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ABSTRACT

It is widely acknowledged that capturing non-local information among pixels
within one input image is crucial for effective image restoration (IR). However,
fully incorporating such global cues into transformer-based methods can be com-
putationally expensive, mainly when dealing with large input images or patches.
Furthermore, it is assumed that the attention mechanism within the transformer
considers numerous unnecessary global cues of the pixels from unrelated objects
or regions. In response to these challenges, we introduce the Key-Graph Trans-
former (KGT) for IR in this paper. Specifically, KGT treats image features within
a given window as the nodes of a graph. Instead of establishing connections
among all the nodes, the proposed Key-Graph Constructor creates a sparse yet
representative Key-Graph that flexibly connects only the essential nodes. Then
the Key-Graph Attention Block is proposed within each KGT layer to conduct
the self-attention operation guided by the Key-Graph only among selected nodes
with linear computational complexity. Extensive experimental results validate that
the proposed KGT outperforms state-of-the-art methods on various benchmark
datasets, quantitatively and qualitatively.

1 INTRODUCTION

Image restoration (IR), a fundamental task in the realm of low-level computer vision, is dedicated
to the improvement of images that have been compromised by various factors such as noise, blur,
or other forms of distortion. The central aim of image restoration is to reconstruct a cleaner, vi-
sually more appealing version of the original image, thus facilitating a more effective analysis and
interpretation. This capability finds diverse applications, including information recovery (such as
retrieving obscured data in medical imaging, surveillance, and satellite imagery) and supporting
downstream vision tasks like object detection, recognition, and tracking Sezan & Stark (1982);
Molina et al. (2001). Despite significant advancements in recent years, it is noteworthy that current
popular image restoration methods still face challenges in effectively handling complex distortions
or preserving/recovering essential image details Li et al. (2023a). In order to recover high-quality
images, the rich information exhibited in the degraded counterparts needs to be exquisitely explored.

For IR in modern computer vision systems, the de-facto representative networks are mainly
built based on three fundamental architectural paradigms, i.e., the convolutional neural networks
(CNNs) LeCun et al. (1998); Zamir et al. (2021), Vision Transformers (ViTs) Vaswani et al. (2017);
Dosovitskiy et al. (2020) and the Multilayer perceptrons (MLPs) Bishop & Nasrabadi (2006); Tu
et al. (2022). The input image/image patches are treated as a regular grid of pixels in the Euclidean
space for CNNs or a sequence of patches for ViTs and MLPs. However, the degraded input images
usually contain irregular and complex objects. These architectural choices perform admirably in
specific scenarios characterized by regular or well-organized object boundaries but have limitations
when applied to images with more flexible and complex geometrical contexts.

Besides the above-mentioned limitations of how they treat data, CNNs are struggling to model the
long-range dependencies because of their limited receptive field. Though ViTs have been vali-
dated as highly effective in capturing the long-range relation among pixels with the multi-head self-
attention mechanism (MSA) Vaswani et al. (2017); Dosovitskiy et al. (2020); Ren et al. (2023a),
their computational complexity increases quadratically with respect to spatial resolution. Similarly,
MLPs are not trivial to be applied to high-resolution input spatial-wise, which largely reduces the
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ability of MLPs to maintain the locality among the neighbor pixels. To overcome these limitations,
recent methods investigate strategies for complexity reduction. One common approach is to im-
plement MSA within local image regions using the SWIN-Transformer architecture design Liang
et al. (2021); Li et al. (2023a). However, these designs treat input still as sequences, which hinders
effective context aggregation within local neighborhoods and struggles to capture inherent connec-
tions among irregular objects. Additionally, an earlier study Zontak & Irani (2011) highlights that
smooth image contents occur more frequently than complex image details, suggesting the need for
differentiated treatment for different contents.

In this paper, we introduce a novel approach, the Key-Graph Transformer (KGT), to address the
aforementioned limitations using the SWIN Liu et al. (2021) architecture. Our method comprises
two core components: a K-nearest neighbors (KNN) based Key-Graph Constructor and a Key-Graph
Transformer layer with a novel Key-Graph Attention block integrated. Specifically, starting with the
input feature obtained from the convolutional feature extractor within one window, we treat each
of them as a node representation of a graph. Since capturing long-range dependencies among all
nodes can be highly computationally demanding, we selectively choose topK nodes based on the
proposed Key-Graph constructor rather than establishing connections between all possible nodes.
In particular, we propose a random topK strategy during training instead of a fixed topK value. This
leads to a sparse yet representative graph that connects only the essential neighbor nodes, which
makes our method achieve the same receptive field as previous transformer-based methods while
effectively maintaining lower computational costs. The criteria for selecting these representative
nodes are determined by the self-similarity calculated at the beginning of each KGT layer. Then
the chosen nodes undergo processing by all the successive Key-Graph transformer layers shown in
Fig. 1. It’s worth noting that the implementation of the Key-Graph attention block within each KGT
layer is achieved in three manners (i.e., the Triton Dao et al. (2022), torch-mask, and torch-gather),
which will be discussed in our ablation studies. Based on these two components, the information
that exists in all the selected nodes is well-aggregated and updated.

In summary, our main contributions can be categorized as follows:
1. We propose a Key-Graph constructor that provides a sparse yet representative Key-Graph

with the most relevant K nodes considered, which works as a reference for the subsequent
attention layer, facilitating more efficient attention operations.

2. Based on the constructed Key-Graph, we introduce a Key-Graph Transformer layer with
a novel Key-Graph attention block integrated. Notably, the computational complexity can
be significantly reduced from quadratic to linear when compared to conventional attention
operations.

3. Based on both the Key-Graph constructor and the Key-Graph Transformer layer, we pro-
pose a Key-Graph Transformer (KGT) for image restoration. Extensive experimental re-
sults show that the proposed KGT achieves state-of-the-art performance on 6 IR tasks.

2 RELATED WORK

Image Restoration (IR), as a long-standing ill-posed inverse problem, is designed to reconstruct the
high-quality image from the corresponding degraded counterpart. It has been brought to various real-
life scenarios due to its valuable application property Richardson (1972); Banham & Katsaggelos
(1997); Li et al. (2023b). Initially, IR was addressed through model-based solutions, involving the
search for solutions to specific formulations. However, with the remarkable advancements in deep
neural networks, learning-based approaches have gained increasing popularity. These approaches
have been explored from various angles, encompassing both regression-based Lim et al. (2017);
Liang et al. (2021); Chen et al. (2021b); Li et al. (2023a) pipelines and generative model-based
pipelines Gao et al. (2023); Wang et al. (2023); Luo et al. (2023); Yue et al. (2023). In this paper,
our primary focus is to investigate IR within the context of the regression-based pipeline.

Non-local Priors Modeling in IR. Tradition model-based IR methods reconstruct the image by reg-
ularizing the results (e.g., Tikhonov regularization Golub et al. (1999)) with formulaic prior knowl-
edge of natural image distribution. However, it’s challenging for these model-based methods to
recover realistic detailed results with hand-designed priors. Besides, some other classic method
finds that self-similarity is an effective prior which leads to an impressive performance Buades et al.
(2005); Dabov et al. (2007). Apart from the traditional methods, the non-local prior also has been uti-
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Figure 1: The architecture of the proposed Key-Graph Transformer (KGT) for Image Restoration.
KGT mainly consists of a feature extractor, the main body of the proposed KGT (The main body
here is for SR, while the U-shaped structure is used for other IR tasks), and an image reconstructor.

lized in modern deep learning networks Liu et al. (2018); Wang et al. (2018); Li et al. (2023a); Zhang
et al. (2019b), and it was usually captured by the self-attention mechanism. Especially, KiT Lee et al.
(2022) proposed to increase the non-local connectivity between patches of different positions via a
KNN matching to better capture the non-local relations between the base patch and other patches in
every attention operation, this brings more extra computation costs. DRSformer Chen et al. (2023)
proposed a topK selection strategy that chooses the most relevant tokens to model the non-local
priors for draining after each self-attention operation without reducing the computation complexity.
The effectiveness of non-local priors has been widely validated in various recent transformer-based
IR methods Liang et al. (2021); Zamir et al. (2022); Li et al. (2023a).

Graph-Perspective Solutions for IR. Graph operations are usually used to deal with irregular data
structures such as point clouds Wang et al. (2019); Li et al. (2021b), social networks Myers et al.
(2014), or protein desins Ingraham et al. (2019). Recently, graph-based methods were also adapted
to process the input image/patches in a more flexible manner Gori et al. (2005); Scarselli et al.
(2008); Mou et al. (2021); Han et al. (2022); Jiang et al. (2023) on various IR tasks, like facial
expression restoration Liu et al. (2020), image denoising Simonovsky & Komodakis (2017), and
artifact reduction Mou et al. (2021). However, most of the previous graph-based solutions for IR
mainly extend from graph neural networks (GNNs), which mainly focus on very close neighbor
nodes. Merely increasing the depth or width of GNNs proves inadequate for expanding receptive
fields Xu et al. (2018), as larger GNNs often face optimization challenges like vanishing gradients
and over-smoothing representation. Jiang et al. (2023) construct the graph with transformer-based
architecture but in a very expensive manner where each node is connected to all other nodes. In
this paper, we introduce a novel approach that integrates graph properties into ViTs by employing a
Key-Graph for the efficient capture of effective non-local priors in Image Restoration (IR) tasks.

3 METHODOLOGY

The overall architecture of the proposed Key-Graph Transformer (KGT) is shown in Fig. 1. Unlike
conventional approaches that treat input features after the convolutional feature extractor as a reg-
ular grid of pixels in Euclidean space (typical in CNNs) or as a sequence of patches (common in
ViTs and MLPs), our method adopts a more flexible approach based on graph representation. To
be specific, the proposed KGT focuses on enhancing the efficiency of representation learning in a
multi-stage manner. The graph structure is shared within each KGT stage and can be dynamically
updated at the beginning of each KGT stage, which leads to a sparse yet highly effective node rep-
resentation. Before delving into our proposed method, we begin by offering a succinct overview of
the foundational concepts of graph transformers in the preliminary section (Section 3.1). We then
ensure the efficiency of graph updating by introducing the Key-Graph constructor (Section 3.2). Si-
multaneously, we attain the effectiveness of node feature aggregation by employing the Key-Graph
Transformer Layer (Section 3.3) in each stage of the KGT.

3.1 PRELIMINARY: GRAPH TRANSFORMER.

In conventional vision transformers, graph nodes are typically assigned based on feature patches,
and graph edges are usually represented by inferring similarities among nodes using a self-attention
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Figure 2: (a): The illustration of Key-Graph Constructor. (b): The proposed Key-Graph Attention
Block within each KGT Layer. (c): The depiction of the difference among dense graph attention
c-1, sparse graph attention c-2, and the proposed Key-Graph attention c-3.

mechanism Vaswani et al. (2017). Specifically, given the low-level input feature Fin ∈ RH×W×C ,
where H , W , and C denote the height, the width, and the numbers of channels of the given feature,
respectively. Fin is split into N feature patches and we get the node feature representation X =
{xi|xi ∈ Rhw×c, i = 1, 2, 3, ..., N}, where h, w, and c denote the height, the width, and the feature
dimension of each patched feature. These features can be considered to be an unordered set of nodes.
For each node xi, an edge eji can be added from xj to xi from all the neighbors of xi in X . Thus,
a graph G is naturally constructed and can be represented by the corresponding adjacency matrix
A = {eji} ∈ RN×N .

In order to get A, we begin by linearly projecting X into Query (Q), Key (K), and Value (V )
matrices (note that V will be used to conduct the node feature aggregation with the help of A later),
which are denoted as Q = XWQ, K = XWK , and V = XWV , respectively. Here, WQ/K/V

represents the learnable projection weights. The calculation of A is performed as follows:

Aij = softmax(QKT /
√
d) =

exp(QiKj/
√
d)∑

k∈Xi
exp(QiKk/

√
d)

, j ∈ Xi (1)

where d represents the dimension of Q/K. Then the node feature can be aggregated to x̂i by:

x̂i = Aij · Vi (2)

Since we have adopted the SWIN transformer Liu et al. (2021) as the basic architecture that con-
ducts the window-wise attention, all the operations within each window are similar. To streamline
our explanation, we select a single window for illustration when discussing the Key-Graph Con-
structor and the proposed Key-Graph Transformer layer. Notably, notations such as Fin and X are
all window-size adapted for clarity.

3.2 KEY-GRAPH CONSTRUCTOR

The goal of the proposed Key-Graph constructor is to construct a sparse yet representative graph GK

at the beginning of each KGT stage. Specifically, given node representation X of Fin, an initial fully
connected Graph G is constructed by calculating the self-similarity of X via dot product operation.
As a result, the corresponding adjacency metrics A can be achieved:

A = sim(i, j) = xi · xT
j , (3)

which describes the correlation among all the nodes, and a higher similarity value indicates a higher
correlation between two nodes. However, in this context, A represents a fully connected graph,
wherein all nodes xj within X are included in the connectivity of the destination node xi, irrespec-
tive of the degree of relatedness between xi and xj (e.g., Fig. 2 (c-1) describes such a case that the
green dog patch node at the bottom right corner is also connected to all other nodes with a red circle
marked. Best viewed by zooming.).

To mitigate the side effects of nodes with low correlation (e.g., the tree-related nodes at the upper left
part) for the destination dog node, we propose to keep only K highly related nodes of the destination
node xi and exclude the remaining nodes with low correlation. This is achieved under the guidance
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Key-Graph Attention Block Feature Transform

Figure 3: The framework of the proposed Key-Graph Transformer Layer.

of the similarity value from A as follows:

AK(i, j) =

{
A(i, j), A(i, j) ≥ sim(i, )K
0, else

(4)

where sim(i, )K denotes the Kth largest connective value of node xi with its corresponding node.
As a result, once AK is achieved, we get a sparse yet representative Key-Graph GK which contains
only the edge connection among the destination node (e.g., the green dog node) and the other nodes
with high correlation (e.g., dog-related nodes. An example is illustrated in Fig. 2 (c-3)).

Owing to the permutation-invariant property inherent in both the MSA and the FFN within each
transformer layer Vaswani et al. (2017); Lee et al. (2019), the KGT layer consistently produces
identical representations for nodes that share the same attributes, regardless of their positions or
the surrounding structures within the graph Chen et al. (2022a). In other words, nodes at the same
spatial location are consistently connected to other nodes possessing the same attributes as they
traverse through the various layers within the same KGT stage. This enables our Key-Graph GK to
act as a reference for each attention block in the subsequent KGT layers within each KGT stage,
facilitating more efficient attention operations. This is different from the sparse graph (illustrated in
Fig. 2 (c-2)) that only activates the nodes in a fixed coordinate of a given feature map Zhang et al.
(2023b).

3.3 KEY-GRAPH TRANSFORMER LAYER

The proposed Key-Graph Transformer Layer is shown in Fig. 3, which consists of a Key-Graph
attention block together with an FFN for the node feature aggregation. Fig. 2 (b) shows the detailed
workflow of the proposed Key-Graph attention block. Initially, the node features X undergo a linear
projection into Q, K, and V . Then for each node in xi in Q, instead of calculating the self-attention
with all the nodes xj in K, we choose only topK nodes in K where j denotes only the index of the
nodes with high correlation to the given destination node. The selection is guided by the Key-Graph
GK . We intuitively show such a process in Fig. 2 (a) and (b), and formulate the selection process
as KK = select(topK,GK). Then the spare yet representative adjacency matrix AK is can be
obtained by:

AK = softmaxK(QKT
K/

√
d), (5)

which captures the pair-wise relation between each destination node xi, (i = 1, 2, ..., hw) in Q
with only the nodes that are semantically related to the given xi. For other nodes apart from the
selected K nodes, we keep their position in their corresponding places without any computation.
This is different from the conventional self-attention operation which calculates the relation of each
node in Q and all nodes in K (The difference between c-1 and c-3 in Fig. 2). Meanwhile, the
proposed method is also different from the sparse attention used in Zhang et al. (2023b) where the
position of the nodes that need to be collected is always fixed (The difference between c-2 and c-3
in Fig. 2). Conversely, the proposed Key-Graph attention block not only significantly reduces the
computational complexity from O((hw)2) to O((hw) × K), where K < hw, but also provides a
more flexible approach to capturing semantically highly related nodes.

Note that since the dimension of the select GK only contains topK nodes, this leads to a dimen-
sion mismatch problem for the conventional self-attention mechanism. As a remedy, we tried three
different manners for the detailed implementation, i.e., (i) Triton, (ii) Torch-Gather, and (iii) Torch-
Mask. Specifically, (i) is based on FlashAttention Dao et al. (2022), and parallel GPU kernels are
called for the nodes. (ii) means that we use the ’torch.gather()’ function in PyTorch to choose the
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(a) Color image denoising
on Kodak24, σ = 15.

(b) Grayscale image de-
noising on Set12, σ = 25

(c) Color image JPEG
CAR on Live1, QF = 10.

(d) SR with KGT-B on
Manga109, upscaler ×3.

Figure 4: Ablation study on the impact of K. The size of the circle denotes the FLOPs.

corresponding Qgather and Kgather based on GK , then the attention operation shown in Eq. 5 is
conducted between Qgather and Kgather. (iii) denotes that we keep only the value of selected nodes
of AK and omitting other nodes with low correlation via assigning those values to −∞ guided by
GK . We will discuss the pros and cons of these manners in Sec. 4.1.

Finally, as the phenomenon of over-smoothing is prevalent in graph-structured data, it becomes
particularly pronounced in deep models Chen et al. (2020); Keriven (2022). To relieve the over-
smoothing phenomenon and encourage the node feature transformation capacity, we aggregate the
node feature by an FFN in a residual connection manner. This process can be formalized as follows:

Z = FFN(X +AKV ), (6)

where Z = {zi|zi ∈ Rhw×c, i = 1, 2, 3, ..., N} is the aggregated node feature.

4 EXPERIMENTS

In this section, we first analyze two important aspects of the proposed KGT, followed by extensive
experiments on 6 IR tasks, which include JPEG compression artifact reduction (CAR), image de-
noising, demosaicking, IR in adverse weather conditions (AWC), image super-resolution (SR), and
image deblurring. More details about the training protocols, the training/testing dataset, and addi-
tional visual results are shown in the supplementary material (Supp. Mat.). In addition, the best and
the second-best quantitative results in all tables are reported in red and blue, respectively.

4.1 ABLATION STUDY

Extensive ablation experiments are conducted for the following two essential explorations:

The Impact of the K in Key-Graph Constructor. Two sets of experiments are conducted to
study the influence of hyper-parameter K. In the first set, K was held constant at 512 through-
out the training process, while in the second set, K was randomly sampled from the values
[64, 128, 192, 256, 384, 512]. It’s important to note that for both sets, K was configured to the spec-
ified value during the inference phase. Besides the truth that the computational complexity grows
linearly with K, there are two interesting phenomena that can be observed from the results shown in
Fig. 4, i.e., (1). The randomly sampled strategy has a very stable and better performance compared
to the fixed K manner especially when the K is fixed to a small number (i.e., 64, 128, 256). (2) The
PSNR can largely increase with the increase of K in a fixed manner. We conclude that a random
sampled strategy is more general and stable. It can also make the inference process more flexible
regarding different computation resources. More ablation results can be found in our Supp. Mat.
about the effect of the noise level and quality factor for denoising and JPEG CAR.

The impact of the implementation of Key-Graph Attention is assessed in terms of (i) Triton,
(ii) Torch-Gather, and (iii) Torch-Mask under different numbers of N (various from 512 to 8192)
and K (various from 32 to 512). The results of the GPU memory footprint are shown in Tab. 3,
which indicate that Torch-Gather brings no redundant computation while requiring a large memory
footprint. Though Torch-Mask brings the GPU memory increase, the increment is affordable com-
pared to Torch-Gather and also very easy to implement. Triton can largely save the GPU memory
while at the cost of slow inference and difficult implementation for the back-propagation process. To
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Table 1: Grayscale image JPEG compression artifact removal results. †A single model is trained
to handle multiple quality factors.

Set QF JPEG †DnCNN3 †DRUNet †KGT (Ours) GRL-S SwinIR ART CAT KGT (Ours)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

C
la

ss
ic

5 10 27.82 0.7600 29.40 0.8030 30.16 0.8234 30.26 0.8240 30.20 0.8286 30.27 0.8249 30.27 0.8258 30.26 0.8250 30.36 0.8267
20 30.12 0.8340 31.63 0.8610 32.39 0.8734 32.52 0.8740 32.49 0.8776 32.52 0.8748 - - 32.57 0.8754 32.58 0.8748
30 31.48 0.8670 32.91 0.8860 33.59 0.8949 33.74 0.8955 33.72 0.8985 33.73 0.8961 33.74 0.8964 33.77 0.8964 33.77 0.8958
40 32.43 0.8850 33.77 0.9000 34.41 0.9075 34.55 0.9078 34.53 0.9107 34.52 0.9082 34.55 0.9086 34.58 0.9087 34.57 0.9080

L
IV

E
1 10 27.77 0.7730 29.19 0.8120 29.79 0.8278 29.84 0.8323 29.82 0.8323 29.86 0.8287 29.89 0.8300 29.89 0.8295 29.92 0.8360

20 30.07 0.8510 31.59 0.8800 32.17 0.8899 32.23 0.8949 32.22 0.8930 32.25 0.8909 - - 32.30 0.8913 32.28 0.8950
30 31.41 0.8850 32.98 0.9090 33.59 0.9166 33.65 0.9213 33.65 0.9190 33.69 0.9174 33.71 0.9178 33.73 0.9177 33.69 0.9201
40 32.35 0.9040 33.96 0.9250 34.58 0.9312 34.65 0.9329 34.64 0.9331 34.67 0.9317 34.70 0.9322 34.72 0.9320 34.67 0.9345

U
rb

an
10

0 10 26.33 0.7816 28.54 0.8484 30.31 0.8745 30.81 0.8885 30.70 0.8875 30.55 0.8835 30.87 0.8894 30.81 0.8866 31.15 0.8941
20 28.57 0.8545 31.01 0.9050 32.81 0.9241 33.33 0.9266 33.24 0.9270 33.12 0.9190 - - 33.38 0.9269 33.51 0.9272
30 30.00 0.9013 32.47 0.9312 34.23 0.9414 34.74 0.9446 34.67 0.9430 34.58 0.9417 34.81 0.9442 34.81 0.9449 34.84 0.9462
40 31.06 0.9215 33.49 0.9412 35.20 0.9547 35.69 0.9447 35.62 0.9519 35.50 0.9515 35.73 0.9553 35.73 0.9511 35.75 0.9550

Table 2: Color image JPEG compression artifact removal results. †A single model is trained to
handle multiple quality factors.

Set QF JPEG †QGAC †FBCNN †DRUNet †KGT (Ours) SwinIR GRL-S KGT (Ours)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L
IV

E
1 10 25.69 0.7430 27.62 0.8040 27.77 0.8030 27.47 0.8045 28.19 0.8146 28.06 0.8129 28.13 0.8139 28.31 0.8176

20 28.06 0.8260 29.88 0.8680 30.11 0.8680 30.29 0.8743 30.53 0.8781 30.44 0.8768 30.49 0.8776 30.61 0.8792
30 29.37 0.8610 31.17 0.8960 31.43 0.8970 31.64 0.9020 31.89 0.9051 31.81 0.9040 31.85 0.9045 31.94 0.9058
40 30.28 0.8820 32.05 0.9120 32.34 0.9130 32.56 0.9174 32.81 0.9201 32.75 0.9193 32.79 0.9195 32.85 0.9204

B
SD

S5
00 10 25.84 0.7410 27.74 0.8020 27.85 0.7990 27.62 0.8001 28.25 0.8076 28.22 0.8075 28.26 0.8083 28.37 0.8102

20 28.21 0.8270 30.01 0.8690 30.14 0.8670 30.39 0.8711 30.55 0.8738 30.54 0.8739 30.57 0.8746 30.63 0.8750
30 29.57 0.8650 31.330 0.8980 31.45 0.8970 31.73 0.9003 31.90 0.9026 31.90 0.9025 31.92 0.9030 31.96 0.9035
40 30.52 0.8870 32.25 0.9150 32.36 0.9130 32.66 0.9168 32.84 0.9190 32.84 0.9189 32.86 0.9192 32.88 0.9193

Table 3: GPU memory footprint
of different implementations of
the key-graph attention block. N
is the number of tokens and K is
the number of nearest neighbors.

N Triton Torch-Gather Torch-Mask
512 0.27 GB 0.66 GB 0.36 GB

1024 0.33 GB 1.10 GB 0.67 GB
2048 0.68 GB 2.08 GB 1.91 GB
4096 2.61 GB 4.41 GB 6.83 GB
8192 10.21 GB 10.57 GB 26.42 GB

K Triton Torch-Gather Torch-Mask
32 5.51 GB 15.00 GB 13.68 GB
64 5.82 GB 27.56 GB 13.93 GB
128 6.45 GB OOM 14.43 GB
256 7.70 GB OOM 15.43 GB
512 10.20 GB OOM 17.43 GB

Table 4: Single-image motion deblurring results. GoPro
dataset Nah et al. (2017) is used for training.

GoPro HIDE Average
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DeblurGAN Kupyn et al. (2018) 28.70 0.858 24.51 0.871 26.61 0.865
Nah et al. Nah et al. (2017) 29.08 0.914 25.73 0.874 27.41 0.894
DeblurGAN-v2 Kupyn et al. (2019) 29.55 0.934 26.61 0.875 28.08 0.905
SRN Tao et al. (2018) 30.26 0.934 28.36 0.915 29.31 0.925
Gao et al. Gao et al. (2019) 30.90 0.935 29.11 0.913 30.01 0.924
DBGAN Zhang et al. (2020) 31.10 0.942 28.94 0.915 30.02 0.929
MT-RNN Park et al. (2020) 31.15 0.945 29.15 0.918 30.15 0.932
DMPHN Zhang et al. (2019a) 31.20 0.940 29.09 0.924 30.15 0.932
Suin et al. Suin et al. (2020) 31.85 0.948 29.98 0.930 30.92 0.939
CODE Zhao et al. (2023) 31.94 - 29.67 - 30.81 -
SPAIR Purohit et al. (2021) 32.06 0.953 30.29 0.931 31.18 0.942
MIMO-UNet+ Cho et al. (2021) 32.45 0.957 29.99 0.930 31.22 0.944
IPT Chen et al. (2021a) 32.52 - - - - -
MPRNet Zamir et al. (2021) 32.66 0.959 30.96 0.939 31.81 0.949
KiT Lee et al. (2022) 32.70 0.959 30.98 0.942 31.84 0.951
Restormer Zamir et al. (2022) 32.92 0.961 31.22 0.942 32.07 0.952
Ren et al. Ren et al. (2023b) 33.20 0.963 30.96 0.938 32.08 0.951
KGT (ours) 33.44 0.964 31.05 0.941 32.25 0.953

optimize the efficiency of the proposed KGT, we recommend employing Torch-Mask during train-
ing and Triton during inference, striking a balance between the efficiency and the GPU memory
requirement.

4.2 EVALUATION OF KGT ON VARIOUS IR TASKS

Evaluation on JPEG Compression Artifact Reduction. For JPEG CAR, the experiments for both
grayscale and color images are conducted with four image quality factors ranging from 10 to 40
under two experimental settings (i.e., a single model is trained to handle multiple quality factors, and
each model for each image quality). The quantitative results shown in Tab. 1 validate that the KGT
outperforms all other methods like DnCNN-3 Zhang et al. (2017), DRUNet Zhang et al. (2021),
GRL-S Li et al. (2023a), SwinIR Liang et al. (2021), ART Zhang et al. (2023b), and CAT Chen
et al. (2022b) under both settings. Besides, the results for color images in Tab. 2 also show that our
KGT achieves the best results on all the test sets and quality factors among all compared methods
like QGAC Ehrlich et al. (2020), FBCNN Jiang et al. (2021), DRUNet, SwinIR, and GRL-S. The
visual comparisons in the Supp. Mat. further support the effectiveness of the proposed KGT.
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Table 5: Color and grayscale image denoising results. Model complexity and prediction accuracy
are shown for better comparison. †A single model is trained to handle multiple noise levels.

Method # P
Color Grayscale

CBSD68 McMaster Urban100 Set12 BSD68 Urban100
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

†DnCNN 0.56 33.90 31.24 27.95 33.45 31.52 28.62 32.98 30.81 27.59 32.67 30.35 27.18 31.62 29.16 26.23 32.28 29.80 26.35
†FFDNet 0.49 33.87 31.21 27.96 34.66 32.35 29.18 33.83 31.40 28.05 32.75 30.43 27.32 31.63 29.19 26.29 32.40 29.90 26.50
†DRUNet 32.64 34.30 31.69 28.51 35.40 33.14 30.08 34.81 32.60 29.61 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
†Restormer 26.13 34.39 31.78 28.59 35.55 33.31 30.29 35.06 32.91 30.02 33.35 31.04 28.01 31.95 29.51 26.62 33.67 31.39 28.33
†KGT (Ours) 25.82 34.42 31.78 28.57 35.65 33.40 30.34 35.37 33.26 30.41 33.47 31.16 28.12 31.95 29.49 26.54 34.05 31.84 28.83

DnCNN 0.56 33.90 31.24 27.95 33.45 31.52 28.62 32.98 30.81 27.59 32.86 30.44 27.18 31.73 29.23 26.23 32.64 29.95 26.26
RNAN 8.96 - - 28.27 - - 29.72 - - 29.08 - - 27.70 - - 26.48 - - 27.65
IPT 115.33 - - 28.39 - - 29.98 - - 29.71 - - - - - - - - -
EDT-B 11.48 34.39 31.76 28.56 35.61 33.34 30.25 35.22 33.07 30.16 - - - - - - - - -
DRUNet 32.64 34.30 31.69 28.51 35.40 33.14 30.08 34.81 32.60 29.61 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
SwinIR 11.75 34.42 31.78 28.56 35.61 33.20 30.22 35.13 32.90 29.82 33.36 31.01 27.91 31.97 29.50 26.58 33.70 31.30 27.98
Restormer 26.13 34.40 31.79 28.60 35.61 33.34 30.30 35.13 32.96 30.02 33.42 31.08 28.00 31.96 29.52 26.62 33.79 31.46 28.29
Xformer 25.23 34.43 31.82 28.63 35.68 33.44 30.38 35.29 33.21 30.36 33.46 31.16 28.10 31.98 29.55 26.65 33.98 31.78 28.71
KGT (Ours) 25.82 34.43 31.79 28.60 35.65 33.43 30.38 35.38 33.29 30.51 33.48 31.18 28.14 31.97 29.52 26.53 34.09 31.87 28.86

Table 6: Image Restoration in adverse weather conditions.

Type Test1 (rain+fog) SnowTest100k-L RainDrop
Method PSNR Method PSNR Method PSNR

Task
Specific

pix2pix 19.09 DesnowNet 27.17 Attn. GAN 30.55
HRGAN 21.56 JSTASR 25.32 Quan et al. 31.44
SwinIR 23.23 SwinIR 28.18 SwinIR 30.82

MPRNet 21.90 DDMSNET 28.85 CCN 31.34

Multi
Task

All-in-One 24.71 All-in-One 28.33 All-in-One 31.12
TransWeather 27.96 TransWeather 28.48 TransWeather 28.84
KGT (Ours) 29.57 KGT (Ours) 30.76 KGT (Ours) 30.82

Table 7: Image demosaicking results.
Datasets Kodak McMaster
Matlab 35.78 34.43
MMNet Kokkinos et al. (2019) 40.19 37.09
DDR Wu et al. (2016) 41.11 37.12
DeepJoint Gharbi et al. (2016) 42.00 39.14
RLDD Guo et al. (2020) 42.49 39.25
DRUNet Zhang et al. (2021) 42.68 39.39
RNAN Zhang et al. (2019b) 43.16 39.70
GRL Li et al. (2023a) 43.57 40.22
KGT (Ours) 43.62 40.68

Evaluation on Image Denoising. We show color and grayscale image denoising results in Tab. 5
under two settings (i.e., † one model for all noise levels σ = {15, 25, 50} and each model for
each noise level). For a fair comparison, both the network complexity and accuracy are reported
for all the comparison methods like DnCNN Zhang et al. (2017), FFDNet Zhang et al. (2018a),
DRUNet Zhang et al. (2021), RNAN Zhang et al. (2019b), IPT Chen et al. (2021a), EDT Li et al.
(2021a), SwinIR Liang et al. (2021), Restormer Zamir et al. (2022), and Xformer Zhang et al.
(2023a). For setting †, our KGT achieves better performance on all test datasets for both color and
grayscale image denoising compared to all others. It’s worth noting that we outperform DRUNet and
Restormer with lower trainable parameters. For another setting, our KGT also archives better results
on CBSD68 and Urban100 for color image denoising and on Set12 and Urban100 for grayscale
denoising. These interesting comparisons validate the effectiveness of the proposed KGT and also
indicate that KGT may have a higher generalization. The qualitative results in Supp. Mat. also
supports that the proposed KGT can remove heavy noise corruption and preserve high-frequency
image details.

Evaluation on Image Demosaicking. The quantitative results are shown in 7, which show that
the proposed KGT archives the best performance on both the Kodak and MaMaster test datasets.
Especially, 0.05dB and 0.45dB absolute improvement compared to the current state-of-the-art GRL.

Evaluation in Adverse Weather Conditions. We validate KGT in adverse weather conditions like
rain+fog (Test1), snow (SnowTest100K), and raindrops (RainDrop). The PSNR score is reported
in Tab. 6 for each method. It’s clear that our method achieves the best performance on Test1 (i.e.,
5.76% improvement) and SnowTest100k-L (i.e. 8.01% improvement), while the second-best PSNR
on RainDrop compared to all other methods. The visual comparison in our Supp. Mat..

Evaluation on SR. For the classical image SR, we compared our KGT with both recent lightweight
and accurate SR models, and the quantitative results are shown in Tab. 8. Compared to EDT, KGT-
base achieves significant improvements on Urban100 (i.e., 0.72 dB and 0.76dB for x2 and x4 SR)
and Manga109 datasets (i.e., 0.22dB and 0.17 dB for x2 and x4 SR). Furthermore, even the KGT-
small consistently ranks as the runner-up in terms of performance across the majority of test datasets,
all while maintaining a reduced number of trainable parameters. The visual results shown in Fig. 5
also validate the effectiveness of the proposed KGT in restoring more details and structural content.

Evaluation on Image deblurring. Tab. 4 shows the quantitative results for single image motion
deblurring on synthetic datasets (GoPro Nah et al. (2017), HIDE Shen et al. (2019)). Compared to
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Table 8: Classical image SR results. Both lightweight and accurate models are summarized.

Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
[M] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RCAN Zhang et al. (2018b) ×2 15.44 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN Dai et al. (2019) ×2 15.71 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN Niu et al. (2020) ×2 63.61 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IPT Chen et al. (2021a) ×2 115.48 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR Liang et al. (2021) ×2 11.75 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
CAT-A (Chen et al., 2022b) ×2 16.46 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
ART Zhang et al. (2023b) ×2 16.40 38.56 0.9629 34.59 0.9267 32.58 0.9048 34.30 0.9452 40.24 0.9808
EDT Li et al. (2021a) ×2 11.48 38.63 0.9632 34.80 0.9273 32.62 0.9052 34.27 0.9456 40.37 0.9811
KGT-S (Ours) ×2 11.87 38.57 0.9651 34.99 0.9300 32.65 0.9078 34.86 0.9472 40.45 0.9824
KGT-B (Ours) ×2 19.90 38.61 0.9654 35.08 0.9304 32.69 0.9084 34.99 0.9455 40.59 0.9830

RCAN Zhang et al. (2018b) ×3 15.63 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN Dai et al. (2019) ×3 15.90 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN Niu et al. (2020) ×3 64.35 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
NLSA Mei et al. (2021) ×3 45.58 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
IPT Chen et al. (2021a) ×3 115.67 34.81 - 30.85 - 29.38 - 29.49 - - -
SwinIR Liang et al. (2021) ×3 11.94 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
CAT-A (Chen et al., 2022b) ×3 16.64 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
ART Zhang et al. (2023b) ×3 16.58 35.07 0.9325 31.02 0.8541 29.51 0.8159 30.10 0.8871 35.39 0.9548
EDT Li et al. (2021a) ×3 11.66 35.13 0.9328 31.09 0.8553 29.53 0.8165 30.07 0.8863 35.47 0.9550
KGT-S (Ours) ×3 12.05 34.99 0.9366 31.23 0.8594 29.53 0.8223 30.71 0.8950 35.52 0.9573
KGT-B (Ours) ×3 20.08 35.03 0.9371 31.29 0.8603 29.54 0.8227 30.87 0.9012 35.60 0.9581

RCAN Zhang et al. (2018b) ×4 15.59 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN Dai et al. (2019) ×4 15.86 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN Niu et al. (2020) ×4 64.20 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IPT Chen et al. (2021a) ×4 115.63 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR Liang et al. (2021) ×4 11.90 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
CAT-A (Chen et al., 2022b) ×4 16.60 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
ART Zhang et al. (2023b) ×4 16.55 33.04 0.9051 29.16 0.7958 27.97 0.751 27.77 0.8321 32.31 0.9283
EDT Li et al. (2021a) ×4 11.63 33.06 0.9055 29.23 0.7971 27.99 0.7510 27.75 0.8317 32.39 0.9283
KGT-S (Ours) ×4 12.02 33.02 0.9082 29.29 0.8026 27.96 0.7582 28.34 0.8467 32.48 0.9322
KGT-B (Ours) ×4 20.04 33.08 0.9090 29.34 0.8037 27.98 0.7599 28.51 0.8467 32.56 0.9335

Figure 5: Visual comparison of classical image SR (x4) on Urban100. Best viewed by zooming.

the previous state-of-the-art Restormer Zamir et al. (2022), the proposed KGT achieves significant
PSNR improvement of 0.52 dB on the GoPro dataset and the second-best performance with a slightly
lower PSNR and SSIM on HIDE dataset. More visual results are shown in the Supp. Mat..

5 CONCLUSION

In this paper, for the first time, we utilize ViTs from the graph perspective specifically tailored for
image restoration with the proposed KGT for both the widely-used multi-stage (for image SR) and
the U-shaped architectures (For other IR tasks). In particular, a key graph is constructed that can
capture the complex relation of each node feature with only the most relevant K nodes with the
proposed Key-Graph constructor instead of a dense fully connected graph. Then the Key-Graph is
shared with all the KGT layers within the same KGT stage, which enables the Key-Graph Attention
block to capture fewer but the Key relation of each node. As a result, KGT leads to the computation
complexity reduced from O((hw)2) to O((hw)×K), which largely released the potential of ViTs in
a sparse yet representative manner. Extensive experiments on 6 IR tasks validated the effectiveness
of the proposed KGT and the results demonstrate that the proposed KGT achieves new state-of-the-
art performance. The code of the proposed KGT will be released.
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