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Abstract

Machine unlearning offers effective solutions for revoking the influence of specific training
data on pre-trained model parameters. While existing approaches address unlearning for
classification and generative models, they overlook an important category of machine learning
models: contrastive learning (CL) methods. This paper addresses this gap by introducing
the Machine Unlearning for Contrastive Learning (MUC) framework and adapting existing
methods. We identify limitations in current approaches, noting that several methods
perform inadequately as unlearners and that existing evaluation tools insufficiently validate
unlearning effects in contrastive learning. To address these issues, we propose Alignment
Calibration (AC), a novel method that explicitly considers contrastive learning properties and
optimizes towards new auditing metrics for easy verification of unlearning. Through empirical
comparisons with baseline methods on SimCLR, MoCo, and CLIP, we demonstrate that AC:
(1) achieves state-of-the-art performance, approximating exact unlearning (retraining); (2)
enables data owners to clearly visualize unlearning effects through black-box evaluation. The
code is available at https://github.com/EhanW/Alignment-Calibration.

1 Introduction

The success of modern machine learning models largely relies on training with a large corpus of data. However,
carefully annotated data are expensive and difficult to obtain, thus urging the utilization of the vast amount
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of unlabeled data in the wild. The recent self-supervised learning methods, especially contrastive learning
methods (Chen et al., 2020; 2021; He et al., 2020), provide viable solutions to learning general representations
for various downstream tasks. For example, unimodal contrastive learning models employ the InfoNCE loss
to maximize the feature similarity between positive pairs (e.g., different data augmentations of the same
image) while minimizing that between the negative ones (e.g., different images). This training scheme also
applies to multi-modal training (e.g., CLIP (Radford et al., 2021)), and the learned encoders are widely
applied in various tasks, e.g., GPT-based models (Achiam et al., 2023) and latent diffusion models (Rombach
et al., 2022).

To amass large-scale datasets for training contrastive learning models, practitioners often resort to web
crawling (e.g., using Common Crawl1). However, such data collection methods may disregard data owners’
privacy concerns, potentially retrieving their data without consent. Moreover, acquired training data may
include copyrighted material or even inappropriate content, such as sexual abuse (e.g., in recent reports2

against content in LAION-5B (Schuhmann et al., 2022)). In these scenarios, data owners or authorities may
rightfully request the removal of misused training data (i.e., unlearning dataset) 3, necessitating adjustments
to the trained model parameters. While retraining the model from scratch without the unlearning dataset is
a straightforward solution, it incurs substantial computational costs for large models and datasets.

To eliminate the effect of the unlearning dataset on the model with minimum effort, machine unlearning
methods (Cao & Yang, 2015; Bourtoule et al., 2021; Ginart et al., 2019; Guo et al., 2019; Neel et al., 2021;
Ullah et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Chen et al., 2023; Zhang et al., 2024a; Fan et al.,
2024; Shen et al., 2024) provide recipes for supervised learning methods on group removal and for generative
models on sample or concept removal. However, the study of an efficient solution for contrastive learning
models is under-explored4. In this paper, we establish the foundation of Machine Unlearning for Contrastive
Learning models (MUC). MUC adapts various existing methods to contrastive learning and introduces the
notion of data owners who request unlearning and model owners who execute unlearning. Given candidate
unlearning algorithms, the model owners first perform white-box evaluation to select the best method and
generate an optimal unlearned model. The data owners then perform black-box evaluation to validate the
effect of the unlearning procedure. We argue that unlearning success is achieved only if the unlearned model
meets the criteria on both sides. We summarize this unlearning pipeline in Figure 1.

Unfortunately, direct adaptations of existing unlearning approaches are unsatisfactory on both considerations.
Firstly, from the model owners’ perspective, such algorithms are suboptimal approximations of exact unlearning
(training from scratch) under different white-box evaluations and there lack of a good candidate method.
Secondly, from the data owner’s perspective, even given an optimal unlearned model, it is difficult to discern
the unlearning effect under existing black-box evaluation tools, rendering it hard to determine the success of
unlearning.

Motivated by the above state of affairs, we introduce a novel unlearning method called Alignment Calibration
(AC) that is specifically tailored for contrastive learning. AC optimizes a novel loss function that involves
three terms: (1) a positive alignment calibration term that removes the footprint of the unlearn set on the
representation; (2) a negative alignment calibration term that leaves explicit unlearning traces for evaluation;
(3) a performance preserving term that maintains uniformity.

Finally, we empirically compare baseline methods with our Alignment Calibration algorithms on unlearning
models pre-trained on SimCLR (Chen et al., 2020) MoCo (He et al., 2020), and CLIP (Radford et al., 2021).
Under various unlearning settings (e.g., the fraction of the unlearning dataset) and evaluation metrics, AC
consistently outperforms the baseline methods, especially under unlearn evaluation, validating the benefits of
our method. In summary, we make the following contributions:

1https://commoncrawl.org/
2https://purl.stanford.edu/kh752sm9123
3In accordance with policies such as the European Union’s General Data Protection Regulation (GDPR), the California

Consumer Privacy Act (CCPA), and Canada’s proposed Consumer Privacy Protection Act (CPPA).
4We note that Wang et al. (2023) addresses a related problem in contrastive unlearning. However, it differs significantly from

our approach in several key aspects. Notably, Wang et al. (2023) does not provide a comprehensive evaluation framework or
establish strong baseline comparisons.
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Figure 1: An overview of the unlearning pipeline for contrastive learning. Given a training set Dtrain contains
an unlearn subset Dunlearn, and a pretrained encoder g, model owners (Column 1) aim to find an optimal
unlearning algorithm by comparing with exact unlearning (retraining with the retain dataset Dtrain\Dunlearn)
to obtain an unlearned encoder ĝ. Data owners (Column 2), who only have black-box access to the model
outputs, then evaluate the unlearning outcome by comparing the output features before/after unlearning.

• We propose the MUC framework that considers existing methods and various evaluation tools in contrastive
learning, including white-box evaluation and black-box evaluation.

• Motivated by insufficiencies of existing unlearning algorithms and evaluation tools, we propose the novel
Alignment Calibration method that satisfies both model owners and data owners.

• Our experiments initiate the evaluation of existing machine unlearning methods for contrastive learning
and confirm the superiority of our new methods.

2 Background and Related Work

We first provide background and related work on contrastive learning and machine unlearning.

Contrastive Learning and Self-supervised Learning Contrastive learning learns general representations
by contrasting sample pairs, which analytically benefits the downstream applications (Saunshi et al., 2019;
Tosh et al., 2021). Popular contrastive learning methods such as Contrastive Predictive Coding (CPC)
(van den Oord et al., 2018), SimCLR (Chen et al., 2020), and MoCo (He et al., 2020) employ the InfoNCE
loss to enforce the contrast between positive and negative pairs. Other variants of the InfoNCE-based loss
are also widely applied, e.g., f -MICL (Lu et al., 2023), Alignment and Uniformity (Wang & Isola, 2020), and
Pearson χ2 divergence (Tsai et al., 2021). This contrastive training scheme is also applied to the context of
multimodal learning, where images and texts are formed as pairs, e.g., in CLIP (Radford et al., 2021). There
exist other self-supervised learning methods that also learn representations (Grill et al., 2020; Chen & He,
2021; He et al., 2022; Caron et al., 2021). In this paper, we mainly focus on developing unlearning recipes for
contrastive learning methods, especially SimCLR, MoCo, and CLIP.

Specifically, contrastive learning usually applies the InfoNCE loss to learn a representation g. Given a
probability measure p, we define the density of positive pairs sampled from p as p+, i.e., two samples with
similar feature embeddings as the joint distribution. Specifically, one minimizes the loss below as the objective:

LInfoNCE = − E
(x,y)∼p+

s(g(x), g(y)) + E
x∼p

log E
y∼p

exp
(
(s(g(x), g(y))

)
, (1)
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where s is the cosine similarity after normalization with a temperature parameter, and g(x), g(y) are the
features extracted by a given encoder g,5 respectively. The above contrastive learning (pre-training) scheme
learns a general encoder g (image and text encoders for CLIP). Such a (fixed) g can be utilized with an
additional linear head or shallow models for downstream tasks. In this paper, we mainly consider linear
probing, where g is used for the classification of the same dataset with pretraining. Notably, we consider
unlearning during the pretraining phase only.

Machine Unlearning For Supervised Learning: Machine unlearning (MU) (Cao & Yang, 2015) requires
an algorithm to revert to a state that specific data points are never trained on. While exact unlearning
(Bourtoule et al., 2021) (e.g., retraining the model entirely on the retain dataset) provides a reliable solution,
the additional computation requirement is also tremendous. In this paper, we focus on approximate
unlearning (Ginart et al., 2019; Guo et al., 2019; Neel et al., 2021; Ullah et al., 2021; Sekhari et al., 2021;
Izzo et al., 2021; Chen et al., 2023; Zhang et al., 2024a; Fan et al., 2024; Shen et al., 2024) to efficiently
achieve the same goal.

For Generative Models: MU methods are applied to diffusion models to avoid copyright infringement and
inappropriate image generation (Gandikota et al., 2023; Zhang et al., 2023b; Heng & Soh, 2023; Kumari
et al., 2023). For large language models, MU is applied as a model-editing (Yao et al., 2023) tool to enable
forgetting on certain training texts (Mitchell et al., 2022b;a; Jang et al., 2022; Eldan & Russinovich, 2023;
Zhang et al., 2023a; Hu et al., 2024; Jia et al., 2024; Maini et al., 2024; Liu et al., 2024; Zhang et al., 2024b).
In this paper, we focus on MU on self-supervised learning, specifically, contrastive learning methods, which
differs from the above two cases in both unlearning settings and frameworks, which we specify in the following
section.

3 Machine Unlearning for Contrastive Learning (MUC)

In this section, we specify the problem setting of machine unlearning for contrastive learning, introduce direct
adaptations of existing methods, and propose evaluation metrics.

3.1 Problem Settings

Formal Notations: (1) We denote the pretrained encoder as g and the encoder after unlearning as ĝ.
Given an input sample x, the features extracted by the encoders are denoted as g(x) and ĝ(x) respectively;
(2) We denote the original training set as Dtrain (which is used to train g), the unlearn set as Dunlearn and
the retain set as Dretain = Dtrain\Dunlearn (\ denotes removal here); (3) We define two parties involved in
unlearning: the model owner . who receives the unlearning request, and the data owner   who wishes to
remove data. In practical scenarios, ² consist of a group of individuals { i}N

i=1, who may not know the
existence of each other, but participate in unlearning at the same time.

Approximate Unlearning: The model owner . aims at choosing an unlearning algorithm that approxi-
mates exact unlearning (training on Dretain from scratch) to obtain ĝ. In the meantime, this algorithm should
be much more efficient than exact unlearning. Given a pool of candidate algorithms, . performs white-box
evaluations (access to Dtrain, Dunlearn, Dtest, g and candidates {ĝ}) by comparing their performances with
exact unlearning according to metrics in Section 3.3.

Unlearning evaluation: Assuming the unlearning process is finished and the model owner has published
the final unlearned model ĝ, an individual data owner  i wishes to examine the unlearning outcome. We coin
this process as unlearning evaluation. Specifically, such evaluation is black-box as  i only has access to
his/her own unlearning subset Di

unlearn, and the output of the model before g(Di
unlearn) and after unlearning

ĝ(Di
unlearn). By comparing these outputs,  i should find explicit evidence that unlearning has indeed been

performed and the output is as desired. Our paper aims to provide such evidence through the design of a
novel unlearning algorithm for contrastive learning.

5Note that in practice, g may consist of a general encoder and a projection head (which is typically removed for downstream
tasks), as in Chen et al. (2020). For simplicity, we use g to represent this entire mapping.
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Note that making unlearning easy to evaluate is an important and difficult task for approximate unlearning
algorithms (Thudi et al., 2022). While we provide easy-to-check unlearning traces in the later sections, such
tools are specifically designed for our algorithm in contrastive learning, and may not be generalized to other
unlearning scenarios.

3.2 Adapting existing methods to MUC

We first adapt some existing unlearning methods designed for supervised unlearning to contrastive unlearning.
Due to the lack of labels in contrastive learning pre-training, some approaches cannot be directly applied.
For example, random labeling (Golatkar et al., 2020; Fan et al., 2024) relies on flipping the labels of the
unlearn data; boundary unlearning (Chen et al., 2023) expands or shrinks the decision boundary, which does
not exist in our context. In contrast, some other unlearning methods can be tailored to contrastive learning.
Specifically, we adapt the following methods:

• Retraining: (exact unlearning) trains on Dretain from scratch via minimizing Equation (1);

• Fine-tuning (Golatkar et al., 2020) updates the pre-trained model for several epochs on Dretain;

• Gradient Ascent (Golatkar et al., 2020; Neel et al., 2021; Thudi et al., 2022) reversely maximizes Equation (1)
on the Dunlearn;

• NegGrad (Kurmanji et al., 2023) jointly minimizes and maximizes Equation (1) on Dretain and Dunlearn
respectively;

• ℓ1-Sparsity (Jia et al., 2023) regularizes the ℓ1-norm of model parameters based on fine-tuning.

The above methods manifest straightforward adaptations of unlearning from supervised learning to contrastive
learning by changing the cross entropy loss to the InfoNCE loss in Equation (1). In Section 5, we show that
approximate unlearning methods are suboptimal approximations of exact unlearning, namely that there still
exists a performance gap compared with retraining. This motivates us to design new unlearning methods
specifically for contrastive learning in Section 4.

3.3 How to choose an unlearning algorithm

Suppose the model owner . gathers a pool of unlearning algorithms (e.g., the methods above). Next we
introduce how to compare them, i.e., the evaluation metrics. As contrastive learning returns a feature
extractor, we can either evaluate unlearning on the representations directly or rely on downstream tasks.
Specifically:

• Representation-level metrics. ❶ Forgetting Score: given a candidate algorithm that updates g to ĝ, we
propose a Forgetting Score (FS) by directly adapting the memorization score in evaluating data attribution
in Wang et al. (2024). FS measures the quantity of forgetting Dunlearn by comparing the alignment loss
through the features returned by model parameters before and after unlearning:

FS := E
(x,y)∼p+

u

s(g(x), g(y)) − E
(x,y)∼p+

u

s(ĝ(x), ĝ(y)), (2)

where pu is the density of Dunlearn, recall g and ĝ are models before/after unlearning.
❷ Membership Inference Attacks (MIA): MIAs are capable of indicating whether certain samples (e.g., the
unlearn set) are included in the training set and are perfect for examining unlearning efficacy. EncoderMI
(Liu et al., 2021) proposed an alignment-based membership inference attack for self-supervised encoders. It
extracts membership information from the embedded features to distinguish whether input data is included
in the encoder training set. Following the implementation of Jia et al. (2023); Fan et al. (2024), we evaluate
the attack success rate (ASR) on the unlearn dataset Dunlearn and denote it by encoder membership
inference attack (EMIA) efficacy. We compare EMIA on Dunlearn with retraining. See Appendix A.3 for
details of EMIA.
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• Downstream-level metrics. Alternatively, representations can be evaluated with downstream tasks. We
perform linear probing, i.e., image classification on the same (labeled) dataset for unimodal contrastive
learning. Given the unlearned encoder ĝ returned by a candidate algorithm, we train an additional linear
head on Dretain on top of the fixed ĝ to obtain a classifier. Next we evaluate: ❶ Accuracies: we evaluate
retain accuracy (RA) on Dretain, test accuracy on Dtest (TA), and unlearn accuracy on Dunlearn (UA).
For a good unlearning algorithm, the above three measurements should be close to those of the retrained
model, with a common pattern of UA ≈ TA < RA; ❷ Membership Inference Attacks: Similarly to EMIA,
we implement a confidence-based membership inference attack (Jia et al., 2023; Fan et al., 2024; Song &
Mittal, 2021) on the entire network (encoder and linear head) and report classifier membership inference
attack (CMIA) efficacy. We compare CMIA with retraining. See Appendix A.3 for details.

3.4 How to evaluate unlearning

After choosing an optimal unlearning algorithm, the model owner generates the unlearned model ĝ as a
response to the unlearning request made by data owners. However, it is impossible for the data owners to
perform the same white-box evaluations.

For the data owners ² (Unlearning evaluation) : Recall that an individual data owner  i performs
black-box evaluation due to the limited access to input Di

unlearn and the output of the encoder before/after
unlearning. Specifically,  i cannot train shadow6 models with Di

unlearn alone to perform MIAs; and cannot
obtain TA or RA to quantify performance. Additionally, there is a lack of the retrain baseline to compare
with. To this end, the only evaluation tool is the forgetting score FS on Dunlearn, which can be calculated
with Equation (2). However, we argue that this evaluation is neither sufficient nor reliable, and we use a
simple empirical example to validate this claim:

Exact unlearning on MoCo (He et al., 2020): Using a fixed random seed of 11, we pretrain a MoCo encoder
g1 on the entire CIFAR-10 training set. For exact unlearning, we retrain an encoder g2 after removing
10% of the data, with the same random seed. To simulate a scenario where the model owner attempts to
deceive the unlearning process, we assume that instead of retraining, the original encoder g1 is replaced
with another encoder g3 that is pre-trained on the entire training data with a different random seed of 10.
In this setting, the null hypothesis H0 (no unlearning) corresponds to the deceptive case in which g1 is
replaced by g3. The alternative hypothesis H1 represents the exact unlearning case where g1 is replaced by
g2. For both hypotheses, we calculate the FS for every unlearn sample and get the mean µ and the standard
deviation σ across the 4500 unlearning images. The resulting statistics are: H0 : (µ0 = −0.0026, σ0 = 0.0587);
H1 : (µ1 = 0.0353, σ1 = 0.0575). Assuming Gaussian distributions and a data owner possesses N images, we
perform a t-test to evaluate the p-value for distinguishing between H0 and H1:

Table 1: p-value of the t-test on distinguishing between hypothesis H0 and H1.

N 5 10 15 20
p-value 0.3322 0.1617 0.0847 0.0459

In Table 1, we observe that when the data owner holds fewer than 15 images, it becomes difficult to statistically
detect that the model owner has cheated the unlearning process.

In summary, under the current MUC framework, existing approximate unlearning algorithms and evaluation
tools are insufficient. To address this, we design new unlearning algorithms for the model owners and advanced
evaluation tools for data owners in contrastive learning in the next section, which would benefit both parties
in engaging the unlearning procedure.

6Surrogate models to train classifiers for membership inference.
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4 Alignment Calibration

4.1 Tailored objective for MUC

We first introduce a more effective unlearner for model owners . . Recall that . ’s goal for unlearning
is preserving the model utility on Dretain while revoking the effects of training on Dunlearn. For the retain
dataset Dretain, we minimize the InfoNCE loss in Equation (1) to achieve reasonable downstream performance
after unlearning:

Lretain = − E
(x,y)∼p+

r

s(g(x), g(y)) + E
x∼pr

log E
y∼pd

exp(s(g(x), g(y)), (3)

where pr is the density of Dretain and pd is the density of Dtrain.

For the unlearn dataset Dunlearn, revoking the effects of training amounts to achieving the following goals
upon evaluation in Section 3.3:

• (Encoder-level) Enlarging forgetting on Dunlearn : recall that in Equation (2) the forgetting score FS is
measured by the difference between feature similarity on Dunlearn before/after unlearning with pre-trained
model g and unlearned model ĝ. As the first term is fixed (as g is given) during unlearning, increasing FS
is equal to minimizing the second positive alignment term. For this purpose, we explicitly perform such
minimization in our objective function and call it positive alignment calibration.

• (Downstream-level) UA ≈ TA < RA: enlarging FS alone may also hurt the overall downstream perfor-
mance on the unlearned model ĝ. To obtain reasonable UA and TA, we find it beneficial to maintain the
term for negative pairs in contrastive learning, such that for Dunlearn, we minimize:

Lunlearn = E
(x,y)∼p+

u

s(g(x), g(y))︸ ︷︷ ︸
positive alignment calibration

+ E
x∼pu

log E
y∼pd

exp(s(g(x), g(y)))︸ ︷︷ ︸
performance preserving

, (4)

where pu is the density of Dunlearn. Wang & Isola (2020) states that alignment and uniformity are crucial
properties of good representations. While we calibrate alignment with the first term, our performance
preserving term implicitly maintains uniformity, which we will demonstrate in Section 5.5.

4.2 Calibration under unlearning evaluation

Evaluation beyond FS: Recall that in Section 3.3, we show that the forgetting score FS is not a sufficient
nor reliable evaluation for unlearning success. Here we introduce an additional evaluation tool: given Dunlearn
and the models before unlearning g, data owners ² can easily obtain the feature vectors with two different
data augmentations: g(x) = {g(xi)}|Dunlearn|

i=1 and g(y) = {g(yj)}|Dunlearn|
j=1 . Then an Alignment Matrix :

AM(g(x), g(y)) can be easily acquired by calculating the pairwise similarity between the two vectors. See
Figure 3(a) for some visualizations of AM in the format of heatmaps. Similarly, ² can obtain AM(ĝ(x), ĝ(y))
after unlearning and an additional Alignment Gap Matrix : AGM = AM(g(x), g(y)) − AM(ĝ(x), ĝ(y)) . The
heatmaps of AM and AGM provide evaluation tools beyond FS and allow ² to visualize the model change
through unlearning by looking at the temperature of the graphs. Notably, the elements on the diagonal of
AGM also visualize sample-wise forgetting scores. We direct readers to visualizations of such graphs in Figure 2
and Figure 3 in Section 5.

Taking evaluation into account for unlearning: The additional evaluation tools enable the model
owners to design an algorithm that allows data owners to clearly visualize the effect caused by unlearning
(i.e., through AM or AGM) without sacrificing the goal of unlearning.

We provide a simple solution to improve existing unlearning methods. As we have explicitly calibrated the
alignment of positive pairs of Lunlearn in Equation (4), it suffices to adjust that of negative pairs (within
Dunlearn) to a larger value to enlarge the model differences in AM. Specifically, we update the unlearn loss in

7
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Equation (4) with negative alignment calibration:

− α · E
(x,y)∼p×

u

s(g(x), g(y))︸ ︷︷ ︸
negative alignment calibration

+β · E
(x,y)∼p+

u

s(g(x), g(y))︸ ︷︷ ︸
positive alignment calibration

+γ · E
x∼pu

log E
y∼pd

exp(s(g(x), g(y))︸ ︷︷ ︸
performance preserving

,

where α, β, γ are tunable parameters to adjust the strength of each component, p×
u represents negative pairs

within the negative set. We write the complete objective of Alignment Calibration (AC):

Lretain + ε · Lunlearn, (5)

where ε = |Dunlearn|/|Dretain| varies by the size of the unlearn set. In the next section, we will show AC
not only achieves state-of-the-art performance upon model owners’ evaluations but can also easily pass data
owners’ visual evaluation on unlearning.

5 Experiment

Recall that we made several claims in Section 3 and Section 4: ❶ Existing methods are suboptimal unlearners
under white-box evaluations and our AC algorithm approaches exact unlearning in this regard; ❷ Under
MUC, AC introduces alignment matrices AM for visual evaluation and exhibits clear evidence for unlearning.
In this section, we evaluate the baseline methods and AC following the above steps and present white-box
evaluation by model owners . and black-box evaluation by data owners ² .

5.1 Experimental Setup

Data and models. For unimodal contrastive unlearning, we perform experiments on CIFAR-10/CIFAR-100
Krizhevsky et al. (2009)/SVHN (Netzer et al., 2011) and SimCLR (Chen et al., 2020)/MoCo (He et al.,
2020) algorithms with the ResNet-18 (He et al., 2016) backbone (we provide additional results on ResNet-50
in Table 12 in Appendix B). We randomly forget 10/50% training data from a pre-trained encoder. For
multimodal contrastive unlearning, we evaluate CLIP (Radford et al., 2021) on an Image-Text paired dataset
called MS-COCO (Lin et al., 2014), which contains ∼120K images and ∼600K captions. We perform
unlearning on 10% randomly selected image-text pairs.

White-box Evaluation: Following Section 3.3, we use FS and EMIA for encoder-level evaluation, and use
CMIA, RA, TA, and UA for downstream-level evaluation after performing linear probing for SimCLR/MoCo
experiments. For the evaluation of CLIP, we measure the image-text cosine similarity of the retain dataset
and unlearn dataset due to the lack of suitable downstream tasks. Across all experiments, we compare each
unlearning method with the exact unlearning (retraining) baseline and report the differences across all metrics.
We also report the running time efficiency (RTE) of unlearning methods to evaluate efficiency.

Black-box evaluation: Recall that due to the limited access of data owners, the above white-box evaluation
can not be directly applied. Instead, we use the Alignment Matrix (AM) and Alignment Gap Matrix (AGM)
introduced in Section 4 for visual evaluation on MoCo and CLIP.

Unlearning Algorithms: We evaluate Retrain, Fine-Tune, Gradient Ascent, NegGrad, and ℓ1-Sparsity as
baselines for MUC. Our Alignment Calibration method updates the pre-trained encoder for the same number
of epochs as FineTune, NegGrad, and ℓ1-Sparsity. For simplicity, we set α = γ = 1 if not otherwise stated
and we tune β for the best performance. Implementation details of the above methods are described in
Appendix A.2.

5.2 Unlearning Performance under White-box Evaluation

We first provide empirical evidence for model owners to choose a suitable unlearning method with superb
efficiency and effectiveness. ❶ Unimodal contrastive learning: We present our evaluation under EMIA, RA,
TA, UA and CMIA in Table 2 and Table 3 for unlearning 10/50% of CIFAR-10 training set and FS (CIFAR-10,

8
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Table 2: Unlearning performance of different methods on randomly forgetting 10% of CIFAR-10 training
data under various metrics. The performance gaps between retraining and other methods are shown in
the parenthesis. We report the average gap (Avg. Gap) over these 5 metrics. The results are obtained by
averaging over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) ↓ RTE (mins) ↓
MoCo

Retrain 49.72 89.54 87.76 88.42 34.38 - 109.47
Fine-Tune 50.15 (0.43) 88.34 (1.20) 86.46 (1.30) 87.59 (0.83) 29.42 (4.96) 1.74 1.42

Grad. Ascent 44.95 (4.77) 89.92 (0.38) 88.28 (0.52) 89.76 (1.34) 28.53 (5.85) 2.67 0.17
NegGrad 48.43 (1.29) 89.25 (0.29) 87.35 (0.40) 88.58 (0.16) 28.89 (5.49) 1.53 1.70

ℓ1-Sparsity 49.38 (0.34) 88.56 (0.98) 86.91 (0.84) 88.12 (0.30) 29.91 (4.47) 1.39 1.43
AC (Ours) 50.28 (0.56) 89.14 (0.40) 87.24 (0.52) 88.20 (0.22) 31.50 (2.88) 0.92 1.87

SimCLR
Retrain 48.11 90.87 88.94 89.68 38.87 - 151.77

Fine-Tune 47.72 (0.39) 89.38 (1.49) 87.26 (1.68) 88.93 (0.75) 30.71 (8.16) 2.49 1.93
Grad. Ascent 41.48 (6.63) 91.26 (0.40) 89.55 (0.61) 91.11 (1.43) 29.36 (9.50) 3.71 0.19

NegGrad 49.56 (1.46) 89.10 (1.77) 87.23 (1.71) 89.07 (0.61) 29.97 (8.89) 2.89 2.34
ℓ1-Sparsity 48.44 (0.33) 90.59 (0.28) 88.56 (0.38) 90.44 (0.75) 30.61 (8.26) 2.00 1.96
AC (Ours) 48.64 (0.53) 90.24 (0.63) 88.06 (0.88) 89.24 (0.44) 33.12 (5.75) 1.65 3.00

Table 3: Unlearning performance of various methods on randomly forgetting 50% of CIFAR-10 training data.
The results are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) ↓ RTE (mins) ↓
MoCo

Retrain 55.95 85.98 83.55 83.98 46.66 - 66.71
Fine-Tune 49.98 (5.97) 87.89 (1.90) 85.66 (2.12) 86.65 (2.67) 32.35 (14.31) 5.39 0.86

Grad. Ascent 42.90 (13.06) 89.51 (3.53) 87.79 (4.25) 88.99 (5.01) 31.85 (14.82) 8.13 0.45
NegGrad 57.40 (1.45) 83.04 (2.94) 80.15 (3.40) 80.59 (3.39) 40.65 (6.02) 3.44 1.66

ℓ1-Sparsity 52.19 (3.76) 81.60 (4.38) 80.19 (3.36) 80.77 (3.20) 38.43 (8.24) 4.59 0.87
AC (Ours) 55.02 (0.93) 86.28 (0.30) 83.28 (0.26) 83.72 (0.26) 38.39 (8.27) 2.00 1.84

SimCLR
Retrain 53.37 87.23 85.16 85.69 49.30 - 89.74

Fine-Tune 45.90 (7.47) 87.88 (0.65) 85.50 (0.34) 87.23 (1.54) 35.44 (13.85) 4.77 1.17
Grad. Ascent 42.23 (11.13) 90.52 (3.28) 88.61 (3.45) 90.45 (4.77) 33.28 (16.02) 7.73 0.59

NegGrad 55.70 (2.33) 83.98 (3.25) 82.15 (3.01) 83.80 (1.89) 33.67 (15.62) 5.22 2.32
ℓ1-Sparsity 46.51 (6.86) 89.84 (2.60) 87.75 (2.69) 89.48 (3.80) 35.38 (13.91) 5.95 1.19
AC (Ours) 47.12 (6.25) 86.11 (1.13) 83.92 (1.24) 85.24 (0.45) 37.57 (11.72) 4.16 3.07

MoCo) for 10/50% separately in Table 8 due to different scales. We also report the average gap percentage in
Appendix B.3. For both SimCLR and MoCo, our proposed Alignment Calibration (AC) method achieves the
lowest average performance gap over EMIA, RA, TA, UA, and CMIA. In terms of unlearning efficiency, our
method only introduces a slight overhead. Additionally, our method achieves the lowest FS gap compared to
retraining. In Table 4 and Table 5, we also report the results on CIFAR-100, where our methods consistently
achieve the best performance. In Table 6, we report the unlearning results on the SVHN dataset. Our
Alignment Calibration method achieves the least average gap to Retraining compared to the other 4 baseline
methods while showing comparable efficiency in the unlearning process. ❷ Multi-modal contrastive learning:
in Table 7, we again observe that our method is the best approximator of exact unlearning when evaluating
the image-text cosine similarity.

5.3 Black-box evaluation

Motivated by the insufficiency of evaluation with the FS score, we propose to apply the Alignment Matrix
(AM) and Alignment Gap Matrix (AGM) in Section 4. AM and AGM naturally introduce additional quantifica-
tion of negative alignment. In Figure 2, we report the negative alignment value (mean and standard deviation
of pairwise similarity on negative samples in AGM) of 4500 unlearn samples and observe that our method AC
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Table 4: Unlearning performance of various methods on randomly forgetting 10% of CIFAR-100 training
data. The results are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) ↓ RTE (mins) ↓
MoCo

Retrain 56.24 62.23 58.60 58.43 59.53 - 109.47
Fine-Tune 46.05 (10.19) 63.49 (1.27) 58.88 (0.29) 59.80 (1.37) 48.81 (10.72) 4.77 1.42

Grad. Ascent 44.01 (12.23) 62.66 (0.33) 59.00 (0.41) 60.65 (2.22) 53.28 (6.25) 3.96 0.17
NegGrad 53.58 (2.66) 63.70 (1.47) 58.78 (0.19) 58.85 (0.42) 48.68 (10.84) 3.12 1.70

ℓ1-Sparsity 45.68 (10.56) 60.89 (1.34) 57.40 (1.20) 58.66 (0.23) 52.48 (7.04) 4.07 1.43
AC (Ours) 50.17 (6.07) 63.20 (0.97) 58.56 (0.04) 58.44 (0.00) 54.15 (5.38) 2.49 1.87

SimCLR
Retrain 51.20 57.76 56.25 55.86 65.60 - 151.77

Fine-Tune 40.85 (10.35) 57.29 (0.48) 54.96 (1.29) 55.85 (0.00) 60.61 (4.99) 3.42 1.93
Grad. Ascent 34.00 (17.21) 62.12 (4.36) 59.58 (3.32) 61.08 (5.23) 54.21 (11.39) 8.30 0.19

NegGrad 46.39 (4.81) 56.52 (1.24) 54.30 (1.95) 55.00 (0.86) 60.04 (5.56) 2.89 2.34
ℓ1-Sparsity 40.55 (10.66) 57.85 (0.09) 55.76 (0.49) 56.68 (0.83) 58.46 (7.15) 3.84 1.96
AC (Ours) 46.72 (4.48) 57.11 (0.65) 54.70 (2) 55.23 (0.63) 59.78 (5.83) 2.63 3.00

Table 5: Performance of methods on randomly forgetting 50% of CIFAR-100 training data. EMIA is evaluated
on the unlearned encoder, while RA, TA, UA, and MIA are evaluated after linear probing. We report the
average gap (Avg. Gap) over these 5 metrics between methods and Retrain. The results are averaged over 5
random trials.

Methods EMIA RA TA UA CMIA Avg. Gap RTE
MoCo

Retrain 60.40 57.72 52.58 52.32 67.30 - 66.71
Fine-Tune 53.58 (6.81) 61.9 (4.18) 56.07 (3.48) 56.87 (4.55) 52.27 (15.03) 6.81 0.86

Grad. Ascent 43.76 (16.63) 60.91 (3.19) 56.2 (3.62) 57.48 (5.16) 55.64 (11.66) 8.05 0.45
NegGrad 38.95 (21.44) 60.94 (3.22) 57.01 (4.43) 58.21 (5.89) 57.64 (9.66) 8.93 1.66

ℓ1-Sparsity 49.97 (10.43) 58.89 (1.17) 53.07 (0.49) 53.66 (1.33) 56.27 (11.03) 4.89 0.87
AC (Ours) 56.22 (4.18) 59.53 (1.81) 53.37 (0.79) 53.69 (1.37) 52.27 (15.03) 4.63 1.84

SimCLR
Retrain 56.00 50.40 48.46 47.68 69.47 - 89.74

Fine-Tune 53.89 (2.12) 52.82 (2.42) 49.87 (1.41) 51.04 (3.36) 60.06 (9.41) 3.74 1.17
Grad. Ascent 40.28 (15.72) 56.32 (5.92) 54.12 (5.66) 55.22 (7.54) 61.43 (8.04) 8.58 0.59

NegGrad 46.83 (9.17) 50.60 (0.20) 48.20 (0.26) 49.29 (1.62) 58.01 (11.47) 4.54 2.32
ℓ1-Sparsity 45.12 (10.89) 52.62 (2.22) 50.09 (1.62) 50.98 (3.30) 65.25 (4.22) 4.45 1.19
AC (Ours) 54.98 (1.02) 49.28 (1.12) 46.8 (1.66) 47.00 (0.68) 57.78 (11.69) 3.24 3.07

Table 6: Performance of methods on randomly forgetting 10% of SVHN training data from a pre-trained
MoCo encoder. The results are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap RTE
Retrain 51.24 91.17 92.02 90.59 20.46 - 114.13

Fine-Tune 50.69 (0.54) 90.19 (0.98) 90.63 (1.39) 89.75 (0.84) 17.03 (3.43) 1.44 1.41
Grad. Ascent 46.45 (4.79) 91.23 (0.06) 92.25 (0.22) 90.94 (0.35) 18.44 (2.02) 1.49 0.17

NegGrad 50.99 (0.24) 90.67 (0.50) 91.14 (0.88) 90.08 (0.50) 17.42 (3.03) 1.03 1.74
ℓ1-Sparsity 50.56 (0.67) 89.20 (1.97) 89.72 (2.31) 88.89 (1.70) 20.52 (0.06) 1.34 1.45
AC (Ours) 51.50 (0.26) 90.19 (0.98) 90.76 (1.27) 89.23 (1.36) 19.99 (0.46) 0.87 1.98

exhibits a more significant unlearning effect under such evaluation. For individual data owners  i, the size of
their subset |Di

unlearn| may be small. Therefore, we provide additional qualitative results for visual evaluation:
we randomly select 8 samples from Dunlearn to simulate the budget of  i. We construct AM (before/after
unlearning with AC ) and AGM for this small set and plot their heatmaps in Figure 3 and observe the apparent
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Table 7: Performance of methods on randomly forgetting 10% of MS-COCO data from a pre-trained CLIP.
We report the image-text cosine similarity of the retain dataset and unlearn dataset respectively, as well as
the average absolute gap from Retrain. The results are averaged over 3 random trials.

Dataset Pre-train Retrain Fine-Tune Grad. Ascent NegGrad ℓ1-Sparsity AC (Ours)
Retrain 62.09 62.47 (0) 58.67 (3.80) 61.96 (0.51) 58.57 (3.90) 57.70 (4.76) 60.75 (1.72)
Unlearn 62.08 49.84 (0) 54.75 (4.91) 62.03 (12.19) 49.19 (0.65) 53.54 (3.70) 51.23 (1.39)

Avg. Gap (%) ↓ - 0 4.35 6.35 2.28 4.23 1.56

Table 8: Forgetting score (FS) of methods for
CIFAR-10 and MoCo. FS gaps are computed be-
tween Retrain and other methods.

Methods 10% 50%
FS Gap ↓ FS Gap ↓

Retrain 0.0266 - 0.0604 -
Fine-Tune 0.0393 0.0127 0.0423 0.0180

Grad.Ascent 0.0005 0.0262 0.0007 0.0596
NegGrad 0.0205 0.0061 0.1002 0.0398

ℓ1-Sparsity 0.0216 0.0050 0.0408 0.0195
AC (Ours) 0.0259 0.0007 0.0672 0.0068

Figure 2: Negative alignment of 4500 unlearn sam-
ples (10%) and MoCo and CIFAR-10. The error
bar is the standard deviation.
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effect of unlearning. We provide additional results for other methods and CLIP unlearning in Figure 6 and
Figure 7 in Appendix B.2, where AC consistently exhibits the best performance under visual evaluation.

To demonstrate the statistical reliability of negative alignment gap as a black-box evaluation metric, we
consider using it to distinguish between the null hypothesis H0 where the model owner replaces the encoder
(trained with random seed 11) with another one trained using random seed 10, which still contains information
about the unlearned data, and the alternative hypothesis H ′

1 where unlearning has been performed using
AC with α = γ = 1, β = 8, and random seed 11. We compute the average negative alignment gap and its
standard deviation across the unlearn data in the task of unlearning 10% data from a MoCo encoder. The
resulting statistics are: H0 : (µ′

0 = 0.0057, σ′
0 = 0.0403); H ′

1 : (µ′
1 = −0.0359, σ′

1 = 0.0295). Note that a
data owner possessing N unlearn images can obtain N(N−1)

2 negative alignment values. Assuming Gaussian
distributions, we perform a t-test to evaluate the p-value for distinguishing between H ′

0 and H ′
1. We observe

from Table 9 that the p-value for N = 5 is sufficiently small such that the data owner can confidently exclude
the null hypothesis H ′

0. Table 9 also shows that t-test with FS fails in distinguishing AC-unlearning and the
cheating case (See Appendix B.9 for more details).
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Figure 3: Alignment Matrices and Alignment Gap Matrix on 8 random images in unlearn dataset of
CIFAR-10 (MoCo). The task is forgetting 10% of training data.
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Table 9: p-value of the t-test on distinguishing between hypothesis H0 and H ′
1.

Metric \N 5 10 15 20
FS 0.7452 0.64 0.5648 0.5052

Neg. Align. Gap 0.0168 ≤0.0001 ≤0.0001 ≤0.0001

Table 10: Ablation study on positive and negative
calibration in Equation (5) regarding the average
gap over metrics on CIFAR-10 and MoCo with
forgetting ratio 10/50%. “w/” denote with and
“w/o” denotes without. For example, “w/o, w/”
means AC without negative calibration but with
positive calibration.

Neg. Cal. Pos. Cal. Forgetting 10% 50%
w/ w/ 0.92 2.00
w/o w/ 1.25 4.12
w/ w/o 1.95 3.75
w/o w/o 2.60 6.45

Figure 4: The effect of α and β on the forget-
ting score ratio between Retrain and AC, i.e.,
FS(RT):FS(AC). Here we forget 10% of CIFAR-10
training data from a MoCo encoder.
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5.4 Ablation Study

Influence of negative alignment calibration: In Equation (5), the coefficient α controls the intensity of
maximizing the negative alignment on unlearn data. To explore the effect of negative alignment calibration in
the unlearning task, we fix β and adjust α while keeping γ = α for simplicity. Figure 4 (orange bars) reports
the ratio between the forgetting score FS of Retrain and AC. When α increases, the ratio decreases, indicating
that the resulting model forgets more information about the unlearn data. A ratio of 1 denotes that the FS of
AC equals that of Retrain. Furthermore, we consider a more extreme case of α = 0, representing no negative
calibration. In Table 10, without negative calibration, the average gap over metrics is larger than that of
the standard AC by 0.33/2.12% (comparing rows “w/o, w/” with “w/, w/”) for 10/50% forgetting tasks,
suggesting this additional term not only benefits the data owner for unlearn evaluation but also improves the
unlearn performance.

Influence of positive alignment calibration. In Equation (5), the coefficient β controls the intensity
of minimizing the positive alignment on the unlearn data. In Figure 4 (blue columns), we fix α = γ = 1
and vary β from 0 to 16. The forgetting score ratio decreases with increasing β and approximately reaches
1.0 in the range of [12,16]. In Table 10, the positive alignment calibration term enhances the unlearning
performance from 1.95/3.75% to 0.92/2% (comparing columns “w/, w/o” with “w/, w/”) for the 10/50%
forgetting tasks regarding the average gap.

5.5 Preserving Uniformity

Finally, we validate the function of the performance preserving term in our loss function, which forces
extracted features to spread uniformly on the hyper-sphere. Following the implementation from Wang & Isola
(2020), we visualize the uniformity of features on CIFAR-10 before and after applying our AC unlearning
algorithm. Specifically, we train a ResNet-18 encoder mapping images to 2D space using SimCLR and plot
the distribution of angles (i.e., arctan2(x, y) for each point (x, y) ∈ S1) in Figure 5. We observe that this
term implicitly maintains the uniformity of the representation on both the test dataset and the unlearn
dataset.
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Figure 5: Angle distributions on test dataset and unlearn dataset before and after AC unlearning with
different β values related to positive alignment calibration intensity. Here, the negative alignment calibration
and performance-preserving term intensities are kept at their default values, i.e., α = γ = 1. Note that when
β = 0, only negative alignment calibration and performance-preserving terms take effect in our AC method.
Each chart’s x-axis represents “Angles” and the y-axis represents “Counts”.

6 Conclusion

In this paper, we study the problem of machine unlearning for contrastive learning pre-training (MUC).
We establish the foundations on this line of study by adapting existing unlearning methods and setting up
baseline evaluation metrics, including white-box evaluation for model owners to choose an optimal unlearning
strategy, and black-box auditing for data owners to examine the effect of unlearning. After identifying the
suboptimality of existing unlearning methods and the insufficiency of current auditing tools, we further
propose our novel method called Alignment Calibration. Our approach introduces a novel unlearning objective
function to strategically optimize toward the unlearning goal and enable straightforward visual auditing.
Empirically, our method achieves state-of-the-art performance on unlearning tasks for both unimodal and
multimodal contrastive learning.

Limitations and Future Work: (1) Our paper initializes the study of machine unlearning in self-supervised
learning but only considers contrastive learning. We plan to extend our exploration of unlearning towards
other SSL methods in the future. (2) Pseudo-label-based (Warnecke et al., 2021) and label-free (Foster et al.,
2024a;b) unlearning algorithms may be integrated into our MUC framework as future enhancements. (3) Our
paper focuses on approximate unlearning methods for contrastive learning and does not provide theoretical
guarantees (e.g., certification of removal), which represents an interesting direction for future research. (4)
While our work focus on random forgetting, study the difficulty of removing specific samples is important in
the contrastive learning setting. We plan to extend existing studies (e.g., (Zhao et al., 2024)) to contrastive
learning in future work. (5) Finally, although we perform t-test to show the advantages of our proposed
evaluation tool, i.e., the negative alignment values and AGM, we consider one typical deceptive case for the null
hypothesis where the model owner cheats by replacing the encoder with a different one without unlearning. In
future work, we will investigate more failure cases where malicious model owners deliberately design cheating
methods to deceive the metrics proposed in this paper, and propose mitigation strategies accordingly.
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A Experiment Details

A.1 Datasets

CIFAR-10/100. Both datasets consist of 50K training images and 10K test images. All the images are
32x32 colored. CIFAR-100 has 100 categories and CIFAR-10 has 10 categories. In unimodal contrastive
learning, the augmentations for training encoders include random resizing and cropping, random grayscale,
random color jitter, and horizontal flipping. We split the 50K training images into a validation set of 5K
images and a training set of 45K images. For example, when the unlearning task is to forget 10% of training
data, the unlearn dataset Dunlearn has 4.5K images and the retain dataset Dretain has 4.05K images.

SVHN SVHN consists of 73,257 training images and 26,032 test images of 10 categories. All the images
are 32x32 colored. We split the 10% of training images into a validation set and the rest into a training set.

MS-COCO. COCO is a large-scale object detection, segmentation, and captioning dataset. Its training set
contains 118,287 images and 591,753 captions. Each image has several objects and corresponds to at least 5
captions. Different from unimodal contrastive learning which uses strong augmentations, CLIP employs only
resizing, center cropping and horizontal flipping to make images of 224x224 pixels.

A.2 Contrastive Learning and Unlearning Methods

MoCo and SimCLR: For the pre-trained (clean) models, we train the encoder for 800 epochs using an
SGD optimizer with cosine-scheduled learning rate initialized at 0.06, momentum of 0.9, and weight decay
of 0.0005. For unlearning methods: Retrain applies the same training strategy as pre-training; Fine-tuning
and NegGrad updates the pre-trained encoder for 10 epochs with a learning rate searched in [0.003, 0.03];
Gradient Ascent updates the pre-trained encoder using reversed stochastic gradient descent for 5 epochs with
a learning rate searched in [10−6, 10−4; ℓ1-Sparsity applies the learning rate as 0.006 and implements ℓ1
regularization with a coefficient searched in [10−6, 10−3]. For our Alignment Calibration method, we update
the pre-trained encoder for 10 epochs and search the learning rate in [0.003, 0.03] and the tunable parameter
β in [0, 20] for different unlearning tasks. If not otherwise stated, we adopt α = γ = 1. For simplicity, in
our reported results on CIFAR-10/100, we use a learning rate of 0.006 for 10% forgetting, and 0.02 for 50%
forgetting. The linear probing stage trains a linear classifier head for 100 epochs using an SGD optimizer
with a cosine-scheduled learning rate initialized at 1.0, and a momentum of 0.9. The batch size is set as 512
for both encoder and linear head training.

CLIP: For the pre-trained (clean) CLIP, we train the model for 35 epochs on 2 NVIDIA RTX 4090 GPUs
using an AdamW optimizer with a warm-up cosine-scheduled learning rate initialized at 5e-4 and momentum
of 0.9. The total batch size is 256 (128 on each GPU). For unlearning algorithms: Retrain again applies
the same training strategy as pre-training; Fine-tuning update the pre-trained model for 8 epochs with a
fixed learning rate searched in [5e-5,5e-4]; NegGrad updates the pre-trained model for 8 epochs with a fixed
learning rate searched in [10−5, 10−4]; Gradient Ascent updates the pre-trained model for 4 epochs with a
fixed learning rate searched in [5e-6, 5e-4]; ℓ1-Sparsity updates the pre-trained model for 8 epochs with a
learning rate of 0.0005 and a regularization coefficient searched in [10−9, 10−4]. For our Alignment Calibration
method, we update the pre-trained model for 8 epochs with a fixed learning rate of 0.0002. We search α = γ
in [0.5, 1] and β in [0, 1].

A.3 Unlearning Evaluation

CMIA efficacy. Given an unlearned encoder ĝ, we execute linear probing on it and denote the whole
classifier by f . Following the implementation of Jia et al. (2023); Fan et al. (2024), we evaluate the attack
successful rate (ASR) on the unlearn dataset Dunlearn of a confidence-based membership inference attack
(Song & Mittal, 2021) to f . The formal definition of CMIA efficacy is given by:

CMIA-Efficacy := TNCMIA

|Dunlearn|
, (6)
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where TNCMIA is the number of true negatives predicted by the CMIA attack.

EMIA efficacy. We implement the alignment-based EncoderMI-T attack (Liu et al., 2021) in an adapted
white-box setting. Given an unlearned encoder ĝ with its retain dataset Dretain and test dataset Dtest, we
denote Dnon-member := Dtest sample a subset Dmember of Dretain such that |Dnon-member| = |Dmember|. For each
data in Dnon-member and Dmember, we first augment it 10 times and compute features of these 10 views via ĝ.
Then, we compute the cosine similarity between each pair of features, i.e., 45 pairs, and take the average of
these similarity values. Now we get a membership feature dataset and a non-membership feature dataset
whose data points are just scalar values. The EncoderMI-T attack then searches for an optimal threshold to
classify membership features and non-membership features. Similar to MIA efficacy, the formal definition of
EMIA efficacy is given by:

EMIA-Efficacy := TNEMIA

|Dunlearn|
, (7)

where TNEMIA is the number of true negatives predicted by the EncoderMI attack.

B Additional Experiments

B.1 Unlearning Performance for More Tasks

We present experiment results on CIFAR-100 in Tables 4 and 5. Across these different tasks, our proposed
Alignment Calibration method achieves the lowest average gap compared to the Retrain method.

B.2 More Visual Visualization Results

In Figure 6, we report the AGM of Retrain, Fine-Tune, Gradient Ascent, NegGrad, ℓ1-Sparisty on CIFAR-10,
as a complement to Figure 3. For the unlearning task on CLIP, we check the ASM of our AC and other
baseline methods in Figure 7.
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Figure 6: Alignment Gap Matrices of 8 unlearn images for Retrain, Fine-Tune, Gradient Ascent, NegGrad,
ℓ1-Sparsity, and our Alignment Calibration. The unlearning task is to forget 10% of CIFAR-10 training data
from a MoCo encoder.
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Figure 7: Alignment Gap Matrices of 6 unlearn image-text pairs for Retrain, Fine-Tune (FT), Gradient
Ascent (GA), NegGrad (NG), ℓ1-Sparsity, and Alignment Calibration (AC). The unlearning task is to forget
10% of MS-COCO training data from a CLIP encoder.
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B.3 Comparison using Average Gap Percentage Standard

In previous experiments, we compare our AC and baseline methods using the average gap across multiple
metrics. To comprehensively illustrate the advantage of our method, we introduce a different standard
for comparison, i.e., average gap percentage (AGP), which averages the percentage of GAP over Retrain
across multiple metrics. In Table 11, we perform unlearning tasks of forgetting 10%/50% of CIFAR-10 data
from ResNet-18 SimCLR/MoCo encoders and our proposed AC method still outperforms baseline methods
concerning the AGP standard.

Table 11: Comparison in average gap per-
centage (AGP, %) with other baseline meth-
ods. AGP averages the percentages of Gap
over Retrain, i.e., MEAN({ gap

retrain }).

CIFAR-10 10% 50%
MoCo SimCLR MoCo SimCLR

Fine-Tune 3.81 5.23 9.85 9.01
Grad. Ascent 5.83 8.19 14.05 13.35

NegGrad 3.91 6.09 5.40 9.10
ℓ1-Sparsity 3.22 4.70 7.46 10.31
AC (ours) 2.16 3.61 4.07 7.75

Table 12: Unlearning performance of randomly forgetting 10
% of CIFAR-10 training data from ResNet-50 MoCo encoders.
We compare AC with baseline methods in Average Gap (AG,
%) and the Average Gap Percentage (AGP, %)

EMIA RA TA UA CMIA AG AGP
Retrain 53.56 92.10 90.10 90.98 35.44 - -

Fine-Tune 49.85 91.74 89.64 91.04 23.94 2.68 8.07
Grad. Ascent 39.36 92.36 90.71 92.32 25.35 4.43 11.49

NegGrad 52.62 91.85 89.78 90.64 24.88 2.07 6.51
ℓ1-Sparsity 47.61 90.54 88.67 90.19 27.04 3.63 7.79
AC (ours) 53.48 91.75 89.32 89.82 30.56 1.45 3.29

B.4 Model Architecture

In Table 12, we perform an unlearning task of forgetting 10% of CIFAR-10 data from a ResNet-50 MoCo
encoder. Our AC method outperforms baseline methods concerning both average gap and average gap
percentage standards.

Table 13: Standard deviation for Tables 2 to 4. Appendix B.5 shows the detailed settings for random trials.
EMIA RA TA UA CMIA EMIA RA TA UA CMIA

CIFAR-10, 10%, MoCo CIFAR-10, 50%, MoCo
Retrain 49.72±5.58 89.54±0.07 87.76±0.25 88.42±0.66 34.38±0.83 55.95±1.58 85.98±0.25 83.55±0.27 83.98±0.21 46.66±0.73

Fine-Tune 50.15±7.99 88.34±0.27 86.46±0.13 87.59±0.18 29.42±1.37 49.98±2.92 87.89±0.55 85.66±0.43 86.65±0.29 32.35±0.90
Grad. Ascent 44.95±6.61 89.92±0.16 88.28±0.23 89.76±0.46 28.53±0.76 42.90±5.46 89.51±0.30 87.79±0.24 88.99±0.17 31.85±0.61

NegGrad 48.43±5.42 89.25±0.24 87.35±0.23 88.58±0.49 28.89±0.86 57.40±13.24 83.04±0.47 80.15±0.71 80.59±0.56 40.65±3.02
ℓ1-Sparsity 49.38±7.15 88.56±0.32 86.91±0.40 88.12±0.39 29.91±0.92 52.19±16.71 81.60±0.76 80.19±0.91 80.77±0.81 38.43±6.48
AC (Ours) 50.28±5.86 89.14±0.19 87.24±0.25 88.20±0.50 31.50±1.17 55.02±5.14 86.28±0.35 83.28±0.37 83.72±0.26 38.39±1.27

CIFAR-10, 10%, SimCLR CIFAR-10, 50%, SimCLR
Retrain 48.11±3.70 90.87±0.08 88.94±0.16 89.68±0.33 38.87±1.33 53.37±2.21 87.23±0.25 85.16±0.34 85.69±0.17 49.30±0.65

Fine-Tune 47.72±4.38 89.38±0.51 87.26±0.65 88.93±0.56 30.71±1.61 45.90±8.25 87.88±0.34 85.50±0.34 87.23±0.30 35.44±1.50
Grad. Ascent 41.48±1.51 91.26±0.13 89.55±0.37 91.11±0.36 29.36±0.99 42.23±4.50 90.52±0.28 88.61±0.15 90.45±0.16 33.28±2.47

NegGrad 49.56±13.95 89.10±0.32 87.23±0.45 89.07±0.43 29.97±1.13 55.70±13.70 83.98±0.90 82.15±0.68 83.80±0.55 33.67±5.75
ℓ1-Sparsity 48.44±6.70 90.59±0.23 88.56±0.30 90.44±0.28 30.61±1.01 46.51±3.85 89.84±0.12 87.75±0.28 89.48±0.22 35.38±1.52
AC (Ours) 48.64±9.47 90.24±0.11 88.06±0.23 89.24±0.30 33.12±1.54 47.12±5.84 86.11±0.31 83.92±0.30 85.24±0.60 37.57±1.16

CIFAR-100, 10%, MoCo CIFAR-100, 10%, SimCLR
Retrain 56.24±2.77 62.23±0.27 58.60±0.28 58.43±0.64 59.53±1.57 51.20±2.07 57.76±0.30 56.25±0.31 55.86±0.78 65.60±1.70

Fine-Tune 46.05±4.96 63.49±0.56 58.88±0.44 59.80±0.91 48.81±1.21 40.85±3.81 57.29±0.13 54.96±0.43 55.85±1.04 60.61±3.70
Grad. Ascent 44.01±2.70 62.56±0.11 59.00±0.06 60.65±0.64 53.28±2.12 34.00±3.81 62.12±0.25 59.58±0.22 61.08±0.61 54.21±1.91

NegGrad 53.58±4.82 63.70±0.25 58.78±0.27 58.85±0.53 48.68±2.02 46.39±5.10 56.52±0.52 54.30±0.67 55.00±1.08 60.04±3.13
ℓ1-Sparsity 45.68±7.30 60.89±0.41 57.40±0.59 58.66±0.78 52.48±3.21 40.55±3.43 57.85±0.24 55.76±0.34 56.68±0.64 58.46±5.10
AC (Ours) 50.17±3.42 63.20±0.37 58.56±0.59 58.44±0.42 54.15±1.66 46.72±5.50 57.11±0.38 54.70±0.36 55.23±0.91 59.78±5.46

CIFAR-100, 50%, MoCo CIFAR-100, 50%, SimCLR
Fine-Tune 53.58±3.92 61.90±0.56 56.07±0.44 56.87±0.41 52.27±0.62 53.89±9.87 52.82±0.29 49.87±0.46 51.04±0.38 60.06±2.23

Grad. Ascent 43.76±3.62 60.91±0.14 56.20±0.18 57.48±0.31 55.64±0.59 40.28±5.87 56.32±0.40 54.12±0.75 55.22±0.88 61.43±2.03
NegGrad 38.95±4.97 60.94±0.47 57.01±0.37 58.21±0.35 57.64±1.01 46.83±7.95 50.60±0.37 48.20±0.45 49.29±0.65 58.01±1.90

l1-Sparsity 49.97±4.97 58.89±0.47 53.07±0.37 53.66±0.35 56.27±1.01 45.12±5.09 52.62±0.63 50.09±0.79 50.98±0.56 65.25±2.31
AC (Ours) 56.22±5.32 59.53±0.78 53.37±0.75 53.69±0.32 52.27±4.08 54.98±2.85 49.28±0.57 46.80±0.61 47.00±0.50 57.78±4.66

B.5 Random Trial Settings

Recall that our results in Tables 2 to 4 are averaged results over five random trials for each unlearning setting.
Specifically, we use random seeds 0, 1, 2, 3, and 4. Each random seed determines both the selection of
unlearning samples and the corresponding pre-trained and retrained encoders. For instance, with a specific
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Table 14: Average gaps calculated only cross classifier-level metrics, i.e., RA, TA, UA, and CMIA. The
hyper-parameters for unlearning methods are chosen optimally regarding this criterion. Bold font denotes
the lowest average gap and italic font denotes the second lowest. The average standard deviation across the
four metrics is shown in square brackets.

CIFAR-10 CIFAR-100
10% 50% 10% 50%

MoCo SimCLR MoCo SimCLR MoCo SimCLR MoCo SimCLR
FineTune 1.69 [0.52] 2.37 [0.57] 5.25 [0.54] 3.53 [0.59] 2.85 [0.73] 1.69 [0.75] 6.44 [0.31] 3.64 [0.83]

Grad. Ascent 1.92 [0.39] 2.98 [0.46] 6.90 [0.32] 6.88 [0.77] 2.30 [0.89] 6.07 [1.33] 5.80 [0.47] 6.79 [1.01]
NegGrad 1.59 [0.46] 2.79 [0.41] 3.58 [0.52] 4.64 [0.87] 3.00 [0.90] 2.14 [1.62] 3.51 [0.99] 3.39 [0.84]

ℓ1-Sparsity 1.65 [0.51] 2.39 [0.31] 4.80 [2.24] 4.76 [0.74] 2.31 [1.01] 2.07 [1.56] 5.90 [0.55] 2.84 [1.07]
AC (Ours) 0.91 [0.46] 1.89 [0.28] 2.20 [0.45] 3.64 [0.59] 1.60 [0.76] 1.54 [1.46] 4.44 [0.59] 3.37 [1.37]

random seed, our AC method and other baseline methods start from the same pre-trained encoder to forget
the same samples and aim to approximate the same retrained encoder. The metrics are computed in each
random trial. We report the standard derivation for Tables 2 to 4 in Table 13.

We observe that EMIA results demonstrate significant instability with respect to random initialization,
exhibiting large variances across all baseline methods as well as our proposed approach. To address potential
concerns regarding the reliability of this evaluation metric, we conduct additional assessments using only
classifier-level metrics (RA, TA, UA, and CMIA). For this evaluation, we carefully select hyperparameters for
all unlearning methods according to these criteria to ensure optimal performance and report the results in
Table 14. The results consistently show that our method still achieves either first or second-best performance
across all tasks, while maintaining low standard deviation. This substantiates the robustness of our approach
even when evaluated through alternative, potentially more reliable metrics.

B.6 Time and Memory Consumption

We acknowledge the running time trade-off introduced by AC. To further examine the practicality of AC, we
provide additional results in Table 15, which provides detailed runtime and GPU memory usage across models
ranging from ResNet-18 to ResNet-152. Our results demonstrate that AC introduces minimal computational
overhead even for the largest models tested.

Table 15: Comparison of time and GPU memory consumption across networks of different sizes. Experiments
are conducted on a server with four NVIDIA A100 GPUs. GPU Memory is monitored by the Wandb logger.

Time (minutes) GPU Memory (GB)
RN-18 RN-34 RN-50 RN-101 RN-152 RN-18 RN-34 RN-50 RN-101 RN-152

Retrain 78.09 127.44 243.95 384.44 543.46 5.19 6.91 17.89 24.56 32.62
Fine-Tune 1.03 1.62 3.11 4.89 6.90 5.19 6.91 17.89 24.56 32.62
Grad. Ascent 0.14 0.14 0.25 0.36 0.47 5.19 6.91 17.89 24.56 32.62
NegGrad 1.22 1.96 3.77 5.92 8.33 5.19 6.91 17.89 24.56 32.62
ℓ1-Sparsity 1.04 1.65 3.15 4.91 6.99 5.19 6.91 17.89 24.56 32.63
AC (Ours) 1.33 2.18 4.16 6.55 9.19 5.21 6.93 17.91 24.58 32.62

B.7 Privacy concerns

We acknowledge that from a differential privacy perspective, visible changes from AC could theoretically
enable membership inference attacks by observing differences in model behavior compared to retraining
(Sekhari et al., 2021), as validated in our AGM analysis in Figure 8. However, we argue that such privacy
leakage poses minimal practical risk because:
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• Limited data access: AGM calculations require access to the private unlearn data, which is typically
only available to data owners and model developers;

• No baseline availability: In practice, the retraining process is not performed and retrained models
are not released, eliminating the comparison baseline needed for inference;

• Restricted adversary capabilities: An adversary would need simultaneous access to both the unlearned
model and reference data/models, which is unlikely in real deployment scenarios

In summary, while the theoretical privacy concern is valid, the practical barriers to exploitation make such
risks negligible in realistic threat models where adversaries lack access to the necessary private information
for meaningful membership inference.
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Figure 8: The Gap metric between Retrain and AC on 8 random images in unlearn dataset of CIFAR-10
(MoCo). The task is forgetting 10% of training data.

B.8 More Ablation Studies

Understanding the trade-off between forgetting efficacy and utility preservation is crucial for practical
unlearning applications. Figure 9 complements Figure 4 by showing how tuning α and β affects utility metrics.
This provides a complete picture of the forgetting-utility trade-off landscape across different hyperparameter
settings.
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Figure 9: The effect of α and β on RA, TA, and UA between Retrain and AC, i.e., FS(RT):FS(AC). Here we
forget 10% of CIFAR-10 training data from a MoCo encoder.
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B.9 More Details on t-Test

Here we clarify the detailed statistics for the t-test with FS in Section 5.3: the null hypothesis (cheating case)
H0 has the same mean and standard deviation (µ0 = −0.0026, σ0 = 0.0587) as shown in Section 3.4, and the
alternative hypothesis (AC-unlearnig case) H ′

1 has (µ′′
1 = 0.0084, σ′′

1 = 0.04438).
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