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Abstract

Reinforcement learning has achieved significant milestones, but sample efficiency
remains a bottleneck for real-world applications. Recently, CrossQ has demon-
strated state-of-the-art sample efficiency with a low update-to-data (UTD) ratio of 1.
In this work, we explore CrossQ’s scaling behavior with higher UTD ratios. We
identify challenges in the training dynamics, which are emphasized by higher UTD
ratios. To address these, we integrate weight normalization into the CrossQ frame-
work, a solution that stabilizes training, has been shown to prevent potential loss of
plasticity and keeps the effective learning rate constant. Our proposed approach
reliably scales with increasing UTD ratios, achieving competitive performance
across 25 challenging continuous control tasks on the DeepMind Control Suite
and MyoSuite benchmarks, notably the complex dog and humanoid environments.
This work eliminates the need for drastic interventions, such as network resets, and
offers a simple yet robust pathway for improving sample efficiency and scalability
in model-free reinforcement learning.

1 Introduction

Reinforcement Learning (RL) has shown great successes in recent years, achieving breakthroughs in
diverse areas. Despite these advancements, a fundamental challenge that remains in RL is enhancing
the sample efficiency of algorithms. Indeed, in real-world applications, such as robotics, collecting
large amounts of data can be time-consuming, costly, and sometimes impractical due to physical
constraints or safety concerns. Thus, addressing this is crucial to make RL methods more accessible
and scalable.

Different approaches have been explored to address the problem of low sample efficiency in RL.
Model-based RL, on the one hand, attempts to increase sample efficiency by learning dynamic models
that reduce the need for collecting real data, a process often expensive and time-consuming [39,
22, 12, 17]. Model-free RL approaches, on the other hand, have explored increasing the number
of gradient updates on the available data, referred to as the update-to-data (UTD) ratio [33, 10],
modifying network architectures [4], or both [9, 18, 20, 32]. A central tension in these research
directions is balancing the sample efficiency of the agent against the computational complexity,
i.e., wall-clock time, of the underlying algorithm. Algorithmic adjustments such as model-based
rollouts, computing auxiliary exploration rewards and higher UTDs can all significantly increase the
wall-clock time of the algorithm. Likewise, architectural changes such as larger models [32] and more
ensemble members [9] also increase the wallclock time of the method. Ideally, we desire architectural
and algorithmic changes that balance sample efficiency and simplicity, such as CrossQ [4], which
showed that careful use of batch normalization unlocks significantly greater sampler efficiency of
deep actor-critic methods without significantly impacting the wallclock time.
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Figure 1: CrossQ + WN UTD=2 outperforms SIMBA UTD=2 and BRO UTD=2. In comparison, our
proposed CrossQ + WN is a simple algorithm that, unlike BRO, does not require extra exploration
policies or full parameter resets. We present results for 25 complex continuous control tasks from the
DMC and MyoSuite benchmarking suites. 1.0 marks the maximum score achievable on the respective
benchmarks (DMC refurn up to 1000 / MyoSuite up to 100% success rate). We present 1QM and 90%
stratified bootstrap confidence intervals aggregated over multiple environments and 10 seeds each.

In this work, we build upon CrossQ [4], the model-free RL algorithm that showed state-of-the-art
sample efficiency on the MuJoCo [42] continuous control benchmarking tasks, and also enabled
learning omni-directional locomotion policies in 8 minutes of real-world experience [6]. Notably, the
authors achieved this by carefully utilizing batch normalization (BN, Ioffe [21]) within the actor-critic
architecture. A technique previously thought not to work in RL, as reported by Hiraoka et al. [18] and
others. The insight that Bhatt et al. [4] offered is that one needs to carefully consider the different
state-action distributions within the Bellman equation and handle them correctly to succeed. This
novelty allowed CrossQ at a low UTD of 1 to outperform the then state-of-the-art algorithms that
scaled their UTD ratios up to 20. Even though higher UTD ratios are more computationally expensive,
they allow for larger policy improvements using the same amount of data. This naturally raises
the question: How can we extend the sample efficiency benefits of CrossQ and BN to the high UTD
training regime? Which we address in this manuscript.

Contributions. In this work, we show that the vanilla CrossQ algorithm is brittle to tune on
DeepMind Control (DMC) and MyoSuite environments and can fail to scale reliably with increased
compute. To address these limitations, we propose the addition of weight normalization (WN),
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Figure 2: Comparing performance against wall clock time, measured in environment steps per second
(so larger is better) on a single RTX 4090 workstation, we observe the CrossQ + WN outperforms
SIMBA and BRO across all environments. We present results for 25 complex continuous control tasks
from the DMC and MyoSuite benchmarking suites. 1.0 marks the maximum score achievable on the
respective benchmarks (DMC return up to 1000 / MyoSuite up to 100% success rate).



which we show to be a simple yet effective enhancement that stabilizes CrossQ. We motivate the
combined use of WN and BN on insights from the continual learning and loss of plasticity literature
and connections to the effective learning rate. Our experiments show that incorporating WN not only
improves the stability of CrossQ but also allows us to scale its UTD, thereby significantly enhancing
sample efficiency.

2 Preliminaries
This section briefly outlines the required background knowledge for this paper.

Reinforcement learning. A Markov decision process (MDP) [35] is a tuple M =
(S, A, P,r, 1o, 7), with state space S C R™, action space A C R™, transition probability
P:S x A— A(S), the reward function 7 : § x A — R, initial state distribution po and discount
factor v. We define the RL problem according to Sutton and Barto [40]. A policy 7 : S — A(A) is
a behavior plan, which maps a state s to a distribution over actions a. The discounted cumulative
return is defined as R™ (s, a) = > ;= v'7(ss, a;), where s = s, ag = a and 8,41 ~ P( - |8y, a;)
and a; ~ w( - |s;) otherwise. The Q-function of a policy 7 is the expected discounted return
Q7 (s,a) = E[R™ (s, a)|. The goal of an RL agent is to find an optimal policy 7* that maximizes the
expected return from the initial state distribution 7* = arg max, Eg~,, [Q™ (s, a)].

Actor-critic methods address this optimization problem by jointly learning neural network representa-
tions for the Q-function and the policy. The policy network is optimized to maximize the Q-values,
while the Q-function is optimized to minimize the squared Bellman error, where the value target is
computed by taking an expectation over the learned Q function

V(8t+1) = Eay iy ~mo([si41) [Qa(St41, ary1)] - €]

To stabilize the Q-function learning, Haarnoja et al. [14] found it necessary to use a target Q-network
in the computation of the value function instead of the regular Q-network. The target Q-network is
structurally equal to the regular Q-network, and its parameters 6 are obtained via Polyak Averaging
over the learned parameters §. While this scheme ensures stability during training by explicitly
delaying value function updates, it also arguably slows down online learning [34, 23, 31].

Instead of relying on target networks, CrossQ [4] addresses training stability issues by introducing
batch normalization (BN, Ioffe [21]) in its Q-function and achieves substantial improvements in
sample and computational efficiency over Soft actor-critic (SAC). A central challenge when using BN
in Q networks is distribution mismatch: during training, the Q-function is optimized with samples
8¢, a; from the replay buffer. However, when the Q-function is evaluated to compute the target
values (Equation (1)), it receives actions sampled from the current policy a;+1 ~ g ( - |S¢+1). Those
samples have no guarantee of lying within the training distribution of the Q-function. BN is known to
struggle with out-of-distribution samples, as such, training can become unstable if the distribution
mismatch is not correctly accounted for [4]. To deal with this issue, CrossQ removes the separate
target Q-function and evaluates both Q values during the critic update in a single forward pass, which
causes the BN layers to compute shared statistics over the samples from the replay buffer and the
current policy. This scheme effectively tackles distribution mismatch problems, ensuring that all
inputs and intermediate activations are effectively forced to lie within the training distribution.

Normalization techniques in RL. Normalization techniques are widely recognized for improving
the training of neural networks, as they generally accelerate training and improve generalization [19].
There are many ways of introducing different types of normalizations into the RL framework. Most
commonly, authors have used layer normalization (LN) within the network architectures to stabilize
training [18, 30, 27]. Recently, CrossQ has been the first algorithm to successfully use BN layers in
RL [4]. The addition of BN leads to substantial gains in sample efficiency. In contrast to LN, howeyver,
one needs to carefully consider the different state-action distributions within the critic loss when
integrating BN. In a different line of work, Hussing et al. [20] proposed the integration of unit ball
normalization and projected the output features of the penultimate layer onto the unit ball in order to
reduce Q-function overestimation.

Increasing update-to-data ratios. Although scaling up the UTD ratio is an intuitive approach to
increase the sample efficiency, in practice, it comes with several challenges. Nikishin et al. [33]
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Figure 3: Growing parameter norms hinder learning. The performance benefits of CrossQ fail
to scale to more complex, higher dimensional tasks such as humanoid locomotion and muscular
manipulation. Investigating this, we find that the critic parameter norms increase significantly with
increasing UTD ratios. As a result, the effective learning rate (ELR) drops and the number of dead
neurons increases. Regularizing the critic parameters with weight norm (WN), we successfully
mitigate the parameter norm growth and therefore maintain a more consistent ELR, leading to better
performance on these more complex tasks. Uncertainty quantification depicts the 90% stratified
bootstrap confidence intervals.

demonstrated that overfitting on early training data can inhibit the agent from learning anything later
in the training. The authors dub this phenomenon the primacy bias. To address the primacy bias, they
suggest to periodically reset the network parameters while retraining the replay buffer. Many works
that followed have adapted this intervention [10, 32]. While often effective, regularly resetting is a
very drastic intervention and by design induces regular drops in performance. Since the agent has to
start learning from scratch repeatedly, it is also not very computing efficient. Finally, the exact reasons
why parameter resets work well in practice are not yet well understood [28]. Instead of resetting there
have also been other types of regularization that allowed practitioners to train stably with high UTD
ratios. Janner et al. [22] learn a world model and use it to generate synthetic data which is used in a
high UTD setting to stabilize training. REDQ [9] leverages sampling from an ensemble of Q-functions,
while Hiraoka et al. [18] use dropout and LN to effectively scale to higher UTD ratios.

3 Batch normalization alone fails to scale with respect to task complexity

Bhatt et al. [4] demonstrated CrossQ’s state-of-the-art sample efficiency on the MuJoCo task suite [42],
while at the same time also being very computationally efficient. However, on the more extensive
DMC and MyoSuite task suites, we find that CrossQ requires tuning. We further find that it works on
some, but not all, environments stably and reliably.

Figure 3 shows CrossQ training performance on the DMC dog and humanoid and the Myo Hard
tasks aggregated by environment suite. We plot the IQM and 90% confidence intervals for each metric
across 10 seeds. The figure compares a CrossQ with UTDs 1 and 5, where the hyperparameters were
identified through a grid search over learning rates and network sizes, as detailed in Table 1. The first
shows the agent’s training performance, while the other columns show network parameter norms,
gradient norms, the effective learning rate [44], and the fraction of dead neurons. Here, we identify
three different training behaviors. We notice that CrossQ does not benefit from higher UTD ratios,
but performance remains similar on the provided tasks. Overall, for all CrossQ runs we notice large
confidence intervals.

Growing network parameter norms. The second column of Figure 3 displays the sum over
the L2 norms of the dense layers in the critic network. This includes three dense layers, each
hidden layer with a dimension of 512. On both task suites, CrossQ exhibits growing network
weights over the course of training. We find that the effect is particularly pronounced for CrossQ



with increasing UTD ratios. Growing network weights have been linked to a loss of plasticity, a
phenomenon where networks become increasingly resistant to parameter update, which can lead to
premature convergence [11]. Additionally, the growing magnitudes pose a challenge for optimization,
connected to the issue of growing activations, which has recently been analyzed by Hussing et al. [20].
Further, growing network weights decrease the effective learning rate when the networks contain
normalization layers [43, 30].

In summary, the scaling results for vanilla CrossQ are mixed. While increasing UTD ratios is known
to yield increased sample efficiency, if careful regularization is used [22, 9, 33], CrossQ alone with
BN cannot benefit from it. We notice that with increasing UTD ratios, CrossQ’s weight layer norms
grow significantly faster and overall larger. This observation motivates us to further study the weight
norms in CrossQ to increase UTD ratios.

4 Combining batch normalization and weight normalization enables scaling

Inspired by the combined insights of Van Hasselt et al. [43] and Lyle et al. [30], we propose to integrate
CrossQ with weight normalization (Salimans and Kingma [36], WN) as a means of counteracting
the rapid growth of weight norms we observe with increasing update-to-data (UTD) ratios. A weight
normalized parameter w is constrained to have an L2 norm of ¢, an additional hyperparameter,

w = cw/[[wls. 2

Our approach is based on the following reasoning: Due to the use of BN in CrossQ, the critic network
exhibits scale invariance, as previously noted by Van Laarhoven [44].

Theorem 1 (Van Laarhoven [44]) Ler f(X;w,b,~, ) be a function, with inputs X and param-
eters w and b and ~ and [ batch normalization parameters. When f is normalized with batch
normalization, f becomes scale-invariant with respect to its parameters, i.e.,

[(Xsew, ch, v, B) = f(X;w,b,7, B), 3
with scaling factor ¢ > 0.

The proof is provided in Appendix A.

This property allows us to introduce WN as a mechanism to regulate the growth of weight norms in
CrossQ without affecting the critics outputs. Further, it can be shown, that for such a scale invariant
function, the gradient scales inversely proportionally to the scaling factor ¢ > 0.

Theorem 2 (Van Laarhoven [44]) Ler f(X;w,b,~, ) be a scale-invariant function. Its gradient

scales inversely proportional to the scaling factor ¢ € R of its parameters w.

The proof is provided in Appendix B.

Recently, Lyle et al. [30] demonstrated that the combination of LN and WN can help mitigate loss
of plasticity. Since the gradient scale is inversely proportional to ¢, keeping norms constant helps
to maintain a stable effective learning rate (ELR,Van Hasselt et al. [43]), further enhancing training
stability. We conjecture that maintaining a stable ELR could also be beneficial when increasing the
UTD ratios in continuous control RL. As the UTD ratio increases, the networks are updated more
frequently with each environment interaction. Empirically, we find that the network norms tend to
grow quicker with increased UTD ratios (Figure 3), which in turn decreases the ELR even quicker
and could be the reason for lower training performance. From this observation, we hypothesize that
the training phenomena that affect plasticity also appear when attempting sample-efficient learning
with higher UTDs. This hypothesis suggests that regularization techniques for plasticity could also be
used to achieve more sample-efficient RL. As a result, we empirically investigate the effectiveness of
combining CrossQ with WN with increasing UTD ratios.

Implementation details. We apply WN to all hidden linear layers of the network, ensuring that
their weights remain unit norm after each gradient step by projecting them onto the unit ball, similar
to Lyle et al. [30]. The reason for not placing WN on the output layer is to allow scaling of predicted



Q values to arbitrary magnitudes and crucially avoid the risk of underfitting. Additionally, layers that
are not followed by BN are not scale invariant w.r.t. re-scaling their weights. While we could employ
a learning rate schedule [30] we did not investigate this here as this would add additional complexity.
Additionally, we impose weight decay on all parameters that remain unbounded—specifically, the
final dense output layer. In practice, we use AdamW [29] with a decay of 0 (which falls back to
vanilla Adam [24]) for the normalized intermediate dense layers and 1le—2 otherwise.

Target networks. CrossQ removes the target networks from the actor-critic framework and showed
that using BN training remains stable even without them [4]. While we find this to be true in many
cases, we find that especially in DMC, the re-integration of target networks can help stabilize training
overall (see Section 5.4). However, not surprisingly, we find that the integration of target networks
with BN requires careful consideration of the different state-action distributions between the s, @ and
s',a’ ~ 7(8’) exactly as proposed by Bhatt et al. [4]. To satisfy this, we keep the joined forward
pass through both the critic network as well as the target critic network. We evaluate both networks
in training mode, i.e., they calculate the joined state-action batch statistics on the current batches. As
is common, we use Polyak-averaging with a 7 = 0.005 from the critic network to the target network.

S Experimental results

To evaluate the effectiveness of our proposed CrossQ + WN method, we conduct a comprehensive set
of experiments on the DeepMind Control Suite [41] and MyoSuite [7] benchmarks. For DMC we
report individual results for the hard (dog and humanoid), as well as Medium+Easy (cheetah-run,
walker-run, hopper-stand, finger-turn-hard, quadruped-run, fish-swim, hopper-hop,
pendulum-swingup) due to their varying difficulties. Equally, we split MyoSuite hard and easy
environments. Our primary goal is to investigate the scalability of CrossQ + WN with increasing UTD
ratios and to assess the stabilizing effects of combining CrossQ with WN. We compare our approach
to several baselines, including the recent BRO [32], CrossQ [4], TD-MPC2 [16], and SIMBA [27], a
concurrent approach utilizing layer norm. Figure 6 in the appendix further provides a SR-SAC [10]
baseline, a version of SAC [14] with high UTD ratios and network resets.

5.1 Experimental setup

Our implementation is based on the SAC implementation of jaxrl codebase [25]. We implement
CrossQ following the author’s original codebase and add the architectural modifications introduced
by [4], incorporating batch normalization in the actor and critic networks. We extend this approach
by introducing WN to regulate the growth of weight norms and prevent loss of plasticity and add
target networks. We perform a grid search to focus on learning rate selection and layer width.

We evaluate 25 diverse continuous control tasks, 15 from DMC and 10 from MyoSuite. These tasks
vary significantly in complexity, requiring different levels of fine motor control and policy adaptation
with high-dimensional state spaces up to R?23, Each experiment is run for 1 million environment
steps and across 10 random seeds to ensure statistical robustness. We evaluate agents every 25, 000
environment steps for 5 trajectories. For the DMC Medium&Easy and Myo Easy we plot the first
200k steps, as all methods learn much faster than the 1 million steps. As proposed by Agarwal et al.
[1], we report the interquartile mean (1IQM) and 90% stratified bootstrap confidence intervals (CIs) of
the return (or success rate, respectively), if not otherwise stated. For the BRO and SIMBA baseline
results, for computational reasons, we take the official evaluation data that the authors provide. The
official BRO codebase is also based on jaxrl, and the authors followed the same evaluation protocol.
All experiments were run on a compute cluster with RTX 3090 and A5000 GPUs, where all 10 seeds
run in parallel on a single GPU via jax.vmap.

5.2 Weight normalization allows CrossQ to scale to harder tasks effectively

We provide empirical evidence for our hypothesis that controlling the weight norm and, thereby, the
ELR can stabilize training (Figure 3). We show that through the addition of WN, CrossQ + WN shows
stable training and can stably scale with increasing UTD ratios.

Figure 7 shows per environment results of our experiments encompassing all 25 tasks evaluated
across 10 seeds each. Based on that, Figure | shows aggregated performance over all environments
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Figure 4: CrossQ WN UTD scaling behavior. We plot the 1QM return and 90% confidence intervals
for different UTD ratios. Results are aggregated over 15 DMC environments and 10 random seeds
each according to Agarwal et al. [1]. The sample efficiency scales reliably with increasing UTD ratios
and remains stable even when there are no more performance gains, which is a crucial property.

from Figure 7 per task suite, with a separate aggregation for the most complex dog and humanoid
environments.

Scaling results in Figure 4 show that CrossQ + WN is competitive to the BRO and SIMBA baselines
on both DMC and MyoSuite, especially on the more complex dog and humanoid tasks already on
lower UTD ratios. Notably, CrossQ + WN UTD=>5 uses only half the UTD of BRO and does not require
any parameter resets and no additional exploration policy. Further, it uses ~ 90% fewer network
parameters—BRO reports ~ 5M, while our proposed CrossQ + WN uses only ~ 600k (these numbers
vary slightly per environment, depending on the state and action dimensionalities).

In contrast, vanilla CrossQ UTD=1 exhibits much slower learning on most tasks and, in some
environments, fails to learn performant policies. Moreover, the instability of vanilla CrossQ at
UTD=> is particularly notable, as it does not reliably converge across environments (Figure 7).

These findings highlight the necessity of incorporating additional normalization techniques to sustain
effective training at higher UTD ratios. This leads us to conclude that CrossQ benefits from the
addition of WN, which results in stable training and scales well with higher UTD ratios. The resulting
algorithm can match or outperform state-of-the-art baselines on the continuous control DMC and
MyoSuite benchmarks while being much simpler algorithmically.

5.3 Stable scaling of CrossQ + WN with UTD ratios

To visualize the stable scaling behavior of CrossQ + WN we ablate across UTD ratios. Figure 4
shows training performances aggregated over multiple environments for 10 seeds each at 1M steps
and 200k steps respectively. We confirm that CrossQ + WN shows reliable scaling behavior. With
increasing compute, the performance increases or stays constant which is desirable. We see, that for
the same UTD ratio, CrossQ + WN nearly always beats both the BRO and SIMBA baselines. Further,
we demonstrate, that the sample-efficiency and stable UTD scaling benefits of BN+WN extend beyond
CrossQ and SAC to other base algorithms, such as TD3.

5.4 Hyperparameter ablation studies

We also ablate the different hyperparameters of CrossQ + WN, by changing each one at a time.
Figure 5 shows aggregated results of the final performances of each ablation. We will briefly discuss
each ablation individually.

Removing weight normalization. Not performing weight normalization results in the biggest
drop in performance across all our ablations. This loss is most drastic on the MyoSuite tasks and
often results in no meaningful learning. Showing that, as hypothesized, the inclusion of WN into the
CrossQ framework yields great improvements in terms of sample efficiency and training stability,
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Figure 5: An ablation study comparing CrossQ + WN against a soft L2 penalty on the weights, as well
as other design decisions such as target networks. All ablations use a critic network with two hidden
layers of dimension 512. The results show that the hard constraint outperforms the soft approach
across a range of regularization scales and tasks. Uncertainty quantification depicts the 90% stratified
bootstrap confidence intervals.

especially for larger UTD ratios. In general, lower UTD ratios are already reasonably competitive in
overall performance.

Target networks. Ablating the target networks shows that on MyoSuite, there is a significant
difference between using a target network and not using a target network. Results on DMC show a
large drop in performance. There, removing target networks leads to a significant drop in performance,
nearly as large as removing weight normalization. This finding is interesting, as it suggests that
CrossQ + WN without target networks is not inherently unstable. But there are situations where
the inclusion of target networks is required. Further investigating the role and necessity of target
networks in RL is an interesting direction for future research.

L2 regularization. Figure 5 investigates the performance of a soft L2 penalty on the weights
compared to the weight normalization proposed in this paper. Across all tasks, and sweeping across
soft regularization scalings, weight normalization outperforms the soft L2 penalty. Our hypothesis is
that, in principle, soft L2 regularization could work in a similar way to the proposed WN; however, it
would require per-task tuning and potentially even scheduling to result in a stable ELR. In comparison,
the hard constraint via WN guarantees a stable weight norm by design and as such is easier to employ.

Parameter resets. Our experiments show that CrossQ + WN is able to scale without requiring
drastic interventions such as parameter resets. However, it is still interesting to investigate whether
CrossQ + WN’s performance could benefit from parameter resets. CrossQ + WN + Reset in Figure 5
investigates this question. We see, that there is a slight improvement on the 7 dog and humanoid
tasks, on all other 18 tasks, performance remains the same. The main takeaway is, that CrossQ + WN
scales stably without requiring parameter resets.

6 Related work

RL has demonstrated remarkable success across various domains, yet sample efficiency remains
a significant challenge, especially in real-world applications where data collection is expensive or
impractical. Various approaches have been explored to address this issue, including model-based RL,
UTD ratio scaling, and architectural modifications.

Update-to-data ratio scaling. Model-free RL methods, including those utilizing higher UTD ratios,
focus on increasing the number of gradient updates per collected sample to maximize learning from
available data. High UTD training introduces several challenges, such as overfitting to early training
data, a phenomenon known as primacy bias [33]. This can be counteracted by periodically resetting



the network parameters [33, 10]. However, network resets introduce abrupt performance drops.
Nauman et al. [32] demonstrated that full parameter resets of the critic can effectively preserve
learning capacity using a UTD ratio up to 10. However, such resets inevitably impact the wall-clock
time due to relearning function approximation several times during learning. Alternative approaches
use an ensemble of Q-functions to reduce overestimation bias that occurs under high UTD ratio
training regimes [9]. Due to the decreased computational efficiency of using a large number of
Q-functions, Hiraoka et al. [18] propose to replace the ensemble of critics with dropout and layer
normalization. Both methods utilize a UTD ratio of 20, which is highly inefficient.

Normalization techniques in RL. Normalization techniques have long been recognized for their
impact on neural network training. LN [3] and other architectural modifications have been used
to stabilize learning in RL [18, 32]. Yet BN has only recently been successfully applied in this
context [4], challenging previous findings, where BN in critics caused training to fail [18]. WN has
been shown to keep ELRs stable and prevent loss of plasticity [30], when combined with LN, making
it a promising candidate for integration into existing RL frameworks. Bjorck et al. [5] show that using
spectral normalization (SN) enables training with large scale neural networks in deep RL. SN divides a
layers weight matrix by its largest singular value, regularizing the Lipschitz continuity of the function
approximation and therefore stabilizing the gradients. BN has been used by Bhatt et al. [4], where it
achieves impressive results, but requires slight adjustments when the UTD ratio is scaled. Concurrent
work [27] injected ‘simplicity bias’ into their actor and critic architecture, encouraging the model to
favor ‘simpler’ features for its predictions. Simba incorporates a residual feedforward block and layer
normalization in both the actor and critic networks and achieved state of the art results. WN has been
shown to keep ELRs stable and prevent loss of plasticity [30], when combined with LN, making it a
promising candidate for integration into existing RL frameworks. Ceron et al. [8] recently analyzed
the impact of different normalization on the performance of RL algorithms. Hafner et al. [15] designed
a vision-based MBRL algorithm Dreamer that leverages world models to master a wide range of
diverse tasks, and also relies on several normalization techniques. They utilize root mean square
layer normalization (RMSNORM) [46] before the activation function and normalize the returns. To
successfully scale deep RL on the Atari 100k benchmark and achieve human-level sample efficiency,
Schwarzer et al. [37] rely on regularization techniques. Rather than use normalization methods, they
use the shrink-and-perturb method [2] in shallow layers and full parameter resets in deeper layers
to preserve network plasticity. To scale to higher UTDs, they introduce AdamW [29] and gradually
decrease the number of steps for the computation of the TD error for faster convergence. Lee et al. [26]
argue that the loss of plasticity observed in deep RL when the UTD ratio is increased can be mitigated
by using LN, sharpness-aware minimization (SAM, Foret et al. [13]), incorporating parameter resets
in the last layers and replacing the ReLLU activation function with a ‘concetenated ReL. U’ function
[38]. Voelcker et al. [45] demonstrated that parameter resets are not strictly necessary when the UTD
ratio is increased to improve sample efficiency. They identify the generalization ability of the critic
as the main source of training instabilities under high UTD regimes. They demonstrate empirically
that architectural regularization can mitigate overestimation and divergence, but it does not guarantee
proper generalization. On the other hand, leveraging synthetic data generated by a learned world
model can help mitigate the effects of distribution shift, thereby enhancing generalization.

7 Conclusion, limitations & future work

In this work, we have addressed the instability and scalability limitations of CrossQ in RL by integrat-
ing weight normalization. Our empirical results demonstrate that WN effectively stabilizes training
and allows CrossQ to scale reliably with higher UTD ratios. The proposed CrossQ + WN approach
achieves competitive or superior performance compared to state-of-the-art baselines across a diverse
set of 25 complex continuous control tasks from the DMC and MyoSuite benchmarks. These tasks
include complex and high-dimensional humanoid and dog environments. This extension preserves
simplicity while enhancing robustness and scalability by eliminating the need for drastic interventions
such as network resets. In this work, we only consider continuous state-action benchmarking tasks.
While our proposed CrossQ + WN performs competitively on these tasks, its performance on discrete
state-action spaces or vision-based tasks remains unexplored. We plan to investigate this in future
work. Moreover, the theoretical basis of our work does not directly connect to the convergence
rates or sample efficiency of the underlying RL algorithm, but rather to mitigate observed empirical
phenomena regarding the function approximation alone.
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* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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Justification: Our theory is adopted from prior work and the proofs are provided in the
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to make their results reproducible or verifiable.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: At the current time we do not provide the code, however, we already provide all
implementation details in the paper. We plan to release the code together with the publication
of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have parts explaining implementation details and choice of hyperparameters
in detail.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]

Justification: We provide IQM and 90$ stratified bootstrap confidence intervals on all our
results (if not stated otherwise). Results are aggregated over multiple environments and 10
seeds each.
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» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We reference the type of GPUs used for the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As this paper did not involve human participants or real-world datasets or
experiments, there were no ethical concerns with the research.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper examines performance improvements of existing actor-critic meth-
ods. As actor-critic methods already enjoy a long history, there is no additional societal
impact with this research contribution.
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16


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA],
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite and link to the codebase which our code is based upon.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not provide any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines: [NA|

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof Scale Invariance

Proof of Theorem 1.

g(cXw + cb) — p(g(eXw + cb))

f(X;C’U.}7Cb, 7)6) = O'(g(CX’LU + Cb)) Y + B (5)
g Xw+b) — cu(g(Xw + b))
T deXwr) ©

e 4 5= f(Xswb0nf) ()

B Proof Inverse Proportional Gradients

To show that the gradients scale inversely proportional to the parameter norm, we can first write

g(cXw + cb) — p(g(eXw + cb))
o(g(cXw + b)) T+B ®
g(cXw + cb) w(g(cXw + cb))

- o(g(ch—l—cb))’Y_ U(g(ch—&—cb))ry_'—B' ©)

f(X;CUth»%ﬁ) =

(10)

As the gradient of the weights is not backpropagated through the mean and standard deviation, we
have

g (cXw+ ch) X
Vi f(X;cw,cb,v,B) = - (1)

( )= ldooXw 1)
(12)

The gradient of the bias can be computed analogously
Vo (X cw, cb,, ) = I LXwF D) (13)
b ) » €O, 7, - |c|0(g(Xw+b))’y

(14)
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C Hyperparameters

Table 1 gives an overview of the hyperparameters that were used for each algorithm that was
considered in this work.

Table 1: Hyperparameters

Hyperparameter CrossQ CrossQ + WN  Simba SR-SAC BRO

Critic learning rate 0.0003 0.0003 0.0001 0.0003 0.0003

Critic hidden dim 512 512 512 256 512

Actor learning rate 0.0003 0.0003 0.0001 0.0003 0.0003

Actor hidden dim 256 256 128 256 256

Initial temperature 1.0 1.0 0.01 1.0 1.0

Temperature learning rate 0.0001 0.0001 0.0001 0.0003 0.0003

Target entropy |A] /2 |Al /2 |Al /2 |A] |A]

Target network momentum 0.005 0.005 0.005 0.005 0.005

UTD 1,2,5,10,20 1,5 2,8 32 2,10

Number of critics 2 2 1 2 1

Action repeat 2 2 2 2 1

Discount 0.99 (DMC) 0.99 (DMC) 0.99 (DMC) 0.99 (DMC) 0.99 (DMC)
0.95 Myo)  0.95 (Myo) 0.95 Myo)  0.95 (Myo) 0.99 (Myo)

Optimizer Adam AdamW AdamW Adam AdamW

Optimizer momentum (31, 2) (0.9,0.999) (0.9, 0.999) (0.9,0.999) (0.9, 0.999) (0.9, 0.999)

Policy delay 3 3 1 1 1

Warmup transitions 5000 5000 5000 10000 10000

AdamW weight decay critic 0.0 0.01 0.01 0.0 0.0001

AdamW weight decay actor 0.0 0.01 0.01 0.0 0.0001

AdamW weight decay temperature 0.0 0.0 0.0 0.0 0.0

Batch Normalization momentum 0.99 0.99 N/A N/A N/A

Reset Interval of networks N/A N/A N/A every 80k steps g;)élf];nilo};;)i(i];eps

Batch Size 256 256 256 256 128
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D Aggregated learning curves
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Figure 6: CrossQ WN UTD scaling behavior. We plot the 1QM return and 90% stratified bootstrapped
confidence intervals for different UTD ratios. The results are aggregated over 15 DMC environments
and 10 random seeds each according to Agarwal et al. [1]. The sample efficiency scales reliably with
increasing UTD ratios.
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E Per environment learning curves
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Figure 7: CrossQ WN + UTD=5 against baselines. We compare our proposed CrossQ + WN UTD=5H
against two baselines, BRO [32] and SR-SAC UTD=32. Results are reported on all 15 DMC and
10 MyoSuite tasks. We plot the 1QM and 90% stratified bootstrapped confidence intervals over 10
random random seeds. Our proposed approach proves competitive to BRO and outperforms the
CrossQ baseline. We want to note that our approach achieves this performance without requiring any
parameter resetting or additional exploration policies.
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