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Abstract
Images generated by diffusion models like Stable
Diffusion are increasingly widespread. Recent
works and even lawsuits have shown that these
models are prone to replicating their training data,
unbeknownst to the user. In this paper, we first an-
alyze this memorization problem in text-to-image
diffusion models. Contrary to the prevailing belief
attributing content replication solely to duplicated
images in the training set, our findings highlight
the equally significant role of text conditioning in
this phenomenon. Specifically, we observe that
the combination of image and caption duplication
contributes to the memorization of training data,
while the sole duplication of images either fails to
contribute or even diminishes the occurrence of
memorization in the examined cases.

1. Introduction
A major hazard of diffusion models is their ability to pro-
duce images that replicate their training data, often without
warning to the user (Somepalli et al., 2022; Carlini et al.,
2023). Despite their risk of breaching privacy, data own-
ership, and copyright laws, diffusion models have been
deployed at the commercial scale by subscription-based
companies like midjourney, and more recently as offerings
within search engines like bing and bard. Currently, a num-
ber of ongoing lawsuits (Saveri and Butterick, 2023) are
attempting to determine in what sense companies providing
image generation systems can be held liable for replications
of existing images.

In this work, we take a deep dive into the causes of memo-
rization for modern diffusion models. Prior work has largely
focused on the role of duplicate images in the training set.
While this certainly plays a role, we find that image duplica-
tion alone cannot explain all of the replication behavior we
see at test time. Our experiments reveal that text condition-
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ing plays a major role in data replication. We also observe
that the joint duplication of both images and captions plays a
significantly greater role in inducing training data memoriza-
tion compared to solely duplicating images. These findings
emphasize the critical influence of image-caption synergy
in facilitating memorization within the training process.

2. Related work
Memorization in generative models. Most insights on the
memorization capabilities of generative models are so far
empirical, as in studies by Webster et al. (2021) for GANs
and a number of studies for generative language models
(Carlini et al., 2022; Jagielski et al., 2022; Lee et al., 2022).

Recently, Somepalli et al. (2022) investigated data replica-
tion behaviors in modern diffusion models, finding 0.5-2%
of generated images to be partial object-level duplicates of
training data, findings also mirrored in Carlini et al. (2023).
Yet, what mechanisms lead to memorization in diffusion
models, and how they could be inhibited, remains so far
uncertain aside from recent theoretical frameworks rigor-
ously studying copyright issues for image duplication in
Vyas et al. (2023).

Removing concepts from diffusion models. Mitigations
deployed so far in diffusion models have focused on input
filtering. For example, Stable Diffusion includes detectors
that are trained to detect inappropriate generations. These
detectors can also be re-purposed to prevent the genera-
tion of known copyrighted data, such as done recently in
midjourney, which has banned its users from generating
photography by artist Steve McCurry, due to copyright con-
cerns (Chess, 2022). However, such simple filters can be
easily circumvented (Rando et al., 2022; Wen et al., 2023),
and these band-aid solutions do not mitigate copying be-
havior at large. A more promising approach deletes entire
concepts from the model as in Schramowski et al. (2023)
and Kumari et al. (2023), yet such approaches require a list
of all concepts to be erased, and are impractical for protect-
ing datasets with billions of diverse images covering many
concepts.
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3. Experimental Setup
A thorough study of replication behavior requires training
many diffusion models. To keep costs tractable, we focus on
experiments in which large pre-trained models are finetuned
on smaller datasets. This process reflects the training of
Stable Diffusion models, which are pre-trained on LAION
and then finetuned in several stages on much smaller and
more curated datasets, like the LAION Aesthetics split.

Datasets: We use Imagenette1, which consists of 10
classes from Imagenet (Deng et al., 2009) as well as two
randomly sampled subsets of 10, 000 images from LAION-
2B (Schuhmann et al., 2022) for our experiments. The
LAION subsets, which we denote as LAION-10k and
LAION-100k, include captions, while the Imagenette data
is uncaptioned. For some experiments, we use BLIP v1 (Li
et al., 2022) to generate captions for images when needed.

Architecture & Training: We use the StableDiffusion-
v2.1 checkpoint as a starting point for all experiments. Un-
less otherwise noted, only the U-Net (Ronneberger et al.,
2015) part of the pipeline is finetuned (the text and auto-
encoder/decoder components are frozen) as in the original
training run, and we finetune for 100k iterations with a con-
stant LR of 5e − 6 and 10k steps of warmup. All models
are trained with batch size 16 and image resolution 256.

Metrics: We use the following metrics to study the memo-
rization and generation quality of finetuned models. Frechet
Inception Distance (FID) (Heusel et al., 2017) evaluates
the quality and diversity of model outputs. FID measures the
similarity between the distribution of generated images and
the distribution of the training set using features extracted
by an Inception-v3 network. A lower FID score indicates
better image quality and diversity.

Somepalli et al. (2022) quantify copying in diffusion
models using a similarity score derived from the dot product
of SSCD representations (Pizzi et al., 2022) of a generated
image and its top-1 match in the training data. They observe
that generations with similarity scores greater than 0.5
exhibit strong visual similarities with their top-1 image and
are likely to be partial object-level copies of training data.

Given a set of generated images, we define its dataset simi-
larity score as the 95-percentile of its image-level similarity
score distribution. Note that measuring average similarity
scores over the whole set of generated images is uninforma-
tive, as we are only interested in the prevalence of replicated
images, which is diluted by non-replicated samples. For this
reason, we focus only on the similarity of the 5% of images
with the highest scores.

1https://github.com/fastai/imagenette

4. Data Duplication is Not the Whole Story
Existing research hypothesizes that replication at inference
time is mainly caused by duplicated data in the training set
(Somepalli et al., 2022; Carlini et al., 2023; Webster et al.,
2023). Meanwhile, data replication has been observed in
newer models trained on de-duplicated data sets (Nichol,
2022; Mostaque, 2022). Our goal here is to quantify the
extent to which images are duplicated in the LAION dataset,
and understand how this impacts replication at inference
time. We will see that data duplication plays a role in replica-
tion, but it cannot explain much of the replication behavior
we see.

4.1. Controlled Experiments with Data Duplication

We train diffusion models with various levels of data
duplication factor (ddf), which represents the
factor by which duplicate samples are more likely to be
sampled during training. We train each model for 100k
iterations and evaluate similarity and FID scores on 4000
generated samples.

Figure 1 contains results for LAION-10k and Imagenette.
We observe that increased duplication in the training data
tends to yield increased replication during inference. The
relationship between data duplication and similarity scores
is not straightforward for LAION-10k . As the duplication
factor increases, similarity scores rise again until reaching a
data duplication factor ddf of 10, after which they decrease.
Regarding FID scores, we find that a certain level of data
duplication contributes to improving the scores for models
trained on both datasets, possibly because FID is lowest
when the dataset is perfectly memorized.

Other Observations from the Literature. Somepalli
et al. (2022) found that unconditional diffusion models can
exhibit strong replication when datasets are small, despite
these training sets containing no duplicated images. Clearly,
replication can happen in the absence of duplication. As the
training set sizes grow (∼ 30k), the replication behaviors
seen in Somepalli et al. (2022) vanish, and dataset similarity
drops, even when the number of epochs is kept constant.
One might expect this for large enough datasets. However,
they found replication in SD v1.4 which is trained on the
much larger LAION-2B dataset. We will see below that the
trend of replication in diffusion models depends strongly on
additional factors, related especially to their conditioning.

4.2. The Effect of Model Conditioning
To understand the interplay between model conditioning
and replication, we consider four types of text conditioning:

• Fixed caption: All data points are assigned the same
caption, An image.
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Figure 1. How does data duplication affect memorization? All models are trained with captions. On both datasets, dataset similarity
increases proportionally to duplication in training data. FID score are unaffected by light duplication, but increase on higher levels as
image diversity reduces.

• Class captions: Images are assigned a class-
wise caption using the template An image of
<class-name>.

• Blip/Original captions: Each point is trained on the
original caption from the dataset (LAION-10k ) or a
new caption is generated for each image using BLIP (Li
et al., 2022) (Imagenette).

• Random captions: A random sequence of 6 tokens is
sampled from the vocabulary used to uniquely caption
each image.

By varying caption scenarios, we transition from no diver-
sity in captions (“fixed caption”) case to completely unique
captions with no meaningful overlap (“random caption”)
case. We again finetune on the Imagenette dataset, now
using these caption types. As a baseline, we consider the
pretrained Stable Diffusion model without any finetuning.
Figure 2 (left) shows the dataset similarity among the base-
line and models finetuned using the different caption types.

We observe that the finetuned models exhibit higher simi-
larity scores compared to the baseline model. Furthermore,
the level of model memorization is influenced by the type
of text conditioning. The “fixed caption” models exhibit
the lowest amount of memorization, while the “blip caption”
models exhibit the highest. This indicates that the model is
more likely to memorize images when the captions are more
diverse. However, the model does not exhibit the highest
level of memorization when using “random captions”, mean-
ing that captions should be correlated with image content in
order to maximally help the model retrieve an image from
its memory.

Training the text encoder. So far, the text encoder was
frozen during finetuning. We can amplify the impact of
conditioning on replication by training the text encoder
during finetuning. In Figure 2 (right), we observe a notable

increase in similarity scores across all conditioning cases
when the text encoder is trained. This increase is particularly
prominent in the cases of “blip captioning” and “random
captioning”. These findings support our hypothesis that the
model is more inclined to remember instances when the
captions associated with them are highly specific, or even
unique, keys.

4.3. The Impact of Caption vs. Image Duplication

In this section, we control separately for duplication of
images and duplication of their captions to better understand
how the two interact.

In the case of full duplication, both the image and its cap-
tion are replicated multiple times in the training data. On
the other hand, partial duplication involves duplicating
the image multiple times while using different captions for
each duplicate(although the captions may be semantically
similar). To study the partial duplication scenario, we gen-
erate 20 captions for each image using the BLIP model for
both Imagenette and LAION-10k datasets. For the full-
duplication case in the LAION-10k experiments, we keep
the original caption from the dataset.

We present the results on LAION-10k and Imagenette in
Figure 3. We investigate how dataset similarity changes for
both full and partial image-caption duplication at varying
levels of duplication. Overall, our findings demonstrate
that partial duplication consistently leads to lower levels of
memorization compared to full duplication scenarios.

In Figure 3 (left), we compare the similarity scores of sev-
eral models: the pretrained checkpoint, a model finetuned
without any data duplication, a model finetuned with full
duplication (ddf=5), and a model finetuned with partial
duplication (ddf=5). We include dashed horizontal lines
representing the background self-similarity computed be-
tween the dataset and itself. In the Imagenette case, models
trained without duplication and with partial duplication ex-
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Figure 2. Left: Diffusion models finetuned on Imagenette with different styles of conditioning. FID scores of finetuned models are as
follows (in order) 40.6, 47.4, 17.74, 39.8. Right: We show the effects of training the text encoder on similarity scores with different
types of conditioning
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Figure 3. Models trained with different levels duplication and duplication settings. Left: Dataset similarity between models trained with
no duplication, with partial duplication, and full duplication. Dashed lines show dataset similarity of each training distribution. Middle,
Right: Dataset similarity and FID for full duplication vs partial duplication for different data duplication factors.

hibit dataset similarity below the baseline value, indicating a
lower level of memorization. In contrast, the model trained
with full duplication demonstrates higher levels of memo-
rization compared to both the baseline and other cases. In
the LAION-10k experiments, the model trained without
duplication surpasses the training data similarity baseline.
This observation raises the question of whether the memo-
rization is inherited from the pretrained model, considering
it is also trained on the larger LAION-2B dataset. However,
when we compute the similarity scores on the pretrained
checkpoint, we observe significantly lower values, indicat-
ing that the observed memorization is acquired during the
fine-tuning process.

In Figure 3 (middle, right), we analyze how the sim-
ilarity scores and FID scores vary at different data
duplication factors (ddf) for full and partial
data duplication. As the ddf increases, we observe an
increase in memorization for models trained with full dupli-
cation. However, for partial duplication, dataset similarity
actually decreases with increased duplication. In our pre-

vious analogy, we now have multiple captions, i.e. keys
for each duplicated image, which inhibits the memorization
capabilities of the model. However, this memorization re-
duction comes at the cost of a moderate increase in FID at
higher duplication levels.

5. Conclusion
In our research, we make significant contributions to
the understanding of dataset memorization in large text-
conditional models. We demonstrate that beyond the conven-
tional focus on de-duplicating image data, the conditioning
and diversity of captions also play pivotal roles. Our find-
ings, as illustrated in Figure 3, reveal that the phenomenon
of memorization can be mitigated even as duplication levels
increase, provided that captions exhibit sufficient diversity.
These insights shed light on the contrasting behavior ob-
served between large text-conditional models like Stable
Diffusion and class-conditioned models on Imagenet, as
reported in the study by Somepalli et al. (Somepalli et al.,
2022).
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