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Abstract

Solving nonlinear partial differential equations (PDEs) with multiple solutions is
essential in various fields, including physics, biology, and engineering. However,
traditional numerical methods, such as finite element and finite difference meth-
ods, often face challenges when dealing with nonlinear solvers, particularly in
the presence of multiple solutions. These methods can become computationally
expensive, especially when relying on solvers like Newton’s method, which may
struggle with ill-posedness near bifurcation points. In this paper, we propose a
novel approach, the Newton Informed Neural Operator, which learns the Newton
solver for nonlinear PDEs. Our method integrates traditional numerical techniques
with the Newton nonlinear solver, efficiently learning the nonlinear mapping at
each iteration. This approach allows us to compute multiple solutions in a single
learning process while requiring fewer supervised data points than existing neural
network methods.

1 Introduction

Neural networks have been extensively applied to solve partial differential equations (PDEs) in various
fields, including biology, physics, and materials science [21, 9]. While much of the existing work
focuses on PDEs with a unique solution, nonlinear PDEs with multiple solutions pose a significant
challenge [39, 10] but are widely encountered in applications such as [1, 3, 31, 36, 14, 13]. In this
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paper, we aim to solve the following nonlinear PDEs with multiple solutions:{
Lu(x) = f(u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω, (1)

Here, Ω is the domain of equation, f(u) is a nonlinear function in R, u : Rd → R and L
is a second-order elliptic operator given by Lu = −

∑d
i,j=1 a

ij(x)uxixj
+
∑d

i=1 b
i(x)uxi

+

c(x)u, for given coefficient functions aij , bi, c(i, j = 1, . . . , d) with
∑n

i,j=1 a
ij(x)ξiξj ≥

λ|ξ|2, for a constant λ ≥ 0.

Various neural network methods have been developed to tackle partial differential equations (PDEs),
including PINN [33], the Deep Ritz method [45], DeepONet [29], FNO [25], MgNO [16], and
OL-DeepONet [26]. These methods can be broadly categorized into two types: function learning and
operator learning approaches. In function learning, the goal is to directly learn the solution. However,
these methods often encounter the limitation of only being able to learn one solution in each learning
process. Furthermore, the problem becomes ill-posed when there are multiple solutions. On the other
hand, operator learning aims to approximate the map between parameter functions in PDEs and the
unique solution. This approach cannot address the issue of multiple solutions or find them in a single
training session. We will discuss this in more detail in the next section.

In this paper, we present a novel neural network approach for solving nonlinear PDEs with multiple
solutions. Our method is grounded in operator learning, allowing us to capture multiple solutions
within a single training process, thus overcoming the limitations of function learning methods in
neural networks. Moreover, we enhance our network architecture by incorporating traditional Newton
methods [35, 1], as discussed in the next section. This integration ensures that the problem of operator
learning becomes well-defined, as Newton’s methods provide well-defined locally, thereby ensuring
a robust operator. This approach addresses the challenges associated with directly applying operator
networks to such problems. Additionally, we leverage Newton information during training, enabling
our method to perform effectively even with limited supervised data points. We introduce our network
as the Newton Informed Neural Operator. To clarify, we do not design a specific neural structure
for the neural operator. The Newton information is not incorporated into the architecture of the neural
network but rather into the training process. Specifically, the Newton method is incorporated into the
loss function, as detailed in Section 3.3.

As mentioned earlier, our approach combines the classical Newton method, which translates nonlinear
PDEs into an iterative process involving solving linear functions at each iteration. One key advantage
of our method is that, once the operator is effectively learned, there is no need to solve the linear
equation at every iteration. This significantly reduces computation time, especially in complex
systems encountered in fields such as material science, biology, and chemistry. Furthermore, once
the Newton Informed Neural Operator is well-trained, it can be applied to compute new solutions
with appropriate initial guesses, even those not present in the training data. Details of this capability
are demonstrated in the numerical example of the Gray-Scott model. Overall, the Newton Informed
Neural Operator efficiently solves nonlinear PDEs with multiple solutions by learning the Newton
nonlinear solver. It addresses the time-consuming nature of traditional nonlinear solvers and requires
fewer supervised data points compared to existing neural network methods. Additionally, it saves
time by eliminating the need for repeatedly solving nonlinear systems, as is required in traditional
Newton methods. Once the neural operator is learned, it can also compute new solutions beyond
those provided in the supervised data.

The following paper is organized as follows: In the next section (Section 2), we will delve into
nonlinear PDEs with multiple solutions and discuss related works on solving PDEs using neural
network methods. In Section 3, we will review the classical Newton method for solving PDEs and
introduce the Newton Informed Neural Operator, which combines neural operators with the Newton
method to address nonlinear PDEs with multiple solutions. In this section, we will also analyze the
approximation and generalization errors of the Newton Informed Neural Operator. Finally, in Section
4, we present the numerical results of our neural networks for solving nonlinear PDEs. The first
example demonstrates that the Newton Informed Neural Operator requires minimal data for training,
the second example shows that the speed of the Newton Informed Neural Operator is significantly
faster than the traditional Newton method, and the last example highlights that the Newton Informed
Neural Operator can discover new solutions not present in the supervised data.
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2 Backgrounds and Relative Works

2.1 Nonlinear PDEs with multiple solutions

Significant mathematical models depicting natural phenomena in biology, physics, and materials
science are rooted in nonlinear partial differential equations (PDEs) [5]. These models, characterized
by their inherent nonlinearity, present complex multi-solution challenges. Illustrative examples
include string theory in physics, reaction-diffusion systems in chemistry, and pattern formation in
biology [20, 12]. However, experimental techniques like synchrotronic and laser methods can only
observe a subset of these multiple solutions. Thus, there is an urgent need to develop computational
methods to unravel these nonlinear models, offering deeper insights into the underlying physics
and biology [17]. Consequently, efficient numerical techniques for identifying these solutions
are pivotal in understanding these intricate systems. Despite recent advancements in numerical
methods for solving nonlinear PDEs, significant computational challenges persist for large-scale
systems. Specifically, the computational costs of employing Newton and Newton-like approaches are
often prohibitive for the large-scale systems encountered in real-world applications. In response to
these challenges [15, 19], we propose an operator learning approach based on Newton’s method to
efficiently solve nonlinear PDEs.

2.2 Related works

Indeed, there are numerous approaches to solving partial differential equations (PDEs) using neural
networks. Broadly speaking, these methods can be categorized into two main types: function learning
and operator learning.

In function learning, neural networks are used to directly approximate the solutions to PDEs. Function
learning approaches aim to directly learn the solution function itself. On the other hand, in operator
learning, the focus is on learning the operator that maps input parameters to the solution of the PDE.
Instead of directly approximating the solution function, the neural network learns the underlying
operator that governs the behavior of the system.

Function learning methods In function learning, a commonly employed method for addressing this
problem involves the use of Physics-Informed Neural Network (PINN)-based learning approaches, as
introduced by Raissi et al. [33], and Deep Ritz Methods [45]. However, in these methods, the task
becomes particularly challenging due to the ill-posed nature of the problem arising from multiple
solutions. Despite employing various initial data and training methods, attaining high accuracy in
solution learning remains a complex endeavor. Even when a high-accuracy solution is achieved,
each learning process typically results in the discovery of only one solution. The specific solution
learned by the neural network is heavily influenced by the initial conditions and training methods
employed. However, discerning the relationships between these factors and the learned solution
remains a daunting task. In [19], the authors introduce HomPINNs for learning multiple solutions to
PDEs, where the number of solutions that can be learned depends on the choice of “start functions."
However, if the “start functions" are not appropriately selected, HomPINNs may fail to capture all
solutions. In this paper, we present an operator learning approach combined with Newton’s method
to train the nonlinear solver. While this approach is not specifically designed for computing multiple
solutions, it can be employed to compute them if suitable initial guesses are provided.

Operator learning methods Various approaches have been developed for operator learning to
solve PDEs, including DeepONet [29], which integrates physical information [7, 26], as well as
techniques like FNO [25] inspired by spectral methods, and MgNO [16], HANO [27], and WNO [24]
based on multilevel methods, and transformer-based neural operators [4, 8]. These methods focus
on approximating the operator between the parameters and the solutions. Firstly, they require the
solutions of PDEs to be unique; otherwise, the operator is not well-defined. Secondly, they focus
on the relationship between the parameter functions and the solution, rather than the initial data and
multiple solutions.
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3 Newton Informed Neural Operator

3.1 Review of Newton Methods to Solve Nonlinear Partial Differential Equations

To tackle this problem Eq. (1), we employ Newton’s method by linearizing the equation.

For the Newton method applied to an operator, if we aim to find the solution of F(u) = 0, the
iteration can be written as:

F ′ (un)un+1 = F ′ (un)un −F (un)⇐⇒ F ′ (un) δu = −F (un) ,

where δu = un+1 − un.

In this context, F ′(u)v is the (Fréchet) derivative of the operator, which is a linear operator to v,
defined as follows: To find F ′(u) in X , for any v ∈ X ,

lim
|v|→0

|F(u+ v)−F(u)−F ′(u)v|
|v|

= 0,

where | · | denotes the norm in X .

For solving Eq. (1), given any initial guess u0(x), for i = 1, 2, . . . ,M , in the i-th iteration of
Newton’s method, we have ũ(x) = u+ δu(x) by solving{

(L − f ′(u))δu(x) = −Lu+ f(u), x ∈ Ω

δu(x) = 0, x ∈ ∂Ω, (2)

which is based on the fact that the (Fréchet) derivative of L − f(·) at u is L − f ′(u). If Eq. (2) has a
unique solution, then by solving Eq. (2) and repeating the process M times, we will obtain one of the
solutions of the nonlinear equation (1). Denoting the mapping for u and δu, the solution of Eq. (2)
with parameter u, as G(u) := δu, we know that

lim
n→∞

(G + Id)(n)(u0) = u∗,

where u∗ is one of the solutions of Eq. (1). For different initial conditions, this process will converge to
different solutions of Eq. (1), making this method suitable for finding multiple solutions. Furthermore,
the Newton method is well-posed, meaning that each initial condition u0 will converge to a single
solution of Eq. (1) under appropriate assumptions (see Assumption 1). This approach helps to address
the ill-posedness encountered when using PINNs directly to solve Eq. (1). However, repeatedly
solving Eq. (1) can be computationally expensive, especially in high-dimensional cases or when a
large number of discrete points are involved. In this paper, we tackle these challenges by employing
neural networks.

3.2 Neural Operator Structures

In this section, we introduce the structure of the neural operator to approximate the operator locally in
the Newton methods from Eq.(2), i.e., δu := G(u), where δu is the solution of Eq.(2), which depends
on u. If we can learn the operator G(u) well using the neural operator O(u;θ), then for an initial
function u0, assume the n-th iteration will approximate one solution, i.e., (G + Id)(n)(u0) ≈ u∗.
Thus,

(O + Id)(n)(u0) ≈ (G + Id)(n)(u0) ≈ u∗.
For another initial condition, we can evaluate our neural operator and find the solution directly.

Then we discuss how to train such an operator. To begin, we define the following shallow neural
operators with p neurons for operators from X to Y as

O(a;θ) =
p∑

i=1

Aiσ (Wia+ Bi) ∀a ∈ X (3)

whereWi ∈ L(X ,Y),Bi ∈ Y , Ai ∈ L(Y,Y), and θ denote all the parameters in {Wi,Ai,Bi}pi=1.
Here, L(X ,Y) denotes the set of all bounded (continuous) linear operators between X and Y , and
σ : 7→R defines the nonlinear point-wise activation.
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In this paper, we will use shallow DeepONet [29, 22] to approximate the Newton operator. To
provide a more precise description, in the shallow neural network,Wi represents an interpolation of
operators. With proper and reasonable assumptions, we can present the following theorem to ensure
that DeepONet can effectively approximate the Newton method operator. The proof will be provided
in the appendix. Furthermore, MgNO is replaced byW as a multigrid operator [38], and FNO is
some kind of kernel operator; our analysis can be generalized to such cases.

Before the proof, we need to establish some assumptions regarding the input space X ⊂ H2(Ω) of
the operator and f(u) in Eq. (1). The definition of the Sobolev space can be found in Appendix B.1.
Assumption 1. (i): For any u ∈ X , we have that the linear equation

(L − f ′(u))δu = −L+ f(u)

is well-posed for solving δu.

(ii): There exists a constant F such that ∥f(x)∥W 2,∞(R) ≤ F .

(iii): All coefficients in L are C1 and ∂Ω ∈ C2.

(iv): X has a Schauder basis {bk}∞k=1, we define the canonical projection operator Pn based on
this basis. The operator Pn projects any element u ∈ X onto the finite-dimensional subspace
spanned by the first n basis elements {b1, b2, . . . , bn}. Specifically, for u ∈ X , u =

∑∞
k=0 αkbk,

let Pn(u) =
∑n

k=0 αkbk, where αk are the coefficients in the expansion of u with respect to the
basis {bn}. The canonical projection operator Pn is a linear bounded operator on X . According to
the properties of Schauder bases, these projections Pn are uniformly bounded by some constant C.
Furthermore, we assume, for any u ∈ X , ϵ > 0, there exists a n such that

∥u− Pnu∥H2(Ω) ≤ ϵ, for all u ∈ X .

More discussion about the assumption is shown in the appendix. The sketch of the proof is illustrated
in Fig. 1.

Figure 1: The sketch of proof for Theorem 1.

Theorem 1. Suppose X = Y ⊂ H2(Ω) and Assumption 1 holds. Then, there exists a neural network
O(u;θ) ∈ Ξp defined as

Ξp :=

{
p∑

i=1

Aiσ (Wiu+ bi)σ (wi · x+ ζi) |Wi ∈ L(X ,Rm), bi ∈ Rm,Ai ∈ R1×m

}
(4)

such that

sup
u∈X

∥∥∥∥∥
p∑

i=1

Aiσ (Wiu+ bi)σ (wi · x+ ζi)− G(u)

∥∥∥∥∥
L2(Ω)

≤ C1m
− 1

n + C2(ϵ+ p−
2
d ), (5)

where σ is a smooth non-polynomial activation function, n is shown in Assumption 1 and contained
inWi, C1 is a constant independent of m, ϵ, and p, C2 is a constant depended on p, n and F (see
in Assumption 1) is the scale of the P in Assumption 1. And ϵ depends on n. n and ϵ are defined in
Assumption 1.

The approximation results of DeepONet in Sobolev training can be found in [40].
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3.3 Loss Functions of Newton Informed Neural Operator

3.3.1 Mean Square Loss

The Mean Square Error loss function is defined as:

ES(θ) :=
1

Mu ·Mx

Mu∑
j=1

Mx∑
k=1

|G (uj) (xk)−O (uj ;θ) (xk)|2 (6)

where u1, u2, . . . , uMu
∼ µ are independently and identically distributed (i.i.d) samples in X , and

x1,x2, . . . ,xMx
are uniformly i.i.d samples in Ω.

However, using only the Mean Squared Error loss function is not sufficient for training to learn
the Newton method, especially since in most cases, we do not have enough data {uj ,G (uj)}Mu

j=1.
Furthermore, there are situations where we do not know how many solutions exist for the nonlinear
equation (1). If the data is sparse around one of the solutions, it becomes impossible to effectively
learn the Newton method around that solution.

Given that ES(θ) can be viewed as the finite data formula of ESc(θ), where

ESc(θ) = lim
Mu,Mx→∞

ES(θ).

The smallness of ESc can be inferred from Theorem 1. To understand the gap between ESc(θ) and
ES(θ), we can rely on the following theorem. Before the proof, we need some assumptions about the
data in ES(θ):
Assumption 2. (i) Boundedness: For any neural network with bounded parameters, characterized
by a bound B and dimension dθ, there exists a function Ψ : L2(Ω)→ [0,∞) such that

|G(u)(x)| ⩽ Ψ(u), sup
θ∈[−B,B]dθ

|O(u;θ)(x)| ⩽ Ψ(u), sup
θ∈[−B,B]dθ

|LO(u;θ)(x)| ⩽ Ψ(u)

for all u ∈ X ,x ∈ Ω, and there exist constants C, κ > 0, such that

Ψ(u) ⩽ C (1 + ∥u∥H2)
κ
. (7)

(ii) Lipschitz continuity: There exists a function Φ : L2(Ω)→ [0,∞), such that

|O(u;θ)(x)−O(u;θ′)(x)| ⩽ Φ(u) ∥θ − θ′∥ℓ∞ (8)

for all u ∈ X ,x ∈ Ω, and Φ(u) ⩽ C
(
1 + ∥u∥H2(Ω)

)κ
, for the same constants C, κ > 0 as in

Eq. (7).

(iii) Finite measure: There exists α > 0, such that∫
H2(Ω)

e
α∥u∥2

H2(Ω)dµ(u) <∞.

Theorem 2. If Assumption 2 holds, then the generalization error is bounded by

sup
θ∈[−B,B]dθ

|E(ES(θ)− ESc(θ))| ⩽ C

[
1√
Mu

(
1 + Cdθ log(CB

√
Mu)

2κ+1/2
)
+
dθ
√
logMx√
Mx

]
,

where C is a constant independent of B, dθ , Mx, and Mu. The parameter κ is specified in (7). Here,
B represents the bound of parameters, and dθ is the number of parameters.

The proof of Theorem 2 is presented in Appendix B.3.
Remark 1. Assumption 2 is easily satisfied if we consider X as the local function set around the
solution, which is typically the case in Newton’s methods. This aligns with our approach and the
working region in the approximation part (see Remark 3). The error supθ∈[−B,B]dθ |E(ES(θ) −
ESc(θ))| suggests that the network can perform well based on the loss function ES(θ). The reasoning
is as follows: let θS = argminθ∈[−B,B]dθ ES(θ) and θSc

= argminθ∈[−B,B]dθ ESc(θ). We aim
for EESc(θS) to be small, which can be written as:

EESc(θS) ≤ ESc(θSc
) + E(ES(θS)− ESc(θS)) ≤ ESc(θSc

) + sup
θ∈[−B,B]dθ

|E(ES(θ)− ESc(θ))|,

where ESc(θSc
) is small, as demonstrated by Theorem 1 when B is sufficiently large.
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3.3.2 Newton Loss

As we have mentioned, relying solely on the MSE loss function can require a significant amount
of data to achieve the task. However, obtaining enough data can be challenging, especially when
the equation is complex and the dimension of the input space is large. Hence, we need to consider
another loss function to aid learning, which is the physical information loss function [33, 7, 19, 24],
referred to here as the Network loss function.

The Newton loss function is defined as:

EN (θ) :=
1

Nu ·Nx

Nu∑
j=1

Nx∑
k=1

|(L − f ′(uj (xk)))O (uj ;θ) (xk) + Luj (xk) + f(uj (xk))|
2 (9)

where u1, u2, . . . , uNu
∼ ν are independently and identically distributed (i.i.d) samples in X , and

x1,x2, . . . ,xNx are uniformly i.i.d samples in Ω.

Given that EN (θ) can be viewed as the finite data formula of ENc(θ), where
ENc(θ) = lim

Nu,Nx→∞
ES(θ).

To understand the gap between ENc(θ) and EN (θ), we can rely on the following theorem:
Corollary 1. If Assumption 2 holds, then the generalization error is bounded by

sup
θ∈[−B,B]dθ

|E(EN (θ)− ENc(θ))| ⩽ C

[
1√
Nu

(
1 + Cdθ log(CB

√
Nu)

2κ+1/2
)
+
dθ
√
logNx√
Nx

]
,

where C is a constant independent of B, dθ , Nx, and Nu. The parameter κ is specified in (7). Here,
B represents the bound of parameters, and dθ is the number of parameters.

The proof of Corollary 1 is similar to that of Theorem 2; therefore, it will be omitted from the paper.
Remark 2. If we only utilize ES(θ) as our loss function, as demonstrated in Theorem 2, we require
both Mu and Mx to be large, posing a significant challenge when dealing with complex nonlinear
equations. Obtaining sufficient data becomes a critical issue in such cases. In this paper, we integrate
Newton’s information into the loss function, defining it as follows:

E(θ) := λES(θ) + EN (θ), (10)
where EN (θ) represents the cost associated with the unsupervised learning data. If we lack sufficient
data for ES(θ), we can adjust the parameters by selecting a small λ and increasing Nx and Nu.
This strategy enables effective learning even when data for ES(θ) is limited. We refer to this neural
operator, which incorporates Newton information, as the Newton Informed Neural Operator.

In the following experiment, we will use the neural operator established in Eq. (3) and the loss
function in Eq. (10) to learn one step of the Newton method locally, i.e., the map between the input u
and the solution δu in eq. (2). If we have a large dataset, we can choose a large λ in E(θ) (10); if we
have a small dataset, we will use a small λ to ensure the generalization of the operator is minimized.
After learning one step of the Newton method using the operator neural networks, we can easily and
quickly obtain the solution by the initial condition of the nonlinear PDEs (1) and find new solutions
not present in the datasets.

4 Experiments

4.1 Experimental Settings

We introduce two distinct training methodologies. The first approach employs exclusively supervised
data, leveraging the Mean Squared Error Loss (6) as the primary optimization criterion. The second
method combines both supervised and unsupervised learning paradigms, utilizing a hybrid loss
function 10 that integrates Mean Squared Error Loss (6) for small proportion of data with ground
truth (supervised training dataset) and with Newton’s loss (9) for large proportion of data without
ground truth (unsupervised training dataset). We call the two methods method 1 and method 2. The
approaches are designed to simulate a practical scenario with limited data availability, facilitating
a comparison between these training strategies to evaluate their efficacy in small supervised data
regimes. We chose the same configuration of the neural operator (DeepONet) which is aligned with
our theoretical analysis. One can find the detailed experimental settings and the datasets for each
example below in Appendix A.
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4.2 Case 1: Convex problem

We consider 2D convex problem L(u)−f(u) = 0, where L(u) := −∆u, f(u) : −u2+sin 5π(x+y)
and u = 0 on ∂Ω. We investigate the training dynamics and testing performance of neural operator
(DeepONet) trained with two methods, focusing on Mean Squared Error (MSE) and Newton’s loss
functions. For method 1, we use 500 supervised data samples (with ground truth), while for method
2, we use 5000 unsupervised data samples (only with the initial state) along with supervised data
samples, employing the regularized loss function as defined in Equation 10 with λ = 0.01. Please
refer A.1.1 for the dataset generation of convex case. For the detailed experimental settings, refer to
Appendix A.

(a) Training and testing errors using Method
1 (MSE loss for 500 supervised data)

(b) Comparison of models trained using
Method 1 (deepONet-MSE) and Method 2
(deepONet-Newton)

Figure 2: Training and testing performance of DeepONet under different conditions.

MSE Loss Training (Fig. 2(a)): In method 1, Effective training is observed but exhibits poor
generalization. The significantly larger testing error compared to the training error suggests that
using only MSE loss is insufficient. Performance Comparison (Fig. 2(b)): DeepONet-Newton
model (Method 2) exhibits superior performance in both L2 and H1 error metrics, highlighting
its enhanced generalization accuracy. This study shows the advantages of using Newton’s loss for
training DeepONet models, illustrating that increasing the number of unsupervised samples via
introducing Newton’s loss leads to a substantial improvement in the test L2 error and H1 error.

4.3 Case 2: Non-convex problem with multiple solutions

We consider a 2D Non-convex problem,{
−∆u(x, y)− u2(x, y) = −s sin(πx) sin(πy) in Ω,

u(x, y) = 0, in ∂Ω
(11)

where Ω = (0, 1)× (0, 1) [3]. In this case, L(u) := −∆(u), f(u) := u2 − s sin(πx) sin(πy) and it
has multiple solutions (see Figure 3 for its solutions).

In the experiment, we let one of the multiple ground truth solutions rarely touched in the supervised
training dataset such that the neural operator trained via method 1 will saturate in terms of test error
because it relies on the ground truth to recover all the patterns for multiple solution cases (as shown
by the curves in Figure 3). On the other hand, the model trained via method 2 is less affected by the
limited supervised data since the utilization of Newton’s loss. One can refer to Appendix A for the
detailed experiment setting.

Efficiency This case study highlights the superior efficiency of our neural operator-based method
as a surrogate model for Newton’s method. Both methods parallelize operations to solve 500/5000
Newton linear systems simultaneously, each with distinct initial states. The key advantage of the
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(a) Solutions of 2D Non-convex problem (11) (b) Method 1 VS Method 2

Figure 3: Solutions of 2D Non-convex problem (11)

neural operator lies in its ability to batch the computation of these independent systems efficiently.
By efficiently batching and sampling a wide variety of initial states, the neural operator improves
the likelihood of discovering to multiple solutions, particularly in nonlinear PDEs with complex
solution landscapes. Consequently, while Newton’s method alone does not inherently guarantee
finding multiple solutions, the combination of rapid computation and extensive initial condition
sampling enhances the chances of identifying multiple solutions.

For a fair comparison, the classical Newton solver was also parallelized using CUDA on a GPU.
However, the neural operator naturally handles large batch sizes during inference, allowing it to
process all systems in one go. One can find the detailed description of the experiments in A.6.

Parameter Newton’s Method NINO
Number of Streams 10 -
Data Type float32 float32
Execution Time for 500 linear Newton systems (s) 31.52 1.1E-4
Execution Time for 5000 linear Newton systems (s) 321.15 1.4E-4

Table 1: Benchmarking the efficiency of Newton Informed Neural Operator. Computational Time
Comparison for Solving 500 and 5000 Initial Conditions.

The table demonstrates the significant efficiency gain achieved by batching the computation of
independent Newton systems with distinct initial states using the neural operator. For NINO, solving
5000 independent Newton linear systems scales up minimally compared to solving 500 systems,
while the classical solver experiences a tenfold increase in computation time. This efficient batching
is crucial for improving performance, particularly in complex nonlinear systems like the Gray-Scott
model, where solving numerous systems simultaneously is essential for effective pattern discovery.

4.4 Case 3: The Gray-Scott model

The Gray-Scott model [31, 11] describes the reaction and diffusion of two chemical species, A and
S, governed by the following equations:

∂A

∂t
= DA∆A− SA2 + (µ+ ρ)A,

∂S

∂t
= DS∆S + SA2 − ρ(1− S),

where DA and DS are the diffusion coefficients, and µ and ρ are rate constants.

Newton’s Method for Steady-State Solutions Newton’s method is employed to find steady-state
solutions (∂A∂t = 0 and ∂S

∂t = 0) by solving the nonlinear system:

0 = DA∆A− SA2 + (µ+ ρ)A,

0 = DS∆S + SA2 − ρ(1− S).
(12)
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The Gray-Scott model is highly sensitive to initial conditions, where even minor perturbations can
lead to vastly different emergent patterns. Please refer to Figure 5 for some examples of the patterns.
This sensitivity reflects the model’s complex, non-linear dynamics that can evolve into a multitude
of possible steady states based on the initial setup. Consequently, training a neural operator to map
initial conditions directly to their respective steady states presents significant challenges. Such a
model must learn from a vast functional space, capturing the underlying dynamics that dictate the
transition from any given initial state to its final pattern. This complexity and diversity of potential
outcomes is the inherent difficulty in training neural operators effectively for systems as complex
as the Gray-Scott model. One can refer to A.1.2 for a detailed discussion on the Gray-Scott model.
We employ a Neural Operator as a substitute for the Newton solver in the Gray-Scott model, which
recurrently maps the initial state to the steady state.

(a) An example demonstrating how the neural operator maps the initial state to the steady state in a iterative
manner

(b) Average convergence rate of NINO. (c) Training via method 2

Figure 4: The convergence behavior of the Neural Operator-based solver.

In subfigure (a), we use a ring-like pattern as the initial state to test our learned neural operator. This
pattern does not appear in the supervised training dataset and lacks corresponding ground truth data.
Instead, it is present only in the unsupervised data (Newton’s loss), i.e., some data in Newton’s loss
will converge to this specific pattern. Despite this, our neural operator, trained using Newton’s loss,
can effectively approximate the mapping of the initial solution to its correct steady state. we further
test our neural operator, utilizing it as a surrogate for Newton’s method to address nonlinear problems
with an initial state drawn from the test dataset. The curve shows the average convergence rate of
∥u − ui∥ across the test dataset, where ui represents the prediction at the i-th step by the neural
operator. In subfigure (c), we compare the Training Loss (Rescaled Newton’s Loss) and Absolute L2
Test Error. The magnitudes are not directly comparable as they represent different metrics; however,
the trends are consistent, indicating that the inclusion of unsupervised data and training with Newton’s
loss contributes to improved model performance.

5 Conclusion

In this paper, we develop neural operators to learn the Newton’s solver related to nonlinear PDEs
(Eq. (1)) with multiple solutions. To speed up the computation of multiple solutions for nonlinear
PDEs, we combine neural operator learning with classical Newton methods, resulting in the Newton-
informed neural operator. We provide a theoretical analysis of our neural operator, demonstrating
that it can effectively learn the Newton operator, reduce the number of required supervised data, and
learn solutions not present in the supervised learning data due to the addition of the Newton loss (9)
in the loss function. Our experiments are consistent with our theoretical analysis, showcasing the
advantages of our network as mentioned earlier.
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Figure 5: Examples of steady states of the Gray Scott model

A Experimental settings

A.1 Background on the PDEs and generation of datasets

A.1.1 Case 1: convex problem

Function and Jacobian The function F (u) might typically be defined as:

F (u) = −∆u+ u2

The Jacobian J(u), for the given function F (u), involves the derivative of F with respect to u, which
includes the Laplace operator and the derivative of the nonlinear term:

J(u) = −∆+ 2 · u.

The dataset are generated by sampling the initial state u0 ∼ N (0,∆−3) and then calculate the con-
vergent sequence {u0, u1, ..., un} by Newton’s method. Each convergent sequence {u0, u1, ..., un}
is one data entry in the dataset.

The analysis of function and Jacobian for the non-convex problem (case 2) is similar to the convex
problem except that its Jacobian J(u) = ∆− 2u such that Newton’s system is not positive definite.

A.1.2 Gray Scott model

Jacobian Matrix The Jacobian matrix J of the system is crucial for applying Newton’s method:

J =

[
JAA JAS

JSA JSS

]
with components:

JAA = −DA∆+ diag(−2SA+ µ+ ρ),

JAS = diag(−A2),

JSA = diag(2SA),

JSS = −DS∆+ diag(A2 + ρ).

The numerical simulation of the Gray-Scott model was configured with the following parameters:

• Grid Size: The simulation grid is square with N = 63 points on each side, leading to a
total of N2 grid points. This resolution was chosen to balance computational efficiency
with spatial resolution sufficient to capture detailed patterns. The spacing between each grid
point, h, is computed as h = 1.0

N−1 . This ensures that the domain is normalized to a unit
square, which simplifies the analysis and scaling of diffusion rates.

• Diffusion Coefficients: The diffusion coefficients for species A and S are set to DA =
2.5× 10−4 and DS = 5.0× 10−4, respectively. These values determine the rate at which
each species diffuses through the spatial domain.

• Reaction Rates: The reaction rate µ and feed rate ρ are crucial parameters that govern the
dynamics of the system. For this simulation, µ is set to 0.065 and ρ to 0.04, influencing the
production and removal rates of the chemical species.

Simulations The simulation utilizes a finite difference method for spatial discretization and
Newton’s method to solve the steady-state given the initial state. The algorithm is detailed in A.6.
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Figure 6: Three examples depicting the evolution from the initial state to the steady state via Newton’s
method.

A.2 Data generation

Here is how we generate the supervised data samples:

1. Step 1: We use a classical numerical solver to obtain single (multiple) solutions of nonlinear
PDEs. For example, in Case 2, there exist four solutions u1, u2, u3, u4. We have one
solution for Case 1 and 10 solutions for the Case 3: Gray-Scott model.

2. Step 2: The supervised dataset is generated by sampling a perturbation around the solution
ui ∼ N (0, (−∆)−3) on the chosen true solution ui. We then set ui0 = uip+u

i and calculate
the convergent sequence ui0, u

i
1, . . . , u

i
n using Newton’s method, which follows the formula:

uik+1 = uik − Jf (uik)−1f(uik).

Each convergent sequence ui0, u
i
1, . . . , u

i
n constitutes one supervised data entry in the dataset.

In this case, we consider the initial conditions as perturbed, with all perturbations applied
around the true solution. A comparison between the traditional method and our proposed
method is summarized in Table 1.

For the unsupervised data samples, we only sample the perturbed initial states.

A.3 Implementations of loss functions

Discrete Newton’s Loss In solving partial differential equations (PDEs) numerically on a regular
grid, the Laplace operator and other differential terms can be efficiently computed using convolution.
Here, we detail the method for calculating J(u)δu− F (u) where J(u) is the Jacobian matrix, δu is
the Newton step, and F (u) is the function defining the PDE.

Discretization Consider a discrete representation of a function u on a N ×N grid. The function u
and its perturbation δu are represented as matrices:

u, δu ∈ RN×N

The function F (u), which involves both linear and nonlinear terms, is similarly represented as
F (u) ∈ RN×N .

Laplace Operator Regarding the representing the J(u) withN×N grid function u, the discretized
Laplace operator using a finite difference method can be expressed as a convolution:

−∆u =

[
0 −1 0
−1 4 −1
0 −1 0

]
∗ u

This convolution computes the result of the Laplace operator applied to the grid function u. The
boundary conditions can be further incorporated into the convolution with different padding modes.
Dirichlet boundary condition corresponds to zeros padding while Neumann boundary condition
corresponds to replicate padding.

15



A.4 Architecture of DeepONet

A variant of DeepONet is used in our Newton-informed neural operator. In the DeepONet, we
introduce a hybrid architecture that combines convolutional layers with a static trunk basis, optimized
for grid-based data inputs common in computational applications like computational biology and
materials science.

Branch Network The branch network is designed to effectively downsample and process the
spatial features through a series of convolutional layers:

• A Conv2D layer with 128 filters (7x7, stride 2) initiates the feature extraction, reducing the
input dimensionality while capturing coarse spatial features.

• This is followed by additional Conv2D layers (128 filters, 5x5 kernel, stride 2 and subse-
quently 3x3 with padding, 1x1) which further refine and compact the feature representation.

• The convolutional output is flattened and processed through two fully connected layers
(256 units then down to branch features), using GELU activation.

Trunk Network The trunk utilizes a static basis represented by the tensor V, incorporated as a
non-trainable component: The tensor V is precomputed, using Proper Orthogonal Decomposition
(POD) as in [28], and is dimensionally compatible with the output of the branch network.

Forward Pass During the forward computation, the branch network outputs are projected onto the
trunk’s static basis via matrix multiplication, resulting in a feature matrix that is reshaped into the
grid dimensionality for output.

Hyperparameters

The following table 2 summarizes the key hyperparameters used in the DeepONet architecture:

Parameter Value
Number of Conv2D layers 5
Filters in Conv2D layers 128, 128, 128, 128, 256

Kernel sizes in Conv2D layers 7x7, 5x5, 3x3, 1x1, 5x5
Strides in Conv2D layers 2, 2, 1, 1, 2

Fully Connected Layer Sizes 256, branch features
Activation Function GELU

Table 2: Hyperparameters of the DeepONet architecture

A.5 Training settings

Below we summarize the key configurations and parameters employed in the training for three cases:

Dataset

• Case 1: For method 1, we use 500 supervised data samples (with ground truth) while for
method 2, we use 5000 unsupervised data samples (only with the initial state) and 500
supervised data samples.

• Case 2: For method 1, we use 5000 supervised data while for method 2, we use 5000
unsupervised data samples and 5000 supervised data samples.

• Case 3 (Gray-Scott model): We only perform method 2, with 10000 supervised data
samples and 50000 unsupervised data samples.

Optimization Technique

• Optimizer: Adam, with a learning rate of 1× 10−4 and a weight decay of 1× 10−6.
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• Training Epochs: The model was trained over 1000 epochs to ensure convergence and we
use Batch Size: 50.

These settings underscore our commitment to precision and detailed examination of neural operator
efficiency in computational tasks. Our architecture and optimization choices are particularly tailored
to explore and exploit the capabilities of neural networks in processing complex systems simulations.

A.6 Benchmarking Newton’s Method and neural operator based method

Experimental Setup The benchmark study was conducted to evaluate the performance of a GPU-
accelerated implementation of Newton’s method, designed to solve systems of linear equations
derived from discretizing partial differential equations. The implementation utilized CuPy with
CUDA to leverage the parallel processing capabilities of the NVIDIA A100 GPU. The hardware
comprises an Intel Cascade Lake 2.5 GHz CPU, and an NVIDIA A100 GPU.

The performance was assessed in terms of total execution time, which includes the setup of matrices
and vectors, computation on the GPU, and synchronization of CUDA streams. Both methods leverage
the parallel processing capabilities of the GPU. Specifically, the Newton solver explicitly uses 10
streams and CuPy with CUDA to parallelize the computation and fully utilize the GPU parallel
processing capabilities, aiming to optimize execution efficiency. In contrast, the neural operator
method is inherently parallelized, taking full advantage of the GPU architecture without the explicit
use of multiple streams as indicated in the table. The computational times of both methods were
evaluated under a common hardware configuration.

Software Environment: Ubuntu 20.04 LTS. Python Version: 3.8. CUDA Version: 11.4.

Newton’s method was implemented to solve the Laplacian equation over a discretized domain.
Multiple system solutions were computed in parallel using CUDA streams. The key parameters of
the experiment are as follows: Data Type (dtype): Single precision floating point (float32). Number
of Streams: 10 CUDA streams to process data in parallel. Number of Repeated Calculations:
The Newton method was executed multiple times for 500/5000 Newton linear systems, respectively,
distributed evenly across the streams. Function to Solve Systems: The CuPy’s spsolve was used
for solving the sparse matrix systems. The following algorithm A.6 summarizes the procedure to
benchmark the time used for solving Newton’s system for 5000 different initial states.

Algorithm 1 Solve Newton’s Systems on GPU
1: procedure SOLVESYSTEMSGPU(A, u, rhs_f , N )

▷ Precompute RHS and diagonal for all systems
2: rhs_list← rhs_f + u2 −A× u
3: diag_list← −2× u

▷ Initialize solution storage
4: delta_u← initialize zero matrix with shape of uT

▷ Solve each system
5: for i = 0 to num_sys− 1 do
6: rhs← rhs_list[i]
7: diag ← diag_list[i]
8: J ← A+ diagonal matrix with diag on the main diagonal

▷ Solve the linear system
9: delta_u[i]← spsolve(J, rhs)

10: end for
11: return transpose(delta_u)
12: end procedure

B Supplemental material for proof

B.1 Preliminaries

Definition 1 (Sobolev Spaces [6]). Let Ω be [0, 1]d and let D be the operator of the weak derivative
of a single variable function and Dα = Dα1

1 Dα2
2 . . . Dαd

d be the partial derivative where α =
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[α1, α2, . . . , αd]
T and Di is the derivative in the i-th variable. Let n ∈ N and 1 ≤ p ≤ ∞. Then we

define Sobolev spaces

Wn,p(Ω) :=
{
f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nd with |α| ≤ n

}
with a norm

∥f∥Wn,p(Ω) :=

 ∑
0≤|α|≤n

∥Dαf∥pLp(Ω)

1/p

if p <∞, and ∥f∥Wn,∞(Ω) := max0≤|α|≤n ∥Dαf∥L∞(Ω).

Furthermore, for f = (f1, . . . , fd), f ∈ W 1,∞(Ω,Rd) if and only if fi ∈ W 1,∞(Ω) for each
i = 1, 2, . . . , d and

∥f∥W 1,∞(Ω,Rd) := max
i=1,...,d

{∥fi∥W 1,∞(Ω)}.

When p = 2, denote Wn,2(Ω) as Hn(Ω) for n ∈ N+.
Proposition 1 ([30]). Suppose σ is a is a continuous non-polynomial function and K is a compact
in Rd, then there are positive integers p, constants wk, ζk for k = 1, . . . , p and bounded linear
functionals ck : Hr(K)→ R such that for any v ∈ Hr(K),∥∥∥∥∥v −

p∑
k=1

ck(v)σ (wk · x+ ζk)

∥∥∥∥∥
L2(K)

≤ cp−r/d∥v∥Hr(K). (13)

Proposition 2 ([32, 44]). Suppose σ is a continuous non-polynomial function and Ω is a compact
subset of Rd. For any Lipschitz-continuous function f , there exists a shallow neural network such
that ∥∥∥∥∥∥f −

m∑
j=1

ajσ (ωj · x+ bj)

∥∥∥∥∥∥
∞

≤ Cm−1/d, (14)

where C depends on the Lipschitz constant but is independent of m.
Lemma 1 ([22]). The ϵ-covering number of [−B,B]d, K(ϵ), satisfies

K(ϵ) ⩽

(
CB

ϵ

)d

,

for some constant C > 0, independent of ϵ, B, and d.

Step 5: Now we estimate

B.2 Proof of Theorem 1

In this subsection, we present the proof of Theorem 1, which describes the approximation ability of
DeepONet.

Proof of Theorem 1. Step 1: Firstly, we need to verify that the target operator G(u) is well-defined.

Due to Assumption 1 (i), we know that for u ∈ X ⊂ H2(Ω), Equation (2) will have unique solutions.
This means that G(u) is a well-defined operator for the input space u ∈ X .

Step 2: Secondly, we aim to verify that G(u) is a Lipschitz-continuous operator in H2(Ω) for u ∈ X .

Consider the following:

f ′(u+ v) = f ′(u) + vf ′′(ξ1)

f(u+ v) = f(u) + vf ′(ξ2)

δvu(x) = δu(x) + ϵ(x) (15)

where δu(x) is the solution of Eq.(2) for the input u, and δvu(x) is the solution of Eq.(2) for the
input u+ v. Denote

δvu(x)− δu(x) =: ϵ(x).
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Therefore, we have:{
(L − f ′(u+ v))ϵ(x) = ∆v − v(f ′(ξ2) + f ′′(ξ1)δu), x ∈ Ω

ϵ(x) = 0, x ∈ ∂Ω. (16)

Since u and v are in H2 and ∂Ω is in C2 (Assumption 1 (iii)), according to [6, Theorem 4 in Section
6.3], there exist constants C 2 and C̄ such that:

∥ϵ(x)∥H2(Ω) ≤ C∥Lv − v(f ′(ξ2) + f ′′(ξ1)δu)∥L2(Ω)

≤ C̄∥v(x)∥H2(Ω). (17)

The last inequality is due to the boundedness of f ′(ξ2) + f ′′(ξ1)δu (Assumption 1 (ii)).

Step 3: In the approximation, we first reduce the operator learning to functional learning.

When the input function u(x) belongs to X ⊂ H2, the output function δu also belongs to H2,
provided that ∂Ω is of class C2. The function G(u) = δu can be approximated by a two-layer
network architected by the activation function σ(x), which is not a polynomial, in the following form
by Proposition 1 [30] (given in Subsection 16):∥∥∥∥∥G(u)(x)−

p∑
k=1

ck[G(u)]σ (wk · x+ ζk)

∥∥∥∥∥
L2(Ω)

≤ C1p
− 2

d ∥G(u)∥H2(Ω), (18)

where wk ∈ Rd, ζk ∈ R for k = 1, . . . , p, ck is a continuous functional, and C1 is a constant
independent of the parameters.

Denote ϕk(u) = ck[G(u)], which is a Lipschitz-continuous functional from H2(Ω) to R, which is
due to G is a Lipschitz-continuous operator and ck is a linear functional. The remaining task in
approximation is to approximate these functionals by neural networks.

Step 4: In this step, we reduce the functional learning to function learning by applying the operator
P as in Assumption 1 (iv).

Based on ϕk(u) being a Lipschitz-continuous functional in H2(Ω), we have

|ϕk(u)− ϕk(Pu)| ≤ Lk∥u− Pu∥H2(Ω) ≤ Lkϵ,

where Lk is the Lipschitz constant of ϕk(u) for u ∈ X .

Furthermore, since Pu is an n-dimensional term, i.e., it can be denoted by the n-dimensional vector
P̄u ∈ Rn, we can rewrite ϕk(Pu) as ψk(P̄u), where ψk : Rn → R for l = 1, . . . , p. Furthermore,
ψk is a Lipschitz-continuous function since ϕk is Lipschitz-continuous and P is a continuous linear
operator.

Step 5: In this step, we will approximate ψk using shallow neural networks.

Due to Proposition 2, we have that there is a shallow neural network such that∥∥ψk(P̄u)−Akσ
(
Mk · P̄u+ bk

)∥∥
∞ ≤ Cm

−1/d, (19)

where a⊺
k ∈ Rm, Mk ∈ Rm×n, and bk ∈ Rm. For the simplicity notations, we can replace Mk · P̄

by an operatorWk.

Above all, we have that there is a neural network in Ξp such that∥∥∥∥∥
p∑

k=1

Akσ (Wku+ bk)σ (wk · x+ ζk)− G(u)

∥∥∥∥∥
L2(Ω)

≤ C1m
− 1

n + C2(ϵ+ p−
2
d ), (20)

where C1 is a constant independent of m, ϵ, and p, C2 is a constant depended on p.

2In this paper, we consistently employ the symbol C as a constant, which may vary from line to line.
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Remark 3. We want to emphasize the reasonableness of our assumptions. For condition (i), we
are essentially restricting our approximation efforts to local regions. This limitation is necessary
because attempting to approximate the neural operator across the entire domain could lead to issues,
particularly in cases where multiple solutions exist. Consider a scenario where the input function
u lies between two distinct solutions. Even a small perturbation of u could result in the system
converging to a completely different solution. Condition (i) ensures that Equation (2) has a unique
solution, allowing us to focus our approximation efforts within localized domains.

Conditions (ii) and (iii) serve to regularize the problem and ensure its tractability. These conditions
are indeed straightforward to fulfill, contributing to the feasibility of the overall approach.

For the embedding operator P in (iv), there are a lot of choices in DeepONet, such as finite element
methods like Argyris elements [2] or embedding methods in [23, 18]. We will discuss more in the
appendix. We omit the detailed discussion in the paper. Furthermore, for the differential neural
network, this embedding may be different; for example, we can use Fourier expansion [43] or
multigrid methods [16] to achieve this task.

Here, we discuss more about the embedding operator P . One approach is to use the Argyris element
[2]. This method involves considering the 21 degrees of freedom shown in Fig. 7. In this figure, each
• denotes evaluation at a point, the inner circle represents an evaluation of the gradient at the center,
and the outer circle denotes evaluation of the three-second derivatives at the center. The arrows
indicate the evaluation of the normal derivatives at the three midpoints.

Figure 7: Argyris method

Another alternative approach to discretizing the input space is to use the bi-cubic Hermite finite
element method [23, 18].

B.3 Proof of Theorem 2

The proof of Theorem 2 is inspired by that in [22].

Proof of Theorem 2. Step 1: To begin with, we introduce a new term called the middle term, denoted
as ESm(θ), defined as follows:

ESm(θ) :=
1

Mu

Mu∑
j=1

∫
Ω

|G(uj)(x)−O(uj ;θ)(x)|2 dx,

This term represents the limit case of ES(θ) as the number of samples in the domain of the output
space tends to infinity (Mx →∞).

Then the error can be divided into two parts:

|E(ES(θ)− ESc(θ)| ≤ |E(ES(θ)− ESm(θ)|+ |E(ESm(θ)− ESc(θ)|. (21)

20



Step 2: For |E(ESm(θ)− ESc(θ)|, this is the classical generalization error analysis, and the result
can be obtained from [34, 42, 41]. We omit the details of this part, which can be expressed as

|E(ESm(θ)− ESc(θ))| ≤
Cdθ
√
logMx√
Mx

, (22)

where C is independent of the number of parameters dθ and the sample size Mx. In the following
steps, we are going to estimate |E(ES(θ)−ESm(θ))|, which is the error that comes from the sampling
of the input space of the operator.

Step 3: Denote

SM
θ :=

1

M

M∑
j=1

∫
Ω

|G(uj)(x)−O(uj ;θ)(x)|2 dx.

We first estimate the gap between SM
θ and SM

θ′ for any bounded parameters θ,θ′. Due to Assumption
2 (i) and (ii), we have that

|SM
θ − SM

θ′ |

≤ 1

M

M∑
j=1

∣∣∣∣∫
Ω

|G(uj)(x)−O(uj ;θ)(x)|2 − |G(uj)(x)−O(uj ;θ′)(x)|2 dx
∣∣∣∣

≤ 1

M

M∑
j=1

∣∣∣∣∫
Ω

|2G(uj)(x) +O(uj ;θ)(x) +O(uj ;θ′)(x)| · |O(uj ;θ)(x)−O(uj ;θ′)(x)|dx
∣∣∣∣

≤ 4

M

M∑
j=1

Ψ(uj)Φ(uj) · ∥θ − θ′∥ℓ∞ . (23)

Step 4: Based on Step 3, we are going to estimate

E

[
sup

θ∈[−B,B]dθ

∣∣SM
θ − ESM

θ

∣∣p] 1
p

by covering the number of spaces.

Set {θ1, . . . ,θK} is a ε-covering of [−B,B]dθ i.e. for any θ in [−B,B]dθ , there exists j with
∥θ − θj∥ℓ∞ ⩽ ϵ. Then we have

E

[
sup

θ∈[−B,B]d

∣∣SM
θ − E

[
SM
θ

]∣∣p]1/p

≤E

[(
sup

θ∈[−B,B]d

∣∣∣SM
θ − SM

θj

∣∣∣+ ∣∣∣SM
θj
− E

[
SM
θj

]∣∣∣ +
∣∣∣E [SM

θj

]
− E

[
SM
θ

]∣∣∣)p]1/p

≤E
[(

max
j=1,...,K

∣∣∣SM
θj
− E

[
SM
θj

]∣∣∣ +
8ϵ

M

 M∑
j=1

|Ψ(uj)| |Φ (uj)|

p1/p

≤8ϵE [|Ψ(uj)||Φ(uj)|p]1/p + E
[

max
j=1,...,K

∣∣∣SM
θj
− E

[
SM
θj

]∣∣∣p]1/p . (24)

For 8ϵE [|ΨΦ|p]1/p, it can be approximate by

8ϵE [|ΨΦ|p]1/p ⩽ 8ϵE
[
|Ψ|2p

]1/2p E [|Φ|2p]1/2p = 8ϵ∥Ψ∥L2p∥Φ∥L2p .

For E
[
maxj=1,...,K

∣∣∣SM
θj
− E

[
SM
θj

]∣∣∣p]1/p, by applied the result in [37, 22], we know

E
[

max
j=1,...,K

∣∣∣SM
θj
− E

[
SM
θj

]∣∣∣p]1/p ≤ 16K1/p√p∥Ψ∥2L2p√
M

.
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Step 5: Now we estimate |E(ES(θ)− ESm(θ)|.
Due to Assumption 2 and directly calculation, we have that

∥Ψ∥L2p , ∥Φ∥L2p ⩽ C(1 + γκp)κ,

for constants C, γ > 0, depending only the measure µ and the constant C appearing in the upper
bound (7). For example,

∥Ψ∥L2p ≤
(∫

X
C
(
1 + ∥u∥H2(Ω)

)2pκ
dµX

) 1
2p

≤C
(∫

X
exp

[
2pκ ln

(
1 + ∥u∥H2(Ω)

)
− α∥u∥H2(Ω)

]
eα∥u∥H2(Ω)dµX

) 1
2p

≤C
(∫

X

(
1 +

κp

α

)2κp
eα∥u∥H2(Ω)dµX

) 1
2p

≤ C(1 + γκp)κ. (25)

Based on Lemma 1, we have that

E

[
sup

θ∈[−B,B]dθ

∣∣∣SMu

θ − E
[
SMu

θ

]∣∣∣p]1/p ⩽ 16C2(1 + γκp)2κ

(
ϵ+

(
CB

ϵ

)dθ/p √p
√
Mu

)
,

for some constants C, γ > 0, independent of κ, µ,B, dθ, N, ϵ > 0 and p ⩾ 2. We now choose
ϵ = 1√

Mu
, so that

ϵ+

(
CB

ϵ

)dθ/p √p
√
Mu

=
1√
Mu

(
1 + (CB

√
Mu)

dθ/p
√
p
)
.

Next, let p = dθ log(CB
√
Mu). Then,

(CB
√
Mu)

dθ/p
√
p = exp

(
log(CB

√
Mu)dθ

p

)
√
p = e

√
dθ log(CB

√
Mu),

and thus we conclude that

ϵ+

(
CB

ϵ

)dθ/p √p
√
Mu

⩽
1√
Mu

(
1 + e

√
dθ log(CB

√
Mu).

)
.

On the other hand, we have

(1 + γκp)2κ =
(
1 + γκdθ log(CB

√
Mu)

)2κ
.

Increasing the constant C > 0, if necessary, we can further estimate(
1 + γκdθ log(CB

√
Mu)

)2κ(
1 + e

√
dθ log(CB

√
Mu).

)
⩽ C

(
1 + dθ log(CB

√
Mu)

)2κ+1/2

,

where C > 0 depends on κ, γ, µ and the constant appearing in (7), but is independent of dθ, B and
N . We can express this dependence in the form C = C(µ,Ψ,Φ) > 0, as the constants κ and γ
depend on the Gaussian tail of µ and the upper bound on Ψ,Φ.

Therefore,

|E(ES(θ)− ESm(θ)| ≤ E sup
θ∈[−B,B]dθ

|SMu

θ − E
[
SMu

θ

]
| ≤ CE

[
sup

θ∈[−B,B]dθ

∣∣∣SMu

θ − E
[
SMu

θ

]∣∣∣p]1/p
≤ C√

Mu

(
1 + Cdθ log(CB

√
Mu)

2κ+1/2
)
. (26)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper discusses the limitations of our work in the section where we
establish and prove our network’s approximation ability.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof? Answer: [Yes]
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Justification: For each theoretical result, we provide the full set of assumptions and a
complete (and correct) proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code and dataset used in the experiments as described in
reproducing statement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the link to the datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed configurations of the experiments in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance for key findings in our study. Since we do
not claim our method is superior to other models, our experiments are serving to justify our
theoretical claims, therefore, we selectively provide statistical results where they are most
relevant.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute resources for benchmarking our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics and confirm our research conform the
code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research is mostly theoretical. We do not see obvious social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No obvious such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29


	Introduction
	Backgrounds and Relative Works
	Nonlinear PDEs with multiple solutions
	Related works

	Newton Informed Neural Operator
	Review of Newton Methods to Solve Nonlinear Partial Differential Equations
	Neural Operator Structures
	Loss Functions of Newton Informed Neural Operator
	Mean Square Loss
	Newton Loss


	Experiments
	Experimental Settings
	Case 1: Convex problem
	Case 2: Non-convex problem with multiple solutions
	Case 3: The Gray-Scott model

	Conclusion
	Experimental settings
	Background on the PDEs and generation of datasets
	Case 1: convex problem
	Gray Scott model

	Data generation
	Implementations of loss functions
	Architecture of DeepONet
	Training settings
	Benchmarking Newton's Method and neural operator based method

	Supplemental material for proof
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2


