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Abstract

Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal
tube of a video, as specified by the input text query. In this paper, we utilize
multimodal large language models (MLLMs) to explore a zero-shot solution in
STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically
assign special tokens, referred to as grounding tokens, for grounding the text query;
and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully
integrate the cues in the text query (e.g., attributes, actions) for inference. Based on
these insights, we propose a MLLM-based zero-shot framework for STVG, which
includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-
augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs.
The DSTH strategy first decouples the original query into attribute and action
sub-queries for inquiring the existence of the target both spatially and temporally.
It then uses a novel logit-guided re-attention (LRA) module to learn latent variables
as spatial and temporal prompts, by regularizing token predictions for each sub-
query. These prompts highlight attribute and action cues, respectively, directing
the model’s attention to reliable spatial and temporal related visual regions. In
addition, as the spatial grounding by the attribute sub-query should be temporally
consistent, we introduce the TAS strategy to assemble the predictions using the
original video frames and the temporal-augmented frames as inputs to help improve
temporal consistency. We evaluate our method on various MLLMs, and show that
it outperforms SOTA methods on three common STVG benchmarks. The code will
be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.

1 Introduction

Spatio-Temporal Video Grounding (STVG) aims to localize a target object in a video both spatially
and temporally, given an input text query. This task is fundamental to many different applications
(e.g., video surveillance and autonomous driving [67]). However, it is also very challenging as it
requires the model to be able to distinguish the target from distractors over time and identify the
precise temporal boundary of the action. While existing methods handle the STVG task mainly
in a fully-supervised setting [13; 59; 54], which often relies on costly frame-level annotations,
several works [29; 3; 61; 21; 60; 25] attempt to introduce the weakly-supervised or zero-shot
setting to alleviate the burden of dense annotations. For example, E3M [3] integrates CLIP [43]
and an expectation maximization strategy to optimize spatio-temporal localization in a zero-shot
manner. However, CLIP is known to be weak in localization [75; 14] as it simply aligns the global
representation of image-text pairs.
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Figure 1: (a) The visual attention maps shows that some special tokens (marked as
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) can precisely
attend to the target region of the input query. However, these special tokens, referred to as the
grounding tokens in our work, underperform on complex STVG, where they often focus on part cues
and ignore other cues (marked in red within the input text prompts). Examples (b) and (c) illustrate
spatial/temporal grounding errors caused by ignoring the discriminative attribute/action cues. Red
and green bounding boxes denote the ground truths and predictions, respectively.

Considering the strong capability of multi-modal large language models (MLLMs) [37; 27; 31; 8;
53; 36] in cross-modality alignment, several works explore the application of MLLMs in the visual
grounding task. However, they typically require explicit fine-tuning [26; 44; 39] of MLLMs with
additional grounding datasets and specific model modifications, which can be difficult to scale and
generalize to novel visual data [4]. Although some recent works [4; 69] have investigated the attention
maps in language models as done in previous ViT and CNN architectures [74; 52; 12], they only
focus on the generated tokens while neglecting other token components input in the language model
(e.g., system tokens and special tokens). In particular, we observe that the special tokens play an
important role in structuring the communication between the user input and the language model, and
help guide the generation of coherent responses in dialogues.

With the above observation in mind, we delve deeper and find that the special tokens following
the input instruction have outstanding grounding ability. In particular, a few special tokens are
characterized by high visual activation and can attend to the region of interest well. Considering the
left sample of Fig. 1(a) as an example, the special token ‘_A’ provides tangible attention to the ‘boy’
referred to by the given query, while in the right sample of Fig. 1(a), the token ‘IST’ is assigned to
ground the ‘elephant’. These special tokens are referred to as grounding tokens in our work. Despite
the strong comprehension ability, the grounding tokens cannot optimally adapt to STVG as they
tend to ignore some important cues (e.g., attribute or action) in a complex video query. As shown in
Fig. 1(b), the grounding token fails in the spatial grounding by ignoring the attributes. Similarly, in
Fig. 1(c), it leads to the failure of temporal grounding by neglecting the action cues of the target.

In this work, we first conduct a systematic analysis to probe the special tokens of various MLLMs
(Sec. 3.2), which demonstrates our aforementioned empirical findings and enables zero-shot spatio-
temporal video grounding. To alleviate the problem of neglecting discriminative cues, we propose
a novel decomposed spatio-temporal highlighting (DSTH) strategy (Sec. 3.3). Specifically, the
language query is decomposed into attribute and action sub-queries, which are utilized as the text
input of the MLLM for inquiring the target’s existence spatially and temporally, respectively. We then
propose a novel logit-guided re-attention (LRA) module to highlight the cues in attribute and action
sub-queries. For each sub-query, LRA optimizes the learnable latent variable as the (spatial/temporal)
prompts via enhancing the positive response generation while suppressing the negative response. As
a result, the DSTH strategy can well adapt the model to mine faithful visual context and concentrate
on spatially/temporally relevant regions. In addition, to further enhance the temporal consistency
during spatial grounding by the attribute sub-query, we develop a temporal-augmented assembling
(TAS) strategy (Sec. 3.4). The TAS strategy utilizes temporally perturbed frames as input to assemble
different predictions into final spatial grounding result.

In summary, our contributions are as follows:
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• We reveal that MLLMs dynamically assign the special tokens for precisely grounding text-related
regions. We identify the special tokens characterized by the salient visual activation for deriving a
novel zero-shot STVG framework.

• We propose a novel test-time tuning strategy named decomposed spatio-temporal highlighting
(DSTH). It introduces an innovative logit-guided re-attention (LRA) module to adapt the grounding
token for thorough spatio-temporal localization. We also develop a temporal-augmented assembling
(TAS) strategy to further improve the robustness of spatial localization.

• We conduct extensive experiments on various MLLMs to demonstrate our empirical findings and
validate the effectiveness of the proposed method. Our method outperforms existing methods by a
remarkable margin on three STVG benchmarks.

2 Related work

Spatio-Temporal Video Grounding (STVG) aims to localize a spatio-temporal tube in a video
corresponding to the text query. Unlike image-based visual grounding [10; 11; 63; 34; 62; 35],
STVG [73; 51; 59] presents significant challenges, requiring models to distinguish targets from
distractors both spatially and temporally. Fully-supervised STVG approaches [51; 54; 73; 49] have
achieved promising results. However, these methods heavily depend on an extensive collection
of labor-intensive annotations. Several recent works [29; 21; 25] tackle STVG in a more efficient
manner, which only uses coarse video-level descriptions for training. E3M [3] leverages pre-trained
vision-language models and proposes an expectation maximization framework to optimize spatio-
temporal localization. However, contrastive objective based multimodal models are known to be
weak in localization [75; 14] as they simply align the global representations of image-text pairs.

Multimodal Large Language Models (MLLMs) are capable of handling diverse language and
vision tasks. To equip MLLMs with the grounding ability, current works [41; 26; 28; 66; 71]
construct grounding-oriented supervision data for instruction tuning and propose novel architectural
modifications. LLaVA-ST [28] achieves spatio-temporal understanding by introducing a progressive
training strategy consisting of three sequential stages. However, the large amount of grounding data
needed for instruction-tuning imposes high labeling costs. In addition, changing the focus of MLLMs
to grounding tasks can degrade the original dialog capabilities due to catastrophic forgetting [68].
Recent works [4; 19; 69] reveal the inherent perception ability of MLLMs obtained by general
instruction-tuning. Unlike these works that only focus on the generated tokens or in our work, we
delve deeper into the more token components and reveal that the MLLMs always dynamically assign
the special tokens following the instruction prompt for attending to the regions of interest.

Test-time Tuning (TTT) aims to optimize the inference of test samples online. With the progress
of multimodal foundation models [43; 5]), TTT has attracted more attention [76; 40; 18; 48; 64] as
it can learn effective prompts for test samples and well adapt the foundation model for zero-shot
applications. TPT [48] pioneers the study on TTT by minimizing the prediction entropy between each
test sample and its augmented views. HisTPT [70] explores memory learning for test-time prompt
tuning by introducing the memory bank. However, the test prompt optimization for MLLMs is barely
explored. The most relevant work to our work is ControlMLLM [56], which optimizes the attention
map by taking the referring regions as supervision. With the lack of supervision, we propose to learn
visual prompts by regularizing the token-level response to instruction input. Our work shows that we
can rectify where text prompts attend to by altering the outputs of MLLMs.

3 Method

3.1 Preliminaries

Task Formulation. Given an untrimmed video V = {ft}Tv
t=1 composed of Tv image frames and

a sentence query Q, the goal of the STVG task is to localize the spatio-temporal tube of target
O = {bt}tet=ts described by Q. Here bt represents the bounding box of the target in the t-th frame, ts
and te specify the starting and ending boundaries of the target tubelet, respectively. The STVG task
can be solved through two sub-tasks: spatial grounding and temporal grounding. In our work, we first
derive a zero-shot solution for the STVG task by unleashing the strong cross-modal comprehension
ability of MLLMs.
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The Setup of MLLMs. Current MLLMs typically consist of a visual encoder, a projector, and a
large language model. Specifically, given an image-question pair (I,Q) as input, the image I is first
projected into text-aligned visual tokens Tv = {v1, . . . , vM} by visual encoder and projector, and
the question Q is converted into text tokens Tq = {t1, . . . , tNq

} by a text tokenizer and embedding
layer. Here, M and Nq denote the numbers of visual tokens and question tokens, respectively. In
practice, MLLMs also introduce system tokens Tsys and some special tokens Trole for instruction-
following ability. In particular, the special tokens play an important role in structuring the well-
organized conversation framework. In our work, the special tokens are positioned subsequent to
the instruction prompts by the user. They help guide the generation of coherent responses. The
number of special tokens Nrole often differs among different MLLMs. As a result, the language
model receives concatenated tokens, T = {t1, . . . , tNsys ; v1, . . . , vM; t1, . . . , tNq ; t1, . . . , tNrole

}, as
input. Appendix 6.1 provides visual illustration about the input tokens in MLLMs.

Text-to-visual Attention. The LLM in MLLMs typically processes the input tokens through L
transformer blocks [37] with the multi-head attention (MHA) for interactions of different tokens.
Particularly, the text-to-visual attention represents the relationships between the visual and the
textual tokens. We can derive the text-to-visual attention matrix A ∈ RL×H×N×N, where N =
Nsys +M+Nq +Nrole. L and H denote the numbers of layers and heads in the transformer. Our
empirical observation from Fig. 1 is that the special tokens Trole show outstanding grounding ability
with a global comprehension. For the simplicity of the following analysis, we omit the affect of
different layers and heads by the mean operation. We can then obtain the text-to-visual attention
matrix, Arole = [Nsys +M+Nq : N,Nsys : Nsys +M].

3.2 Grounding Token Identification
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Figure 2: In (a), the results show the frequency with which
different special tokens (such as ‘_A’, ‘.’) have superior
grounding ability than other tokens, i.e., hit_ratio. In (b), the
results represent the grounding accuracy of tokens ranked by
their visual activation degrees. For each MLLM, we select
four tokens for visualization.

In this section, we conduct a pilot
study to quantitatively analyze the
grounding ability of the special tokens.
Without loss of generality, we ran-
domly select a subset of 1,000 image-
text pairs from the RefCOCOg [17]
validation set for image MLLMs anal-
ysis, and a subset of 1,000 video-
text pairs from the HC-STVGv2 [51]
dataset for video MLLMs analy-
sis. Particularly, we choose three
typical MLLMs (i.e., LLaVA-1.5,
Qwen-VL, Deepseek-VL) for the
study on image input and three
MLLMs (i.e., LLaVA-Next-Video,
Qwen2-VL, LLaVA-OneVision) for
the study on video input. We have
two key findings from our studies.

MLLMs dynamically assign the spe-
cial tokens to attend to the text-related regions. To demonstrate the finding, we first define the
attention ratio of each special token as the ratio of maximum attention within the ground-truth
bounding box bgt to that outside it. For example, the attention ratio of the special token ‘_A’ can be
computed as:

R_A
att =

max(A_A
role ⊙ fB2M (bgt))

max
(
A_A

role ⊙ (1− fB2M (bgt))
) , A_A

role ∈ R1×M, (1)

where fB2M denotes the function that transforms a bounding box into its corresponding binary mask.
Here, a higher ratio indicates a better target grounding ability. Given a test sample, we can identify the
token yielding the highest attention ratio as the superior token for grounding. The hit ratio of a token
is then defined as the frequency of being the superior token for grounding across all test samples.
Fig. 2(a) shows the hit ratio of four special tokens in each MLLM. Notably, the fixed token does not
consistently exhibit the best grounding ability for different samples. For example, the highest hit ratio
achieved by token ‘.’ in LLaVA-1.5 is not more than 50%. In addition, for different MLLMs, the
token at a fixed position does not always yield the best localization performance. For example, the
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Figure 3: Overview of the proposed approach for zero-shot STVG. Given a video-text pair, we
first decompose the text Q into spatially and temporally related sub-queries, Qs and Qt. The text
prompt tokens converted from Qs and Qt are then concatenated with visual tokens Tv for spatial and
temporal inferences, respectively. In addition, we introduce learnable variables as visual prompts and
optimize them by the logit-guided re-attention (LRA) module. For spatial grounding, we also develop
a temporal-augmented assembling (TAS) strategy by reversing the frames to enhance temporal
consistency. After optimization, we obtain the object track score Sobj and frame score Sframe based
on the grounding token identification. The final prediction is derived by joining Sobj and Sframe.

last special token ‘:’, which is adopted in a previous work [69], obtains a high hit ratio in Qwen-VL,
but its hit ratio is quite low in LLaVA-1.5. This observation holds for both image and video inputs.

The special token with higher visual activation tends to show superior grounding performance.
Since the superior grounding tokens vary across different samples and MLLMs, identifying them
for grounding is a problem that needs to be resolved when ground truth is unavailable as a prior.
With further analysis, we reveal that the superior token for grounding tends to show higher visual
activation. For each sample, we rank the special tokens according to the maximum value of visual
attention and then evaluate their grounding accuracy by selecting the proposal with the highest
attention value. Following the paradigm in previous works [50; 16], we extract box proposals using a
detector and evaluate the grounding accuracy by the Acc@0.5 metric. Fig. 2(b) shows the results. We
can see that the grounding accuracy decreases as the rank of visual activation reduces (from left to
right). This supports our hypothesis that the special token with higher visual activation tends to show
superior grounding ability. We have also observed that models with better comprehension possess
better grounding ability overall. For example, the special tokens in LLaVA-OneVision achieve better
grounding performance than those of the other MLLMs.

A straightforward solution for zero-shot STVG. Inspired by the grounding ability of special tokens
subsequent to the text prompt, we refer to them as grounding tokens in our work. By identifying the
special tokens characterized by high visual activation, we derive a strong training-free framework
for STVG. Specifically, given the video-text pair (V,Q), we first extract the object track proposals
Opro = {O1, . . . , OP } from the video V , as done in previous works [3; 25], where P denotes the
number of proposals, and Op = {b′t}

t=Tv
t=1 is the set of bounding boxes of the p-th proposal in Tv

frames. Based on the foregoing findings, we then select the token with the highest attention value
for locating the target object, and denote the text-to-image attention matrix of the selected token as
Ag ∈ R1×M . As a result, we obtain each object track score by computing the maximum attention
value inside each object track as:

Sobj = {so1, so2, · · · , soP }, with sop = max(Ag ⊙ fB2M (Op)), (2)

where ⊙ denotes element-wise multiplication. We choose the track with the highest score as spatial
prediction O′

pred. In a similar manner, we can compute the frame score Sframe = {st1, st2, · · · , stTv
}.

By selecting the top-K frames with the highest scores from the temporal prediction Sframe, we obtain
the final spatio-temporal prediction O′

pred = {b′t}
te′
t=ts′

, where ts′ and te′ denote the starting and
ending boundary predictions. Though simple, this solution has achieved comparable or even superior
performance than current zero-shot methods. For example, based on LLaVA-OneVision model, this
solution achieves 23.3% on the m_vIoU metric on HC-STVGv1 dataset, which outperforms previous
SOTA result (19.1%) by E3M [3].
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3.3 Decomposed Spatio-Temporal Highlighting

Despite a strong performance by the above solution, these grounding tokens often neglect some
important cues during spatio-temporal localization especially when processing complex video queries.
As shown in Fig. 1(b), the attribute cue ‘in red clothes’ is overlooked during inference, which causes
the incorrect spatial localization. We observe that the language query often contains attribute and
action descriptions of the target object, which are beneficial for spatial and temporal localization,
respectively. To this end, we propose a novel decomposed spatio-temporal highlighting (DSTH)
strategy in our framework, which aims at highlighting the attributes/ actions cues in language query
and enhances the spatial/temporal reasoning, respectively.

Generation of target-related cues. For comprehensive spatial and temporal reasoning, it is essential
to extract the attribute and action descriptions from the original query Q as textual cues of the target.
Here, we leverage the strong in-context capability of the LLM [1] to extract attribute and action
descriptions. Following previous works [62; 16], we construct a prompt with general instructions and
in-context task examples. As shown in Fig. 3, we feed the prompt into LLM, and then these related
descriptions Qs and Qt are generated through the LLM completion. More implementation details
can be found in Appendix 7.3.

Spatio-temporal prompt learning. With the decomposed attribute and action descriptions as cues
for spatial and temporal reasoning, the next question is how to efficiently direct the model to focus on
the corresponding visual regions. Reliable responses in visual question answering (VQA) necessitate
careful attention to the relevant visual context as pointed out by previous studies [58; 42]. Inspired by
this, we innovatively propose regularizing the response to the questions constructed from the attribute
and action descriptions for adjusting the visual attention of MLLMs. Specifically, we first transform
the descriptions into interrogative queries by a fixed template to inquire the existence of the target.
As shown in Fig. 3, from the original text input Q, we can obtain the attribute description ‘a man
on the left of the man in the orange shirt’, which is further transformed into interrogative sub-query
Qs: ‘Is there a man on the left of the man in the orange shirt in this video?’ for spatial inquiry. In a
similar way, we can obtain the interrogative sub-query Qt for temporal inquiry. These interrogative
sub-queries will be taken as input instructions of MLLMs for response generation.

Logit-guided re-attention. With extracted sub-queries above, we then propose a novel logit-guided
re-attention (LRA) module to regularize the token prediction during response generation. Taking the
spatial sub-query as an example, we first initialize a learnable variable Vs with the same shape as the
visual tokens Tv, and then add it to Tv as the visual input of the language model. Sub-query Qs is
converted as text prompt tokens Ts

q by the text tokenizer and embedding layer. Given the input token
sequence, the next token probability prediction over the vocabulary set V is formulated as:

py = exp
(
logitπθ

(yi|(Tv +Vs,T
s
q, y<i))

)
, (3)

where πθ denotes the parameter of the language model and is frozen in our work. logitπθ
is the

log probability of the generated token at time step i. y<t denotes the text tokens sequence prior
to prediction time step i. We define the optimization objective by contrasting the probabilities of
positive token ‘yes’ and negative token ‘no’:

Ls = 1− exp
(
logitπθ

(yyes
i |(Tv +Vs,T

s
q, y<i))− logitπθ

(yno
i |(Tv +Vs,T

s
q, y<i))

)
. (4)

During the inference process, we conduct backpropagation to optimize the learnable variable Vs as
the spatial prompt. The process is iterated Nep times by test-time tuning paradigm. By enhancing
the positive response towards the sub-query Qs, we can prompt the MLLM to effectively mine
target-related contextual information during VQA, which in turn highlights the attribute cues in the
original text. Similarly, we can obtain the temporal prompt Vt by optimizing the temporal inference.

Joint inference. Based on the spatial and temporal visual prompts, we derive the attention maps
AS

g and AT
g ∈ RTv×h×w of the special token with high visual activation for spatial and temporal

predictions, where h and w denote the token numbers of the height and width. From Eq. 2, we obtain
the object track score Sobj and the temporal score Sframe based on AS

g and AT , respectively. Finally,
we integrate the predictions O′

pred = {b′t}
te′
t=ts′

as the spatio-temporal grounding result.

3.4 Temporal-augmented Assembling

The attribute sub-query, which provides a static state description, exhibits temporal independence
for spatial grounding. In other words, the spatial grounding by the attribute sub-query should be
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Table 1: Quantitative comparison on HCSTVG (v1&v2) and VidSTG (Declarative) benchmarks.

Sup Method HCSTVG-v1 HCSTVG-v2 VidSTG (Declarative)
m_vIoU vIoU@0.3 vIoU@0.5 m_vIoU vIoU@0.3 vIoU@0.5 m_vIoU vIoU@0.3 vIoU@0.5

Full

TubeDETR [59] [CVPR2022] 32.4 49.8 23.5 36.4 58.8 30.6 30.4 42.5 28.2
STCAT [20] [NeurIPS2022] 35.0 57.7 30.0 – – – 33.1 46.2 32.6
CSDVL [33] [CVPR2023] 36.9 62.2 34.8 38.7 65.5 33.8 33.7 47.2 32.8
CG-STVG [15] [CVPR2024] 38.4 61.5 36.3 39.5 64.5 36.3 34.0 47.7 33.1

Weak

WINNER [29] [CVPR2023] 14.2 17.2 6.1 – – – 11.6 14.1 7.4
VEM [21] [ECCV2024] 14.6 18.6 5.8 – – – 14.5 18.6 8.8
CoSPaL [25] [ICLR2025] 22.1 31.8 19.6 22.2 31.4 18.9 16.0 20.1 13.1
STPro [13] [CVPR2025] 17.6 27.0 12.9 20.0 31.1 14.6 15.5 19.4 12.7

ZS

RedCircle [47] [CVPR2023] 9.2 7.8 1.6 – – – 8.6 7.6 0.9
ReCLIP [50] [ACL2022] 14.4 18.3 4.9 – – – 14.2 17.5 7.9
E3M [3] [ECCV2024] 19.1 29.4 10.6 – – – 16.2 20.5 11.9
Ours LLaVA-Next-Video-7B 20.4 33.6 12.4 23.6 36.8 15.5 16.6 26.8 11.1
Ours ShareGPT4Video-8B 20.0 32.2 10.9 24.4 38.9 15.4 17.1 27.8 11.6
Ours Qwen2-VL-7B 23.6 39.0 14.4 25.6 40.5 17.1 17.0 27.4 11.4
Ours LLaVA-OneVision-7B 24.8 41.5 16.3 27.7 44.7 19.5 18.0 29.8 12.2

temporally consistent for temporal augmentation (e.g., reversing the order of video frames). However,
there exists temporal inconsistency when introducing temporal augmentation in current MLLMs.
Here, we propose a metric to measure the temporal consistency. By denoting the spatial attention
maps before and after reversing the order of input frames as AS

g and ÃS
g , the temporal consistency

can be measured as:

Scons = max{s1, · · · , sP }, sp = max
(
(AS

g ⊙ fB2M (Op))⊙ (ÃS
g ⊙ fB2M (Op))

)
, (5)

Figure 4: Spatial grounding accuracy of different
groups of samples on the HC-STVGv1 dataset.
These groups are ranked by descending temporal
consistency.

where a higher Scons indicates better temporal
consistency. We then divide the testing samples
into ten groups in descending order of temporal
consistency. Fig. 4 shows the average ground-
ing accuracy of each group samples. The results
demonstrate a pronounced association between
temporal consistency and spatial grounding per-
formance. The temporal inconsistency tends to
cause worse spatial localization.

To this end, we integrate a temporal-augmented
assembling (TAS) strategy in our framework. As
shown in Fig. 3, we perform a frame-level rever-
sion operation on the visual tokens and the spatial
prompt simultaneously, and then optimize the spa-
tial prompts for the input of the original frames and the temporal-augmented input, respectively.
During inference, we derive the spatial prediction by assembling the attention maps of temporal-
augmented input frames. The proposed TAS strategy alleviates the effect of temporal inconsistency
and improves the robustness of spatial grounding.

4 Experiments

4.1 Settings

Datasets. We evaluate on three video benchmark datasets: HCSTVG-v1, HCSTVG-v2 [51], and
VidSTG [73]. We provide detailed introduction about them in Appendx 7.1.

Implementation Details. We adopt G-DINO [38] and SAM2 [45] for detection and tracking
tubelet generation, and use GPT-4o to decompose the original query sentence into spatial and
temporal sub-queries. We consider four widely-used video MLLMs: LlaVA-Next-Video-7B [27],
Qwen2-VL-7B [53], ShareGPT4Video-8B [7], LlaVa-OneVision-7B [27] for demonstrating the
efficiency of our method. Refer to Appendix 7.2 for more details.
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Evaluation Metrics. We follow the standard evaluation protocol [59; 25] and use m_vIoU, and
vIoU@R to assess the performance of spatio-temporal grounding. Specifically, let Si, Su denote the
intersection and union between the predicted and ground-truth frames. The vIoU is computed by
1
Su

∑
t∈Si

IoU(b′t, bt), where b′t and bt denote the detected and ground-truth bounding box at frame
t, respectively. The m_vIoU represents the vIoU averaged over all testing samples, and vIoU@R
denotes the proportion of data samples in the testing subset with vIoU greater than the threshold
R ∈ {0.3, 0.5}.

4.2 Performance Comparison

Quantitative Comparison. Tab. 1 presents a comparison of our method against 11 meth-
ods from three categories, including zero-shot, weakly-supervised, and fully-supervised meth-
ods. Specifically, we compare our approach with existing zero-shot SOTA approaches (e.g.,
E3M [3], ReCLIP [50], RedCircle [47]). Our method consistently outperforms these methods
by a remarkable margin on all benchmarks. Based on LLaVA-Next-Video-7B, our method
outperforms E3M by 4.2% on vIoU@0.3 and 1.8% on vIoU@0.5. When integrated into the
better LLaVA-OneVision-7B model, the corresponding improvements reach 12.1% and 5.7%.

GT

Ours

The man in the left of the man in the orange shirt sits down, then turns his head to the left.

GT

wo/Tuning

Ours

the woman in yellow clothes looks up at the woman holding the newspaper, then looks down at the book.

Video

Video

wo/Tuning

Figure 5: Qualitative results on the HC-STVGv1 test set. Better
spatio-temporal grounding results (green) are obtained when the
DSTH strategy is being used for optimization.

This shows that our framework
can adapt to various MLLMs
well, and better performances
can be achieved by using better
MLLMs. Even on the VidSTG
dataset, which contains fewer
action cues related to the tar-
get and thus makes temporal
grounding particularly challeng-
ing, our framework still outper-
forms the previous SOTA meth-
ods overall. This demonstrates
the strong generalization capabil-
ity of our method. Besides, our
method even surpasses current
SOTA weakly-supervised meth-
ods on most metrics. For exam-
ple, on the HCTSVG-v2 bench-
mark, our method outperforms
CoSPaL [25] by a margin of
5.5% on the m_vIoU metric. Furthermore, compared to the fully-supervised methods, our method can
still achieve comparable results, which further validates the superiority of our approach. We provide
quantitative comparison on the VidSTG (Interrogative) and image benchmarks in Appendix 8.1

Qualitative Comparison. We present qualitative results in Fig. 5. In the example below, before
introducing the DSTH optimization strategy, the model neglects the attribute cues in the language
query and suffers from the spatial grounding error. By highlighting the attribute cues of the target,
our method can direct the MLLMs toward reliable visual context and improve spatial localization.

4.3 Ablation Study

In this section, based on HC-STVGv1 dataset, we analyse the effect of different proposed components
when integrated into LlaVa-Next-Video and LlaVa-OneVision. We also conduct extensive
ablation experiments with the hyper-parameters based on LlaVa-Next-Video.

Component analysis. In Tab. 2, we first average the attention maps of all special tokens (1st row) as
the baseline. This solution has achieved outstanding performance. Next, in the 2nd row, we integrate
the selection of the superior token introduced in grounding token identification (GTI). It brings
consistent improvements on different MLLMs. The results show that identifying the superior special
token can effectively unleash the powerful comprehension ability of MLLMs. We them validate
the efficiency of the decomposed spatio-temporal highlighting strategy (3rd and 4th rows). Stune
and Ttune denote adopting the prompt learning in spatial and temporal inferences, respectively. It is
demonstrated that the MLLMs can be directed to focus on the spatial/temporal related regions better
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(a) (b) (c)

Figure 6: (a) Comparison on the number of frames Nf as input, using vIoU@0.3. (b) Ablation on the
number of selected frames K during temporal prediction. (c) Ablation on different trackers.

when highlighting the attribute/action cues with proper prompts. When utilizing prompt learning on
the two sub-tasks, the final performance can be further refined (5th row). In addition, we also find that
the DSTH strategy can improve the grounding performance especially for the less efficient MLLMs
(e.g., LLaVA-Next-Video). Even for the MLLMs (e.g., LLaVA-OneVision) with strong temporal
comprehension ability, performance improvement can still be achieved by the test-time optimization.

Table 2: Component ablation on LLaVA-Next-Video and
LLaVA-OneVision.

GTI Sp Tp TAS LLaVA-Next-Video LLaVA-OneVision
m_vIoU vIoU@0.3 vIoU@0.5 m_vIoU vIoU@0.3 vIoU@0.5

✗ ✗ ✗ ✗ 15.2 25.1 8.5 21.3 36.1 12.6
✓ ✗ ✗ ✗ 16.3 26.6 9.3 23.3 38.8 15.1
✓ ✓ ✗ ✗ 18.0 30.1 10.1 24.1 40.3 16.0
✓ ✗ ✓ ✗ 18.4 29.5 10.1 23.8 39.7 15.5
✓ ✓ ✓ ✗ 19.9 32.1 11.9 24.3 40.7 16.0
✓ ✓ ✓ ✓ 20.4 33.6 12.4 24.8 41.5 16.3

Finally, we introduce the
temporal-augmented assem-
bling (TAS) strategy (6th
row). The overall perfor-
mance can be further im-
proved by refining the spa-
tial localization.

Why does spatial and tem-
poral prompt learning by
contrasting logits of ‘yes’
and‘no’ work. Though
contrasting logits of ‘yes’
and ‘no’ tokens is heuristic, it is reasonable. We empirically find that given the question prompt, the
model often gives ambiguous or even wrong response predictions even though the objects referred to
by the text do indeed exist in the video. This indicates that the model cannot understand the video
content well in certain cases. By optimizing the logit of the ‘yes’ token toward positive prediction
instead of the ‘no’ token, we encourage the model to carefully attend to the target-related visual
information and achieve better visual localization.

To further validate the hypothesis, we measure the distribution of attention peaks before and after test-
time optimization. Based on the evaluation on the HC-STVG dataset, we find that the average attention
peak before test-time optimization is about 6.7 (without normalization), and after optimization, it
increases to 23.9 (without normalization). This change in attention values indicates that our proposed
optimization strategy can encourage the model to perceive more visual modal information for
generating visually-grounded responses, thereby justifying our previous hypothesis.

Comparison of different learning strategies. We propose logit-guided re-attention by contrasting
logits of ‘yes’ and ‘no’ tokens. Here, we also consider entropy minimization (i.e., increasing the pre-
dicted probability of the ‘yes’ token across the entire vocabulary) during test-time tuning. The results
obtained by LLaVa-Next-Video-7B on the HC-STVG-v2 dataset are shown in the table below.

Table 3: Comparison of different learning strategies.

Methods m_vIoU vIoU@0.3 vIoU@0.5

GTI 19.2 28.5 12.4
GTI + entropy minimization 19.5 28.5 12.5
GTI + contrasting the logits 22.1 32.9 14.0

The 1st row denotes the results of in-
troducing grounding token identifica-
tion (GTI). The 2nd and 3rd rows
denote the test-time tuning results
achieved by entropy minimization and
contrasting the logits of ‘yes’ and ‘no’,
respectively. We find that entropy min-
imization does not bring noticeable
improvement. We believe this is be-
cause entropy minimization may be achieved by reducing the token prediction of abundant irrelevant
tokens in the vocabulary while ignoring the differentiation between the ‘yes’ and the ‘no’ token. As
a result, it is less efficient than explicitly contrasting the logits in promoting the model to attend to
abundant visual information.
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Generality analysis of our method. We conduct the scalability verification on InternVL3 and
Qwen2.5-VL series models. With limited computational resources, we evaluate our method on
InternVL3-4B, InternVL3-8B, Qwen2.5-VL-3B and Qwen2.5-VL-7B models in the table below.

Table 4: Evaluation on different scales of models.

Methods vIoU@0.3 m_vIoU t_iou gt_viou

InternVL3-4B + Baseline 24.5 17.0 38.4 38.2
InternVL3-4B + Ours 41.1 25.4 45.5 49.5
InternVL3-8B + Baseline 36.5 22.9 42.9 46.1
InternVL3-8B + Ours 45.3 27.5 47.2 53.2

Qwen2.5-VL-3B + Baseline 28.5 17.3 37.1 39.1
Qwen2.5-VL-3B + Ours 41.7 25.4 45.9 49.3
Qwen2.5-VL-7B + Baseline 39.7 23.6 44.1 47.2
Qwen2.5-VL-7B + Ours 45.4 27.7 46.9 51.6

We average the attention maps of
all special tokens as the baseline.
Benefiting from our grounding token
identification and test-time optimiza-
tion, we can obviously achieve bet-
ter grounding performance not only in
the smaller but also the larger mod-
els, which well demonstrates both
the generality and scalability of our
method. Moreover, we find that
the model size significantly impacts
the inherent grounding ability of spe-
cial tokens. The performance of
small models (e.g., InternVL3-4B)
is inferior to the larger models (e.g.,
InternVL3-8B). It is because fewer parameters in language models perform poorly in multimodal
alignment.

Effect of input frames Nf . Fig. 6(a) analyzes the effect of using different numbers of video
frames Nf as input. We can see that more input frames provide richer visual context for model
inference and lead to a better overall performance. Besides, the performance becomes slightly peaked
as the number of input frames increases. To balance between performance and efficiency during
inference, we uniformly sample 20 frames as the visual input of MLLMs. In Fig. 6, we also evaluate
Vanilla-Tuning, a solution that directly applies test-time optimization to the entire text query
Q instead of decomposing it into attribute/action sub-queries. We observe that the performance
of Vanilla-Tuning is inferior to our method. It demonstrates that decomposing the text query
into attribute/action sub-queries can help facilitate the intensive spatio-temporal comprehension of
MLLMs.

Ablation on the number K of predicted frames. Fig. 6(b) analyzes the effect of predicted frame
numbers K for temporal grounding based on the HCSTVG-v1 dataset. Here, we consider selecting
the optimal frame number from the set {3, 5, 7, 9, 11}. In general, when K is set as 7, the optimal
result can be obtained. Thus, we select top-7 frames as the prediction during temporal grounding.

Trackers ablation. Fig. 6(c) analyzes the effect of different trackers. Besides SAM2 [45], a
foundation model for tracking, we also consider two other tracking models (i.e., ByteTrack [72] and
BoTSort [2]) for analysis. It is reasonable that when a stronger tracking model (e.g., SAM2) is used
for generating spatio-temporal tubelets, we can obtain better STVG performances. Besides, when
suboptimal tracking models are used, our method can still achieve comparable or better performances
than the current SOTA methods, which shows the generalization of our approach.

5 Conclusion

In this paper, we have presented a novel MLLM-based zero-shot framework for the spatio-temporal
video grounding (STVG) task. Our approach is initiated by identifying the grounding capability
of special tokens in widely used MLLMs during response generation. To leverage and unleash the
comprehension ability of MLLMs, we have proposed the decomposed spatio-temporal highlighting
(DSTH) strategy. It first decomposes the text query into attributes and actions sub-queries. It then
employs a logit-guided re-attention (LRA) module to sharpen the spatial/temporal visual context
comprehension. We have also proposed the temporal-augmented assembling (TAS) strategy to
alleviate the effect of temporal inconsistency. Extensive experiments conducted on three STVG
benchmarks demonstrate the effectiveness of our proposed framework.

Our approach does have limitations. For example, it may struggle to process long videos well due to
high computational consumption caused by MLLMs. As a future work, we would like to consider
incorporating token pruning and key frame selection techniques into the model design.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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6 Grounding Tokens

6.1 Illustration of Input Tokens Components

In Fig. 7, we give a clear illustration of input token components in MLLMs. In practice, besides
the visual and text prompt tokens (➁ and ➂), there are also system tokens and some special tokens
(➀ and ➃) equipped for language generation. In particular, the grounding ability of special tokens
subsequent to the text instruction prompt is significantly undervalued in previous works. Here we
focus on exploring the grounding ability of these special tokens. For different multi-modal large
language models, there often are different special tokens due to different instruction-tuning process.
For example, in Llava-1.5, the introduced special tokens include: {‘:’, ‘ANT’, ‘IST’, ‘SS’,
‘_A’}. While for the Qwen2-VL, these special tokens include: { Ċ, ‘assistant’, ‘<|im_start|>’,
‘<|im_end|>’}. Note that we also consider the ‘.’ as one of the special tokens considering that it
is located in the end of the instruction prompt and is characteristic of sink tokens [23; 57].

In fact, special tokens are predefined symbols within a language model’s vocabulary. They focus on
guiding the model’s processing instead of representing real words and guide the model to generate
coherent and context-aware responses. In the scenario explored in our work (i.e., dialogue systems),
special tokens can differentiate between a user’s question and the assistant’s answer. By using special
tokens, models become better at understanding structure and context.

Is there a blonde boy near 
plant pedestal in this image?

…

System tokens Visual tokens

Special tokens

You are a helpful assistant A

Instruction Prompt tokens

pedestal…

LLaVA-Next-Video

Qwen2-VL

. _A SS IST ANT :

. Ċ <|im_start|> assistant<|im_end|>

LLaVA-OneVision. <|im_start|> assistant Ċ<|im_end|>

Ċ
. _A <|im_start|>…

Language Model (L layers)

… …

1 2 3

4

1 2 3 4

Generated Tokens

Yes. There is a 
blonde …

Figure 7: Illustration of the tokens input in MLLMs-based dialog system. Here, we take the image
question answering as an example.

6.2 Quantitative Analysis of Special Tokens

In our work, we randomly selected a subset of 1000 image-text pairs from RefCOCOg [17] vali-
dation set for image MLLMs analysis, and a subset of 1000 video-text pairs from HC-STVG [51]
dataset for video MLLMs analysis. Particularly, we choose six typical MLLMs (i.e., LLaVA-1.5,
Qwen-VL, Deepseek-VL, LLaVA-Next-Video, Qwen2-VL, LlaVA-OneVision) for pilot studies. In
the following, we will introduce our findings about special tokens in MLLMs.

Some special tokens show outstanding grounding ability for text prompt input. We compare
the grounding accuracy of G-DNIO [38] and the special tokens’ ones by probing the attention map.
Here we adopt the G-DNIO with Swin-T backbone and it is not finetuned on the refcoco series
datasets. Following previous visual grounding works [50; 16], we adopt the IoU@0.5 as the metric
of grounding accuracy. The results evaluated on refcoco series benchmarks are shown in the Fig. 8.
The yellow horizontal line denotes the result by G-DINO model. Though the G-DINO is trained on
image-text pairs in fully-supervised manner, some special tokens still achieve comparable and even
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Figure 8: Comparison of grounding accuracy between G-DINO and special tokens on RefCOCO
series datasets.
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Figure 9: The hit ratio of different special tokens in image and video MLLMs.

Figure 10: Grounding accuracy of special tokens ranked by the visual activation degree.

better performance. The results show that the special token can effectively ground the text prompt
input by integrating the textual cues. Besides, we also notice that there exists a pronounced difference
for grounding ability of different special tokens.

MLLMs dynamically assign the special tokens to attend to the text-related regions. For further
exploration on the grounding ability of special tokens, we define the attention ratio of each special
token as the ratio of maximum attention within the ground-truth bounding box bgt to that outside it.
Here, a higher ratio indicates better target grounding ability. Given a test sample, we can identify the
token that yields the highest attention ratio as the superior token for grounding. Then a token’s hit
ratio is defined as the frequency of being the superior token for grounding across all test samples.
The Fig. 9(a) shows the hit ratio of special tokens in each MLLM. We choose four special tokens
for visualization. In addition to the findings that MLLMs dynamically assign the special tokens to
attend to the text-related regions, we also observe that the superior token for grounding in video
MLLMs shows a more concentrated trend than image MLLMs. For example, the highest hit ratio by
Qwen2-VL is more than 60%. Besides, for the same special token in the MLLM, the hit ratio in the
case of different datasets may be significantly different. For example, the token ‘.’ shows a high hit
ratio in RefCOCOg dataset, but its hit ratio is quite low in the HC-STVG dataset.

The special token with higher visual activation tends to show superior grounding performance.
In our work, with further analysis, we reveal that the superior token for grounding tends to show
higher visual activation. For each sample, we rank the special tokens according to the maximum
value of visual attention and evaluate their grounding accuracy by selecting the proposal with the
highest attention value as the prediction. In practice, we extract box proposals by the detector (e.g.,
G-DINO) and evaluate the grounding accuracy by the Acc@0.5 metric. Fig. 10 shows the results.
We can see that the grounding accuracy decreases as the rank of visual activation reduces (from left
to right). We also observe that models with better comprehension overall possess better grounding
ability.
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6.3 Qualitative Analysis of Special Tokens

In Fig. 11, we visualize token-to-visual attention maps using some image-text pairs by LLaVA-1.5-7B
model. In particular, for each image-text pair, we visualize the visual attendance of the semantic
tokens from the text prompt and special tokens. The green bounding box denotes the ground truth of
the target object. Notably, we notice that the semantic tokens in text prompts can provide tangible
attention to related visual entities by the limited cues, while the special tokens are often assigned to
integrate global instruction cues and attend to the exact target region. For example, given the text
prompt ‘a man getting ready to cut a cake’, the token ‘man’ and ‘cake’ both show reasonable visual
response. The special token ‘_A’ can accurately attend to the target person. In addition, we see that
the special token with hight visual activation often shows better grounding performance. However,
we also see that the special tokens may attend to the wrong instance even though the semantic tokens
can properly capture their region of interest. It suggests that there is still room for improvement in
inference in current multimodal language models.

In Fig. 12, we visualize attention maps of special tokens using some video-text pairs by
ShareGPT4Video-8B model. The ground-truth spatio-temporal tube is denoted by red bound-
ing boxes. Each row shows the attention maps of a specific token. We find that only a few special
tokens can well capture the corresponding target regions, which necessitates the efficient selection of
grounding tokens. Also, in some cases (e.g., the below sample), there may be more than one special
token that will pay attention to the target area. This shows that achieving localization by considering
the integration of multiple effective special tokens can be a direction for improvement. We leave it to
future research.

26



. _A SS

_man _cut _a _c _ake

ISS ANT :

A man getting ready to cut a cake.

. _A SS

_leg _je _ans _next _woman

ISS ANT :

LL
aV

A-
1.

5-
7B

B        

A leg with jeans on next to a woman.

. _A SS

_blue _next _girl _feed _giraffes

ISS ANT :

Blue next to the girl feeding the giraffes.

. _A SS

_brown _adult _horse _long _tail

ISS ANT :

Brown adult horse with long tail.

_ Semantic tokens _ Special tokens

Figure 11: Visualization of tokens’ attention maps on image-text pairs. The tokens with dotted box
denote the semantic tokens in text prompts while the tokens with solid box denote the special tokens
following the text prompts.
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ShareGPT4Video-8B

The man who comes out of the door walks to the man without a hat and stops, speaks a few words to him, then turns away.

The man in the hat raises his hand, turns around, and walks to the door.

ĊĊ’

<|end_header_id|>

<|start_header_id|>

.

ĊĊ’

<|end_header_id|>

<|start_header_id|>

.

Figure 12: Visualization of tokens’ attention maps on video-text pairs.
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7 More Implementation Details

7.1 Datasets

We evaluate on three video benchmark datasets: HCSTVG-v1, HCSTVG-v2 [51], and VidSTG [73].
HCSTVG-v1 has 4500 training and 1160 testing videos with sentence descriptions of human at-
tributes/actions. HCSTVG-v2 extends v1 to 16,544 videos, including 10,131 training, 2,000 vali-
dation, and 4,413 testing videos. Since the test set is unavailable, we evaluate on the validation set
following prior works [59; 25]. VidSTG includes 99,943 video-sentence pairs (44,808 declarative,
55,135 interrogative), covering 10,303 videos and 80 object categories. Training, validation, and test
sets have 80,684, 8,956, and 10,303 pairs, respectively.

7.2 Method Implementation

In this work, we adopt G-DINO [38] with 0.4 for both phrase and box thresholds to detect object
proposals, and then utilize SAM2 [45] as tracker for tubelet proposals generation. Considering the
information redundancy, we run the detector every 10 frames for efficiency. We utilize GPT-4o to
decompose the original query sentence into spatial and temporal sub-queries. To demonstrate the
efficiency of our method, we consider four LLaVA-like video MLLMs: LlaVA-Next-Video-7B [27],
Qwen2-VL-7B [53], ShareGPT4Video-8B [7], LlaVa-OneVision-7B [27]. In practice, with the
limited tokens context length and computing efficiency, we sample 20 frames by default as the visual
input of MLLMs for each video. When adopting the test-time tuning strategy DSTH, we set the
learning rate lr and iteration times Nef as 8.0 and 1 according to the ablation analysis in Tab. 7. We
conduct all experiments on an A100 GPU with 80G VRAM based on Pytorch framework. To better
capture text-to-visual attention, we introduce ‘Describe this video in details.’ as general query prompt
Qcap and implement the relative attention strategy [69] to reduce the effect of visual registers [9; 55].
In Algo. 1, we outline the implementation of the proposed decomposed spatio-temporal highlighting
strategy during test-time tuning.

7.3 Generation of Target-related Cues

In this work, we extract the attributes and actions descriptions from the original query Q as textual
cues to enhance the spatial and temporal comprehension, respectively. To obtain multiple target-
related cues, we leverage the strong in-context capability of the Large Language Model (LLM). In
particular, we construct the in-context instruction to prompt llm for completion. The whole prompt
used in this work includes:general instruction (in brown), output constraints (in blue), in-context task
examples (in green) and input question (in yellow), shown in Fig. 13.

The undressed man is held 

by the woman in red, takes 

out a knife

Text clues:

1. The undressed man 

2. The man is held by the 

woman in red, takes out a knife

LLM

The undressed man is held by the woman in red, takes out a 
knife

Given a text description of a target object, which may contain description part about the 

'state/ static attribute' of target object, and description part about the 'action/behavior' of 

target object, I'd like you to decompose the it into 'attribute' and 'action' two sub-

sentences. Three are some points to note. 1. the decomposed sentences should be 

complete sentence or phrase. Each output sentence include one state or attribute and the 

first should given the referred object. 2. If there is no attributes or actions description 

contents, you should output original sentence. For example, given the referring text: 

woman in white shirt looking down at laptop computer. You should output: given the 

sentence 'The yellow-haired man picks up the bottle and pours drinks to the person 

directly opposite him', you should output ['the yellow-haired man', 'the man picks up 

the bottle and pours drinks to the person directly opposite him’]. 

Then given the text: {   …    }. Give your output:

Figure 13: Flow of LLM-based generation of target-related cues.

In Fig. 14, we present some examples of LLM generation. After decomposing the original text
description into attributes and actions-related descriptions, we will further transform the descriptions
into interrogative queries by a fixed template to inquire about the existence of the target. In our work,
we adopt the template ‘Is there a __ in this video?’.
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• Original Text: The man in purple clothes takes a step forward and sits on the bench.

• Attributes Text : the man in purple clothes.

• Actions Text : The man takes a step forward and sits on the bench. 10_phVLLTMzmKk.mp4

10_phVLLTMzmKk.mp4

• Original Text: The yellow-haired man takes the opposite woman's hand and kisses it, then puts it down.

• Attributes Text : the yellow-haired man.

• Actions Text : The man takes the opposite woman's hand and kisses it, then puts it down. 159_vsMgg4snZzM.mkv

• Original Text: The white-bearded man points at the man on his right and then points at himself again.

• Attributes Text : the white-bearded man.

• Actions Text : The man points at the man on his right and then points at himself again. 111_pSdPmmJ3-ng.mp4

Figure 14: Examples of LLM-based cues generation.

Algorithm 1: Decomposed Spatio-Temporal Highlighting
Input: MLLM πθ, video query input Q, video X , track proposals Opro = {o1, . . . , oP },

test-time tuning epoches Nep

Output: Generated tube O′
pred = {bt}te′t=ts′

based on query input Q and video X
Decompose the Q into attribute/action sub-queries Qs and Qt for spatial/temporal inquiry.
Initialize spatial prompt Vs and temporal prompt Vt.
Initialize iep = 0.
Embed the video X into visual tokens Tv . Embed the Qs and Qt into text tokens Ts

q and Tt
q .

while training do
while iep < Nep do

// spatial prompt Learning
Compute positive and negative logit prediction for attribute subquery Qs:
pyes = logitπθ

(yyes
i |(Tv +Vs,T

s
q, y<i)), pno = logitπθ

(yno
i |(Tv +Vs,T

s
q, y<i))

Update Vs by minimizing Ls = − exp (pyes − pno).
// temporal prompt Learning
Compute positive and negative logit prediction for action query Qt:
pyes = logitπθ

(yyes
i |(Tv +Vt,T

t
q, y<i)), pno = logitπθ

(yno
i |(Tv +Vt,T

t
q, y<i))

Update Vt by minimizing Lt = − exp (pyes − pno).
iep = iep + 1.

end
end
prepare general query prompt Qcap.
while inference do

cache the visual attention map Acap by query Qcap as input.
// inference with Tv +Vs.
cache the visual attention map AS

g by query Q with Tv +Vs as visual tokens.
compute spatial-related visual attention map AS

g = AS
g /Acap,

obtain the object track prediction.
// inference with Tv +Vt.
cache the visual attention map AT

g by query Q with Tv +Vt as visual tokens.
compute temporal-related visual attention map AT

g = AT
g /Acap,

obtain the target frames prediction.
Combine the object track prediction and target frames prediction.

end
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8 More Results and Ablation Analysis

8.1 Comparison on VidSTG (Interrogative) and RefCOCO Benchmarks

In Tab. 5, we compare our approach with other SOTA methods on the VidSTG (Interrogative) bench-
marks. Even given the interrogative sentence as query, our method still show superior performance
with a 4.0% improvement on the vIoU@0.5 metric when integrated with LLaVA-Next-Video-7B
model, which show the strong generalization capability of our framework. Undoubtedly, our method
can also achieve superior localization performance in the image grounding tasks. In Tab. 6, we
compare our framework with other SOTA visual grounding methods on RefCOCO series benchmarks.
Here we just introduce the selection of superior token for grounding and has achieved comparable
and even better performance than current zero-shot SOTA methods. The The ‘Oracle’ denotes the
result of choosing the most exact one of candidate boxes (extracted by G-DINO) with knowledge
of the ground truth. We also show the proportion of our method’s performance relative to oracle’s,
which is indicatd by the number in lower right corner. Note that our insight about grounding tokens
is orthogonal to other works [69; 30; 24]. We believe that it can be integrated with other works to
achieve better results.

Table 5: Comparison on VidSTG (Interrogative) benchmark.

Sup Method VidSTG (Interrogative)
m_vIoU vIoU@0.3 vIoU@0.5

Full

TubeDETR [59] [CVPR2022] 25.7 35.7 23.2
CSDVL [20] [CVPR2023] 28.5 39.9 26.2
CG-STVG [15] [CVPR2024] 29.0 40.5 27.5

Weak

WINNER [29] [CVPR2023] 10.2 12.0 5.5
VEM [21] [ECCV2024] 13.3 16.7 7.7
CoSPaL [25] [ICLR2025] 13.5 16.4 10.2

ZS

ReCLIP [50] [ACL2022] 8.4 8.0 2.3
E3M [3] [ECCV2024] 10.6 12.2 5.4
Ours LLaVA-Next-Video-7B 14.6 23.1 9.4
Ours Qwen2-VL-7B 13.0 19.5 7.8
Ours ShareGPT4Video-8B 13.1 21.0 9.1
Ours LLaVA-OneVision-7B 13.5 21.4 8.2

Table 6: Comparison of different methods on RefCOCO series datasets.

Sup Method RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

Full

MDETR [22] [CVPR2021] 86.8 89.6 81.4 79.5 84.1 70.6 81.6 80.9
SeqTR [77] [ECCV2022] 87.0 90.2 83.6 78.7 84.5 71.9 82.7 83.4

UNINEXT [32] [ACMMM2023] 92.6 94.3 91.5 85.2 89.6 79.8 88.7 89.4
Shikra-7B [6] [arXiv] 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2

Ferret-7B [65] [ICLR2024] 87.5 91.4 82.5 80.8 87.4 73.1 83.9 84.8

Zero

ReCLIP [50] [ACL2022] 45.8 46.1 47.1 47.9 50.1 45.1 59.3 59.0
ZS_REC [16] [CVPR2024] 49.4 47.8 51.7 48.9 50.0 46.9 61.0 60.0

GroundVLP [46] [AAAI2024] 65.0 73.5 55.0 68.8 78.1 57.3 74.7 75.0
Ours LLaVA-OneVision-7B 68.775.4% 77.280.8% 62.072.9% 67.174.4% 76.780.2% 57.567.7% 72.381.3% 73.783.2%

Oracle 91.1 95.6 85.0 91.2 95.6 84.9 88.9 88.6

8.2 Temporal Consistency Analysis

In our work, we obtain the attributes and actions related sub-queries. Specially, the decomposed
attribute sub-query, which provides static state description, should be temporally consistent for spatial
grounding. Interestingly, there exists evident inconsistency when introducing temporal augmentation
in current MLLMs. We develop a temporal inconsistency metric by introducing reversing the order
of input frames. In Fig. 15, we show the relation between spatial grounding accuracy and temporal
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Figure 15: Spatial grounding accuracy of different groups of samples on the HC-STVGv1 dataset.
These groups are ranked by descending temporal consistency.

Table 7: Iteration times Nep and learning rate lr ablation.

Nep lr m_vIoU vIoU@0.3 vIoU@0.5

0 0 15.2 25.1 8.5
1 4 19.9 32.6 11.6
1 8 20.4 33.6 12.4
1 16 20.2 32.3 12.0
2 4 20.5 34.0 12.1
2 8 20.3 32.6 12.1
2 16 20.3 33.2 12.2

consistency based on LLaVA-Next-Video-7B model (left of Fig. 15) and LLaVA-OneVision-7B
model (right of Fig. 15). We can find that although the LLaVA-OneVision-7B model achieves better
localization performance, there is still the pronounced temporal inconsistency caused by temporal
augmentation. Our findings provide guidance and insight for subsequent research in video MLLMs.

8.3 Effect of Optimization Times Nep and Learning Rate lr

The test-time tuning strategy DSTH is iterated Nep times for optimization with learning rate lr. Here
we analyse effect of the hyper-parameters. As shown in Tab. 7, better results can be achieved as
the optimization progresses and the our optimization strategy is relatively robust to these hyper-
parameters. In particular, when setting Nep = 1 and lr = 8.0, optimal performance is achieved in
general.

8.4 Inference Efficiency

Figure 16: Comparison of inference time before/after introducing test-time tuning.
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In Fig. 16, we show the inference efficiency of our proposed zero-shot framework. We test the
inference speed on all video samples from HC-STVGv1 dataset on a single A100 GPU and then
compute the average value. Specifically, before introducing the test-time tuning strategy DSTH
for inference, our framework costs about 3.1 seconds for each video based on LLaVA-Next-Video
model. After adopting the test-time tuning strategy, the cost is still acceptable though with some
additional resource consumption. We believe that it would be more efficient to apply the resource-
friendly inference schemes in the future.

8.5 Qualitative Spatio-Temporal Video Grounding Visualization

In Fig. 17, we present some video grounding examples for qualitative analysis. Here, we compare the
results before introducing the test-time tuning (denoted with yellow boxes) with the results (denoted
with green boxes) after introducing the optimization. The ground truth boxes are denoted with red
boxes. By highlighting the attribute/action cues of the target by test-time tuning, our method can
direct the MLLMs toward reliable visual context and improve spatial/temporal localization. We also
give some failure cases (e.g., the case (d)). Despite optimization during testing, the current model
still pinpoints the wrong object instance. We attribute the less efficient comprehension to the poor
visual conditions and suboptimal spatial inference in current MLLMs.
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The man in the left of the man in the orange shirt sits down, then turns his head to the left.

The woman in yellow clothes looks up at the woman holding the newspaper, then looks down at the book in her hand.

the man on the right shakes hands with the man on the left, then sits down.

the woman by the cupboard turns and walks away.

wo/Tuning

Ours

Video

wo/Tuning

Ours

Video

wo/Tuning

Ours

Video

wo/Tuning

Ours

Video

(a)

(b)

(c)

(d)

Figure 17: Comparison of attention maps on the HC-STVG dataset.
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9 Limitation and Future work

Our work is simple yet effective, and also provides insights for related fields (e.g., hallucination
detection and attention-guided MLLMs pruning). Our work does have limitations. For example, based
on MLLMs our framework can only receive a limited number of video frames as visual input due to
the limit of computing resource. Besides, our framework needs to obtain attention for spatial and
temporal inference, which is not compatible with the flash-attention mechanism adopted in current
MLLMs. In the future, we will consider introducing a more efficient solution for the comprehension
of long videos by incorporating token pruning and key frame selection techniques.

10 Broader Impacts

While we do not foresee our method causing any direct negative societal impact, it may potentially be
leveraged by malicious parties to create applications that could misuse the grounding capabilities for
unethical or illegal purposes. We urge the readers to limit the usage of this work to legal use cases.
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