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ABSTRACT

Neural scaling laws have garnered significant interest due to their ability to predict
model performance as a function of increasing parameters, data, and compute.
In this work, we propose a simple statistical ansatz based on memorization to
study scaling laws in the context of inference. Specifically, how performance
improves with multiple inference attempts. We explore the coverage, or pass@k
metric, which measures the chance of success over repeated attempts and provide a
motivation for the observed functional form of the inference scaling behavior of the
coverage in large language models (LLMs) on reasoning tasks. We then define an
"inference loss", which exhibits a power law decay as the number of trials increases,
and connect this result with prompting costs. We further test the universality of our
construction by conducting experiments on a simple generative model, and find that
our predictions are in agreement with the empirical coverage curves in a controlled
setting. Our simple framework sets the ground for incorporating inference scaling
with other known scaling laws.

1 INTRODUCTION

Advancements in deep learning have demonstrated that the performance of neural networks scales
predictably as a function of model size, dataset size, and computational resources (Hestness et al.,
2017; Kaplan et al., 2020a; Rosenfeld et al., 2020; Henighan et al., 2020a). These trends, known
colloquially as neural scaling laws, have motivated research into understanding how scaling influ-
ences model performance in a wide range of domains, but in particular Large Language Models
(LLMs) (Brown et al., 2020; Hoffmann et al., 2022).

While the scaling laws literature focuses on test performance induced by pre-training, scaling during
inference—the process by which a trained model makes predictions on new data—has received less
attention.

Recent works have shown empirically that LLMs can gain substantial benefits from repeated prompts
to perform better on difficult tasks such as coding and formal proofs, where verification of the
correct answer can be done (Brown et al., 2024; Snell et al., 2024; Bansal et al., 2024). These works
demonstrate that the performance of weaker models can be amplified without further training by
repeating inference trials, giving rise to a natural question:

Can we interpret, or predict the inference scaling behavior
of a model with repeated attempts?

To answer this question, we propose a simple toy model that isolates the inference scaling laws which
dictate how certain performance metrics improve as a function of the number of inference attempts.

Inspired by the work of Hutter (2021), which introduced a model to study scaling behavior for
memorization and generalization capabilities, we devise a simple setting to capture the effect of
repeated inference attempts, focusing on the coverage metric, also known as pass@k.

In this work, we present analytical predictions for coverage from a probabilistic perspective and
demonstrate how inference improves with the number of repeated trials in a predictable way, which
matches the observed behavior in Brown et al. (2024) and Snell et al. (2024).

We use two different approaches to obtain the predicted pass@k, and highlight the connection between
coverage and total inference cost. Additionally, we define a simple "inference loss", similar to the
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familiar test loss, but allowing for repeated trials, and predict its scaling. Our main predictions are
verified by empirical results on mathematical reasoning tasks for several LLMs, following Brown
et al. (2024). Lastly, we test the universality of our theory on an entirely different generative model.
We train a Variational Autoencoder (VAE) (Kingma and Welling, 2022) to generate reconstructions
of its training data by sampling from a latent space with an associated temperature. We find that the
same behavior persists for both LLMs and the VAE setup, in spite of the vast differences in models
and tasks.

Given that our results are isolated from the effects of other neural scaling laws, they could be
incorporated into a broader exploration to find the optimal train/inference point. In particular, we
hope this work sets the ground for exploring the optimal trade-off between training and inference
attempts, such that the total performance is improved while cost is minimized.

The rest of the paper is organized as follows: In Sec. 3, we discuss our main setup, analogizing large
models to perfect memorizers. We explain how this model can lead to the empirical pass@k curves
for LLMs in Sec. 4, and provide an interpretation for the parameters of the model as defining an
effective perceived difficulty for the dataset. We further connect these parameters with compute costs
in Sec. 4.3. We conclude in Sec. 5 and discuss future directions. In App. A, we reaffirm our results
using a controlled simple generative model.

2 RELATED WORK

Neural Scaling Laws: Scaling laws for neural networks have been extensively studied in recent
years. Empirical research has shown that error rates decrease predictably as a function of increased
data, parameters, and compute, following power-law relationships. Notable contributions in this
space include work by Kaplan et al. (2020b), who demonstrated consistent scaling behavior across
language models, and Henighan et al. (2020b), who extended these ideas to multimodal models, as
well as Cabannes et al. (2024); Maloney et al. (2022); Bordelon et al. (2020); Spigler et al. (2020);
Caponnetto and De Vito (2007); Steinwart et al. (2009); Fischer and Steinwart (2020); Cui et al.
(2021); Levi and Oz (2023; 2024); Nam et al. (2024) who studied scaling laws for solvable yet
sufficiently complex models, ranging from generalized linear regression on random feature models to
kernel ridge regression, connecting them to results from random matrix theory and the underlying
properties of the data. While most scaling laws focus on training, the study of inference scaling
remains under-explored. Our work strives to fill this gap by studying how performance improves with
repeated inference attempts.

Inference and reasoning: Recent advancements in inference scaling and reasoning within LLMs
have been significantly influenced by techniques such as Chain-of-Thought (CoT) prompting and
Tree-of-Thought (ToT) reasoning. CoT prompting, as explored by Wei et al. (2022), enables models
to generate intermediate reasoning steps, enhancing their problem-solving capabilities. Building
upon this, Yao et al. (2023) introduced ToT reasoning, which scales the CoT approach by structuring
reasoning paths as trees, allowing for exploration of multiple reasoning paths simultaneously. These
methods draw inspiration from earlier works like AlphaGo (Silver et al., 2016) and AlphaZero
(Silver et al., 2017), which demonstrated the effectiveness of self-play and guided self-trajectory
training in complex decision-making tasks. Additionally, the concept of self-consistency, as discussed
by Wang et al. (2022), employs majority voting over multiple reasoning paths to improve answer
accuracy. These collective efforts aim to enhance the reasoning abilities of LLMs by refining their
inference processes and scaling their reasoning capabilities, potentially leading to scaling laws for
performance (Wu et al., 2024). However, the way these inference processes scale with the number of
inference attempts is poorly understood.

3 MEMORIZING ANSATZ

In the following, we first briefly review the simplest model which produces the known data scaling
law prediction by appealing to a memorizing construction, then consider our proposed model for
repeated inference attempts.

The Hutter model (Hutter, 2021) is a probabilistic framework originally introduced to study the scaling
behavior of learning curves, focusing on the relationship between memorization and generalization.
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Figure 1: Pass@k and failure distribution curves for various LLMs on difficult tasks, against
theoretical scaling predictions. Left: The relationship between pass@k and the number of samples
for several coding and maths tasks for different models, as described in Brown et al. (2024), compared
with the analytical predictions presented in Eqs. (7) and (13). The solid curves are data, while the
dashed curves are the predictions from Eq. (7), where α and β correspond to the concentration of easy
and hard problems, respectively. The dotted curves are the results of Eq. (13). The functional form
in both cases captures well the LLM pass@k curves for various models, by adjusting α, β or p, κ.
Right: The Beta(α, β) distributions for the failure probabilities are shown for the different models.
We can see that most of the questions are "difficult", while the left tail behavior informs us regarding
the rate of improvement with additional trials on the "easier" samples. For example, the right panel
demonstrates that Pythia-2.8B perceives the MATH dataset as having a larger density of difficult
questions (PDF concentrated at pi close to 1), while Llama3-8B finds the same dataset easier.

It assumes a model which perfectly memorizes features during training, allowing it to correctly match
sets of features and labels {i, yi}, such that only unseen features can incur an error. The set of features
is assumed to follow a Zipf power law decay with parameter α, where the probability of encountering
feature i is θi ∝ i−1−α and decreases with its rank. For n training samples, the expected single
feature error is

En = E[Ei] =

∞∑
i=1

θi(1− θi)
n ≈ n−β , β =

1

1 + α
. (1)

Eq. (1) captures the average likelihood of encountering and labeling the feature incorrectly after n
training samples. Similar to this model, we will adopt the idea of memorization as a surrogate for
training, but will depart from the finite training set assumption as a basis for test errors.

3.1 PERFECT SAMPLE MEMORIZATION, IMPERFECT PREDICTIONS

In contrast to the Hutter model, we focus on a scenario where all samples up to the model capacity
nc have been memorized, hence there is no notion of test error coming from unseen data. Instead,
failure during inference or data generation could arise from the need to follow a sequence of steps to
reach the correct answer.

Concretely, we consider a joint model of memory M and inference I . The memory is M ∈ M :=
X → Y , where the samples are identical to the labels {xi}ni=1 = {yi}ni=1, and corresponds to a
model which simply learns to memorize its training data. The inference model I ∈ H := N → M
takes an input index i, which serves as a proxy for a particular prompt or task, and should produce
the associated memorized label (sample) yi by recalling it from the memory M . The inference model
is taken to be imperfect in its retrieval, and subject to some error ϵ, it makes predictions

I(i) =

{
yi + ϵ, with probability pi,
yi, with probability 1− pi,

(2)

for any sample i = 1, . . . , nc. For samples outside the model capacity the prediction is always wrong
I(i) ̸= yi.
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At this point, we only accept perfect model “answers”, such that the performance of the model on a
single sample is measured simply by

A(i) = 1{yi}(I(i)), (3)

where 1Y(x) = 1 if x ∈ Y else 0 is the indicator function.

We start from the general case, where each sample has an unknown failure probability pi ∈ [0, 1] at
inference, and we are interested in the probability of at least one successful generation of a sample
over k attempts. This is in-line with the type of reasoning tasks studied by Snell et al. (2024); Brown
et al. (2024), where the performance of a model requires only one correct answer, rather than every
answer to be correct.

The rest of our analysis relies on the following assumptions:
Assumption 3.1. For every sample i, we have access to a perfect verification method, which can
determine if there exists a correct generated answer during inference I(i) = yi, among k possible
candidates {I1(i), . . . , Ik(i)}.
Assumption 3.2. Inference attempts {I1(i), . . . , Ik(i)} are independent and identically distributed
(i.i.d.) random variables.

We note that Assumption 3.1 sets aside the important topic of the quality of answer verification.
In tasks such as coding and formal proofs, automatic verification is often possible, as a candidate
solution can be quickly identified to be correct by proof checkers Zheng et al. (2021). Likewise,
unit tests can be used to verify the correctness of candidate solutions to coding tasks Jimenez et al.
(2024). How the following analysis changes if we relax this assumption to the case of an imperfect
verification method is an interesting question that we postpone to future studies.

Under Assumption 3.2, the probability of the model failing on all k trials for a sample within its
capacity with failure probability pi is simply

P(k failures on sample i) =

k∏
t=1

(1−At(i)) = pki , (4)

where t is the trial index. Therefore, the probability of at least one success in k trials averaged over
the entire dataset of size n, known as pass@k, is given by

pass@k =
nc

n
×

(
1− 1

nc

nc∑
i=1

k∏
t=1

(1−At(i))

)
= A×

(
1− 1

nc

nc∑
i=1

pki

)
, (5)

where we define the fraction of samples the model can store as A = nc/n ∈ [0, 1], describing the
maximal potential pass@k for a given model. This will be the metric we use to describe inference
accuracy for the rest of this work.

4 POWER LAW DISTRIBUTIONS PREDICT INFERENCE SCALING FOR LLMS

The setup described in Sec. 3 is completely specified by the distribution of failure probabilities pi.
To construct the failure distribution, we assume that different samples may have different inference
complexity levels, incorporating some "easy" and some "difficult" samples with respect to the
inference model.

One way to model the different complexities is to appeal to the so-called Beta distribution. We think of
the failure probability across samples itself p = pi as a random variable, drawn from p ∼ Beta(α, β),
whose probability density function (PDF) is given explicitly by

Beta(α, β; p) =
p−1+α(1− p)−1+β

B(α, β)
, (6)

where B(α, β) is the Euler beta function.

The Beta(α, β) distribution parameters are α ∈ R+, which controls the amount of "easier" problems
in the sample dataset, where smaller α pushes the distribution mass towards zero, while β ∈ R+
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Figure 2: Inference attempts loss Linference(k) for repeated attempts on mathematics tasks. The
inference loss as a function of trials for the LLM experiments in Brown et al. (2024).
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Figure 3: Inference attempts loss Linference(k) for repeated attempts on the memorizing model
for different parameter choices. Inference loss for different β and k values. Different colors denote
loss values at fixed α = 5 (left) and at fixed k = 104 (right), illustrating the behavior of Eq. (9).

dictates how often we encounter "harder" problems. Namely, a lower β parameter increases the
distribution mass towards the right tail (high failure probabilities).

We can therefore compute the pass@k metric by simply averaging over the failure distributions as

pass@k = A×

(
1− 1

n

n∑
i=1

pki

)
≈ A×

(
1− ⟨pk⟩

)
A×

(
1−

∫ 1

0

dppk
p−1+α(1− p)−1+β

B(α, β)

)
= A×

(
1− Γ(β)Γ(k + α)

B(α, β)Γ(k + α+ β)

)
,

(7)
where Γ(z) is the Euler gamma function, and ⟨.⟩ indicates averaging over the p distribution.

To test these predictions, we utilize the reported pass@k results of Brown et al. (2024), which
evaluated Gemma-2B (Team et al., 2024), Llama3-8B (AI@Meta, 2024) and Pythia-2.8B (Biderman
et al., 2023) on mathematical and coding tasks. Here, we take the results for the MATH dataset,
which consists of difficult math word problems (Chen et al., 2024), where 128 random problems from
the test set were chosen for evaluation.

In Fig. 1, we show that the functional form of pass@k given in Eq. (7) is a good approximation for
the empirical pass@k curves for the LLMs evaluated on mathematical tasks, as reported in Brown
et al. (2024).
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At large k values, we find a power-law decay of the effective average failure probability

pass@k ≈
k→∞

A×
(
1− Γ(β)k−β

B(α, β)

)
, (8)

which is a common feature in neural scaling laws (Bahri et al., 2024). If we then define the inference
loss Linference(k) as the expectation with respect to the sample distribution over errors, our results for
pass@k correspond to

Linference(k) ≡ E(Error in k trials) = E(A× pk) (9)

≈ A× Γ(β)Γ(k + α)

B(α, β)Γ(k + α+ β)
≈

k→∞
A× Γ(β)k−β

B(α, β)
.

This result implies that the model test loss with repeated inference steps will decrease mainly
depending on the value of the exponent β. Intuitively, it means that for a fixed α parameter, the harder
the questions appear to the model, the more inference attempts are required to reach a low loss. We
illustrate this behavior in Figs. 2 and 3.

4.1 INTERPRETABILITY

The result in Eq. (9) not only allows one to predict a threshold for inference in order to get an increase
in model performance on difficult problems, but could also offer some interpretation for the difficulty
of tasks with respect to the trained model.

We can gain some insights regarding the real-world models by fitting the pass@k metric according
to Eq. (7) to the ones given in Brown et al. (2024), and attempt to interpret the properties of the test
data from the parameters α and β. In particular, note that the ratio α

α+β gives the mean of the Beta
distribution, which represents the average failure probability across the samples. If α > β, the mean
failure probability is high (i.e., most samples are harder). On the other hand, if α < β, the mean
failure probability is low, implying that most samples are easy. Furthermore, the denominator α+ β
governs the concentration of the distribution, where a large α+ β means that the failure probabilities
pi are more tightly clustered around the mean (more homogeneity in difficulty).

From Fig. 1, we can see that the typical values for the "harder" problem parameter β ∼ 0.35, while
the tail parameter is 2 < α < 20. This implies that most of the problems in the datasets used
to measure the pass@k curves were indeed difficult in terms of the model’s perception, while the
existence of a left tail implies that the easy samples are covered quickly with less than 100 trials. This
is reflected in the right panel of Fig. 1.

An additional point of interest would be connecting the observed empirical pass@k curves with the
unknown failure probability distribution of the different models. This can be done by noting that the
average ⟨pk⟩, performed in Eq. (7), can be thought of as performing a Laplace transform from the
failure probability variable σ = log (1/p) to the trials space k,

f̃(k) = ⟨pk⟩ =
∫ ∞

0

dσe−σk e
−ασ (1− e−σ)

−1+β

B(α, β)
=

∫ ∞

0

dσe−σkf(σ). (10)

This interpretation implies that it is possible to derive the probability distribution function of the
samples in terms of their perceived difficulty by performing the inverse transform. In particular,
given an empirical pass@k metric obtained for a given model, the inverse transform on f̃(k) =
(A− pass@k)/A will yield the perceived difficulty PDF. Potentially, such a procedure can be used to
identify "difficult" and "easy" questions and construct improved fine-tuning algorithms by choosing
training samples biased towards the "difficult" but obtainable tasks.

4.2 CORRELATED TRIALS AND EFFECTIVE k APPROACH

In the previous section, we showed that correlated samples drawn i.i.d. from a varying complexity
distribution can effectively describe the pass@k metric for memorizing models. Here, we take a
converse approach, where we do not assume that samples are correlated through their failure rate
distribution, but instead that trials themselves are correlated.
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Figure 4: Pass@k as a function of total inference cost for Llama-3-8B MATH (Oracle Verifier).
Left and Center: We show the pass@k metric as a function of number of total inference cost and
number of FLOPS per token F or number of prompt/decode tokens Np = Nd in log, log. We see that
there is a clear trade-off between total inference cost whenever keeping one of the parameters fixed,
in a predictable way from Eq. (16). Right: We show a slice of the contour plots for fixed Np = Nd,
and changing the number of FLOPS per token. The parameters chosen for these figures are fitted
from Eq. (7) applied to the data taken from Brown et al. (2024).

One can conjecture that dependencies between trials arise due to the internal model structure and the
data itself. To capture these correlations, we suggest a model where the correlation between trials
decays as a power law, implying that successive trials become less independent as we increase the
number of trials.

In order to incorporate the correlation between trials, we define the notion of an effective number
of independent trials, denoted keff. This adjusts the original k to account for the decay in trial
independence. The correlation between trials is modeled via a power-law decay in the eigenvalues of
the correlation matrix, such that the effective number of independent trials is given by

keff =

k∑
i=1

i−κ = Hk(κ), κ ∈ R≥0, (11)

where κ is the power-law exponent governing how quickly the correlation between trials decays,
Hk(κ) is the Harmonic number, and ζ(κ) is the Riemann zeta function. At the large inference trial
limit, Eq. (11) asymptotes to

keff ≈
k→∞

(
1

2
− k

κ− 1

)
k−κ + ζ(κ). (12)

Thus, the probability of at least one success in k trials, incorporating correlations, becomes

pass@k = A×

(
1− 1

n

n∑
i=1

pkeff
i

)
= A×

(
1− pHk(κ)

)
≈ A×

(
1− p(

1
2−

k
κ−1 )k

−κ+ζ(κ)
)
, (13)

where p = pi is the error probability of every sample, and keff accounts for correlations between
trials. The result of Eq. (13) is shown in Fig. 1 as the dotted curves, which approximate the LLM
behavior well for k ≫ 1. We stress that this approach should be taken as an effective description,
which nevertheless manages to accurately capture the same behavior as sample correlations.

4.3 CONNECTION TO COMPUTE SCALING

Here, we would like to translate our results from the attempts variable to the inference cost. A natural
proxy for the inference cost may be the number of required Floating Point Operations Per Second
(FLOPS)1. For concreteness, we adapt the total inference cost formula suggested in Brown et al.

1This may be too crude a cost metric that ignores other aspects of system efficiency (Dehghani et al., 2021),
which may benefit from repeated sampling (Juravsky et al., 2024; Zheng et al., 2023), as pointed out in Brown
et al. (2024).
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(2024), given by

C = Np × F +Nd × F × k, (14)

where C is the total inference cost, Np, Nd are the number of prompt and decode tokens, respectively,
and F is the number of FLOPS per token.

We can convert some of our pass@k results to this metric by taking the large k limit of Eq. (7), giving

k =

(
(A− pass@k)B(α, β)

AΓ(β)

)−1/β

, (15)

hence the resulting coverage is simply

Coverage(C) ≈ A ·

(
1− Γ(β)

B(α, β)

(
C̄ −Np

Nd

)−β
)
, (16)

where C̄ ≡ C/F is the normalized total inference cost. Keeping all uncontrollable parameters fixed,
such as the number of FLOPS per token fixed, we see from Fig. 4 that it is worthwhile to reduce the
number of prompting and decoding tokens or increase the number of attempts, up to the minimal
amount of total inference compute required to reach a target coverage. The numbers in Fig. 4 are
chosen to mimic the results found in Brown et al. (2024), and are only meant to give an illustration of
the functional behavior of Eq. (16).

Alternatively, we can phrase Eq. (16) in terms of the inference loss as

Linference(C) ≈ A× Γ(β)

B(α, β)

(
C̄ −Np

Nd

)−β

, (17)

which demonstrates the power law decay of the inference loss with total inference cost, depending on
the value of β.

5 CONCLUSIONS

In this paper, we have proposed a simple statistical explanation for a so-called inference scaling law,
which describes the scaling of the coverage (pass@k) metric with number of repeated attempts for
generative models. We presented two possible models which lead to inference scaling: One based
on introducing a sample space distribution of "easy" and "difficult" problems, and the other on an
effective Zipf-like correlation structure between trials. Using these simple constructions, we were
able to derive analytical predictions for the pass@k, as well the test loss as a function of repeated
attempts, which we dubbed the inference loss. We then verified our predictions empirically both
through previous experimental results for LLMs and for a simple generative VAE construction.

We stress that the merit of our construction is in its simplicity, and there are many other models who
can give rise to the same functional behavior. We view this as a positive rather than a negative, since
it means that this simple model captures a universal behavior, which should not depend much on the
modeling itself. For instance, another way to arrive at a similar scaling law would be to choose a
different modeling for the failure distribution, based perhaps on program length, and introducing the
notion of a distribution of program lengths corresponding to different samples, similar to Ringel and
de Bem (2018). In the end, this type of construction will have a similar interpretation in terms of task
complexity w.r.t the model.

We believe that our toy model offers a simple yet effective phenomenological framework for under-
standing how inference quality improves with more opportunities to predict correctly. Future work
could extend this framework to more complex models, including applying similar methodology as
Maloney et al. (2022) to generalized linear regression, kernel regression and neural networks, and
investigate how it interacts with existing scaling laws based on model size and training data.
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A EXPERIMENTS ON A SIMPLE GENERATIVE MODEL

Input Encoder Latent 
Space Decoder Output Reconstructed ImagesOriginal Images

Temperature

T

Figure 5: Visualization of the task described in App. A. Here, a VAE is tasked with generating
samples from its training data, where a "failure" occurs when the reconstruction error falls above a
certain threshold ϵ.

Figure 6: Results for the VAE reconstruction task, compared with semi-analytical predictions.
Left: The pass@k metric as a function of number of attempts k, for different threshold values, with
temperature T = 1.1. The curves have been normalized to asymptote at 1 for visual clarity. Right:
The reconstruction error behavior across multiple trials, indicated by different colors. The errors obey
a quasi power law behavior.

To further validate some of our analytical understanding in a controllable setting, we perform a
series of experiments in which we train a simple generative model to reconstruct images taken from
Fashion-MNIST (Xiao et al., 2017). Our goal is to connect the theoretical memorizing model and the
behavior of more complex generative models by attempting to accurately reconstruct "memorized"
examples, heuristically shown in Fig. 5.

To do this, we train a VAE with a temperature parameter to study how errors propagate over multiple
trials and to compare empirical pass@k with theoretical predictions under correlated trials. We refer
to this as the VAE reconstruction task.

To quantify the error probability of the model over multiple samples, we define the error per sample
using the norm of the difference between the reconstructed and original image:

error(i) =
∥ŷi − yi∥

∥yi∥
. (18)

Here, yi represents the original image, and ŷi is the reconstruction. This per-sample error metric
allows us to define success or failure at the sample level, where a trial is considered successful if the
reconstruction error falls below a threshold ϵ.

To empirically calculate pass@k, we sample multiple reconstructions from the VAE for each input
sample. For each sample, we conduct k trials and calculate whether at least one trial resulted in a
reconstruction with error less than some chosen threshold value ϵ ∈ [0, 1]. Pass@k is then computed
as the fraction of samples for which the model succeeded to reconstruct at least once in k trials.

In Fig. 6, we show the pass@k results for the VAE reconstruction task, for different threshold ϵ values
(left), as well as the reconstruction error distribution for multiple attempts (right). The theoretical
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Figure 7: Correlation matrix for errors across different trials for the VAE reconstruction task.
Top: The eigenvalues of the correlation matrix follow a power law decay with the number of trials.
Bottom: Visualization of the correlation matrix itself shows clear correlations between different trials
for k = 1000.

predictions for the pass@k curves are shown for the effective k approach, given in Eq. (13), and
approximate the VAE results well. Here, pi is computed empirically by taking the distribution at the
maximal k and κ is taken from the correlation matrix in Fig. 7.

To complete the picture, we empirically confirm that the assumption of independent trials is indeed
violated, as trials are effectively correlated. To capture this effect, we compute the correlation matrix
for the errors across trials ϵkk′ as

ϵkk′ =
1

n

∑
i

errori,k × errori,k′ . (19)

The eigenvalues of the correlation matrix decay as a power law, suggesting that the effective number
of independent trials diminishes as k increases, which is clearly depicted in Fig. 7 (left).
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B EXPERIMENTAL SETUP

Figure 8: Examples of original and reconstructed samples from the VAE reconstruction task.

Here, we specify the experimental procedure used for the analysis in App. A.

We utilize a Variational Autoencoder (VAE) with the following architectural details:

• Input dimension: 28×28 = 784, corresponding to the flattened pixel values of the Fashion
MNIST dataset.

• Hidden dimension: 400.
• Latent dimension: 20, controlling the bottleneck for information in the latent space.
• Decoder: The decoder reconstructs the original input through two fully connected layers,

outputting a 784-dimensional vector followed by a sigmoid activation to ensure pixel values
remain between 0 and 1.

• Temperature parameter: A temperature parameter T = 1.1 is applied during the re-
parameterization step to control the variance of the latent variables, allowing us to model
uncertainty in the latent space more effectively.

The VAE was trained on the first 400 samples from the Fashion MNIST dataset. The loss function
combines binary cross-entropy for reconstruction and the Kullback-Leibler divergence to regularize
the latent variables. We ran the training for 1000 epochs using the Adam optimizer with a learning
rate of 1× 10−3.

To provide qualitative insights into the model’s performance, we visualize several input samples from
the Fashion-MNIST dataset along with their corresponding reconstructions in Fig. 8. This allows
us to inspect both successful and failed reconstructions, and examine the types of errors the model
makes.
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