
Unraveling the ARC Puzzle: Mimicking Human Solutions with Object-Centric
Decision Transformer

Jaehyun Park Jaegyun Im Sanha Hwang Mintaek Lim Sabina Ualibekova Sejin Kim Sundong Kim 1

Abstract

In the pursuit of artificial general intelligence
(AGI), we tackle Abstraction and Reasoning Cor-
pus (ARC) tasks using a novel two-pronged ap-
proach. We employ the Decision Transformer
in an imitation learning paradigm to model hu-
man problem-solving, and introduce an object
detection algorithm, the Push and Pull clustering
method. This dual strategy enhances AI’s ARC
problem-solving skills and provides insights for
AGI progression. Yet, our work reveals the need
for advanced data collection tools, robust training
datasets, and refined model structures. This study
highlights potential improvements for Decision
Transformers and propels future AGI research.

1. Introduction
With the advent of deep learning, AI models have begun
to outperform humans in various tasks. However, these
models still have limitations in their adaptability, especially
when dealing with unforeseen situations (Borji, 2023). To
overcome this hurdle, researchers are working to imbue AI
with abstraction and reasoning skills, attempting to teach
machines to think like humans (Chollet, 2019). Such abili-
ties include inferring new knowledge from what they have
already learned and flexibly responding to novel situations.

A key benchmark dataset for evaluating these abilities, the
Abstraction and Reasoning Corpus (ARC), was proposed by
Francois Chollet (Chollet, 2019). The ARC comprises 2-5
input-output pairs conforming to a specific rule, grounded in
a variety of concepts such as object relations, numbers, sym-
metry, and quantification. While humans can readily solve
these problems, existing machine-learning solutions strug-

1AI Graduate School, GIST, South Korea. Correspondence
to: Jaehyun Park <jaehyun00518@gmail.com>, Sundong Kim
<sdkim0211@gmail.com>.

Interactive Learning with Implicit Human Feedback Workshop at
ICML 2023. Copyright 2023 by the author(s).

Figure 1. An example of an ARC problem. The model should be
able to look at 3-5 input-output grid pairs and predict the correct
output answer grid when given the final input grid.

gle, with the highest accuracy in ongoing ARC competitions
standing at around 30 percent.12

Existing high-performing solutions for ARC problems typi-
cally rely on hard-coding or random search methods (Ain-
ooson et al., 2023). To overcome these limitations, several
researchers have attempted to reduce the search space using
domain-specific languages (DSL) (Ellis et al., 2021; Ban-
burski et al., 2020), graph structures (Xu et al., 2023), or
even natural language processing (Acquaviva et al., 2022).

In this study, we follow an imitation learning approach, a
sequential task requiring learners to emulate expert behav-
ior for optimal performance (Attia & Dayan, 2018). This
approach is based on the hypothesis that modeling human
thinking processes can help bridge the performance gap
between machine learning models and human-level intelli-
gence (Johnson et al., 2021; Lake et al., 2017). Previous
studies have pointed out that many machine learning models
struggle with reasoning beyond their existing knowledge,
which hampers their progress towards human-like intelli-
gence (Lake et al., 2017).

In response to these findings, we set out to collect hu-
man problem-solving traces using the Object-Oriented ARC
(O2ARC) interface (Kim et al., 2022). With this valuable
dataset on hand, we chose to leverage the Decision Trans-
former (Chen et al., 2021), a method known for its effec-
tiveness in tasks similar to ours, for our imitation learning

1For ongoing ARC competition details, visit https://
lab42.global/arcathon/.

2For the essay challenge, see https://lab42.global/
past-challenges/essay-intelligence/.

https://lab42.global/arcathon/
https://lab42.global/arcathon/
https://lab42.global/past-challenges/essay-intelligence/
https://lab42.global/past-challenges/essay-intelligence/


approach. By building on the problem-solving strategies
captured in the O2ARC dataset, we aim to enhance the
machine’s ability to reason and solve ARC problems more
effectively.

In addition to learning from human strategies, we also ob-
served that humans often perceive ARC problems in terms
of objects. Inspired by this observation, we propose a new
object detection method, the Push and Pull (PnP) cluster-
ing algorithm. Tailored specifically for ARC tasks, this
algorithm detects and understands objects within a problem,
channeling this information into the Decision Transformer
to enhance the accuracy of its predictions.

Our combined approach, which we dub the ‘Object-centric
Decision Transformer’, has led to significant improvements
in solving ARC problems. It has shown promising results on
four representative problems: diagonal flip, tetris, gravity,
and stretch. We believe that this approach charts a poten-
tial pathway toward machines that are capable of solving
abstract reasoning tasks more effectively.

2. Related Work
2.1. Mini-ARC and O2ARC Tool

The Abstraction and Reasoning Corpus (ARC) problems
cover a broad size range, from 1×1 to 30×30 grids. This
variability significantly affects the solution process, making
model generalization across different sizes challenging. To
mitigate this, the Mini-ARC dataset (Kim et al., 2022) was
introduced, providing fixed-size problems where both input
and output grids are 5×5. This uniformity simplifies the
learning task and streamlines model training and evaluation.
The Mini-ARC dataset, comprising 150 examples, follows
the ARC dataset’s structure. To complement the dataset,
the O2ARC tool was introduced to capture human problem-
solving processes. This tool gathers vital data, including
problem-solving time, the domain-specific language (DSL)
used, and the number of attempts. The O2ARC tool provides
insights into human problem-solving strategies on Mini-
ARC tasks, valuable information for enhancing AI models.

2.2. Human-like problem solving in AI

Various strategies exist for developing AI that can emulate
human-like behavior. One such approach relies on self-
training the model on minimal data (Lake et al., 2017),
as exemplified by systems like Dreamcoder (Ellis et al.,
2021). In contrast, a second approach uses expansive mod-
els and large amounts of data to learn intelligent behaviors,
a method typified by Large Language Models (LLMs) us-
ing transformers (Brown et al., 2020). For our exploration
of human-like problem-solving, we favor this second ap-
proach. Specifically, we are interested in the application of
the transformer structure used in LLMs to facilitate learn-

ing that emulates human behavior (Melo, 2022). Building
upon this concept, we focus on offline reinforcement learn-
ing : Decision Transformer (Chen et al., 2021) (DT) and
Behavior Cloning (Torabi et al., 2018) (BC) . As a ground-
breaking approach in offline reinforcement learning, DT
offers unique insights into the development of AI capable
of human-like problem-solving. DT trains policies based
on existing data, using a transformer model for conditional
sequence modeling. Similarly, BC is renowned for its abil-
ity to effectively mimic human behavior. Consequently, we
propose a compelling question: could supervised learning
techniques that mimic human behavior, using these tools,
also solve complex datasets such as the ARC? This question
motivates our proposed investigation into creating an AI
that emulates human behavior.

2.3. Object Detection in ARC Problems

Object detection, a pivotal element of image recognition and
understanding, has seen considerable research progress and
impressive performance gains. Various models (Ren et al.,
2015; Redmon et al., 2016; Carion et al., 2020; Chen et al.,
2017) have advanced the field from simple CNN structures
to transformer incorporation. Among these advancements,
Slot Attention (Locatello et al., 2020; Singh et al., 2023)
emerges as a particularly effective framework for object
detection within images. This approach deftly captures ob-
ject properties and enables accurate reconstruction. Slot
Attention represents a significant step forward in this area,
successfully addressing complex object detection scenarios
and establishing a solid foundation for further exploration
and development. Depite the promise of these models, it is
crucial to note that they have been primarily designed for
traditional computer vision tasks and are not specifically tai-
lored for ARC problems. Since ARC problems comprise 2D
arrays of small, single-channel grids (in most cases smaller
than the MNIST dataset), traditional CNN architectures may
struggle to capture their properties effectively (Lin et al.,
2017). Transforming these 2D arrays into a 3D-channel
representation via image super-resolution (Kim et al., 2016)
could potentially help, but this may not fully account for
ARC problems’ inherent abstract patterns and small grid
sizes. Hence, we propose the Push and Pull (PnP) clustering
algorithm, designed to effectively detect objects in ARC
problems by directly addressing these challenges.

3. Method
3.1. Imitation Learning: Decision Transformer

3.1.1. ARCHITECTURE

Humans leverage their accumulated knowledge to solve
problems. To address specific tasks, they come up with
DSLs by scrutinizing each example, integrating them, and



devising a preliminary solution. If a particular combination
of DSLs results in the correct solution, they apply it to other
tasks to validate the effectiveness of the approach (Nye et al.,
2020). Therefore, we want to encourage the computer to
solve the ARC problem using a similar cognitive process.
To this end, we adapted the Decision Transformer, which
we identified as the most appropriate model for imitating
human learning.

Decision Transformer

Rt st atR1 s1 a1
⋯

statereturn action

0.9

Rt-1 st-1 at-1R0 s0 a0
⋯

statereturn action

0.0 start

statereturn action

1.0
statereturn action

0.1 end

Figure 2. Training a Decision Transformer with Mini-ARC trace.
A Decision Transformer utilizes the return-to-go, state, and action
at time t as input and generates a prediction of the following time
step, t+ 1.

The Decision Transformer (Chen et al., 2021) operates on
three distinct inputs per time step: return-to-go, state, and
action. The return-to-go is calculated by initiating the state
at 0, designating the final state as 1, and partitioning the
interval between these states into equal segments. The state
is represented using a 5×5 input grid, same with ARC prob-
lems. We used 14 actions provided by the O2ARC tool,
such as clockwise rotation, coloring, left-right flip, and up-
down flip. Each of these three inputs—return-to-go, state,
and action— are converted to embedding vectors through
their corresponding embedding layers.

In the ARC problem, discerning the relationship between
individual pixels is important, so the state is processed as a
pixel-by-pixel embedding vector akin to ViT (Dosovitskiy
et al., 2021) approach, rather than being transformed by
a single, unified embedding vector. Figure 2 shows the
structure of the Decision Transformer (DT) model adapted
on our tasks. Based on the provided inputs, the model
predicts the state, action, and return-to-go for the subsequent
time step, which allows us to project the entire problem-
solving process.

3.1.2. DATA AUGMENTATION

Offline reinforcement learning has the potential to achieve
impressive results when provided with a sufficient amount

of high-quality data about the environment. Therefore, data
augmentation is an essential consideration. However, con-
ventional data augmentation techniques can be challenging
to implement for ARC due to the limited number of input-
output pairs. To overcome this limitation, the expert traces
of human solution processes were applied to randomly gen-
erated grids, which were utilized as a training dataset. In
more detail, to collect the human solution processes, the
O2ARC Tool was utilized (Kim et al., 2022).3 Through this
O2ARC Tool, the solutions provided by human participants
were collected. These solutions were then manually exam-
ined to extract expert traces. For each randomly generated
grid, the expert trace was applied and each step is collected.
Employing this approach, we generated 10,000 training
instances and 2,000 testing instances per task. Figure 3
demonstrates the overall procedures for our data augmenta-
tion process.

3.2. Object Detection: PnP Clustering Algorithm

Drawing inspiration from previous work (Xu et al., 2023),
we concentrated on developing an object detection approach
for the ARC task.4 Our method entails representing ARC
problems as graph abstractions with nodes embodying co-
ordinates, colors, position index, and distance (weighted
edge) illustrating the relationship between the two connected
nodes. In this graph representation, each pixel on the grid
becomes a graph node, with the distance varying based on
the relationship between the two connected nodes. To deter-
mine edge weights, we investigated all 400 ARC problems
and categorized them. Through this process, we identified
128 problems that could be defined as object-centric. This
allowed us to discern objects that humans could heuristi-
cally recognize, which possessed relationships between each
pixel. The edge between nodes signifies the ‘relative dis-
tance’ between them, with closer nodes marked by a small
distance value. We employed the concept to determine the
distance values for the edges. More details are outlined
in Table 1 and Appendix C. The Push and Pull Clustering
Algorithm (PnP algorithm) consists of three main steps: 1)
the abstraction function f , 2) the clustering function g, and
3) DBSCAN (Ester et al., 1996) for detecting clusters.

3.2.1. GRAPH ABSTRACTION

The abstraction function f takes the original grid as an input
and provides corresponding graph abstraction. This abstrac-
tion comprises a list of node objects and an adjacent matrix
to represent the edge information. Each individual pixel
corresponds to a single node in the graph, with color, coordi-

3An ARC trace refers to the sequence of steps used in solving
an ARC problem.

4Previous studies explored ARC solutions using the concept of
objects, but only two definitions are used to detect simple objects.



Random GridsInput Grid

start

Expert Trace Selection Trace Augmentation

…

start

start

Expert trace 1

rotate rotate reflecty rotate end

Non-expert trace 1 (too long)

h-flip rotate rotate reflecty rotate rotate end

Expert trace 2

reflectx rotate end

Non-expert trace 2 (edit)

select_fill edit edit edit edit end

Non-expert trace 3 (cycle)

reflectx reflectx rotate reflectx end

rotate rotate reflecty rotate end

reflectx rotate end

rotate rotate reflecty rotate end

reflectx rotate end

Figure 3. Trace augmentation process for the diagonal flip problem: Firstly, from the human solution processes for a particular input grid
of the diagonal flip problem, we select the expert traces. To be classified as an expert trace, the length of the trace must not be too long,
the edit operation should not be used, and there must be no cycles in the solution process. The selected expert traces are then applied
identically to each randomly generated grid, which is how we perform trace augmentation.

nate, and index properties. The color attribute is originated
from the color of the corresponding pixel in the array. Every
black pixel is considered as a background and assigned a
color value of 0. The coordinate information is assigned in a
sequential manner by tripling the index of the original array.
Two nodes are connected by an edge if they share sides
or vertices, indicating direct or diagonal adjacency. Each
edge’s distance is determined by the relationship between
them, as detailed in Table 1.

Table 1. Relative distance between nodes. Greater distance reduces
the likelihood of the nodes being part of the same object.

Category distance

Same color, Direct adjacency 1
Same color, Diagonal adjacency 2
Different color, Direct adjacency 4

Different color, Diagonal adjacency 5

3.2.2. PUSH AND PULL OPERATION

The graph is then subjected to a push and pull operation for
clustering, which we denote as function g. The operation
adheres to Equation (1), using the distance values outlined
in Table 1. As mentioned before, edge distances signify the

relative proximity of adjacent nodes.

Operation =

{
Push if Distance of Edge−3

2 > 0,

Pull else
(1)

If the result derived from Equation (1) is negative, it implies
a strong relationship between the two nodes, suggesting
they’re likely part of the same object, and thereby, a pull
operation is triggered. In contrast, if the value of Equation
(1) is positive, it signals a weaker relationship between
the nodes, prompting a push operation. In both cases, a
larger absolute value results in a stronger push or pull action.
These calculated values guide the push and pull operations,
which modify the coordinates of the nodes in the direction
of the connected edge, reflecting the appropriate push or
pull action. Applied to every edge, this operation adjusts
the coordinate properties of connected nodes. As a result,
the output of the clustering function g is a modified graph
containing clustered nodes, as depicted in Figure 5.

3.2.3. ASSIGNING CLUSTER TO PIXELS

The final step in our process involves object detection using
a conventional clustering algorithm. The output of the push
and pull operation g is a graph, which we need to detect ob-
jects and assign specific clusters to each one. The outcome



Input Grid

f : Graph Abstraction g : Push and Pull

Abstracted Graph

DBSCAN

Clustered Graph

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Assigned Clusters

f g

Figure 4. Demonstration of the PnP Clustering Algorithm. Function f abstracts the ARC problem into a graph, then function g applies
the push and pull operation to form object clusters. The PnP algorithm enables effective object detection while being computationally
efficient compared to other methods.

of this step should provide information about which pixels
constitute an object. To achieve this, we employed a density-
based model known as DBSCAN (Ester et al., 1996), which
groups nodes based on their distance measurements. Since
the nodes identified as part of the same object by the PnP
algorithm are clustered, DBSCAN finalizes them into single
groups. Unlike other clustering models, such as k-means,
DBSCAN does not require a predetermined number of clus-
ters, making it more adaptable and effective for our task.
That’s the reason that we adapted DBSCAN for assigning
clusters to each pixel.

3.3. Integration of Decision Transformer and Object
detection

While applying the Decision Transformer to the ARC prob-
lem successfully predicts action and return-to-go, it tends to
make errors when predicting states, often inaccurately iden-
tifying changes in pixels. To improve accuracy, we augment
the model with additional object information, enabling it
to more precisely predict each pixel. Prior studies, such as
the Prompt Decision Transformer (Xu et al., 2022), demon-
strated that performance is improved when we use Decision
Transformer with additional information including basic
elements like return-to-go, state, and action. So we decided
to give object information that objects identified by the PnP
algorithm were inputted into the Decision Transformer in
the same manner as the state, action, and return-to-go. Con-
sequently, we incorporated the PnP algorithm to provide
object information into the Decision Transformer for the
ARC problem. Figure 5 shows the operation of the embed-
ding in the Decision Transformer with the PnP algorithm.

4. Experiments
4.1. Experimental Setting

4.1.1. TRACE AUGMENTATION

Training the Decision Transformer (DT) model presents
a unique challenge, as it calls for a considerable volume
of training examples complete with traces. However, in
the context of the ARC problem, we have traces for just a
single test input-output pair. To overcome this constraint,
we undertook a strategy of data augmentation. This involved
the generation of randomized input grids, but importantly, it
maintained the human solution process in each case. Thus,
we were able to create a broader range of examples for
model training while keeping the essence of the solution
strategies intact.

Even though each task in our dataset follows the same fun-
damental logic, there can be multiple ways to solve with
provided DSLs. To capture this variation, we gather 3-10
distinct solution traces per task, enriching our training set.
Paired with the randomly generated input grids, these solu-
tion guide create a broad array of augmented ARC traces.
Every solution process is comprehensively captured in a
JSON file, forming a dataset rich in diversity.5 Figure 4
offers an illustrative example, showcasing augmented ARC
traces for our target task: the diagonal flip.

4.1.2. DECISION TRANSFORMER

The training dataset includes 10,000 complete solution
traces per task, while the evaluation dataset comprises 2,000
input-output pairs. For training, each solution trace is trun-
cated to a maximum of five time steps. To compensate
for shorter traces, we pad the data with values identical to
the starting grid, ensuring uniform data length. The model
employs cross-entropy loss (CE) for both state and action
predictions. For Return-to-go predictions, which range be-
tween 0 and 1, we use Mean Squared Error (MSE) loss due

5The appendix describes the JSON format of an ARC trace.



1 1 3 4

1 1 3 4 4 4

1 3 4

3 3 3 3

6 6

2 2 2 6 6

2 6

5

5 5 5 5

⋯

PnP

𝑟𝑖 𝑠𝑖 𝑎𝑖 𝑝𝑖

Decision Transformer

input at 𝑡 = 𝑖

⋯

Figure 5. Diagram illustrating a method in which the PnP algo-
rithm provides additional information to the Decision Transformer.
For every input at t = i, we extract current state from si and apply
PnP algorithm to generate pi. The 2-dimensional grid pi includes
object information.

to its continuous nature. Consequently, the total loss of the
Decision Transformer is defined as shown in Equation 2.

ℓDT =

t+R∑
i=t

CE(si, ŝi) + CE(ai, âi) + MSE(ri, r̂i), (2)

where the Decision Transformer loss ℓDT is minimized over
a range from t to t + R. CE(si, ŝi) and CE(ai, âi) repre-
sent the cross-entropy loss between the true and predicted
values of si (state at time i) and ai (action at time i), respec-
tively. MSE(ri, r̂i) denote the mean squared error between
the true value of ri (return-to-go at time i and its predicted
counterpart.

During the evaluation phase, only the initial input value is
provided. The model then generates the next time step’s
return-to-go, state, and action, iterating this process until an
‘end’ action is returned. Should the generation process ex-
ceed a predefined number of time steps, the model assumes
it failed to solve the task and discontinues its predictions.
Lastly, we calculate the model’s accuracy based on a com-
parison of its final outputs with the correct answers.

4.1.3. PNP ALGORITHM

To enhance the performance of the Decision Transformer
model, we incorporate additional object information indi-
cating which pixels belong to the same object. The PnP
algorithm functions as a data pre-processing encoder: it
ingests 2-dimensional ARC data, detects the objects, and
records the object information at each node. This algorithm
was tested on 128 object-centric problems and demonstrated
a recall of 88 percent. This suggests that the PnP algorithm
can accurately detect the presence of objects in the ARC

problem with a success rate of 88 percent. Detailed perfor-
mance metrics of the PnP algorithm will be presented in
section D. Therefore, we propose that if object information
can be refined and structured appropriately for inclusion
in the Decision Transformer model, it could significantly
enhance the model’s understanding of object-based tasks.

The PnP algorithm generates raw output in graph form.
Each node, classified as part of the same object, stores a
unique integer identifier, which signifies its object’s prop-
erty. Nodes corresponding to the black color are considered
background and assigned a value of -1. Subsequently, we
construct a new 2-dimensional matrix mirroring the current
state of input data size. This matrix includes the object prop-
erties at each element, corresponding to the pixel locations
in the original data. The only modification implemented at
this stage involves adjusting the background node values
to zero, achieved by adding 1 to the object property values
of every node, thus facilitating clearer object recognition.
As shown in Figure 5, the utilization of this methodology,
which involves extracting the grid from si and generating
pi using the PnP algorithm at each time step, presents a
valuable meanings of enhancing the Decision Transformer’s
performance by incorporating supplementary object infor-
mation.

4.2. Results

4.2.1. DECISION TRANSFORMER PERFORMANCE

We evaluated the Decision Transformer’s problem-solving
capabilities on a dataset comprising 2,000 evaluation in-
stances for each of the diagonal flip, tetris, gravity, and
stretch problems. Figure 6a, 6b, 6c and 6d respectively illus-
trate the results obtained for the diagonal flip, tetris, gravity,
and stretch problems. Interestingly, for a given diagonal flip
problem, the Decision Transformer devises unique solution
strategies, as evidenced by the differing actions employed
by the two solvers depicted in Figure 6a. The vanilla De-
cision Transformer model achieved accuracies of 76.51%,
71.51%, 46.72%, and 69.98% for the diagonal flip, tetris,
gravity, and stretch respectively on the evaluation dataset.

4.2.2. DECISION-MAKING PROCESS ANALYSIS

By integrating additional object information into the Deci-
sion Transformer, we conducted training and evaluation in
the same environment. As highlighted in Table 2, the Deci-
sion Transformer, when augmented with the PnP algorithm,
scored an accuracy of 89.96% for the diagonal flip problem
and 83.80% for the tetris problem. This denotes respective
performance improvements of 13.45% and 12.29% over the
standalone Decision Transformer. Figure 7 depicts results
achieved using the standalone Decision Transformer and
the PnP-augmented model respectively. In Figure 7(a), the
model struggles to correctly identify the 2x2 orange and



(a) Diagonal flip results (b) Tetris results

[translate] [translate] [translate] [translate] [translate]

[select_fill] [select_fill] [select_fill] [select_fill] [select_fill][select_fill]

(c) Gravity results

[translate] [select_fill]

[select_fill]

[translate]

[translate] [select_fill]

(d) Stretch results

Figure 6. Comparison of the Decision Transformer’s predictions for four different tasks. Decision Transformer learns the patterns and
selects the correct action following the established rules.

Table 2. Task-wise accuracy of the Decision Transformer and its
variations. Noticeable performance improvements are observed
when the Decision Transformer is supplemented with additional
object information. BC refers to Behavioral Cloning, excluding ri
from the input, while No DT baseline with transformer backbone,
does not use any trace information. No DT baseline was not able
to solve any test cases.

Diagonal Flip Tetris Gravity Stretch

No DT 0.00 0.00 0.00 0.00
BC 30.37 ± 0.31 80.85 ± 0.61 50.01 ± 0.91 64.43 ± 1.12
BC (+PnP) 72.37 ± 0.91 91.28 ± 0.47 59.15 ± 0.93 79.26 ± 0.58
DT 76.51 ± 0.75 71.51 ± 0.66 46.72 ± 1.11 69.98 ± 1.12
DT (+PnP) 89.96 ± 0.72 83.80 ± 0.47 59.00 ± 1.00 86.41 ± 0.61

pink objects, while in Figure 7(b), these objects are rec-
ognized correctly and the resulting movement ensures no
overlap with the object at the bottom.

5. Discussion
5.1. Beyond Traditional Augmentation

In deep learning, numerous data augmentation techniques
exist. such as adding noise, cropping, rotation, and color
changes, which have proven particularly effective for im-
age datasets (Cubuk et al., 2020). These techniques can
be invaluable when data is insufficient or fails to capture
representative features. However, applying these common

(a) Standalone DT model

(b) DT+PnP model

Figure 7. Traces regenerated by Decision Transformer - A compar-
ison of state spaces generated from the standalone DT model, and
the DT+PnP model. When augmented with the PnP algorithm, the
model identifies and interacts with objects more effectively, avoid-
ing unnecessary downward movement of partial blocks, thereby
adhering to the fundamental rules of Tetris.

methods to the ARC (Abstraction and Reasoning Corpus)
problem presents unique challenges. Specifically, the na-
ture of ARC tasks, where even slight alterations like color
changes or shifts in orientation could drastically alter the
problem, renders traditional augmentation techniques less
viable. The unique demands of ARC tasks, which require
models to infer solutions from limited yet precise exam-



ples, add complexity to the augmentation process. In this
study, we confined our data augmentation to methods that
do not directly interfere with the problem’s inherent proper-
ties. Looking ahead, we anticipate that the development of
cognition-driven, sequence-preserving augmentation tech-
niques could enhance the learning capacity of the Decision
Transformer, enabling it to solve a broader range of prob-
lems.

5.2. Enhancing Accuracy through Object Detection

The Decision Transformer operates by choosing the optimal
action based on the existing trace. However, in the ARC
context, it must predict the grid state and action, each affect-
ing the subsequent step. Our analysis revealed that while
actions were often predicted correctly, state predictions were
frequently erroneous. By specifying objects with the PnP
algorithm, state predictions could become more accurate.
The performance improvement seems to occur even when
the PnP algorithm identifies incorrect objects, likely due to
the provision of pixel relationship information.

Experiments demonstrated the tangible impact of object
identification on problem-solving efficacy, particularly ev-
ident in the tetris. This problem used data augmentation
to showcase a four-pixel object. Its trace also integrated
object-moving actions, emphasizing the importance of ob-
ject information to the Decision Transformer’s performance.
In light of this, it’s apparent that more nuanced information
about the tasks, such as object identities and relationships,
could significantly enhance the performance of the solver.
This could be achieved through the use of more sophisti-
cated data collection tools, which capture fine-grained user
logs. These logs would provide richer and more informative
traces for the model, consequently refining the Decision
Transformer’s accuracy, especially in object-oriented ARC
problems.

5.3. Limitations of Decision Transformer: The Issue of
Dataset Absence

Decision Transformers rely on offline datasets to inform pol-
icy training, resulting in a potential adaptability gap when
faced with unseen inputs. This limitation was particularly
evident in the tetris, which required a larger training dataset
due to its more complex solving process compared to the
diagonal flip, leading to diminished performance. Possi-
ble remedial strategies could involve the incorporation of
approaches such as the Prompt Decision Transformer (Xu
et al., 2022), along with a more robust training dataset.
With the foundation of recognized patterns through existing
training, we anticipate that the system could independently
analyze novel ARC tasks, given additional inputs such as
prompts (Zhou et al., 2023).

5.4. Toward Comprehensive ARC Solutions

Our research highlights the potential of Decision Trans-
formers for some ARC tasks, but also outlines key areas
for further investigation. First, we must confirm its effec-
tiveness across varied tasks, by testing its adaptability to
ARC tasks with fluctuating lattice sizes. As we handle more
tasks, we must carefully review the model’s structure and
how we train it. At the moment, our paradigm employs a
singular model, trained specifically to resolve an individual
task. While this strategy proves effective for isolated tasks,
it surfaces concerns regarding its suitability for address-
ing open tasks. One particular challenge lies in designing
a competent meta-classifier, which accurately categorizes
the task at hand, and channels it to the relevant Decision
Transformer. Refining this component is essential for the
overall effectiveness of the model. Moving forward, an
improved Decision Transformer architecture, incorporating
an enhanced meta-classifier, could offer a significant step
forward in solving ARC problems. This potential is a focal
point of our future work.

6. Conclusion
In this study, we aimed to solve ARC problems by emulat-
ing human problem-solving strategies, focusing on example
observation, DSL selection, and combination to devise so-
lutions. Our employment of the Decision Transformer to
replicate human imitation learning demonstrated promising
results on the four representative ARC problems, in aver-
age of 66.18%, suggesting its applicability to other ARC
problems given sufficient data.

Crucially, our approach acknowledges the key role of object
recognition and relationship understanding in ARC problem-
solving, components integral to approximately half of these
tasks. To support this aspect, we proposed a fast Push and
Pull (PnP) algorithm, tailored for ARC tasks. The PnP
algorithm enhances object identification clarity, bolstering
the application of the Decision Transformer. The accuracy
significantly improved to an average of 13.61% when we
combined the PnP algorithm with the Decision Transformer.
We anticipate this object-clarifying advantage of the PnP
algorithm will be beneficial across various ARC approaches,
potentially enhancing problem-solving strategies.

Acknowledgement
This work was supported by the IITP (RS-2023-00216011)
and the National Research Foundation (RS-2023-00240062)
grants funded by the Ministry of Science and ICT, Korea.



References
Acquaviva, S., Pu, Y., Kryven, M., Sechopoulos, T., Wong,

C., Ecanow, G., Nye, M., Tessler, M., and Tenenbaum,
J. B. Communicating Natural Programs to Humans and
Machines. In NeurIPS, 2022.

Ainooson, J., Sanyal, D., Michelson, J. P., Yang, Y., and
Kunda, M. An Approach for Solving Tasks on the Ab-
stract Reasoning Corpus. arXiv:2302.09425, 2023.

Attia, A. and Dayan, S. Global Overview of Imitation
Learning. arXiv:1801.06503, 2018.

Banburski, A., Gandhi, A., Alford, S., Dandekar, S., Chin,
S., and Poggio, T. Dreaming with ARC. In NeurIPS
Workshop on Learning Meets Combinatorial Algorithms,
2020.

Borji, A. A Categorical Archive of ChatGPT failures.
arXiv:2302.03494, 2023.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
Models are Few-Shot Learners. In NeurIPS, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-End Object Detection with
Transformers. In ECCV, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I.
Decision Transformer: Reinforcement Learning via Se-
quence Modeling. In NeurIPS, 2021.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.
Rethinking Atrous Convolution for Semantic Image Seg-
mentation. arXiv:1706.05587, 2017.

Chollet, F. On the Measure of Intelligence.
arXiv:1911.01547, 2019.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. RandAug-
ment: Practical Automated Data Augmentation with a
Reduced Search Space. In NeurIPS, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In ICLR, 2021.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., Cary, L., Solar-Lezama, A., and Tenenbaum,
J. B. Dreamcoder: Bootstrapping Inductive Program
Synthesis with Wake-Sleep Library Learning. In PLDI,
2021.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A Density-
Based Algorithm for Discovering Clusters in Large Spa-
tial Databases with Noise. In KDD, 1996.

Johnson, A., Vong, W. K., Lake, B. M., and Gureckis, T. M.
Fast and Flexible: Human Program Induction in Abstract
Reasoning Tasks. In CogSci, 2021.

Kim, J., Lee, J. K., and Lee, K. M. Deeply-Recursive
Convolutional Network for Image Super-Resolution. In
CVPR, 2016.

Kim, S., Phunyaphibarn, P., Ahn, D., and Kim, S. Play-
grounds for Abstraction and Reasoning. In NeurIPS
Workshop on Neuro Causal and Symbolic AI, 2022.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building Machines that Learn and Think like
People. Behavioral and Brain Sciences, 40, 2017.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. Feature Pyramid Networks for Object
Detection . In CVPR, 2017.

Locatello, F., Weissenborn, D., Unterthiner1, T., Mahen-
dran1, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A.,
and Kipf, T. Object-Centric Learning with Slot Attention.
In NeurIPS, 2020.

Melo, L. C. Transformers are Meta-Reinforcement Learners.
In ICML, 2022.

Moskvichev, A., Odouard, V. V., and Mitchell, M. The
ConceptARC benchmark: Evaluating Understanding and
Generalization in the ARC Domain. arXiv:2305.07141,
2023.

Nye, M. I., Solar-Lezama, A., Tenenbaum, J. B., and Lake,
B. M. Learning Compositional Rules via Neural Program
Synthesis. In NeurIPS, 2020.

Odouard, V. V. and Mitchell, M. Evaluating Un-
derstanding on Conceptual Abstraction Benchmarks.
arXiv:2206.14187, 2022.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
Only Look Once: Unified, Real-Time Object Detection.
In CVPR, 2016.

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal
Networks. In NeurIPS, 2015.



Singh, G., Kim, Y., and Ahn, S. Structured World Represen-
tations Via Block Slot Attention. In ICLR, 2023.

Torabi, F., Warnell, G., and Stone, P. Behavioral Cloning
from Observation. In IJCAI, 2018.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J. B., and Gan, C. Prompting Decision Transformer for
Few-Shot Policy Generalization. In ICML, 2022.

Xu, Y., Khalil, E. B., and Sanner, S. Graphs, Constraints,
and Search for the Abstraction and Reasoning Corpus. In
AAAI, 2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis, M.,
Zettlemoyer, L., and Levy, O. LIMA: Less is More for
Alignment. arXiv:2305.11206, 2023.



A. O2ARC Tool
Our work builds upon the O2ARC tool proposed in the previous study (Kim et al., 2022) for gathering expert human traces.
However, we identified certain limitations in the original tool, which led us to suggest and develop several improvements
to enhance the collection of human traces that can be used as input for the Decision Transformer. The following points
highlight the enhancements made to the original O2ARC tool, drawing inspiration from human cognition:

(a) Main Interface (b) Solve Interface

Figure 8. O2ARC Tool Interface; you can try to use our O2ARC tool in https://bit.ly/ARC-GIST.

• Addition of Original ARC Problems: In the original version of O2ARC, only Mini-ARC problems were available.
To increase the diversity of problem types, we introduced original ARC problems into the tool. This expansion
allows for a wider range of problem-solving scenarios and promotes a more comprehensive understanding of human
decision-making processes.

• Evaluating Traces: To ensure the quality of collected traces, we introduced a dedicated page within the O2ARC tool
for evaluating traces. Traces are categorized as either “good” or “bad” based on their accuracy and potential to disrupt
the training process. Evaluators can review and grade the decision-making processes of other users by responding
to specific questions posed for each trace. This evaluation process helps in selecting high-quality traces for further
analysis and training.

• Proper operation of the existing functions: We fixed the existing bugs in the rotation and reflection functions to ensure
their proper operation, resulting in better usability and higher-quality traces. Users can now utilize these functions
effectively, even outside the given grid, expanding their range of applications.

By incorporating these enhancements, the improved O2ARC tool enables the aggregation of human traces into a single
JSON file. This file captures essential information such as the username, task ID, and a sequence of actions performed by
users. It provides a detailed account of the tools utilized and the subsequent modifications made to the output grid during the
problem-solving process. The following code snippet illustrates the structure of the output JSON file:

1 {
2 "id": 1779,
3 "task_id": "Reflection_l6ab2g1dkofxrxht5h",
4 "user_id": "le3k5gb6biqmr9u1nww_ds",
5 "action_sequence": "{"action_sequence": [{"action": {"tool": "start"}, "grid": [[0, 0,

0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], "
currentLayer": 0, "layer_list": [[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]], "submit": 0, "time": 8}, {"action": {"tool": "
copyFromInput"}, "grid": [["2", 0, "2", 0, "2"], [0, "2", 0, "2", 0], [0, 0, 0, 0, 0],
[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], "currentLayer": 0, "layer_list": [[["2", 0, "2",
0, "2"], [0, "2", 0, "2", 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]], "
submit": 0, "time": 3}, {"action": {"tool": "reflectx", "selected_cells": [{"row": 0,
"col": 0, "val": "2", "selected": true}, {"row": 0, "col": 2, "val": "2", "selected":
true}, {"row": 0, "col": 4, "val": "2", "selected": true}, {"row": 1, "col": 1, "val":
"2", "selected": true}, {"row": 1, "col": 3, "val": "2", "selected": true}, {"row": "
0", "col": "1", "val": "0", "selected": true}, {"row": "0", "col": "3", "val": "0", "
selected": true}, {"row": "1", "col": "0", "val": "0", "selected": true}, {"row": "1",

https://bit.ly/ARC-GIST


"col": "2", "val": "0", "selected": true}, {"row": "1", "col": "4", "val": "0", "
selected": true}, {"row": "2", "col": "0", "val": "0", "selected": true}, {"row": "2",
"col": "1", "val": "0", "selected": true}, {"row": "2", "col": "2", "val": "0", "
selected": true}, {"row": "2", "col": "3", "val": "0", "selected": true}, {"row": "2",
"col": "4", "val": "0", "selected": true}, {"row": "3", "col": "0", "val": "0", "
selected": true}, {"row": "3", "col": "1", "val": "0", "selected": true}, {"row": "3",
"col": "2", "val": "0", "selected": true}, {"row": "3", "col": "3", "val": "0", "
selected": true}, {"row": "3", "col": "4", "val": "0", "selected": true}, {"row": "4",
"col": "0", "val": "0", "selected": true}, {"row": "4", "col": "1", "val": "0", "
selected": true}, {"row": "4", "col": "2", "val": "0", "selected": true}, {"row": "4",
"col": "3", "val": "0", "selected": true}, {"row": "4", "col": "4", "val": "0", "
selected": true}]}, "grid": [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, "2
", 0, "2", 0], ["2", 0, "2", 0, "2"]], "currentLayer": 0, "layer_list": [[[0, 0, 0, 0,
0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, "2", 0, "2", 0], ["2", 0, "2", 0, "2"]]], "
submit": 1, "time": 3811}]}"

6 }

Listing 1. Example of the human trace in JSON file

B. Tackled ARC and Mini-ARC Problems
In this section, we describe ARC problems that we address and show with figures. Figure 9 presents a selection of ARC
problems addressed using our model. The name of each problems is given by us for distinguishing and demonstrating easily.

• Diagonal Flip: This problem operates on the rule that the shape of an object is transformed according to a specific
diagonal flip direction. (Mini-ARC; Task ID: l6abdiipodvgey6tbdf, l6ad1nnu454mki54lqa)

• Tetris: This problem adheres to the rule that objects descend in a manner reminiscent of the gameplay in Tetris.
(Mini-ARC; Task ID: l6ab7fu64lvutswrtbk)

• Gravity: This problem functions under the rule that objects attach to a certain designated object within the task. (ARC;
Task ID: 4093f84a)

• Stretch: This problem is about moving the given object to the top and extending the pixels that were at the bottom.
(Mini-ARC; Task ID: l6acmlt1nkjxwh68ah)

C. Categorize Object-Centric ARC problem
Prior to designing the PnP algorithm, we embarked on a preliminary study to understand how objects are defined in the
ARC problem and what a priori knowledge is leveraged when humans attempt to solve ARC problems. An insightful study
by Moskvichev et al. (2023) intuitively deconstructs the ARC problem into elements such as copying, counting, object
extraction, and moving to a boundary. However, our focus was predominantly on the use of objects in the ARC problem,
leading us to categorize the original ARC problem (Chollet, 2019) into either object-centric or not.

As briefly introduced in Section 3.3, we conducted an analysis of 400 ARC learning problems and singled out 128 object-
centric problems. These selected problems were subsequently classified based on four specific attributes: (1) Definition of
Object - Color, (2) Definition of Object - Shape, (3) Method of Object Modification, and (4) Consideration of Input/Output
Simultaneously.

(1) Definition of Object - Color attribute indicates whether an object in an ARC problem is composed of pixels of the same
color. If each element shares the same color property, the term ‘same color’ is assigned. Conversely, ‘mixed color’ is used
when the object comprises two or more colors.

(2) Definition of Object - Shape refers to the classification based on the pixel relationships within an object. There are four
possible values for this attribute, representing whether pixels: share a common boundary or are directly adjacent, share a
single common corner or are diagonally adjacent, are organized within a specific range, or overlap within multiple objects.

(3) Method of Object Modification attribute pertains to the way an object is modified during problem-solving. Some problems
may involve altering the object in the output based on a specific rule. This category includes operations such as copying,
coloring, moving, selecting, and counting.



?

(a) Diagonal flip

?

(b) Tetris

?

(c) Gravity

?

(d) Stretch

Figure 9. ARC and Mini-ARC problems tackled in this paper

(a) Color (Same, Different) (b) Adjacency (Direct, Di-
agonal)

(c) Dependence on the pair
(Yes, No)

(d) Object modification
(Coloring, Copy)

Figure 10. Category of the ARC problem based on four specific attributes

Lastly, (4) Consideration of Input/Output Simultaneously is an attribute reflecting whether both input and output must be
considered concurrently when detecting and defining an object. Given the characteristics of the ARC problem, this attribute
was included as the definition of an object could vary depending on the output, even with the same input.

D. Performance of the PnP algorithm
Following the brief description in 4.1.3 we provide details on the object detection performance of the PnP algorithm. We
calculated recall scores for measuring the performance of detecting objects for each ARC problem and used silhouette
scores to evaluate the quality of clustering. The recall score for each ARC problem is calculated by Equation (3).

Recall =
Number of correctly detected objects

Total number of observable objects in the problem
(3)

The silhouette score measures the performance of the clustering algorithms by calculating the cohesion and separation of
data points. It ranges from -1 to 1, with a smaller coefficient indicating that an object was included in the wrong cluster and
a larger number indicating that the object was correctly assigned to its own cluster. For data point i, the silhouette coefficient
is calculated as follows:



s =
bi - ai

max(bi, ai)
, (4)

where bi represents the distance within the cluster, or the average distance to the nearest cluster, and ai represents the
distance outside the cluster or the average distance to other clusters. If the silhouette factor is greater than 0.7, the structure
of the cluster can be considered accurate.

Table 3. Evaluating Push and pull algorithm result: Clustering performance

Category recall
silhouette

score

Same color, Direct adjacency 0.96 0.63
Same color, Diagonal adjacency 0.81 0.54
Different color, Direct adjacency 0.81 0.54

Different color, Diagonal adjacency 0.62 0.40
Same color, Overlap 0.65 0.48

Same color, With in specific range 0.80 0.59

Overall 0.88 0.57

Table 3 represents the recall value and silhouette score for 128 object-oriented problems according to each category. As
shown in the table, except in two cases; Different colors with Diagonal adjacency and the same color with overlaps, the
PnP algorithm detects objects well with performance over 80 percent. In particular, in the case of problems with the same
color with direct adjacency which includes the most number of problems, the correct answer rate was 96 percent. The
silhouette score also has a similar pattern to the recall value, and when the pixels that form the object are directly adjacent
the silhouette score tends to increase as they are clearly clustered to each other.

In addition to functionality, we also address the efficiency of the PnP algorithm. The PnP algorithm requires two arrays: one
for the number of nodes times the number of attributes, and another for the number of edges. Given that it performs a graph
abstraction first, the maximum space complexity is 30 ∗ 30 ∗ 4 = 3600.

Regarding time complexity, it encompasses two primary operations: push and pull and cluster assignment, which is
implemented via DBSCAN. In the push and pull operation, the algorithm inspects nodes containing color information
to determine distances. This results in a time complexity of O(N2), with N being the maximum number of pixels (900
in this case). DBSCAN’s operation is recognized to have a time complexity of O(N logN). Consequently, the overall
time complexity of our algorithm is dominated by the push and pull operation, culminating in a complexity of O(N2).
Nevertheless, given that the maximum size in the ARC problem is sparse, the algorithm operates relatively effectively.

E. Decision Transformer
E.1. Establishing Reward Function for the Decision Transformer

Prior to exploring specific methodologies, it is important to consider the role of rewards in training the Decision Transformer
model. Reward functions guide the model towards desirable states and actions, providing valuable feedback during the
learning process. The design of these functions plays a critical role in the learning efficiency and overall performance of the
model. The following strategies illustrate different approaches we have considered for setting up the reward function in our
experiment.

1. (Equally Distributed Reward) In the experiment, we contemplated how to design the rewards in order to incorporate
return-to-go into the Decision Transformer. For this experiment, we set the starting state as 0 and the final state as 1,
and divided the return-to-go into equidistant intervals based on the time step. When training the model with equidistant
return-to-go, the model is compelled to predict return-to-go at the same intervals during the prediction process. This
aspect can act as a disadvantage during the training process of the Decision Transformer. However, when return-to-go
is used in training, it provides additional information for predicting the next step, which can lead to performance
improvement. The influence of return-to-go varies depending on the type of problem and the length of the trace.



Therefore, it is important to consider the pros and cons when using return-to-go, and apply it appropriately when its
benefits outweigh its drawbacks. In problems where the influence of return-to-go is small, the DT without return-to-go
(BC; Behavioral Cloning) may show better results than the DT with return-to-go (Vanilla DT). In fact, in the Tetris
and Gravity problems, the DT without return-to-go showed better performance, while in the Diagonal flip and Stretch
problems, the DT with return-to-go demonstrated better performance. Therefore, if a more suitable return-to-go is used
for Decision Transformer, it could potentially show better performance than equidistant return-to-go.

2. (Weighted Reward) How should we define the rewards in our reinforcement learning model? We consider a situation
where we have an abundance of ARC-traces that have solved a given problem. These traces can be represented as a
state-space graph, where each node corresponds to a grid state from the traces. Given a sufficiently large state-space
graph, we can define key states as those most frequently reached by users. From our current state, we can utilize
conditional probabilities to identify actions that are likely to lead us to these key states. These actions are likely
important, and we propose that reward values could be distributed differentially based on their significance. For
example, in the context of the Tetris problem, a high reward could be assigned to the action of clearing a fully filled
line, an event that is inevitable in the game progression. In addition, considering that we are currently utilizing around
ten different DSLs, the number of states accessible before reaching the final state is limited. As a potential solution,
we propose a method of back-tracking from the final state to prepare a set of states reachable within one or two hops.
Providing a high reward for reaching these states could potentially increase the efficiency of model learning.

E.2. Contemplating Improved Experimental Setups

The ARC challenge presents a peculiar issue: the patterns within training and evaluation data differ significantly, which im-
plies a model trained on the former cannot readily generalize to the latter. Consequently, we risk criticism for circumventing
the essence of ARC by adopting a purely supervised learning experimental setup. Therefore, there may be doubts about the
results from our current experiments, and here are some concerns.

Question: We augmented the data using actions from expert traces. Given that we provided all the augmented ARC traces,
which include both action and state sequences as training data, we should be capable of discovering viable solutions for all
input grids by merely using the raw expert traces. We even incorporated the sophisticated Decision Transformer algorithm;
why did we fail to reach 100% performance?

Answer: We posit that if only a single expert trace were included, we might have achieved 100% performance. However,
as we augmented the data using various types of expert traces, there exist diverse combinations and possibilities of states
and actions during the learning process. For example, in a particular test state, the correct course of action may be to
‘rotate followed by ‘reflect y’. However, within our existing traces, the frequency of sequences where we ‘rotate’ and then
‘reflect x’ might be higher. This discrepancy could prevent a quick solution from mimicking the action sequence of the
correct trace, thus hindering 100% accuracy. Consequently, the accuracy may be lower than expected.

So, what might be a better experimental setting?

1. While this setup does not include the core concepts of the ARC problem, namely open-set and few-shot, I propose
the following idea. Should we have trained the Decision Transformer model with all augmented datasets (40,000)
corresponding to four problems as input data, and then given a test example randomly pertaining to one of the four
problems, and had it solved? → If we were to conduct an experiment in such a setup, we could solve the problem
by first determining which problem the test case (+ 3-shot pair) is, using a neural architecture search module placed
on each individual Decision Transformer, and then learning the Decision Transformer that solves that problem. The
maximum performance obtainable in that case would be the performance reported in the Table 2.

2. A more essential approach to the ARC is as follows: →We should use the model trained with problems A, B, C, and D
to solve new problems E, F, G that we have never encountered before. As we proceed with our research, experiments
must definitely be conducted in this setup.

F. Example of expert traces
In Appendix F, we define expert traces for the diagonal flip problem. These traces guarantee to provide the correct solution
without any detours. The corresponding expert traces are then utilized for data augmentation purposes. The listings below
depict these expert traces for the diagonal flip problem.



1 seq_action = [
2 ["start", "reflectx", "rotate", "end"],
3 ["start", "rotate", "rotate", "reflecty", "rotate", "end"],
4 ["start", "reflectx", "reflecty", "rotate", "reflectx", "end"],
5 ["start", "rotate", "rotate", "rotate", "reflectx", "end"],
6 ["start", "rotate", "reflectx", "rotate", "rotate", "end"],
7 ["start", "reflecty", "reflectx", "rotate", "reflectx", "end"],
8 ["start", "rotate", "rotate", "reflectx", "rotate", "rotate", "rotate", "end"],
9 ["start", "reflecty", "rotate", "rotate", "rotate", "end"],

10 ["start", "reflectx", "reflectx", "rotate", "reflecty", "end"],
11 ["start", "rotate", "reflecty", "end"], #TRACE_3431
12 ]

Listing 2. Examples of expert traces used to create an augmentation of the Diagonal flip task

In Listing 2, all traces can be classified as expert traces as they contain no unnecessary or inefficient actions. Each trace is
less than the defined threshold in length, contains no edit actions, and has no detectable cycles among the actions. Thus,
they are all categorized as expert traces.

G. Algorithm details
In this section, we will describe the models and training methods in more detail.

G.1. Data Augmentation Algorithm

Algorithm 1 Data Augmentation

Input: a list of human traces(tr in)
Output: a list of augmented traces(tr aug)
def IsExpertTrace(trace):

if (len(trace) ≥ threshold) or (“edit” ∈ trace) or (some cycles are found in trace) then
return False

return True

def GenerateTrace(grid, exp trace):
trace← [grid]
for action ∈ exp trace do

grid← a new grid updated by applying action to current grid.
trace← trace+ [grid]

return trace

/* Select expert traces. */
tr exp← []
for trace ∈ tr in do

if IsExpertTrace(trace) then
tr exp← tr exp+ [trace]

/* Generate synthetic traces. */
tr aug ← []
for 1 ≤ i ≤ 10000 do

grid← A 2D array whose size is N ×N and each element is one of limited values.
for exp trace ∈ tr exp do

aug trace← GenerateTrace(grid, exp trace)
tr aug ← tr aug + [aug trace]

return tr aug



Algorithm 1 encapsulates the data augmentation method outlined in Section 3.1.2. The algorithm begins by defining expert
traces, identified as trajectories collected via O2ARC (Kim et al., 2022). These represent the strategies employed by humans
to solve Mini-ARC problems, devoid of unnecessary or inefficient steps. We removed unnecessary steps by imposing a
maximum length of threshold on the traces, as longer traces tend to incorporate superfluous steps. In this context, we
strategically adjust the threshold value to suit the specific requirements of each problem in Mini-ARC. For instance, in the
case of the diagonal flip problem, the threshold is set to 6. In this process, we discarded traces containing the edit action,
which alters the color of a single pixel individually, as well as traces that exhibited cyclical patterns. In more detail, the
edit action is inefficient and reduces the generality of solutions, thus we exclude all traces employing it from the expert
traces. Cycles, defined as unnecessary sequences where two or more consecutive actions lead back to the initial state, were
also eliminated from the traces.

Subsequently, we generate an appropriate 2D random grid tailored to the type of the current Mini-ARC problem. The
specific coloring and layout of the grid are determined by the problem type. The size of grid is set to N ×N , where N is
primarily set to 5 but adjusted to 7 exclusively for the gravity problem. Diagonal flip and stretch problems use black and
one other randomly chosen color, while tetris and the gravity problems employ black and two randomly chosen colors.
The layout of colored pixels (non-black) also varies according to the problem type. For diagonal flip and stretch problems,
colored pixels are randomly distributed, whereas the tetris problem utilizes pixel placement that mirrors the shape of blocks
from the Tetris game. The gravity problem distinctively features a central line composed of same-colored pixels. This
process yields a total of 10, 000 instances.

Lastly, we detail the data augmentation process for creating a new set of traces using the set of expert traces and the 2D
random grids. We introduce the function GenerateTrace, which creates a single trace by applying the actions from
an expert trace sequentially to a 2D random grid. Every time an action is applied, the grid updates, and the sequence of
these updated grids forms the new trace. In essence, the generated trace embodies the process of applying an expert trace,
representing an efficient solution to a specific Mini-ARC problem, onto a different random grid. Algorithm 1 accumulates
the results of performing GenerateTrace function for each expert trace across 10, 000 instances, culminating in the final
output.

G.2. Push and Pull Clustering Algorithm

Algorithm 2 elaborates on the object detection process, known as the Push and Pull (PnP) clustering algorithm, as discussed
in Section 3.2. To be more precise, it encapsulates the graph abstraction operation explained in Section 3.2.1, the Push and
Pull operation described in Section 3.2.2, and the cluster assign operation outlined in Section 3.2.3. These processes are
respectively represented by f , g, and the DBSCAN in Figure 4.

Examining the graph abstraction in greater detail, function f accepts a 2D grid as input and constructs a graph, where each
pixel in the grid is a node, and edges are drawn between directly or diagonally adjacent nodes. In this construction, each
node stores the coordinate and color information of its corresponding pixel. Each edge, on the other hand, holds a value
between 1 and 5, which depends on the coordinate and color information of its connecting nodes. For instance, an edge
connecting two directly adjacent nodes of the same color is assigned a value of 1, whereas an edge between two diagonally
adjacent nodes of different colors receives a value of 5. In Algorithm 2, the function CalculateDistance is utilized
to compute the value to be stored on an edge between two adjacent pixels. Furthermore, in the portion of Algorithm 2
describing function f , pixeli (a non-black pixel in the grid) and pixelj (a non-black pixel among the eight pixels adjacent
to pixeli) are selected by the nested loops. The value to be stored on the edge between the selected pixeli and pixelj is
computed using CalculateDistance, and this edge is added to the edges set.

Function g operates on the graph constructed through the previously described processes, with particular regard to the values
stored on each edge. When an edge harbors a value of 4 or 5, it signifies a repulsive force at work between the two linked
nodes. This force is instrumental in moving the nodes away from each other during the subsequent rearrangement process.
Conversely, an edge holding a value of 1 or 2 is interpreted as exerting an attractive force between the connected nodes,
causing them to gravitate towards each other during the rearrangement. This procedure extends to include an examination
of all edges, which in turn influences the relocation of the nodes based on the observed forces. Function g meticulously
regulates this process, adjusting the placement of nodes according to the inferred forces from the edge values, thereby
ensuring the optimal organization of the graph.

The final part of Algorithm 2 delineates the process of assigning a unique cluster number to each pixel in the grid. This
is accomplished by implementing the DBSCAN algorithm to conduct the push and pull operation on the grid, which has



Algorithm 2 Push and Pull Clustering

Input: a 2D array of ARC problem(grid)
Output: a 2D array of ARC problem with assigned cluster number(grid)
def ManhattanDistance(pixeli, pixelj):

return ABS(pixeli.x - pixelj .x) + ABS(pixeli.y - pixelj .y)

def CalculateDistance(pixeli, pixelj):
distance← 1
if pixeli.color ̸= pixelj .color then

distance← distance+ 3

if ManhattanDistance(pixeli, pixelj) == 2 then
distance← distance+ 1

return distance

/* Function f ; Graph abstract operation. */

edges← []
for pixeli ∈ {pixel | pixel ∈ grid and pixel.color ̸= “black”} do

for pixelj ∈ {pixel | pixel ∈ grid and ManhattanDistance(pixel, pixeli) == 1 and pixel.color ̸= “black”}
do

distance← CalculateDistance(pixeli, pixelj)
edges← edges+ [(pixeli, pixelj , distance)]

/* Function g ; Push and pull operation. */

for edge ∈ edges do
repulsion← (edge.distance− 3)/2
if repulsion ≥ 0 then

Push edge.pixeli and edge.pixelj in grid based on repulsion.

else
Pull edge.pixeli and edge.pixelj in grid based on repulsion.

/* DBSCAN ; Assigning cluster operation. */

clusters← DBSCAN(grids)
pixel order ← 1
for cluster ∈ clusters do

for node ∈ cluster do
if node.color ̸= “black” then

pixel← grid[node.x][node.y]
pixel← pixel + [pixel order]

pixel order ← pixel order + 1

return grid



undergone position adjustments. Following this, each cluster identified by DBSCAN is assigned a unique number, and
this cluster identification is then integrated into every pixel. Upon completion of these steps, the modified grid is returned,
signifying the completion of Algorithm 2.

G.3. Decision Transformer with Push and Pull Clustering Algorithm

Algorithm 3 illustrates the procedure of resolving the Mini-ARC problem utilizing the Decision Transformer, which in this
research, has been supplemented with object detection information. This algorithm is essentially a derivative of Algorithm
1 from the original Decision Transformer (Chen et al., 2021), albeit with a few adaptations. It includes some additional
steps to facilitate object detection and modifications specifically designed to handle the Mini-ARC problem. However, it’s
important to note that the major part of the process remains consistent with the original Decision Transformer algorithm.
Thus, considering the high degree of overlap and in the interest of brevity, we have decided not to include a step-by-step,
detailed discourse of the entire process within the scope of this paper. Instead, we will focus on the novel additions and
modifications that contribute to the unique aspects of our proposed methodology.

In the DecisionTransformer function, modifications have been implemented to incorporate object detection infor-
mation. To begin with, a new variable, p embedding, and a linear embedding layer called embed p have been intro-
duced. Subsequently, in the construction of input embeds, p embedding is added to the previously used s embedding,
a embedding, and r embedding. This addition of p embedding equips the DecisionTransformer with the ability
to access pixel cluster information at each state during the learning process. As a result, the DecisionTransformer
is now able to perceive pixels that share the same cluster number as a single object. In terms of return values, instead of
providing a single action-related predicted value, the revised function now returns three predicted values: state, action, and
return-to-go. This revision was necessitated by a learning issue in the ARC task where returning only the action proved to be
insufficient. As the same issue was found in the Mini-ARC, the function was adapted to return state, action, and return-to-go,
thereby addressing this problem.

The main changes during the model’s training process are reflected in the return value changes in the
DecisionTransformer function and the corresponding alterations to the loss function. The original Decision Trans-
former assumed that the return value, action, was continuous, and hence used the Mean Squared Error (MSE) function
for it. However, in this research, not only is action added to the return values but also state and return-to-go. Moreover,
in the Mini-ARC problem, the action and state are discrete, while only return-to-go is continuous. Therefore, the loss
function in this research is determined as the sum of the cross-entropy function for action and state, and the MSE function
for return-to-go.

Changes during the testing phase also stem from the expanded return values of the DecisionTransformer function.
Upon examining the loop, it’s evident that the original Decision Transformer only returns a prediction for the action,
necessitating further steps to compute the state and return-to-go. Contrarily, our version of the DecisionTransformer
returns predictions for all three parameters, thus eliminating these extra steps.



Algorithm 3 Decision Transformer with Push and Pull Clustering

Input: state(s), action(a), return-to-go(r), timestep(t)
Output: predicted final state(final s)
/* transformer ; a transformer with causal masking (GPT) */
/* embed t ; a learned episode positional embedding layer */
/* embed s, embed a, embed r, embed p ; embedding layers */
/* pred s, pred a, pred r ; linear prediction layers */

def DecisionTransformer(s, a, r, t):
pos embedding ← embed t(t)
s embedding ← embed s(s) + pos embedding
a embedding ← embed a(a) + pos embedding
r embedding ← embed r(r) + pos embedding
p embedding ← embed p(Push and Pull Clustering(s)) + pos embedding

input embeds← (s embedding, a embedding, r embedding, p embedding)
hidden states← transformer(input embeds)

new s← pred s(hidden states.s)
new a← pred a(hidden states.a)
new r ← pred r(hidden states.r)
return (new s, new a, new r)

/* Train the Decision Transformer */
for (s, a, r, t) ∈ Train Dataloader do

(pred s, pred a, pred r)← DecisionTransformer(s, a, r, t)
loss← Cross Entropy((pred s, pred a), (s, a))+ MSE(pred r, r)
optimizer.zero grad()
loss.backward()
optimizer.step()

/* Test the Decision Transformer */
K ← 5
(s, a, r, t)← (initial state, “start”, 0.0, 1)
while true do

new s, new a, new r ← DecisionTransformer(s, a, r, t)[−1]
if new a == “end” then

final s = new s break
(s, a, r, t)← (s+ [new s], a+ [new a], r + [new r], t+ [len(r) + 1])
(s, a, r, t)← (s[−K :], a[−K :], r[−K :], t[−K :])

return final s


