de−T +N2de−K + δ2 + dϵ2T 2 ≤ δ2

as desired.
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