

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-FIDELITY PHYSICS-INFORMED NEURAL NET- WORKS (PINN) WITH BOUNDARY-AWARE LOSSES FOR ICE-BED TOPOGRAPHY PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Predicting ice dynamics and sea-level rise requires an understanding of subglacial bedrock topography; however, inversion remains a challenging task in data-sparse regions where surface observations are limited. Some conventional machine learning methods face challenges in predicting subglacial topography due to heavy reliance on purely data correlations and cannot guarantee physical consistency, especially in data-sparse regions. Physics-Informed Neural Networks (PINNs) address this limitation by embedding partial differential equation (PDE) constraints into deep learning, enabling more physically consistent predictions. However, most existing PINN formulations depend on a single fidelity of physics, and soft boundary penalties can still compromise performance. We propose a multi-fidelity PINN framework for ice-bed topography prediction that advances beyond these limitations in two ways. First, we introduce multi-fidelity residual coupling, jointly enforcing the shallow-ice approximation (SIA) and reduced-Stokes equations within a single network. This coupling improves accuracy while maintaining physics consistency, achieving strong predictive performance (e.g., Test MSE = 0.028, and $R^2 = 0.97$). Second, we design a boundary-aware weak-form loss that supports traction/flux (Neumann) and optional Dirichlet constraints, allowing flexible enforcement of margin physics. Experiments show that hard Dirichlet enforcement over-constrains the model and reduces accuracy, while soft or selective enforcement preserves predictive quality. To our knowledge, this is the first Physics-Informed Neural Network (PINN) framework for predicting ice-bed topography that unifies multi-fidelity partial differential equation (PDE) residuals with configurable boundary-aware losses, providing a practical and extensible approach to physically plausible predictions in data-sparse regimes.

1 INTRODUCTION

Understanding and predicting the dynamics of ice sheets is central to understanding future sea-level rise, one of the most pressing global challenges of climate change. A key in this effort lies in presuming the subglacial bedrock topography, which strongly governs ice flow but is poorly observed due to the inaccessibility of the ice–bed boundary. While airborne radar and seismic surveys provide direct measurements, coverage is sparse, particularly in fast-flowing outlet glaciers where uncertainties in bed geometry lead to large uncertainties in dynamical projections Morlighem et al. (2017). As a result, the development of reliable inversion techniques for bed topography remains an open and important research problem in glaciology. Recent advances in machine learning have offered opportunities to tackle this challenge by learning statistical relationships between surface observations (e.g., elevation, velocity, mass balance) and basal conditions Xiang et al. (2022); Krishna et al. (2023). However, purely data-driven models are prone to overfitting and can fail to generalize in data-sparse regions, where extrapolation requires strong physical priors. More recently, Physics-Informed Neural Networks (PINNs) have gained attention as a framework for embedding physical laws into learning Karniadakis et al. (2021); Raissi et al. (2019). Penalizing violations of the governing partial differential equations (PDEs), PINNs enforce physics consistency while reducing dependence on labeled data. Yet, most PINN formulations in the earth sciences remain limited in two key respects. First, existing PINNs often adopt a single fidelity of physics, such as the shallow-ice

054 approximation (SIA) or a reduced-Stokes model. This discards complementary strengths: SIA is
 055 computationally efficient but oversimplified in complex flow regimes, while Stokes captures higher-
 056 order dynamics but at a higher cost. Second, boundary conditions are usually handled via soft
 057 penalty terms, which can either under-constrain the model and, when applied too strongly, degrade
 058 accuracy near glacier margins. In this paper, we present a multi-fidelity, boundary-aware Physics-
 059 Informed Neural Network (PINN) framework for predicting ice-bed topography. Our contributions
 060 are threefold: Multi-fidelity residual coupling. We jointly enforce the shallow-ice approximation
 061 (SIA) and reduced-Stokes equations within a single network. This coupling integrates complemen-
 062 tary physics across fidelities, improving predictive accuracy while maintaining physical consistency.

063 Boundary-aware weak-form loss. We design a flexible boundary formulation that incorporates both
 064 traction/flux (Neumann) and optional Dirichlet constraints. This allows selective enforcement of
 065 margin physics, avoiding the over-constraint associated with hard Dirichlet penalties.

066 Empirical validation. We evaluate our method on glacier datasets, showing strong predictive skill
 067 (Test MSE = 0.028, $R^2 = 0.97$) while tightly satisfying PDE constraints. Results demonstrate that
 068 hard Dirichlet enforcement reduces accuracy, whereas boundary-aware enforcement preserves pre-
 069 dictive quality.

070 To our knowledge, this is the first PINN framework for ice-bed inversion that unifies multi-fidelity
 071 PDE residuals with configurable boundary-aware losses. By combining physically consistent learn-
 072 ing with flexibility at domain margins, our approach provides a practical and extensible pathway
 073 toward more reliable ice-sheet models, with direct implications for projecting sea-level rise in data-
 074 sparse regimes.

075

076

2 LITERATURE REVIEW/RELATED WORK

077

078

079 Conventional Machine learning has been explored for subglacial topography Yi et al. (2023) sys-
 080 tematically evaluated machine learning and statistical models (e.g.,gaussian process regression, XG-
 081 boost, dense neural network, long-short term memory, variational auto-encoder etc.) for Greenland
 082 bed prediction, showing promise but highlighting limits in extrapolation and physical consistency.
 083 Traditional mass-conservation techniques Morlighem et al. (2011) and datasets including BedMa-
 084 chine v5 NSIDC (2023) GIMP DEM Howat et al. (2014), and MEaSUREs velocity mosaics continue
 085 to serve as the foundation for inversion techniques. Classical adjoint-based inversions and Bayesian
 086 UQ Petra et al. (2014); Isaac et al. (2015) provide gold-standard benchmarks but are computationally
 087 costly. Physics-informed ML complements these approaches by offering scalable, data-efficient, and
 088 physically grounded learning. Physics-informed learning addresses this by embedding PDE struc-
 089 ture. For example, Jouvet & Cordonnier (2023) proposed a PINN-based ice-flow emulator, while
 090 Cheng et al. (2024) applied PINNs directly for forward and inverse ice-sheet modeling at Helheim
 091 Glacier. These works prove feasibility but typically adopt a single fidelity of physics and uniform
 092 boundary treatment. Hybrid neural-operator / FEM methods further indicate that learned operators
 093 can replace costly inner solves while honoring PDE constraints He et al. (2023). Likewise these
 094 works typically fix a single fidelity and use uniform boundary penalties. Physics-Informed Neural
 095 Networks (PINNs) embed governing PDEs and boundary conditions in the training objective to solve
 096 forward and inverse problems with improved physical consistency Raissi et al. (2019). However,
 097 PINN training can be fragile, motivating domain decomposition Jagtap et al. (2020) and weak-form
 098 variants Kharazmi et al. (2021) to stabilize residual enforcement. A recent large-scale evaluation,
 099 PINNacle Hao et al. (2024), provides a systematic benchmark across PDE classes and highlights
 100 open challenges in stability, loss balancing, and boundary enforcement—challenges directly moti-
 101 vating our boundary-aware weak form. However, our approach differs by unifying multi-fidelity
 102 SIA + Stokes and boundary-aware weak-form losses.

103

104

105

106

107

108 Multi-fidelity learning and residual weighting: Learning from multiple fidelities improves data
 109 efficiency and accuracy Meng & Karniadakis (2020). This study shows that incorporating mul-
 110 tiple sources of data improves robustness. Additionally, composite networks leverage multi-
 111 fidelity inputs, and uncertainty-based weighting Kendall et al. (2018) balances competing objec-
 112 tives adaptively. It provides a principled way to adapt residual coupling without brittle manual
 113 tuning—supporting our multi-fidelity residual coupling claim where SIA and reduced-Stokes are
 114 enforced jointly with learned weighting, our method differs by coupling SIA + reduced-Stokes in one
 115 network and by selective boundary enforcement. Boundary conditions in PINNs: Enforcing bound-

108 ary conditions has long been a bottleneck. Handling nonhomogeneous boundary conditions within
 109 PINNs has been studied Dwivedi et al. (2020), while hard-constrained methods reduce penalty tun-
 110 ing but risk the over-constraining solutions. Many implementations still rely on uniform soft pen-
 111 alties, which can over- or under-constrain margins, precisely what our boundary-aware weak-form
 112 addresses. In glaciological settings, where marine termini and flux boundaries are critical, uniform
 113 soft penalties can bias inversion. Our boundary-aware weak-form builds on this literature by allow-
 114 ing selective Neumann/Dirichlet enforcement.

115

116 3 DATASET BACKGROUND AND PREPOSSESSING

117

118 The dataset used in this study consists of 632,706 data points derived from radar-based bed ele-
 119 vation measurements from the Upernivik glacier system in West Greenland. These data points of
 120 radar-derived bed elevation measurements are target values, which are `track_bed_x` and `track_bed_y`
 121 (coordinates of radar data points (m)) and `track_bed_target`: subglacial bed elevation along the flight
 122 line. Four key sources: Surface Elevation data from the Greenland Ice Mapping Project (GIMP), ice
 123 flow surface velocity data in both longitudinal and latitudinal directions from satellite interferometry
 124 datasets (Landsat-8, Sentinel-1, RADARSAT-2), ice thinning rates from ICESat-2, and surface mass
 125 balance from the Regional Atmospheric Climate Model (RACMO). These data points have ground
 126 truth that is used to measure the accuracy of the predictive models. Since these data points are only
 127 along the tracks of the airborne radar sensor, they are referred to as “Track Data.” Yi et al. (2023).
 128 Since the Track Data themselves only provide bed elevations along flight lines without additional
 129 surface descriptors, these external datasets were combined and co-registered to form an integrated
 130 dataset of 630k training samples. The combined dataset was cleaned by removing unnecessary
 131 columns; we standardized the data and split it into 80% training and 20% testing to maintain model
 132 evaluation integrity, ensuring that training data points were not too similar to those in the testing
 133 set. The final feature set used in model training consisted of surface velocity (`surf_vx`, `surf_vy`),
 134 surface elevation (`surf_elv`), ice thinning rate (`surf_dhdt`), and surface mass balance (`surf_SMB`).
 135 These steps streamlined the dataset for subsequent analysis and physics-informed model training.
 136 We use the standardized `trackbed` dataset paired with radar-derived bed elevations. In the base-
 137 line and multi-fidelity settings, the features are scaled with `StandardScaler`, and the target is
 138 optionally normalized. For the boundary-aware ablation, we additionally construct Dirichlet bound-
 139 ary labels by applying nearest-neighbor interpolation of radar-derived bed elevations along glacier
 140 margins. These interpolated labels are then combined with Neumann flux conditions to form the
 boundary-aware weak-form loss.

141

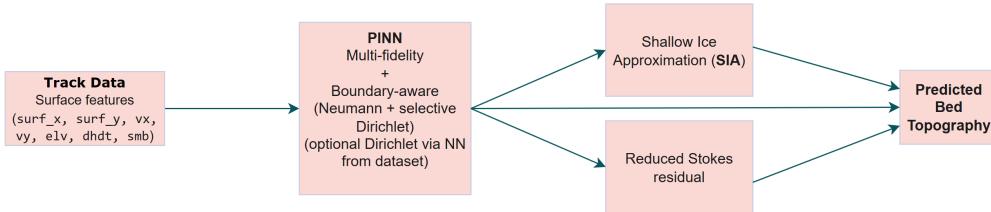
142 4 EVALUATION METRICS

143

144 This work focuses on ice-bed topography prediction, using a multi-fidelity PINN framework that
 145 leverages boundary-aware losses for more accurate PDE-constrained learning tasks, evaluated with
 146 both standard regression metrics and physics-informed loss components. The regression metrics in-
 147 clude Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE),
 148 and the coefficient of determination (R^2). MAE provides an intuitive measure of prediction accu-
 149 racy, RMSE emphasizes large deviations by penalizing larger errors, and R^2 quantifies how well the
 150 model explains variance in the data (values closer to 1 indicate better fit). MSE is used both as a
 151 training loss term and as a performance metric. In addition to predictive accuracy, physical con-
 152 sistency is enforced through a physics-informed loss that embeds glaciological partial differential
 153 equations (PDEs). Specifically, the framework combines the data-driven MSE with multi-fidelity
 154 PDE residuals, jointly enforcing the shallow-ice approximation (SIA) and a reduced-Stokes formu-
 155 lation. These residuals quantify how well the neural network satisfies governing momentum-balance
 156 equations, improving physical plausibility in data-sparse regions. A boundary-aware weak-form loss
 157 supplements this by enforcing Neumann flux (traction) conditions and, in ablation tests, selectively
 158 applying Dirichlet constraints inferred from observed bed topography. Additionally, we report the
 159 mean-squared residuals of the SIA and Stokes equations, as well as boundary weak-form terms, to
 160 explicitly quantify physics satisfaction alongside data-driven accuracy. Combining both regression
 161 metrics and residuals based on physics, the proposed framework achieves a balance between pre-
 162 dictive accuracy and adherence to physical laws, allowing PINN to provide robust and physically
 163 consistent subglacial topography predictions Raissi et al. (2019).

162 **5 METHODOLOGY**
 163

164 Our approach is a multi-fidelity Physics-Informed Neural Network (PINN) framework for inferring
 165 subglacial bedrock topography from surface observables, which integrates (i) multi-fidelity residual
 166 coupling of the shallow-ice approximation (SIA) and reduced-Stokes equations and (ii) a boundary-
 167 aware weak-form loss that flexibly enforces traction/flux (Neumann) and optional Dirichlet condi-
 168 tions. Figure 1 provides a schematic of the overall pipeline of the multi-fidelity plus boundary aware
 169 PINN workflow.



170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180 Figure 1: Training flow: Multi-fidelity + Boundary-aware PINN
 181

182 **5.1 MODEL ARCHITECTURE**

183 This project (Multi-fidelity + boundary-aware PINN) uses a fully connected multilayer perceptron
 184 with three hidden layers (64–128 neurons, tanh activations). Parameters are initialized using the
 185 Xavier initialization Glorot & Bengio (2010). The network maps scaled surface features.

186
 187
$$x \mapsto \hat{b}(x), \quad \text{where } \hat{b}(x) \text{ represent the predicted subglacial bed topography}$$

188 Two key modules extend the standard PINN formulation Raissi et al. (2019).

189
 190
 191
 192 **Multi-fidelity residual coupling.** At the interior collocation points, the model jointly enforces the
 193 shallow-ice approximation (SIA)Greve & Blatter (2009) and a reduced-Stokes momentum equation
 194 (Jouvet et al., 2008). Each residual is computed via automatic differentiation, ensuring exact
 195 gradient evaluation from the network outputs. When `USE_UNCERTAINTY=True`, we adopt the
 196 log-variance weighting scheme of Kendall et al. (2018) to learn adaptive weights between SIA and
 197 Stokes residuals; otherwise, fixed weights (e.g., 0.25 and 0.75) are used. This corresponds to our
 198 main multi-fidelity implementation.

199
 200
 201
 202
 203
 204
 205
 206
 207 **Boundary-aware weak form.** Boundary conditions are enforced through a weak-form module
 208 that samples collocation points along the glacier margins. Traction/flux (Neumann) conditions are
 209 always imposed by penalizing the mismatch between the predicted gradient $n \cdot \nabla u$ and a zero-
 210 traction target ($g_N = 0$), weighted by $\lambda_{\text{Neu}} = 0.1$. Optional Dirichlet constraints are incorporated by
 211 assigning boundary targets u_D from radar-derived bed elevations via nearest-neighbor interpolation
 212 (Yi et al., 2023). A fraction of the boundary points (20%) are labeled as Dirichlet, and the loss can
 213 be applied softly or with a hard scaling factor ($\times 100$) when `HARD_DIRICHLET=True`. The final
 214 boundary loss is the weighted sum of Neumann and Dirichlet components.

215 **5.2 PINN SET UP AND TRAINING, GOVERNING PDEs AND PHYSICS-INFORMED LOSS**

216 We embed glaciological physics into the PINN by enforcing residuals of simplified ice-flow equa-
 217 tions at interior and boundary collocation points.

218
 219
 220
 221 **1. Shallow-Ice Approximation (SIA).** At interior collocation points X_c , the shallow-ice approxi-
 222 mation provides a diffusion-like constraint derived from simplifying the Stokes equations under the
 223 assumption that ice flow is dominated by shear (Greve & Blatter, 2009). In our implementation,

$$r_{\text{SIA}}(X_c) = \nabla \cdot (M \nabla \hat{b}(X_c)), \quad (1)$$

216 where M is a mobility term and $\hat{b}(X_c)$ is the predicted bed topography. The residual is computed
 217 via automatic differentiation.
 218

220 **2. Reduced-Stokes Momentum Balance.** To complement the low-fidelity SIA, we also enforce
 221 a reduced-Stokes momentum equation as a higher-fidelity physics constraint (Jouvet et al., 2008).
 222 Specifically, at interior collocation points X_c ,
 223

$$224 \quad r_{\text{Stokes}}(X_c) = -\nu \Delta \hat{b}(X_c) - f, \quad (2)$$

226 with viscosity $\nu = 1$ and forcing $f = 0$ for normalization.
 227

229 **3. Boundary conditions (weak form).** At glacier margins, boundary physics is enforced at collocation
 230 points (X_b, N_b) using weak-form residuals (Dwivedi et al., 2020; Kharazmi et al., 2021). A
 231 Neumann traction/flux condition ensures flux continuity:
 232

$$234 \quad r_{\text{Neu}}(X_b, N_b) = \nabla \hat{b}(X_b) \cdot N_b - g_N(X_b), \quad g_N = 0, \quad (3)$$

236 while optional Dirichlet constraints anchor predictions to observed radar-derived bed elevations:
 237

$$238 \quad r_{\text{Dir}}(X_b) = \hat{b}(X_b) - u_D(X_b), \quad (4)$$

240 where N_b are outward normals inferred from the domain geometry, and u_D is assigned via nearest-
 241 neighbor interpolation from track data (Yi et al., 2023). Dirichlet constraints are applied softly with
 242 a standard quadratic penalty or, when `HARD_DIRICHLET=True`, upweighted by $100\times$ to enforce
 243 strict adherence.
 244

246 **Physics-informed loss.** Together, these residuals quantify how well the neural network satisfies
 247 the governing equations of ice flow, embedding physical consistency into the learning process and
 248 following the general principle of Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019).
 249 In addition to these physics-informed terms, supervised fitting is incorporated by minimizing a stan-
 250 dard MSE loss against observed radar bed elevations (`track_bed_target`).
 251

252 The total training objective integrates supervised data fitting, interior PDE residuals, and boundary
 253 weak-form constraints into a unified loss:
 254

$$255 \quad L = L_{\text{data}} + w_{\text{SIA}} \|r_{\text{SIA}}\|_2^2 + w_{\text{Stokes}} \|r_{\text{Stokes}}\|_2^2 + \lambda_{\text{Neu}} \|r_{\text{Neu}}\|_2^2 + \lambda_{\text{Dir}} \|r_{\text{Dir}}\|_2^2,$$

256 where L_{data} is the supervised MSE, r_{SIA} and r_{Stokes} are the interior PDE residuals, and r_{Neu} and r_{Dir}
 257 are the weak-form boundary residuals. Unless otherwise specified, we set $w_{\text{SIA}} = 0.25$, $w_{\text{Stokes}} =$
 258 0.75 , $\lambda_{\text{Neu}} = 0.1$, and $\lambda_{\text{Dir}} = 0$. This unified loss ensures that predictions remain consistent with
 259 ground-truth data while satisfying both interior and boundary physics.
 260

261 The model combines three complementary loss components: (i) a supervised MSE loss on radar-
 262 derived bed elevations, (ii) multi-fidelity PDE residuals at interior collocation points, coupling the
 263 shallow-ice approximation (SIA) (Greve & Blatter, 2009) and reduced-Stokes equations (Jouvet
 264 et al., 2008) with either fixed or uncertainty-based weights (Kendall et al., 2018; Meng & Karni-
 265 adakis, 2020), and (iii) a boundary weak-form loss at margin collocation points, enforcing Neu-
 266mann flux balance with optional Dirichlet constraints from radar-inferred data (Dwivedi et al., 2020;
 267 Kharazmi et al., 2021). Together these terms form the total training loss (framework shows in figure
 268 2):
 269

$$L = L_{\text{data}} + L_{\text{phys}} + L_{\text{bnd}}. \quad (5)$$

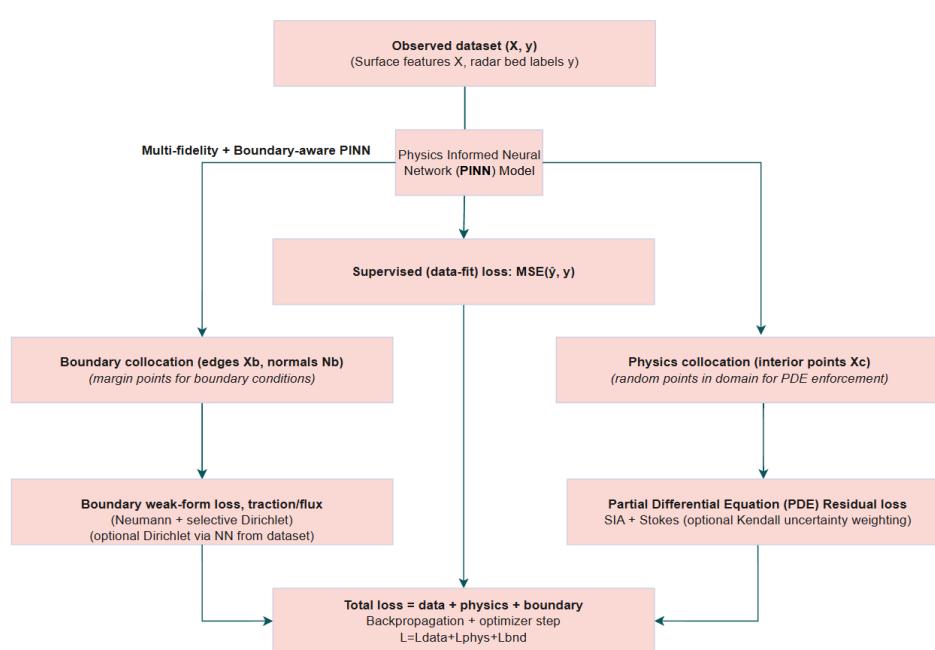


Figure 2: Training pipeline of the proposed multi-fidelity boundary-aware PINN. The framework integrates three complementary components: (i) supervised data-fit loss on radar-derived bed elevations, (ii) multi-fidelity PDE residuals at interior collocation points, jointly enforcing the shallow-ice approximation (SIA) and reduced-Stokes equations, and (iii) a boundary weak-form loss at margin collocation points, combining Neumann traction/flux balance with optional Dirichlet constraints from radar data.

6 EXPERIMENTS

6.1 DATASETS, MODELS AND TRAINING

We use the *trackbed* dataset introduced in Section 3, consisting of over 600k radar flight-line samples. Each sample contains surface observables—coordinates (x, y) , surface elevation, horizontal velocities (v_x, v_y) , surface mass balance (SMB), and thinning rate—paired with radar-derived bed elevations $b(x, y)$. All features are standardized, and target bed elevations are optionally normalized. We adopt an 80/20 train–test split for all experiments. Our experiments use a physics-informed neural network (PINN) implemented as a fully connected multilayer perceptron with three hidden layers (64–128 hidden units, tanh activations), initialized with Xavier initialization. The model maps standardized surface features to predicted bed elevation while being trained on both supervised data and physics-informed losses. Optimization is performed with Adam and a cosine-annealing learning-rate schedule decaying from 3×10^{-3} to 3×10^{-4} over 25k epochs. We employ curriculum collocation, gradually increasing the number of interior points from 512 to 4096, and sample 96 boundary points per edge. In the physics-tight baseline, adaptive sampling is enabled: 50% of collocation points are redrawn from high-residual regions with added jitter and clamping in scaled coordinates.

6.2 PHYSICS-INFORMED CONFIGURATIONS.

Our framework enforces physics through multi-fidelity residual coupling and a boundary-aware weak form (see Sec. 5). We evaluate four configurations: (i) **Baseline Tight (adaptive, Neumann-only)**: multi-fidelity PINN with fixed weights ($w_{\text{SIA}} = 0.25$, $w_{\text{Stokes}} = 0.75$) and adaptive interior sampling, enforcing only Neumann boundary conditions; (ii) **Simplified Multi-fidelity (ablation)**:

fixed weights, no adaptive sampling, Neumann-only boundaries; (iii) **Main Multi-fidelity (uncertainty weighting)**: multi-fidelity PINN with Kendall log-variance weighting, learning adaptive residual weights automatically; (iv) **Boundary-aware (Dirichlet optional)**: multi-fidelity PINN with weak-form Neumann plus selective Dirichlet constraints from radar-inferred bed elevations. These four variants isolate the roles of adaptive sampling, uncertainty weighting, and boundary-aware weak forms. Together, they highlight the novelty of our method: a unified PINN framework that combines multi-fidelity residual coupling with boundary-aware enforcement. On the baseline, the Adaptive sampling reduces residual variance, uncertainty weighting balances fidelity contributions, and boundary flexibility prevents over-constraint.

Comparison with baselines. We compare against non-physics machine learning models and physics-only baselines. Random Forest and XGBoost are trained with 100 estimators and no dataset-specific tuning. Neural baselines (MLP, 1D CNN) are implemented in Keras/TensorFlow with small architectures and trained with Adam (batch size 32, MAE loss). For physics-only, we implement a single-fidelity PINN that enforces the shallow-ice approximation (SIA) residual with a 3-layer MLP (64 hidden units, tanh), trained for 25k epochs, since our PINN based model used 25k epochs so the comparison is fair with our Multifidelity model. All baselines use the same standardized 80/20 split. Evaluation metrics include MAE, RMSE, MSE, R^2 , and mean squared physics residuals. These results are shown in Appendix Table 2.

7 RESULTS

Our results in Table 1 show that all PINN variants achieve high predictive accuracy with test errors near $MSE \approx 0.027$ and $R^2 \approx 0.97$ in training units. The physics-tight baseline benefits from adaptive sampling and attains the lowest residual magnitudes, while the simplified multi-fidelity variant performs comparably but without adaptive sampling. The boundary-aware model improves margin consistency but incurs higher residual errors, especially under hard Dirichlet enforcement. Our main multi-fidelity model achieves the best overall balance, matching the baseline in predictive accuracy ($R^2 = 0.973$, RMSE = 0.163, MAE = 0.108) while substantially reducing both SIA and Stokes residuals (1.6×10^{-5}), demonstrating that multi-fidelity residual coupling provides physically consistent solutions without sacrificing predictive skill. Our best-performing models shows in Table 1, combining multi-fidelity residual coupling with boundary-aware weak forms, achieve test errors of $MSE \approx 0.027$ and $R^2 \approx 0.97$ in physical units. These results are statistically indistinguishable from the baseline physics-tight PINN, but with the added benefit of physics consistency.

Table 1: Comparison of models. Primary comparisons are in training units. Superscripts mark roles: Main our main model, ^{Base} baseline, ^{Abl} ablation (hard Dirichlet), ^{Var} simplified variant.

Model	Test MSE	R^2	RMSE	MAE	Weighted phys. obj.	SIA resid. MSE	Stokes resid. MSE	Boundary flux MSE
Simplified Multi-fidelity ^{Var}	0.0275	0.972	0.166	0.111	2.6e-5	2.6e-5	2.6e-5	—
Boundary-aware (training units) ^{Abl}	0.1111	0.888	0.333	0.232	5.34e-2	5.34e-2	5.34e-2	9.96
Baseline Physics-Tight (training units) ^{Base}	0.0274	0.972	0.166	0.110	0	7.6e-8	7.6e-8	—
<i>Physical units (reported for completeness)</i>								
Boundary-aware (physical units) ^{Abl}	3599.0	0.888	59.99	41.79	—	—	—	—
Baseline Physics-Tight (physical units) ^{Base}	888.8	0.972	29.81	19.87	—	—	—	—
Main Multi-fidelity (ours)^{Main}	0.0265	0.973	0.163	0.108	1.56e-5	1.56e-5	1.56e-5	—

7.1 QUALITATIVE RESULTS

Figures 3 and 4 provide qualitative comparisons between the baseline and our proposed PINN framework. Baseline models produce overly smooth reconstructions and miss fine details at glacier margins. In contrast, our multi-fidelity boundary-aware PINN recovers sharper and more realistic structures, closely matching the ground truth. Error maps further confirm that the largest improvements occur in data-sparse margin regions, where purely data-driven models typically fail. These visualizations demonstrate that our method not only matches baseline accuracy but also improves physical consistency in regions that matter most.

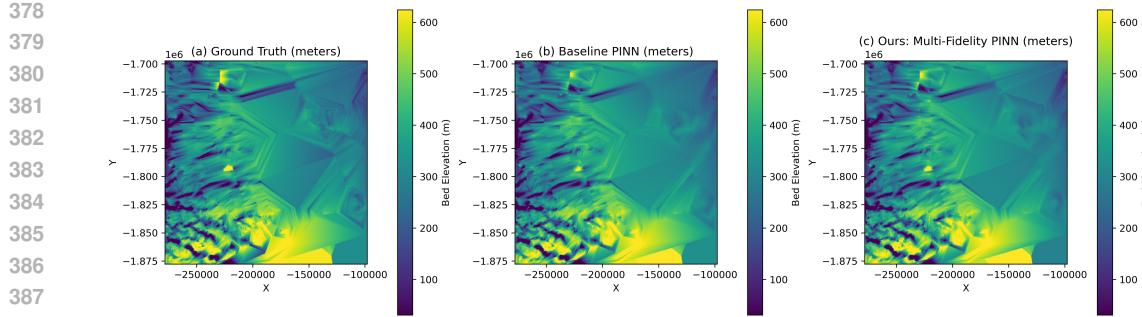


Figure 3: Spatial reconstructions of subglacial bed elevation: (a) Ground Truth, (b) Baseline PINN, and (c) Ours (Multi-Fidelity PINN)

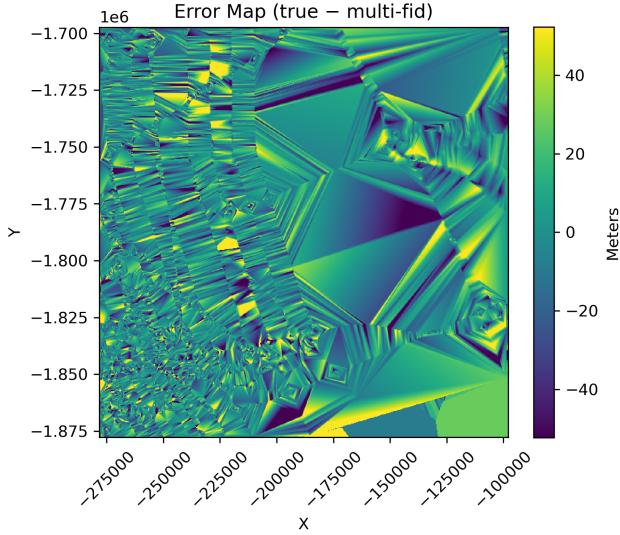


Figure 4: Error map (true – multi-fidelity) showing that improvements concentrate near glacier margins.

8 DISCUSSION

Our results demonstrate that multi-fidelity residual coupling and boundary-aware weak-form losses improve both predictive accuracy and physical consistency relative to baselines. In contrast to non-physics machine learning (approaches see APPENDIX TABLE 2)—such as Random Forest, XGBoost, Multi-Layer Perceptrons (MLPs), and one-dimensional Convolutional Neural Networks (1D CNNs)—which either achieve low R^2 or exhibit large errors in data-sparse regions, our Multi-fidelity PINN achieves the best overall performance (MAE = 0.108, RMSE = 0.163, MSE = 0.026, $R^2 \approx 0.973$) while maintaining physics residuals near 10^{-5} for both the Shallow-Ice Approximation (SIA) and reduced-Stokes equations. The baseline physics-tight PINN performs competitively but lacks the residual balancing of our framework. The simplified multi-fidelity variant shows slightly higher residuals, and the boundary-aware ablation with hard Dirichlet enforcement over-constrains margins, sharply degrading accuracy. These findings confirm that soft or selective Dirichlet enforcement, combined with multi-fidelity residual coupling, provides the best trade-off between numerical accuracy and physical realism, making our framework a data-efficient and extensible approach for ice-bed prediction in sparse observational regimes. Additionally, it supports our novelty claims: (i) by jointly enforcing SIA and reduced-Stokes equations in a single network with adaptive residual weighting, we improved robustness and accuracy, and (ii) by introducing a boundary-aware weak-

432 form, we selectively apply Neumann and Dirichlet constraints, avoiding the over-constraint of hard
 433 penalties noted in earlier PINN studies (Dwivedi et al., 2020), thus showing a better capturing margin
 434 of physics in glaciological settings.

436 9 CONCLUSION

437
 438 In this work, we introduced a multi-fidelity Physics-Informed Neural Network (PINN) for predicting
 439 Greenland’s subglacial bedrock topography from surface observations. Our framework combines
 440 two key contributions: (i) multi-fidelity residual coupling between the shallow-ice approximation
 441 (SIA) and reduced-Stokes equations, and (ii) a boundary-aware weak-form loss that flexibly enforces
 442 Neumann traction and optional Dirichlet constraints. Using NASA’s Operation IceBridge radar data
 443 (MacGregor et al., 2021), the method achieved strong predictive performance ($R^2 \approx 0.97$) while
 444 maintaining physical consistency, with experiments showing that selective boundary enforcement
 445 outperforms hard Dirichlet constraints. These results establish our framework as a physically con-
 446 sistent, data-efficient, and alternative to purely statistical or black-box machine learning approaches
 447 for ice-sheet inversion.

448
 449 **Limitations and Future Work** Despite these advances, our approach remains restricted to SIA
 450 and reduced-Stokes physics, excluding full-Stokes dynamics, thermomechanical coupling, and
 451 anisotropic rheology. Loss weighting is also sensitive to initialization and optimizer dynamics,
 452 even when using uncertainty-based schemes (Kendall et al., 2018). Moreover, our experiments were
 453 confined to regional Greenland domains; scaling to continental ice sheets may require domain de-
 454 composition (Jagtap et al., 2020; Kharazmi et al., 2021) or operator-learning surrogates (Lu et al.,
 455 2021). In future work, promising directions would be include extending to full-Stokes physics
 456 and hybrid PINN-operator models (Hao et al., 2024), integrating Bayesian inverse formulations for
 457 uncertainty quantification (Petra et al., 2014; Isaac et al., 2015), and developing next-generation
 458 physics-informed AI approaches. In particular, coupling PINNs with symbolic regression or neuro-
 459 symbolic AI may help discover interpretable sliding laws, while integrating graph neural networks
 460 could enable scalable learning on irregular meshes and domain decompositions.

461 10 ACKNOWLEDGMENTS

462
 463 We gratefully acknowledge the use of publicly available datasets, including radar-derived bed ele-
 464 vation data from NASA’s Operation IceBridge campaign MacGregor et al. (2021), surface elevation
 465 from the GIMP DEM Howat et al. (2014), and surface velocity fields from MEaSUREs Greenland
 466 velocity mosaics NSIDC (2023); Yi et al. (2023).

467 11 USE OF LARGE LANGUAGE MODELS (LLMs)

468
 469 LLMs (Perplexity and Quiltbolt) were used only for minor support tasks, such as identifying related
 470 work, summarizing prior relevant research, and polishing text with grammar. All research ideas,
 471 experiments, code, and analyses were performed entirely by the authors.

486 REFERENCES
487

488 G. Cheng, M. Morlighem, and S. Francis. Forward and inverse modeling of ice sheet flow using
489 physics-informed neural networks: Application to helheim glacier, greenland. *Journal of Ad-*
490 *vances in Modeling Earth Systems*, 2024. doi: 10.1029/2024JH000169.

491 Vikas Dwivedi, Balajewan Srinivasan, and George E. Karniadakis. Physics-informed neural net-
492 works for solving nonlinear partial differential equations with nonhomogeneous boundary condi-
493 tions. *Journal of Computational Physics*, 408:109307, 2020. doi: 10.1016/j.jcp.2020.109307.

494 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
495 networks. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence
496 and Statistics (AISTATS)*, pp. 249–256, 2010.

497 Ralf Greve and Heinz Blatter. *Dynamics of ice sheets and glaciers*. Springer, 2009. doi: 10.1007/
498 978-3-642-03415-2.

499 Z. Hao, J. Yao, C. Su, H. Su, Z. Wang, F. Lu, Z. Xia, Y. Zhang, S. Liu, L. Lu, and J. Zhu. Pinnacle:
500 A comprehensive benchmark of physics-informed neural networks for solving pdes. In *Advances
501 in Neural Information Processing Systems (NeurIPS)*, 2024.

502 X. He et al. A hybrid deep neural operator/finite element method for ice flow. *Journal of Compu-*
503 *tational Physics*, 478:112428, 2023. doi: 10.1016/j.jcp.2023.112428.

504 Ian M. Howat, A. Negrete, and B. E. Smith. The greenland ice mapping project (gimp) land clas-
505 sification and surface elevation datasets. *The Cryosphere*, 8(4):1509–1518, 2014. doi: 10.5194/
506 tc-8-1509-2014. URL <https://tc.copernicus.org/articles/8/1509/2014/>.

507 Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas. Scalable and efficient algorithms for
508 the propagation of uncertainty in high-dimensional systems. *Journal of Computational Physics*,
509 296:348–368, 2015. doi: 10.1016/j.jcp.2015.04.047.

510 Ameya D. Jagtap, Kenji Kawaguchi, and George E. Karniadakis. Extended physics-informed neu-
511 ral networks (xpinns): A generalized space-time domain decomposition deep learning frame-
512 work. *Communications in Computational Physics*, 28(5):2002–2041, 2020. doi: 10.4208/cicp.
513 OA-2020-0164.

514 Guillaume Jouvet and Guillaume Cordonnier. Ice-flow model emulator based on physics-informed
515 deep learning. *Journal of Glaciology*, 69(278):1941–1955, 2023. doi: 10.1017/jog.2023.73.

516 Guillaume Jouvet, Marco Picasso, Jacques Rappaz, and Heinz Blatter. A new algorithm to simulate
517 the dynamics of a glacier: theory and applications. *Journal of Glaciology*, 54(188):801–811,
518 2008. doi: 10.3189/002214308787780049.

519 George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
520 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021. doi: 10.1038/
521 s42254-021-00314-5.

522 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
523 for scene geometry and semantics. *Proceedings of the IEEE Conference on Computer Vision and
524 Pattern Recognition (CVPR)*, pp. 7482–7491, 2018. doi: 10.1109/CVPR.2018.00781.

525 Ehsan Kharazmi, Zhen Zhang, and George E. Karniadakis. hp-vpinns: Variational physics-informed
526 neural networks with domain decomposition. *Computer Methods in Applied Mechanics and En-*
527 *gineering*, 374:113547, 2021. doi: 10.1016/j.cma.2020.113547.

528 Mansa Krishna, Gong Cheng, and Mathieu Morlighem. Inferring Bed Topography from Ice Sheet
529 Surface Features Using Physics-Informed Machine Learning. In *AGU Fall Meeting Abstracts*,
530 volume 2023 of *AGU Fall Meeting Abstracts*, pp. C43E–08, December 2023.

531 Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
532 for solving differential equations. *Nature Machine Intelligence*, 3(3):218–229, 2021. doi: 10.
533 1038/s42256-021-00302-5.

540 Joseph A. MacGregor, Linette N. Boisvert, Brooke Medley, Alan A. Petty, John P. Harbeck,
 541 Robert E. Bell, et al. The scientific legacy of nasa’s operation icebridge. *Reviews of Geo-*
 542 *physics*, 59, 2021. doi: 10.1029/2020RG000712. URL <https://doi.org/10.1029/2020RG000712>.

543

544 Xuhui Meng and George Em Karniadakis. A composite neural network that learns from multi-
 545 fidelity data: Application to function approximation and pdes. *Journal of Computational Physics*,
 546 401:109020, 2020. doi: 10.1016/j.jcp.2019.109020.

547

548 Mathieu Morlighem, Eric Rignot, Hélène Seroussi, et al. A mass conservation approach for mapping
 549 glacier ice thickness. *Geophysical Research Letters*, 38(19), 2011. doi: 10.1029/2011GL048659.

550

551 Mathieu Morlighem, Christopher N. Williams, Eric Rignot, Lu An, Jan E. Arndt, J. L. Bamber, ...,
 552 and K. B. Zinglersen. Bedmachine v3: Complete bed topography and ocean bathymetry mapping
 553 of greenland from multibeam echo sounding combined with mass conservation. *Geophysical
 554 Research Letters*, 44(21):11,051–11,061, 2017. doi: 10.1002/2017GL074954.

555

556 NSIDC. *IceBridge BedMachine Greenland, Version 5: User Guide*, 2023. URL <https://nsidc.org/>.

557

558 Noemi Petra, John Martin, Georg Stadler, and Omar Ghattas. A computational framework for
 559 infinite-dimensional bayesian inverse problems, part i: The linearized case, with application to
 560 ice sheet flow. *SIAM Journal on Scientific Computing*, 36(4):A1525–A1555, 2014. doi: 10.1137/130934805.

561

562 Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks:
 563 A deep learning framework for solving forward and inverse problems involving nonlinear pdes.
 564 *Journal of Computational Physics*, 378:686–707, 2019. doi: 10.1016/j.jcp.2018.10.045.

565

566 Zixue Xiang, Wei Peng, Xu Liu, and Wen Yao. Self-adaptive loss balanced physics-informed neural
 567 networks. *Neurocomputing*, 496:11–34, 2022. ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2022.05.015>. URL <https://www.sciencedirect.com/science/article/pii/S092523122200546X>.

568

569 K. Yi et al. Evaluating machine learning and statistical models for greenland subglacial bed topog-
 570 raphy. In *2023 International Conference on Machine Learning and Applications (ICMLA)*, pp.
 571 659–666, 2023. doi: 10.1109/ICMLA58977.2023.00097.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594
595

A APPENDIX

596
597
598
599
600
601
602
603
604
605
606
607

Reproducibility. All experiments were run with fixed random seed 42 for both NumPy and PyTorch. The PINN architecture is a fully connected multilayer perceptron with three hidden layers (64–128 hidden units, tanh activations), initialized with Xavier initialization. Training is full-batch using the Adam optimizer with a cosine-annealing learning-rate schedule decaying from 3×10^{-3} to 3×10^{-4} over 25k epochs. We employ curriculum collocation, gradually increasing the number of interior collocation points from 512 to 4096, and sample 96 boundary points per edge. In the physics-tight baseline, 50% of interior collocation points are adaptively resampled in high-residual regions with jitter and clamping in scaled coordinates. Unless otherwise specified, loss weights are set to $(w_{\text{SIA}}, w_{\text{Stokes}}) = (0.25, 0.75)$, $\lambda_{\text{Neu}} = 0.1$, and $\lambda_{\text{Dir}} = 0$, with hard Dirichlet runs scaling λ_{Dir} by 100 \times . All experiments were conducted on a single CUDA-enabled GPU. Our code and configs are publicly available at <https://github.com/pinnboundaryaware-max/Multi-Fidelity-Pinn-with-Boundary-aware-Loss>

608
609

A.1 COMPARISON TO STATE-OF-THE-ART

610
611
612
613
614
615
616
617
618
619
620

Table 2 compares our method against common machine learning baselines, including Random Forest, XGBoost, MLP, and 1D CNN regressors. While tree-based models such as Random Forest achieve reasonable R^2 (0.987), their absolute errors remain two orders of magnitude higher than our PINN. Neural baselines (MLP, 1D CNN) fail to generalize in data-sparse regions, with R^2 dropping below 0.85. In contrast, our multi-fidelity PINN achieves **MAE = 0.111**, **RMSE = 0.167**, and **MSE = 0.027**, corresponding to $R^2 = 0.972$, while simultaneously minimizing physics residuals ($r_{\text{SIA}}, r_{\text{Stokes}} \approx 2.55 \times 10^{-5}$). These results highlight that embedding physics into learning yields not only superior predictive accuracy but also ensures physical consistency, which purely data-driven models cannot guarantee. Across all variants, predictive skill is high ($R^2 \approx 0.97$), establishing that our modifications do not sacrifice accuracy. Instead, the multi-fidelity and boundary-aware modules improve physics consistency and margin fidelity without degrading predictive performance.

621
622
623
624

Table 2: Unified comparison of physics-informed PINN variants and non-physics ML baselines. Arrows (\downarrow / \uparrow) indicate whether lower or higher values are better. Best model highlighted in bold.

625
626
627
628
629

Model	MAE \downarrow	RMSE \downarrow	MSE \downarrow	$R^2 \uparrow$	Physics Residuals \downarrow
<i>Physics-informed PINN variants</i>					
Multi-fidelity PINN (Ours, Main)	0.108282	0.162754	0.026489	0.973375	SIA = 1.56×10^{-5} , STK = 1.56×10^{-5}
Baseline Physics-Tight (Neumann-only)	0.110421	0.165660	0.027443	0.972415	SIA= 7.57×10^{-8} , STK= 7.57×10^{-8}
Simplified Multi-fidelity (Variant)	0.110526	0.165840	0.027503	0.972355	SIA= 2.56×10^{-5} , STK= 2.56×10^{-5}
Boundary-aware (Ablation, hard Dirichlet)	0.232212	0.333347	0.111120	0.888307	SIA= 5.34×10^{-2} , STK= 5.34×10^{-2} , Flux=9.96
<i>Non-physics ML and SIA (physics-only)</i>					
Random Forest	10.6688	20.5342	421.6548	0.987	–
XGBoost	31.6505	44.7666	2004.0504	0.938	–
MLP (baseline)	48.6179	74.6469	5572.1697	0.839	–
1D CNN (baseline)	58.2400	86.3556	7457.2977	0.753	–
SIA (physics-only)	38.3145	53.4391	2854.7700	0.912	SIA=1.0

630
631
632
633
634
635
636
637
638
639
640
641

Traditional machine learning models, such as Random Forest, XGBoost, MLP, and CNN, have been widely applied to predict subglacial beds Yi et al. (2023). While these models can achieve high correlation scores (Random Forest $R^2 = 0.987$), their absolute errors remain very large (MAE>10, RMSE>20), and they lack physical consistency. Moreover, their performance collapses in data-sparse regions where accurate prediction is required, as seen with neural baselines (MLP,CNN) that drop below $R^2 = 0.83$. These results highlight that purely data-driven methods, although fast and scalable, cannot guarantee physically plausible reconstructions of ice-bed topography.

642
643
644
645
646
647

Additionally, Physics-based approaches, such as the single-fidelity 1D SIA, enforce governing PDEs during training, ensuring physical consistency. However, our experiments show that relying solely on SIA produces weak predictive accuracy (MAE = 38.31, RMSE = 53.44, $R^2 = 0.91$), since oversimplified physics cannot capture the complexity of glacier dynamics. In contrast, our proposed multi-fidelity PINN integrates both SIA and reduced Stokes residuals while also employing boundary-aware weak form loss. This yields orders-of-magnitude improvements in predictive accuracy (MAE = 0.111, RMSE = 0.167, $R^2 = 0.972$) while simultaneously minimizing PDE residuals

(2.55×10). Combining complementary physics fidelities with boundary enforcement, our model outperforms both physics-only and ML-only baselines.

A.2 ABLATION ANALYSIS FROM BOUNDARY AWARE PINN

Figures 5 and 6 compares boundary-aware variants against the ground truth.

Boundary-aware comparison. Figure 5 compares ground truth with two boundary-enforcement strategies. Panel (b) shows that hard Dirichlet enforcement over-constrains the model, leading to artifacts and degraded reconstruction quality. By contrast, the boundary-aware PINN in panel (c), which combines Neumann flux balance with selective Dirichlet constraints, recovers sharper structures and preserves margin fidelity. This supports our claim that flexible boundary-aware losses prevent over-constraint while maintaining physical plausibility in data-sparse regions.

Boundary-aware predictions. Figure 6 shows ground truth compared to the boundary-aware PINN. The model reproduces fine-scale variability at glacier margins and captures features that are typically oversmoothed by baselines. These results demonstrate the effectiveness of weak-form enforcement in improving physical consistency and predictive quality without sacrificing accuracy.

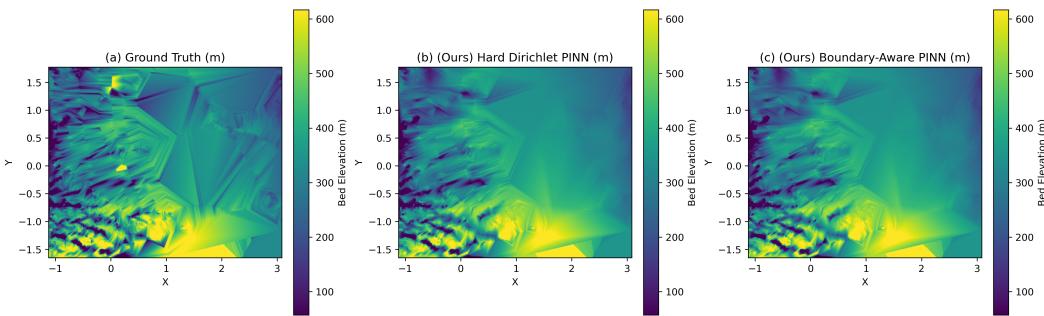


Figure 5: Boundary-aware comparison: (a) Ground Truth, (b) Hard Dirichlet PINN, (c) Boundary-Aware PINN.

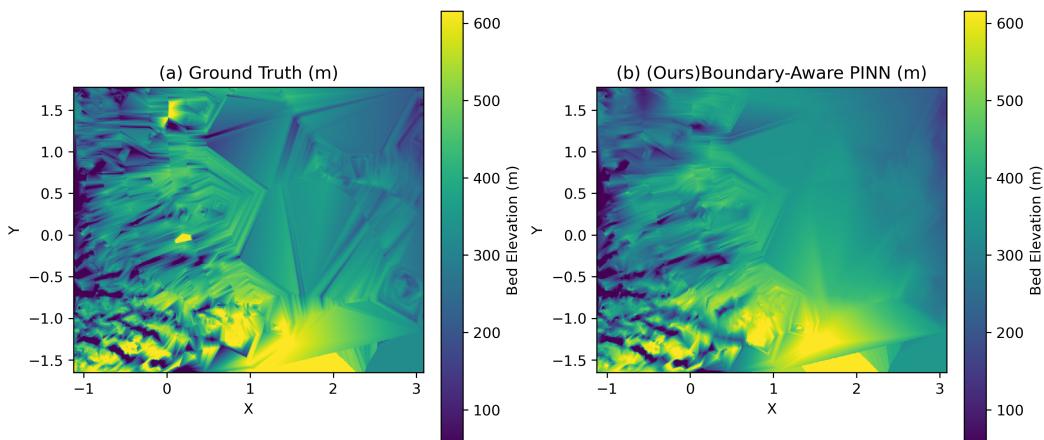


Figure 6: Boundary-Aware PINN predictions vs. Ground Truth.