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Abstract

Although numerous studies have investigated001
whether or not attention can be used by re-002
searchers as a tool of interpretability for un-003
derstanding their models, a consensus has yet004
to be reached. This study aims to examine005
the attention mechanism practicality by test-006
ing whether attention can help the end-users of007
such models to predict their behaviour by com-008
paring their performance with and without ac-009
cess to attention highlights. We divided human010
evaluators into two groups—one with access011
to attention highlights and another without—to012
assess the performance differences between the013
two groups in terms of decision-making accu-014
racy and response time. Our results showed that015
including attention highlights significantly im-016
proved decision-making accuracy for humans017
to predict extractive question-answering model018
output, with a notable difference in F1 scores019
between the two groups. However, the time020
taken to predict model response was not signif-021
icantly affected, suggesting that attention high-022
lights did not speed up decision-making.023

1 Introduction024

The mechanism of attention in neural networks025

builds on the idea that a more informative repre-026

sentation at any decision-making step in the neural027

network can be calculated by averaging current rep-028

resentations from previous rounds of propagation in029

the network, weighting them by learned attention030

weights. Since the introduction of the attention031

mechanism in deep learning models (Bahdanau032

et al., 2015), especially since the Transformer ar-033

chitecture (Vaswani et al., 2017) became prevalent034

in natural language processing (NLP), much work035

has followed using the so-called attention weights036

as an interpretability tool for gaining a better under-037

standing of the underlying decision-making mecha-038

nisms of NLP models (Li et al., 2016; Mullenbach039

et al., 2018; Abnar and Zuidema, 2020).040

The great popularity of using attention as an in- 041

terpretability method has led to a heated debate 042

about whether researchers can use it as a faith- 043

ful explanation for their models’ decisions or not 044

(Serrano and Smith, 2019; Jain and Wallace, 2019; 045

Wiegreffe and Pinter, 2019; Sood et al., 2020; 046

Ethayarajh and Jurafsky, 2021).1 While many re- 047

searchers have extensively investigated the use of 048

attention mechanisms to reinforce findings about 049

their models’ decision-making process, the extent 050

of attention’s practical usefulness for end-users of 051

such models remains to be determined. More pre- 052

cisely, this paper aims to answer the question can 053

attention weights assist humans in making more 054

informed decisions? We specifically address cases 055

where the network’s task aligns directly with the 056

task humans need to perform, with a particular em- 057

phasis on the question-answering task. 058

Motivated by the safety implications of AI and 059

discussions around evaluation and monitoring, we 060

ideally want humans to be able to learn to predict 061

model behaviour to prevent undesired outcomes 062

before deployment. We seek to understand how 063

attention weights can contribute to human-in-the- 064

loop decision-making and, in turn, promote the de- 065

velopment of safe and human-centred AI systems 066

that leverage these mechanisms to enhance user un- 067

derstanding and aid in complex tasks like question 068

answering. At the foundation of our experiments, 069

we recruit human annotators and present them with 070

a question and context with the aim of studying the 071

mean difference between those who have access 072

to attention weights in the form of highlights and 073

the group that does not. Our findings demonstrate 074

that annotators in the treatment group, equipped 075

with attention highlights, attain an average F1 score 076

more than 15% higher than their counterparts in 077

the control group. This suggests that, despite the 078

1For a more comprehensive and detailed discussion on this
debate, interested readers are encouraged to refer to the survey
by Bibal et al. (2022).
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ongoing debate among researchers regarding the079

validity of attention mechanisms as interpretability080

tools, the practical understanding of models’ be-081

haviour by end-users can substantially benefit from082

their incorporation.083

2 Related Work084

Connections between Human and Machine At-085

tention Another closely related line of research is086

the examination of relations between models’ atten-087

tion and the human gaze. For example, Hollenstein088

et al. (2021) demonstrated that transformer models089

implicitly represent the relative importance of lan-090

guage, akin to human cognitive processing mecha-091

nisms. Morger et al. (2022) provided evidence that092

the first-layer attention and attention flow strongly093

correlate with human eye-tracking data in German,094

Dutch, English, and Russian datasets.095

Human Attention as Input for NLP Models096

While the usefulness of models’ attention for hu-097

mans has hardly been explored, a vast body of098

work examines the opposite direction. Augment-099

ing NLP models with human gaze data, which100

can be considered as "human attention", has been101

shown to improve performance across many tasks,102

such as named entity recognition (Hollenstein and103

Zhang, 2019), sentiment and sarcasm classifica-104

tion (Mishra et al., 2017), and grammatical error105

detection (Barrett et al., 2018), to name a few. Ac-106

cording to Malmaud et al. (2020), the task we ex-107

periment with, the reading comprehension task, is108

well-fitted to establish a connection between hu-109

man eye movement data and NLP modeling. This110

suitability arises from the significant alignment ob-111

served between reading times and the relevance of112

specific text segments in formulating answers to113

questions. Hahn and Keller (2023) provide addi-114

tional evidence to support their assertion by demon-115

strating an evident rise in reading times when the116

correct answer is a named entity in a question-117

answering task.118

We view our work as a complementary perspec-119

tive to the aforementioned studies, as our find-120

ings demonstrate how machine attention can assist121

humans in understanding NLP models’ decisions.122

This connection holds the potential to enhance the123

interpretability of NLP models for end-users.124

3 Preliminaries125

Extractive Question Answering In this work,126

we focus on extractive open-domain QA (also re-127

ferred to as reading comprehension; RC), which is 128

defined as the task of identifying a span in a given 129

textual context that best answers a user question 130

on a broad set of topics or domains. More specif- 131

ically, we define three components: Context (C) 132

is the textual information or passage containing 133

verbatim the answer to the question. It is repre- 134

sented as C = (c1, . . . , cN ), where ci denotes the 135

ith token in the context, and N is the total number 136

of tokens. Question (Q) is the question for which 137

an answer is sought from the context. It is repre- 138

sented as Q = (q1, . . . , qM ), where qi denotes the 139

ith word or token in the question, and M is the 140

total number of words or tokens. Answer (A) is 141

a span of contiguous tokens in context C denoted 142

as A = (ci, . . . , cj) ∈ C where 1 ≤ i ≤ j ≤ N . 143

Note that while the context vocabulary VC and 144

question vocabulary VQ may not be identical, there 145

exists a relevant sub-vocabulary VR ⊆ VQ ∩ VC 146

that overlaps between the context and question that 147

enables the model to match related semantics. 148

Attention Aggregation Various methods exist 149

for aggregating attention. Central to our thought 150

process is the understanding that attention oper- 151

ates as an additive (linear combination) mechanism 152

(Elhage et al., 2022). Therefore, merely focusing 153

on the attention weight in the layer preceding the 154

output layer might not offer substantial informa- 155

tion. Conversely, previous research indicates that 156

attention aggregation and flow can deliver a more 157

comprehensive strategy for examining the true sig- 158

nificance of individual tokens in the output (Abnar 159

and Zuidema, 2020). In this work, we use attention 160

aggregation. Formally, for a given model with L 161

layers and H heads, each task with an input se- 162

quence of length T , the attention weights for each 163

head h ∈ {1, . . . ,H} in each layer ℓ ∈ {1, . . . , L} 164

can be represented as a T ×T matrix, Θ(l,h), where 165

the element of each matrix at position (i, j) repre- 166

sents the attention weight of the ith token attending 167

to the jth token for the relevant head and layer. We 168

aggregate the attention weights across all heads and 169

layers into Θ ∈ RT×T , retaining the top-k tokens 170

with the highest attention weight: 171

Θ =
1

LH

L∑
ℓ=1

H∑
h=1

Θ(ℓ,h). 172

4 Experimental Setup 173

Our experimental setup is quite straightforward. 174

First, we train a model for solving the task of ex- 175
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Figure 1: Example of a question presented to human
annotators with the context highlighted according to the
model attention weights.

tractive question-answering. We then aggregate176

the model’s attention weights for its correct predic-177

tions and incorporate them into the corresponding178

subset of contexts to enrich them (see Figure 1).179

We followed by asking two distinct groups of hu-180

man annotators to answer the same set of questions,181

where the treatment group used the enriched con-182

texts, and the control group used the original ones.183

Our complete pipeline is presented in Figure 2.184

Data We use a subset of contexts (C) and their185

corresponding questions (Q) from SQuAD 2.0 (Ra-186

jpurkar et al., 2018). To foster an assessment187

based on contextual understanding rather than in-188

dividual world knowledge, we chose questions189

spanning six varied sub-domains: Normans, Com-190

putational Complexity Theory, Southern Califor-191

nia, Sky (United Kingdom), Viktoria (Australia),192

Huguenot, and Steam Engine. Each domain con-193

sists of 14 questions, and seven annotators from194

the control and treatment groups answered each195

question. We provided human evaluators with ques-196

tions that our model answered correctly. This ap-197

proach allows us to ask annotators to predict the cor-198

rect answer, making the task more straightforward.199

Our initial attempts to have annotators predict the200

model’s answer received negative feedback, with201

annotators finding it unclear and counterintuitive.202

For further discussion of this issue, see Section 6.203

Model We employ DistilBERT (Sanh et al.,204

2019) as our backbone model, a more inference-205

efficient version of BERT (Devlin et al., 2018). Our206

emphasis on DistilBERT stems from its efficiency,207

enabling deployment on end-users’ devices for a208

more realistic setup in NLP applications. While209

large language models (LLMs) have gained much210

attention in recent years, we chose to use a model211

from the BERT family, as such models are cur-212

rently state-of-the-art in question-answering.2 We 213

employ a variant of model-agnostic meta-learning 214

(MAML; Finn et al. 2017), specifically fine-tuning 215

the classifier (Raghu et al., 2019). We use meta- 216

learning due to its unparalleled adaptability and 217

rapid learning across diverse tasks—qualities ab- 218

sent in traditional task-specific models. For more 219

details about the model, see Appendix A. 220

Human Evaluation We used Amazon Mechan- 221

ical Turk (AMTurk)3 to recruit participants and 222

employed a custom-built interface for the experi- 223

ment. We chose participants based on the ethics 224

rules of our institutions4. The study is designed to 225

have a control and treatment group, both of which 226

receive the same inputs that the model receives (i.e., 227

question and context), in addition to these inputs, 228

the treatment group also receives information from 229

the attention weights of the model displayed as 230

word highlights on the context that mark the top-k 231

attention scored words. In order to analyze the im- 232

pact of attention on guiding participants’ responses, 233

the participants are not presented with the model 234

predictions. For more details about our evaluation 235

process, please refer to Appendix B. 236
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Figure 2: The overall architecture of our method: We
first train a question-answering system using few-shot
learning (for more details, see Appendix A). We then
extract the attention weights across all heads and layers
(represented in red) and reconstruct the question and
the context. We show the human evaluators (treatment
group) these questions alongside the context and record.
The difference between the two groups is that treatment
receives attention highlights.

2The Stanford leaderboard for SQuAD2.0 demonstrates the
encoder-only models clear advantage - https://rajpurkar.
github.io/SQuAD-explorer/.

3Refer to https://www.mturk.com/worker/help for in-
formation about AMTurk.

4Not referenced in this manuscript in order to preserve
anonymity. We will reference the ethics rules in the camera-
ready version.
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Category Attention Highlight No Attention Highlight

Precision Recall F1 Score Precision Recall F1 Score ∆ F1 Score

Normans 82.9% 87.3% 84.4% 75.4% 78.9% 76.4% ↑8.0%
Computational Complexity Theory 80.4% 81.5% 79.7% 61.2% 65.3% 60.4% ↑19.3%
Southern California 73.0% 88.7% 73.2% 60.0% 68.6% 52.1% ↑21.2%
Sky (United Kingdom) 83.3% 85.1% 83.6% 81.7% 67.8% 66.3% ↑17.2%
Victoria (Australia) 86.2% 70.7% 76.3% 78.0% 51.5% 58.1% ↑18.2%
Huguenot 53.6% 82.7% 61.3% 43.5% 57.3% 45.0% ↑16.3%
Steam Engine 86.2% 46.8% 59.7% 81.2% 44.5% 53.4% ↑6.3%

Mean 77.9% 77.5% 74.0% 68.7% 62.0% 58.8% ↑15.2%

Table 1: Precision, recall and F1 metrics for each category of question type.

Extract QA w/ Attention w/o Attention

Time 22.17s 19.67s
Exact Match 44.0% 36.9%
F1 74.0% 58.8%

Table 2: The performance results for the test set of
SQuAD2.0, evaluated using exact-match.

5 Results237

Table 1 describes the performance of the human per-238

formance with and without presenting them with239

the attention weights. Our results demonstrate a sta-240

tistically significant increase in human performance241

when attention highlights are displayed, with the242

Southern California category having the largest im-243

pact. On average, though, it takes around 2 seconds244

more to process the documents with the attention245

weights (Table 2). In terms of mean time per group,246

the average processing time for the group with at-247

tention highlights was 22.17s, while the average248

time for the group without attention highlights was249

19.67s. Moreover, we observed that the group with-250

out attention tended to skim through large portions251

of the text and quickly paste them into the answer252

box, while the group with attention focused on253

identifying relevant tokens carefully before pasting254

them into the answer box, as depicted in Figure 3.255

Our analysis indicates that attention highlights256

do have a significant impact on the accuracy of257

human decision-making, as evidenced by the im-258

proved performance of the group which uses atten-259

tion in terms of F1 scores. When comparing the260

two average times it takes to complete the task for261

both groups (with and without attention), we ob-262

serve no statistically significant difference accord-263

ing to a t-test with a significance level of α = 0.01,264

indicating that attention highlights might not affect265

the speed of human decision-making. Overall, our266

results suggest that displaying attention highlights267
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Figure 3: Illustrating the influence of highlight on an-
swer length. It is evident that subjects, when not pro-
vided with a highlight, have a tendency to copy and
paste a significant subsection of the context.

aids humans in locating relevant information in a 268

question-answering task. 269

6 Conclusion 270

In summary, our direct approach, spotlighting top-k 271

aggregated tokens determined by attention weights, 272

adeptly points out potential answer locations within 273

a document. The proven effectiveness of attention 274

weights as a valuable tool for human interpreta- 275

tion of the decision-making process in Transformer 276

models underscores the importance of this method- 277

ology. Subsequent research endeavors may delve 278

into broader implications and applications, explor- 279

ing the use of attention highlights across diverse 280

scenarios. This exploration presents opportunities 281

to elevate interpretability in a variety of domains. 282
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Limitations283

Constrained by limited resources, our study focuses284

on evaluating a single task using one dataset and285

a specific method to aggregate attention weights286

across a transformer model’s multiple heads and287

layers. Consequently, the generalizability of our288

results to diverse settings is constrained. Further in-289

vestigation is imperative to ascertain the applicabil-290

ity of our findings across various datasets, models,291

and aggregation methods. Moreover, effectively292

controlling variables such as participants’ familiar-293

ity with the material being tested or the attention de-294

voted to each question poses a substantial challenge.295

This paper examines how attention highlights im-296

prove end-users’ ability to predict model behaviour,297

which can be crucial when models produce wrong298

predictions. Unfortunately, our attempts to ask an-299

notators to predict the model behaviour, i.e., to300

predict its answer regardless of correctness, have301

proven to be perplexing for crowd-workers. We302

hence cannot guarantee our findings will general-303

ized for cases where the model’s predictions are304

wrong. In future work, we plan to expend our ef-305

forts on cases where the model answers are wrong,306

which will require a more customized experimental307

setting.308

Ethics Statement309

Human workers were informed of the intended use310

of the provided annotations and complied with the311

terms and conditions of the experiment, as specified312

by Amazon Mechanical Turk.313
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A Few-shot QA 430

As in the paper, we adopt a variant of model- 431

agnostic meta-learning (MAML) (Finn et al., 2017) 432

for few-shot question answering. Specifically, we 433

only fine-tune the classifier while the feature extrac- 434

tor parameters are shared across tasks. We define a 435

question answering task τ consisting of: Contexts 436

Cτ = c1, . . . , cN , Questions Qτ = q1, . . . , qM , 437

Answer spans Aτ = (ci, . . . , cj) ∈ Cτ The meta- 438

learner model fθ maps questions to predicted an- 439

swer spans: fθ : Qτ → Aτ In the N -way K-shot 440

learning formulation, each task τ has a support set 441

Sτ with N classes and K labeled examples per 442

class. The model is evaluated on query examples 443

Qτ from the same classes. We group tasks into 444

categories C by mapping related topics into each 445

category (e.g. Sport, Education). During meta- 446

training, fθ is fine-tuned on the support sets Sτ 447

and evaluated on the query sets Qτ for each task 448

τ to learn across tasks and categories. The meta- 449

learning objective is: minθ
∑

τ∼p(τ) L(fSτ
θ ;Qτ) 450

where p(τ) is the distribution over tasks, fSτ
θ is the 451

model fine-tuned on support set Sτ , and L is the 452

loss on the query set. 453

B AMTurk Details 454

We used Amazon Mechanical Turk (AMTurk)5 to 455

recruit participants and employed a custom-built 456

interface for the experiment. We chose participants 457

based on the ethics rules of our institutions6. Par- 458

ticipant selection was limited to those in a single 459

English-speaking country who had at least a univer- 460

sity degree, ensuring a higher level of expertise in 461

the subject matter. We followed ethical guidelines 462

when compensating participants for their time and 463

effort in providing valid responses, setting a task re- 464

ward of $0.15 per assignment (calculated by hourly 465

living wage divided by the approximate minimal 466

time it takes to complete the assignment). 467

Before starting the main experiment, participants 468

were given several practice questions in the same 469

format as the actual questions to become accus- 470

tomed to the setup and interface and were also 471

shown the guidelines in Figure 4. We create a Hu- 472

man Intelligence Task (HIT) in AMTurk with the 473

title “Answer this simple question, given a short 474

5Refer to https://www.mturk.com/worker/help for in-
formation about AMTurk.

6Not referenced in this manuscript in order to preserve
anonymity. We will reference the ethics rules in the camera-
ready version.
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Step 1: Thank you for choosing to participate in this experiment. In this task we ask you
to answer questions based on the context which is provided, you should be able to extract
the answer from within the context. The experiment will start with a few practice questions,
once you have completed the practice questions, you will be directed to answer the actual questions.

Step 2: You are presented with a Question and a Context. Read the two carefully and answer the
Question in the "Answer" box. To answer the following question, you can:

1. You can copy-paste part of the context to answer the question, or just type the answer in your
own words;

2. Type NOANSWER if the context doesn’t contain the answer;

3. Type UNCLEAR if the question is unclear, in other words, you cannot understand what is
being asked.

Answers are case-insensitive, in other words, capitalisation doesn’t matter.

Figure 4: Guidelines provided to Amazon Mechanical Turk workers.

context snippet.” and the description “Read this475

question with corresponding context, and write the476

answer (if it exists in the context).” The HIT has the477

keywords “text, quick, labeling” and a maximum478

of seven assignments are allowed per HIT. The HIT479

has a lifetime of 1 day and an assignment duration480

of 10 minutes. The auto-approval delay is set to 4481

hours. The HIT has several qualification require-482

ments: the worker’s percentage of approved HITs483

must be greater than or equal to 98%, they must484

have at least 500 approved HITs, and they must485

have opted-in to view adult content. The custom486

interface is shown in figure 1.487
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