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Abstract
The task of inserting text into a specified po-001
sition in a passage, known as fill in the blank002
(FITB), is useful for a variety of applications003
where writers interact with a natural language004
generation (NLG) system to craft text. While005
previous work has tackled this problem with006
models trained specifically to do fill in the007
blank, a more useful model is one that can ef-008
fectively perform both FITB and continuation009
tasks. In this work, we evaluate the feasibil-010
ity of using a single model to do both tasks.011
We show that models pre-trained with a FITB-012
style objective are capable of both tasks, while013
models pre-trained for continuation are not. Fi-014
nally, we show how these models can be easily015
finetuned to allow for fine-grained control over016
the length and word choice of the generation.017

1 Introduction018

Natural language generation systems are increas-019

ingly being incorporated into applications where a020

human writer and an AI jointly collaborate to con-021

struct text. These range from creative domains such022

as collaborative story writing (Coenen et al., 2021;023

Akoury et al., 2020) to more practical ones such024

as email composition and code synthesis (Buschek025

et al., 2021; Wu, 2018; Austin et al., 2021). These026

applications are often limited to generating text at027

the end of what has been written so far. This is028

because language models (LMs) are typically de-029

signed to produce text by repeatedly predicting the030

next word in a sequence given the previous words.031

However, there is a need for more powerful interac-032

tive tools which enable writers to solicit insertions033

at any chosen position within the existing text, a034

task referred to as fill in the blank (FITB) or infill-035

ing. For example, a creative writer might want a036

tool which can insert a description of a place or037

character, and a programmer might want a system038

that can fill in a method in the middle of their code.039

Most prior work tackling FITB consider it a sep-040

arate task from continuation, one to be specifically041

Fill in the blank with about 16 words and 
include the phrase “old dog”: “The boy 
took the ____ for a walk.” 

Fill in the blank with about 4 words: 
“The boy took the ____ for a walk.”

Continue the text with about 2 words: 
“The boy took the lonely old dog ____”

Continue the text with about 8 words 
and include the phrase “rocky path”: 
“The boy took the lonely old dog ____”

leash off the hook. 
His old dog still 
acted like a puppy 
when it came time

two dalmatians to 
the beach

inside the house.

up the rocky path. 
It was slow going.

FILL-IN-THE-BLANK
+ CONTINUATION

MODEL

Figure 1: A single model that can handle a variety of re-
lated writing tasks is more efficient than separate mod-
els per task.

optimized for, for example training a model from 042

scratch (Ippolito et al., 2019; Zhu et al., 2019) or 043

finetuning a model trained originally for contin- 044

uation (Donahue et al., 2020). Having separate 045

trained models for FITB and for continuation is in- 046

efficient for downstream applications where main- 047

taining multiple neural networks can be prohibitive. 048

Any model that can do FITB can be made to do 049

continuation simply by placing the blank at the end 050

of the input. Thus, in this work we describe how 051

models trained on FITB can be employed effec- 052

tively for both infilling and continuation operations. 053

We show how T5 (Raffel et al., 2019), one of the 054

most popular pre-trained models, can reasonably 055

handle both tasks, as it was pre-trained with a FITB- 056

like objective. Finetuning T5 further improves its 057

ability and also allows for the incorporation of con- 058

trollability of generation length and word choice. 059

2 Supporting FITB and Continuation 060

Definitions. We define filling in the blank as the 061

task of predicting text to replace a single missing 062

span, usually demarcated with a special token, in 063

an input text passage. (Some prior work considers 064

inputs with multiple blanks, but inserting text at 065

one position at a time better matches the kinds of 066

edits humans do.) We define continuation in the 067

traditional language modeling sense–predicting the 068

next token in a sequence given only the previous to- 069

kens. Donahue et al. (2020) discuss how language 070
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Example Type Input Target
C4FILLBLANK
no goal

fill: I love avocados. I ate a sandwich covered in them. _8_ I talked to my
doctor about it later. It turned out I was allergic to avocados.

After I ate it, my mouth
was itchy and tingly.

C4FILLBLANK
with goal

fill: I love avocados. I ate a sandwich covered in them. _8_ I talked to
my doctor about it later. It turned out I was allergic to avocados. Goal:
mouth was itchy

After I ate it, my mouth
was itchy and tingly.

C4FILLBLANK
no goal

fill: I love avocados. I ate a sandwich covered in them. After I ate it, my
mouth was itchy and tingly. I talked to my doctor about it later. _8_

It turned out I was allergic
to avocados.

C4FILLEND
with goal

fill: I love avocados. I ate a sandwich covered in them. After I ate it, my
mouth was itchy and tingly. I talked to my doctor about it later. _8_ Goal:
allergic to

It turned out I was allergic
to avocados.

Table 1: Examples of the finetuning objectives. “8" is the approximate length in words of the target sequence.
During finetuning, about 25% of training examples took each of these formats.

modeling is a special case of infilling, and they use071

this as justification to finetune a continuation-based072

language model to do infilling. However, we argue073

that if continuation is a subtask of infilling, it makes074

more sense to go in the opposite direction: priori-075

tize a model which can do infilling and check that it076

achieves satisfactory performance at continuation.077

Using a model pre-trained for FITB. T5 is a078

model pre-trained with a “span corruption” ob-079

jective very similar to FITB; the model is asked080

to reconstruct the missing text after random sub-081

sequences of the input are replaced with special082

identifiers. Thus, a pre-trained T5 model can be083

used without any further training to do both contin-084

uation and infilling by appropriately choosing text085

to mask out. The encoder-decoder architecture of086

T5 is also more conducive to FITB than decoder-087

only architectures like GPT-2 (Radford et al., 2019)088

which are typically used for continuation-based lan-089

guage models. This is because the attention mecha-090

nism in encoder-decoder architectures allows the091

context on the left side of the blank to attend to092

the context on the right, while decoder-only archi-093

tectures only support masked attention (each token094

can only attend to the positions to its left).095

Even though T5’s pre-training objective was a096

form of FITB, finetuning is still advantageous. For097

one, our definition of FITB only includes a single098

masked out substring, not multiple, so finetuning099

improves alignment with the goal task. Finetuning100

also allows us to incorporate additional condition-101

ing signals not supported by the pre-trained T5,102

such as being able to specify the desired length103

of the generated text or specify words that ought104

to be included in the blank, a task we refer to as105

“goal conditioning." Length control, which comes106

by default in a traditional language model by sim-107

ply sampling more or fewer tokens, is particularly108

necessary for FITB, where the end of the genera-109

tion must fit seamlessly with the text to its right.110

Using a model pre-trained for continuation. 111

The biggest language models available today were 112

largely trained in the continuation rather than the 113

FITB paradigm (Brown et al., 2020; Black et al., 114

2021). Since our primary goal is to have a single 115

model for both tasks, we also address the question: 116

if a continuation-trained model is big enough, can 117

it handle FITB without the need for finetuning? 118

Few-shot learning with large language models, as 119

popularized by Brown et al. (2020), has had success 120

on many tasks in NLP. We try out this approach for 121

FITB by designing a few-shot prompt containing 122

several demonstrations of the FITB task, formu- 123

lated in a similar “infilling by language modelling" 124

style as Donahue et al. (2020). Further details on 125

our approach to selecting a few-shot prompt are in 126

Appendix A.1. 127

3 Experiments 128

Model. For all experiments with T5, we use the 129

800M parameter v1.1 ‘large’ model. See the Ap- 130

pendix for additional results from the 3B parameter 131

‘XL’ model. To finetune T5 for FITB, we construct 132

training examples from documents by first parti- 133

tioning the document text into a left context, gap, 134

and right context. The input sequence is then the 135

left and right contexts concatenated with textual 136

representations of the additional conditioning sig- 137

nals. The target sequence is the true text for the 138

blank. This formulation easily supports continu- 139

ation, as the blank can be deliberately placed at 140

the end (i.e., providing no right context). Docu- 141

ments are drawn from C4, the same dataset T5 was 142

pre-trained on. Documents are split into word se- 143

quences, and these are then randomly truncated to 144

be between 256-512 words long. A substring of 145

between 1 and 64 words is selected to be blanked 146

out. For half of the training examples the blank 147

is randomly selected, and for the other half it is 148

always placed at the end. To support length condi- 149
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C4FILL RWPFILL ROCFILL
BLANK MIDDLE BLANK

Few-shot LLM 14.14 19.48 18.21
Pre-trained T5 10.38 14.08 22.62
Finetuned T5 10.33 14.08 20.47
Donahue et al. (2020) N/A N/A 23.28
Groundtruth 9.41 12.99 16.90

Table 2: Perplexity of evaluation sets according to LLM
when the blank has been filled with approaches involv-
ing no fine-tuning (top), finetuned approaches (middle),
and the groundtruth (bottom). Lower values indicate
that the text was considered more fluent by the LLM.

tioning, we follow Roberts and Raffel (2020) and150

include a bucketed version of the target length as151

part of the blank. To support goal conditioning, for152

half the examples, a random substring of up to half153

the words of the target is appended to the end of154

the input. Examples are shown in Table 1.155

Baselines We compare T5 against a state-of-the-156

art 137B parameter decoder-only language model157

(LLM) trained explicitly for continuation and used158

successfully for few-shot learning in other do-159

mains (Austin et al., 2021; Reif et al., 2021). This160

model is used (1) as a standard continuation model,161

prompting with only the left context of an example;162

and (2) in a few-shot learning paradigm.163

Evaluation Datasets We evaluate continuation164

and FITB on C4 as well as two story writing165

datasets, as creative writing assistant applications166

are one of the key areas we expect to benefit from167

multi-task models (Coenen et al., 2021). Red-168

dit Writing Prompts (RWP) is a corpus of sto-169

ries from the ‘r/WritingPrompts’ sub-Reddit (Fan170

et al., 2018), and we construct validation sets RW-171

PFILLBLANK and RWPFILLEND using the same172

method described in the previous section. C4 and173

RWP validation sets are capped to 5,000 examples.174

ROC Stories (ROC) is a crowd-sourced dataset of175

five-sentence commonsense stories (Mostafazadeh176

et al., 2016). For ROC Stories, the 2018 valida-177

tion set is used to construct ROCFILLMIDDLE,178

where the middle sentence of each story is blanked179

out, and ROCFILLEND, where the last sentence is180

blanked out. Unless otherwise noted, all evaluation181

is done without goal conditioning and uses random182

sampling with top-k=50 as the decoding strategy.183

Example generations for all evaluation sets can be184

found at https://bit.ly/2U0Ixxa.185

C4FILL RWPFILL ROCFILL
END END END

Pre-trained T5 10.09 13.51 21.71
T5 FILLBLANKCONT 10.04 13.74 19.60
T5 LM-ADAPTION 10.06 13.71 19.68
Groundtruth 9.41 12.99 16.90

Table 3: Perplexity of continuation-based evaluation
sets when a continuation has been generated using ap-
proaches with no finetuning (top) and two settings of
finetuning T5 (middle).
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Figure 2: Human ratings of FITB generations (left) and
continuation generations (right). Error bars are 95%
confidence intervals.

4 Findings 186

Automatic Evaluation We measure the fluency 187

of proposed generations by evaluating the perplex- 188

ity of each dataset’s examples when the predicted 189

text is placed in the blank (Donahue et al., 2020). 190

We use the LLM to measure perplexity1. The re- 191

sults are shown in Table 2. We see that the LLM 192

struggles to generate fluent infills, even when used 193

in a few-shot setting. The only exception to this is 194

ROC Stories, a dataset with fairly simplistic, pre- 195

dictable language. Finetuning T5 does not result in 196

significantly improved fluency over the pre-trained 197

model except on ROC Stories. Lastly, for ROC Sto- 198

ries, we compare against Donahue et al. (2020)’s 199

finetuned GPT-2 small, which yielded less fluent 200

predictions. Table 3 shows a similar analysis on our 201

continuation-style datasets. Both T5-based models 202

achieve roughly the same fluency. 203

Human Evaluation Human evaluation was con- 204

ducted on 70 examples, 35 from RWPFILLBLANK 205

and 35 from RWPFILLEND, with examples about 206

evenly distributed across length buckets. For RW- 207

PFILLBLANK evaluation tasks, the rater was pre- 208

sented an input context and several possible se- 209

quences that could go in the blank. They were 210

1Note, since this is the same model being used for genera-
tion for our continuation baseline, this metric may be biased.
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Finetuned T5 Context Length
C4FILLBLANK 0.860 0.877
RWPFILLBLANK 0.797 0.881
C4FILLEND 0.858 0.775
RWPFILLEND 0.791 0.746

Table 4: Accuracy of models finetuned on FILL-
BLANKCONT at correctly using provided length and
goal conditioning signals.

asked to rate each sequence first, on how well it211

fit the text before it, and second, on how well it fit212

with the text following it, according to a 5-point213

slider For RWPFILLBLANK, the task was almost214

the same, except that the rater was presented only215

a left context and asked to rate how well it contin-216

ued the prompt. More details are in the Appendix.217

Figure 2 shows the results.218

On the FITB task, the pre-trained and finetuned219

T5 models were indistinguishable in terms of qual-220

ity. The LLM that formed continuations prompted221

with only the left context did somewhat better than222

the few-shot LLM, indicating that few-shot learning223

is not yet a feasible alternative to finetuning. On224

the continuation task, the LLM has the highest rat-225

ing, which is unsurprising since it is a much larger226

model than T5. However, the finetuned T5 is rated227

almost as highly. Overall, these results suggest that228

T5, unlike the LLM, can be used effectively for229

continuation as well as FITB. Furthermore, if one230

doesn’t care about controllability, T5 can be used231

effectively for both tasks without any finetuning.232

Benefits of Controllability There are good rea-233

sons to care about controllability. For example,234

length conditioning is extremely important for235

FITBmodels, since it is not possible to control236

the generation length by simply sampling more or237

fewer tokens. Pre-trained T5 tends to produce infill238

proposals which are shorter than the groundtruth239

(Figure A4), and there is no way to ask the model to240

produce longer generations. In contrast, finetuned241

T5 was able to produce generations in the target242

length bucket over 74% of the time (Table 4). Goal243

conditioning, while not strictly necessary for either244

either task, has been shown to be useful for genera-245

tive commonsense reasoning (Lin et al., 2020) and246

may empower users in downstream applications247

such as AI-assisted creative writing (Roemmele,248

2021). Finetuned T5 is able to use all of the speci-249

fied goal words over 79% of the time.250

Domain Transfer Prior work on FITB tends to251

only evaluate models trained on data from the same252

domain as the validation set. Our results show 253

that despite training exclusively on C4, T5 mod- 254

els have strong transferability to more targeted do- 255

mains such as Reddit Writing Prompts. This sort of 256

transferability is extremely important for achieving 257

the goal of having single models which can handle 258

many tasks and domains. 259

5 Related Work 260

FITB is a form of Cloze task (Taylor, 1953). Prior 261

deep-learning approaches to this task include train- 262

ing an encoder-decoder model from scratch with 263

length and goal word conditioning (Ippolito et al., 264

2019); finetuning GPT-2 (Radford et al., 2019) 265

(Donahue et al., 2020); and training a custom self- 266

attention architecture on corrupted text (Zhu et al., 267

2019). None of these show that their fill-in-the- 268

blank models remain effective at continuation or 269

perform well on text domains that differ from the 270

training data. Related to FITB, Mori et al. (2020) 271

investigate a setting where a sentence is randomly 272

deleted from the input, and the model must both 273

predict the location of the deletion as well as its 274

contents. Huang et al. (2020) tackle the sentence 275

infilling task using a mixture of BERT and GPT-2. 276

Lastly, many LM pre-training objectives involve 277

masking out parts of the input then predicting the 278

masked values, which is similar to FITB (Devlin 279

et al., 2018; Raffel et al., 2019; Joshi et al., 2020). 280

6 Conclusion 281

In this work, we make the case for starting with 282

a model capable of filling in the blank when at- 283

tempting to build a system that can perform both 284

FITB and continuation. As LMs become bigger, 285

it will be unsustainable to have separately trained 286

models per task. Multi-task, domain-transferable 287

models with like the ones we propose require less 288

total training and are more efficient to store and use 289

at inference time. While pre-trained T5 by itself 290

is capable of both infilling and continuation, addi- 291

tional conditioning signals such as desired length 292

and goal text can be successfully incorporated into 293

fine-tuning in order to support an even greater di- 294

versity of model interactions. Finally, we present 295

a negative result that while few-shot learning is a 296

promising method for building multi-task support 297

without any finetuning, it is challenging to make 298

work for the FITB task. 299
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7 Risks and Limitations300

All neural language models, including the ones301

used in this paper, reflect the biases and other is-302

sues present in their training data. Weidinger et al.303

(2021) discuss these risks in detail. The models304

and datasets considered in this paper are all in the305

English, and the proposed methods may work dif-306

ferently in other languages. In addition, the pa-307

per mostly focuses on showing results pertinent to308

the story writing domain; in other domains joint309

models for continuation and fill-in-the-blank might310

work worse. Finally, the LLM used in this paper311

is not public, which to some extent limits repro-312

ducibility, though we expect our findings would313

have been similar had we evaluated with a public314

model such as GPT-2. We emphasize that the main315

contribution of this paper is a comparison of differ-316

ent methods, all of which are easily implementable,317

rather than new model checkpoints.318
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A Appendix448

A.1 Few-Shot Learning Details449

Choosing appropriate examples for a few-shot450

prompt can be challenging as task performance451

is often sensitive to minor changes in prompt de-452

sign (Zhao et al., 2021). We experimented with453

prompts randomly selected from the C4, Reddit454

Writing Prompts, and ROC Stories training sets, as455

well as prompts consisting of examples handwrit-456

ten by the authors with the goal of story-writing457

in mind. For each prompt source, we randomly458

generated five possible prompts, each with three459

examples (more details in Appendix). To simplify460

the task, we conditioned on desired length but did461

not include goal conditioning.462

An example prompt is shown in Figure 3.463

When choosing random few-shot prompts from464

the dataset train sets, in order to keep the few-shot465

prompt text within the 512-token context length466

limit of the 137B parameter model we used for467

inference, we only considered examples that con-468

tained 100 or fewer tokens, so that the max length469

of the few-shot prompt was no more than 300 to-470

kens. This left 212 tokens for the text of the ac-471

tual example we were interested in performing the472

FITB task on. For each evaluation set, examples473

with inputs longer than 212 tokens were excluded474

from analysis. For our hand-written prompt, we475

wrote the 7 examples shown in Table 8. We gener-476

ated 5 possible prompts by randomly subsampling477

3 examples out of these 7.478

Table 5 shows the perplexity of the generations479

from each few-shot prompt. We note that even480

leaving room for 212 tokens worth of context text,481

some evaluation examples did not fit in the prompt482

length, and these examples were skipped when do-483

ing this analysis. Figure 5 shows a histogram of the484

fraction of validation set examples that remained485

for each few-shot prompt after the too-long exam-486

ples were filtered out. Based on these results, we487

chose to include in human evaluation the best few-488

shot prompt from from ROCFILLMIDDLEand the489

best few-shot prompt from C4FILLBLANK. Fig-490

ure 2 in the main paper shows the result from the491

C4FILLBLANKfew-shot prompt, whose outputs492

were rated slightly higher by human annotators.493

Our analysis of few-shot learning prompts was494

not sufficiently exhaustive to rule out the possi-495

bility there might exist a prompt for which this496

technique would be effective. For example, we497

did not conduct formal experiments to systemati-498

cally vary the prompt wording/formatting shown 499

in Figure 3. We can conclude that the process of 500

finding an ideal prompt requires time-consuming 501

trial-and-error and is quite difficult! 502

A.2 Experimenting with Prefix Tuning 503

During the course of this study, we experimented 504

with the usage of Prefix Tuning (Li and Liang, 505

2021) for the FITB task. In this method, a fixed- 506

length continuous space prefix is appended to the 507

input sequences and this prefix is directly optimized 508

to maximize performance on a given task. This 509

can be used to estimate an upper bound for the 510

performance of few-shot learning on a given task. 511

We trained two prefixes, both of length 5, on pre- 512

trained GPT-2 of size medium (345M) and large 513

(774M) (Radford et al., 2019). While our results 514

showed that the prefix successfully instructed the 515

pre-trained model to perform the FITB task, nei- 516

ther of these models outperformed our few-shot 517

prompts during Human Evaluation, showing only 518

marginally better performance than our random 519

baseline. Due to the discrepancy in size between 520

the prefix tuned GPT-2 models and the models we 521

tested for few-shot prompting, we left these results 522

out of the final analysis. Future work should seek 523

to explore the limitations of this technique and the 524

ways in which it and few-shot learning can be com- 525

pared. 526

A.3 Finetuning Implementation Details 527

For length conditioning, when discretizing the tar- 528

get sequence’s length to a length bucket, we choose 529

the closest value in {1, 2, 4, 8, 16, 32, 64} to the 530

target’s length in words. 531

All training was done in the Mesh Tensorflow T4 532

codebase.2 Each T5 model was finetuned for about 533

50,000 steps with a batch size of 128 examples 534

(i.e., ∼6.4M examples were seen during finetun- 535

ing.) A constant learning rate of 0.0008 was used, 536

and no overfitting was observed. Code to repro- 537

duce our finetuning objectives on arbitrary datasets 538

is included in the downloadable “.zip" and will be 539

made available on Github upon paper acceptance. 540

A.4 Further Finetuning Experiments 541

In the main paper, we discuss only one finetuning 542

setting, one where half the examples have randomly 543

placed blanks and the other half have blanks always 544

2https://github.com/google-research/
text-to-text-transfer-transformer
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C4FILL ROCFILL RWPFILL RWPFILL
Few-shot source: BLANK MIDDLE BLANK BLANK-Sent
C4FILLBLANK 15.67 19.72 19.65 16.82
ROCFILLMIDDLE 14.14 19.61 19.48 16.36
RWPFILLBLANK 24.39 20.29 32.33 28.13
RWPFILLBLANK-Sent 18.91 18.21 24.44 19.87
FS CUSTOM 17.98 19.80 21.72 18.38
Finetuned T5 XL 9.99 19.00 13.64 10.03
Finetuned T5 Large 10.33 20.47 14.08 10.37

Table 5: Perplexity of evaluation sets when the blank has been filled in using LLM with few-shot prompting (top)
and our best fine-tuned T5 model ((bottom). Among the few-shot results, the best method for each dataset is
bolded, as well as methods within one standard error.

at the end. We actually experimented with three545

possible settings:546

• In the standard FILLBLANK setting, the blank547

location is sampled uniform randomly across548

the sequence.549

• In the FILLBLANKCONT setting, for half of550

examples the blank is randomly selected and551

for the other half it is always at the end. As552

we hypothesized that finetuning on such data553

would result in better performance at the con-554

tinuation task, this was the setting we used in555

the main paper.556

• In the CONT setting, the blank is always557

placed at the end of the sequence. In essence,558

we are finetuning solely for the continuation559

objective.560

For the FILLBLANKCONTsetting from the main561

paper, we additionally experimenting with finetun-562

ing a 3B parameter “XL" T5 model.563

Table 6 shows the perplexity of all these mod-564

els on a variety of validation sets. Note that565

these are perplexities in the conventional definition–566

perplexity of the examples from the validation set–567

not the fluency measure we used in the main paper.568

The perplexity numbers across the different models569

are comparable, since all models used the default570

T5 vocabulary. The perplexity numbers between571

datasets are not comparable since some datasets,572

like ROC Stories, are simply easier. Unsurpris-573

ingly, the larger models achieved lower perplexity574

on all validation sets We can also see from Table575

6 that it was probably not strictly necessary to en-576

force that 50% of training examples had blanks577

at the end. The model finetuned exclusively with578

randomly placed blanks (FILLBLANK) performed579

only slightly worse (probably not statistically sig-580

nificant) on the continuation-style validation sets581

than the FILLBLANKCONT-trained model.582

Finally, Table 7 shows the accuracy of both583

model sized on the two conditioning signals which 584

were incorporated: length bucket and goal con- 585

ditioning. Surprisingly, using a larger model im- 586

proves goal conditioning accuracy but hurts length 587

conditioning accuracy. 588

A.5 Further Human Evaluation Details 589

A screenshot of the Human Intelligence Task (HIT) 590

used for annotations is shown in Figure 6. Workers 591

were paid originally paid $1.85 per HIT, but since 592

the average HIT duration ended up being 15 min- 593

utes, we awarded each rater a bonus to raise their 594

pay to an average of $10 per hour. We restricted 595

the HITs to workers for whom Masters had been 596

granted and who had previously done at least 100 597

HITs. 598

Each example was shown to three raters, and an- 599

notations were rejected if the rater gave a lower 600

overall score to the random output than to the 601

ground-truth one. A total of 3 annotations were 602

rejected. Overall, the Fleiss’ kappa agreement of 603

pairs of annotators giving the same numerical score 604

to the same question was 0.26. 605
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Pre-trained C4FILL ROCFILL RWPFILL
model Finetune setting BLANK END MIDDLE END (T) BLANK SENTBLANK END

T5 Large FILLBLANKCONT 11.79 13.47 6.43 6.73 16.15 14.84 19.89
T5 Large FILLBLANK 11.64 13.88 6.41 6.84 16.11 14.89 20.16
T5 Large CONT 16.10 13.26 37.08 6.79 21.35 27.73 19.90
T5 XL FILLBLANKCONT 9.53 11.15 5.34 5.79 13.05 11.98 16.57

Table 6: The perplexity according to T5 Large finetuned with three possible training data settings, with blanks
placed randomly (FILLBLANK), with blanks placed always at the end (CONT), or with an equal mix of these two
(FILLBLANKCONT). For the large-sized models, the one that achieved lowest perplexity on each dataset is bolded.

XL Model Context Length
C4FILLBLANK 0.867 0.810
RWPFILLBLANK 0.800 0.830
C4FILLEND 0.864 0.826
RWPFILLEND 0.830 0.820
Large Model Context Length
C4FILLBLANK 0.860 0.877
RWPFILLBLANK 0.797 0.881
C4FILLEND 0.858 0.775
RWPFILLEND 0.791 0.746

Table 7: Accuracy of models finetuned on FILL-
BLANKCONT at correctly using provided length and
goal conditioning signals.

Fill in the blank with about 16 words.
Text: "We have to leave now!" Sarah shouted. ____ The 
only way out was up. We climbed flight after flight. The 
sound of the monsters banging on the door below became 
more distant but no less threatening.
Answer: "The zombies are going to break through any 
moment, and then we'll all be goners."

Fill in the blank with about 32 words.
Text: I was minding my business at the park, when I was 
approached by a little girl who was crying because she 
had lost ____ so of course I helped search.
Answer: her cat, which she had just received for her 
birthday. She did not want her parents to know she'd al-
ready lost him. I'm a good person

Fill in the blank with about 8 words.
Text: The sun was shining, and little gusts of wind 
brought through the window ____ shocking contrast from 
the stale city smells she had grown used to.
Answer: the faint scents of honeysuckle and freshly 
turned soil. It was a

Fill in the blank with about 8 words.
Lina went to see how candy canes were made. She watched 
as the workers added dye to the hot candy. ____ Finally, 
they shaped it into a cane and let it cool. Lina felt a 
new appreciation for candy canes.
Answer:

Then, they stretched it out to make it shiny.

Prompt

Target Continuation

Figure 3: In blue, one of the few-shot prompts that was
derived from handwritten examples, and in green, the
target example we would like to perform infilling on.
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Context Taget
An elderly man was sitting alone on a dark path. The man looked
down at his feet, and realized ____ . It was a plain pine box
and looked as if it had been there for a long time. The man was
afraid to look inside the box.

he was holding a bright red box made
of pine

The mantle was cluttered with objects: ____ and more than one
vase of dried flowers. The bejeweled lamp was at the very back,
nearly invisible.

picture frames showing grandchildren
and long-ago weddings, knickknacks
collected from all over the world,

"We have to leave now!" Sarah shouted. ____ The only way
out was up. We climbed flight after flight. The sound of the
monsters banging on the door below became more distant but no
less threatening.

"The zombies are going to break
through any moment, and then we’ll
all be goners."

The sun was shining, and little gusts of wind brought through
the window ____ shocking contrast from the stale city smells
she had grown used to.

the faint scents of honeysuckle and
freshly turned soil. It was a

I was minding my business at the park, when I was approached
by a little girl who was crying because she had lost ____ so of
course I helped search.

her cat, which she had just received
for her birthday. She did not want her
parents to know she’d already lost him.
I’m a good person

It was a cold night, and a storm was raging out at sea. A light-
ning bolt lit up the sky, briefly illuminating the lighthouse ____
plummeted but just before reaching the churning water, he dis-
appeared in a poof of purple flame!

and the young man peering hesitantly
over the sheer cliff. Before the next
peal of thunder he jumped. At first he

The magician pulled out of his pocket ____ and then a second
one and a third. He didn’t stop until soon the ground was covered
with them.

a scarlet handkerchief

Table 8: Hand-written fill-in-the-blank examples used for “custom" prompt during few-shot learning.
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Figure 4: For each of the FITB validation sets, a histogram of the distribution of sequence lengths (measured in
words) of the ground-truth blanked out text and the proposed infills from T5 before and after finetuning. We see
that pre-trained T5 tends to produce text that is shorter than the groundturth.
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Figure 5: For many of the (validation set, few-shot
prompt) combinations, not all validation set examples
fit into the maximum sequence length for the LLM. The
x-axis on this figure is the fraction of validation set ex-
amples which were retained after too-long examples
were filtered out. The y-axis is the count of (validation
set, few-shot prompt) pairs.

Figure 6: A screenshot of the question structure for hu-
man evaluation.
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