
Multi-Objective Utility Actor Critic with Utility Critic
for Nonlinear Utility Function

Gao Peng∗

Centrum Wiskunde
Informatica

Science Park 123,1098 XG Amsterdam
gao.peng@cwi.nl

Eric.J.Pauwels
Centrum Wiskunde

Informatica
eric.pauwels@cwi.nl

Hendrik Baier
Centrum Wiskunde

Informatica
TU/Eindhoven

Abstract

In multi-objective reinforcement learning (MORL), non-linear utility functions
pose a significant challenge, as the two optimization criteria—scalarized expected
return (SER) and expected scalarized return (ESR)—can diverge substantially.
Applying single-objective reinforcement learning methods to solve ESR problems
often introduces bias, particularly in the presence of non-linear utilities. Moreover,
existing MORL policy-based algorithms, such as EUPG and MOCAC, suffer from
numerous hyperparameters, large search spaces, high variance, and low learning
efficiency, which frequently result in sub-optimal policies.
In this paper, we propose a new multi-objective policy search algorithm called
Multi-Objective Utility Actor-Critic (MOUAC). For the first time in the field,
MOUAC introduces a Utility Critic based on expected state utility to replace Q-
value critic, value function, or distributional critic based on Q-values or value
functions. To address the high variance challenges inherent in multi-objective
reinforcement learning (MORL), MOUAC also adapts traditional eligibility trace
to the multi-objective setting called MnES-return. Empirically, we demonstrate
that our algorithm achieves state-of-the-art (SOTA) performance in on-policy multi-
objective policy search.

1 Introduction

Modern reinforcement learning, particularly policy gradient methods, relies on the actor-critic
paradigm: training both the actor and critic simultaneously, where the critic supports policy evaluation
to guide the actor’s policy improvement. While the most common choice historically has been value
functions or Q-value functions, applying these in multi-objective reinforcement learning (MORL)
introduces significant bias—especially when optimizing expected scalarized return (ESR) with
nonlinear utility functions [7]. Reymond et al. [12] point out that for nonlinear utility cases, due
to ESR and SER considerations, value functions or Q-values fail to accurately evaluate scalarized
returns.

∗Code could be open-sourced soon.

18th European Workshop on Reinforcement Learning (EWRL 2025).

One alternative, EUPG by Roijers et al. [14], applies scalarized returns to entire trajectories to
handle ESR under nonlinear utilities. However, EUPG’s drawback is that every step in the trajectory
contributes equally, failing to distinguish good actions from bad ones. Another alternative, MOCAC
by Reymond et al. [12], uses a distributional value critic, modelling the value function as a distribution
(by category) to indirectly estimate expected utility. While MOCAC outperforms EUPG in some
toy problems, modelling distributions in high-dimensional spaces is computationally expensive
and introduces sensitivity to additional hyperparameters, such as clipping parameters and category
choices, making MOCAC difficult to extend to more complex tasks.

In this paper, we propose a new on-policy, multi-objective, policy-based algorithm: Multi-Objective
Utility Actor-Critic (MOUAC). Rather than modelling distributional value functions or equally
applying scalarized returns, MOUAC directly leverages the difference between scalarized returns and
expected state-utility functions, significantly reducing the cost from modelling value distributions.
To address the uncertainty and variance arising from multi-objective Markov decision processes
(MOMDPs) and their reward-conditioned structures, we extend eligibility trace [15] to the multi-
objective ESR setting, introducing a utility-based trace called Mean n-step Expected Scalarized
Return(MnES-return). We evaluate MOUAC through simulations and explain its behaviour within
the framework of Generalised Policy Iteration. Empirically, MOUAC outperforms both MOCAC and
EUPG; to the best of our knowledge, MOUAC achieves state-of-the-art performance on ESR tasks
with nonlinear utility functions.

2 Preliminary

2.1 MORL

MOMDP Generally, MORL uses a Multi-Objective Markov Decision Process (MOMDP) to model
the problem. MOMDP is represented by the tuple <S,A, Tr, γ, µ, r>, where S is the state space and
A the corresponding action space, Tr : S × A× S → [0, 1] specifies the (probabilistic) transition
kernel), 0 < γ ≤ 1 is a discount factor (we will use γ = 1 in this paper), Finally, µ : S → [0, 1]
characterises the initial state by specifying a probability distribution over all possible initial states,
and r : S × A × S → IRd is a vector-valued reward function, specifying the immediate (possibly
stochastic) reward for each of the considered d ≥ 2 objectives.

Policy A policy π is mapping that in each state assigns a probability to each possible action:
π : S × A → [0, 1] The set of all possible policies is denoted by Π. Rather than a traditional
memory-less policy, MORL often requires a reward-conditioned policy, which is defined similarly:
π : S × IRd ×A→ [0, 1].

Trajectory Assume that τ is a trajectory (path) through state space, generated by a policy π, starting
at some s0 and terminating in an absorbing state at time T . One way to describe this trajectory is by
listing all the states, actions and rewards as a sequence:

τ = {s0, a0, r1, s1, a1, r2, s2, . . . , , sT−1, aT−1rT , sT }.
We will denote the total reward (return) accrued along path τ , up till, and including, time t as:

Rt(τ) =

t∑
k=1

rk(τ) (1)

and we will often write R(τ) as shorthand for RT (τ).

Q value and Value function Simlar to single objective RL, Q value and value function could
also help us evaluate a policy indirectly. Define the value of taking action a in state s under
a policy , denoted as Qπ(s, a): Qπ(s, a) = Eτ∼π

[∑T
k=0 γ

krk | s0 = s, a0 = a
]

we can com-
pute the value of each state under that policy as the expected cumulative reward: vπ(s) =

Eτ∼π

[∑T
k=0 γ

krk | s0 = s
]
.

2

Pareto Dominance For two general vectors x,y ∈ IRd we say that x Pareto-dominates y (notation
x >p y) iff

∀i = 1, . . . , d : xi ≥ yi, and ∃ 1 ≤ j ≤ d : xj > yj .

Utlity Function Scalarization entails applying a utility function u : IRd −→ IR to the vector
reward to obtain a scalar value. In many applications, the focus is on linear utility functions:
u(V) =

∑d
i=1 wiVi = wTV, but in general, a utility function can be any function u that is

strictly increasing in Pareto sense: ∀x,y ∈ IRd : x >P y =⇒ u(x) > u(y). For simplicity,
in this paper, we’ll focus on the two-dimensional special case of the Leontief non-linear utility
function(u(X) = min(qx, y)).

2.2 Maximising Expected Scalarized Returns (ESR)

Using the above notation we are interested in finding the policy π that maximises the expected
scalarized returns (ESR):

ESR : max
π

Eτ∼π [u(R(τ)] . (2)

Notice how this optimisation problem differs from the more frequently encountered scalarised
expected returns (SER) which aims to optimise

SER : max
π

u (Eτ∼π [R(τ)]) . (3)

Unless the utility function u is linear, these two approaches yield different results, and ESR is more
appropriate in applications where we need to optimise the utility of single policy rollout, rather than
averaging over a large number of them [7, 11].

3 From Single Objective Policy Gradient to Multi Objective Policy Gradient
for ESR

3.1 Recap of policy gradient theorem and (Advantage) Actor-Critic (A2C) algorithm

To motivate the approach taken in this paper we briefly recall how the policy gradient theorem gives
rise to the (advantage) actor critic algorithm to optimise the expected (scalar) reward R. (Since this
is only meant for illustrative purpuses, we focus on scalar rewards, and trivial utility u(R) = R).
Specifically, suppose we have a policy πθ that depends on a parameter θ and we need to optimise the
expected (scalar) reward along trajectories, i.e. Eτ∼πθ

[R(τ)]. The required gradient is provided by
the policy gradient theorem [17]:

∇θJ(θ) = Eτ∼πθ

[
R(τ)

T∑
t=0

∇θ log πθ(at | st)

]
(4)

The disadvantage of this formulation is every action at along the path τ is weighted with the same
reward R(τ) which quantifies the total reward along the complete path. For this reason, it is standard
to focus on the future reward (along the path) which is defined as:

R+
t :=

T∑
k=t+1

rk

and modify the gradient computation as:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

R+
t ∇θ log πθ(at | st)

]
(5)

Clearly, for any given path, qθ(st, at) would be a valid estimate of R+
t since τ takes action at in state

st and adheres henceforth to policy πθ. We therefore arrive at:

∇θJ(θ) ≈ Eτ∼πθ

[
T∑

t=0

qθ(st, at)∇θ log πθ(at | st)

]
(6)

3

The final improvement follows from introducing the value function vθ(s) as a baseline, thus reducing
variance. This yields the A2C-version of the policy gradient theorem [17, 2]:

∇θJ(θ) ≈ Eτ∼πθ

[
T∑

t=0

(qθ(st, at)− vθ(st))∇θ log πθ(at | st)

]
(7)

3.2 Multi-objective Policy Gradient for ESR

Policy Gradient has been extended to Multi Objective RL for quite a long time[10]. Reymond et al.
[12] put forward EUPG and MOCAC to solve ESR based on policy gradient algorithms. To the best
of our knowledge, EUPG and MOCAC are only existing policy gradient method aiming at ESR.

Objective Function of ESR Since we will focus on policy gradient methods, we recast eq. 2 for
the case of a parametrised policy πθ, which yields:

ESR : max
θ

J(θ) where J(θ) = Eτ∼πθ
[u(R(τ))] . (8)

EUPG The straightforward equivalent of the simple policy gradient eq. 4 is furnished in the EUPG
algo where the policy gradient is given by the following equation:

∇θJ(θ) = Eτ∼πθ

[
u(R(τ))

T∑
t=0

∇θ log πθ(at | st,Rt)

]
(9)

MOCAC[12] . For their algorithm, they require a multivariate distribution where z⃗i is a support
atom for vectorial returns. Vmin, Vmax for each objective. Moreover, under the assumption that
the same number of categories N for each objective-dimension, resulting in a discrete distribution
with Nocategories. Each atom z⃗i∀i ∈ [{1, 2, 3...N}]o then becomes: z⃗i = ⃗Vmin + i∆z⃗ with
∆z⃗ =

⃗Vmax− ⃗Vmin

N−1 . V (s_t) is computed in a similar manner as the single-objective case: V (s_t) =∑
i∈[{1,2,3...N}]o z⃗iZφ(z⃗i|st) where Zφ(z⃗i) is the associated probability. Then MOCAC use the

gradient in way below with 1 step TD advantage:

∇θJ(θ) = Eτ∼π

[
T∑

t=0

(∑
i∈[{1,2,3,...,N}]o

u(Rt+1 + γtz⃗i)Zφ(z⃗i)

−
∑

i∈[{1,2,3,...,N}]o
u(Rt + γtz⃗i)Zφ(z⃗i)

)
∇θ log πθ(at|st, R−

t)

]

4 MOUAC Methodology

4.1 Expected state utility, Expected state-action utility and utility critic

In this section we take the standard version of A2C (cf. eq. 7) and adapt it for ESR. We need to start
by reformulating the state and state-action value functions, to include the effect of the utility function
u. Since u is assumed to be non-linear, we can only estimate the value of states (and state-actions) if
we include the accrued (vector) reward R (see eq. 1) upon arrival in that state. For this reason, we
need to make the following modifications to the definitions of the value functions:

• Expected state utility determines the expected final utility under the policy π when
starting in state s with the accrued cumulative reward R:

vuπ(s,R) := Eτ∼π

[
u

(
R+

T∑
k=1

rk

)
| s0 = s,R0 = R

]
(10)

• Expected state-action utility determines the expected final utility under the policy π
when starting in state s with the accrued cumulative reward R, and taking action a:

quπ(s, a,R) = Eτ∼π

[
u

(
R+

T∑
k=0

rk

)
| s0 = s,R0 = R, a0 = a

]
(11)

4

Recall that due to the non-linearity of the utility function and ESR setting, the Bellman equation no
longer holds. Extending TD-learning to update quπ(s,R, a) as well as vuπ(s,R) remain to be explored
in future. In this paper, we estimate them by Monte Carlo estimation with the scalarized episodic
return.

The challenge with this A2C approach is to compute the utility critic, which is a utility based
advantage

Au = qu − bu (12)

In general, any policy gradient estimator conforming to eq. 12 should give unbiased policy evaluation.
In this equation, the baseline bu is easily approached with vu(st, Rt) or u(τ), while qu is not easy.
Let’s expand some options with regard to approximate qu:

• qu ≈ qu(st, at, Rt) like in eq. 7. Directly use uitlity based A2C is most theoretically ideal
but not practical. Multi-dimensional reward in the input space increases the complexity
to approximate qu(st, at, Rt) in on-policy time. Further, qu function applying a Temporal
Difference learning way to evaluate the action is usually accompanied by high bias and low
variance, especially in a stochastic environment.

• qu ≈ u(R(τ)) is another natural choice. This means a Monte Carlo Estimation usually
accompanying with high virance and low bias. In this paper, we use the mean square error
from the scalarized episodic return to update the Expected state utility.

In the next section we introduce multi-objective utility actor critic (MOUAC) which we propose as a
strategy to tackle the ESR optimisation.

4.2 KEY INSIGHT

Underpinning the MOUAC algorithm is the key insight that, through a change of point of view, the
original ESR problem can be turned into regular single objective policy optimisation by extending
the state space. Specifically, since the utility computation (in eqs. 10, 11) requires the accrued
(vector) reward Rt when entering state st, we introduce the extended (reward-conditioned) states
s′t := (st,Rt), specifically s′t = (st,Rt)

at−→ s′t+1 = (st+1,Rt+1) where Rt+1 =
Rt + rt+1. In contrast to the original problem formulation, these extended states now contain all the
information necessary to select (optimal) actions. Furthermore, since the accrued vector reward is
now part of the state, we can formally introduce a new scalar reward that is zero for all non-terminal
transitions, and equal to u(RT) when transitioning to a terminal state.

One way to visualise this is that every roll-out path τ in the original state space S is "lifted"
to a path τ ′ in the extended state space S × IR⌈. It is easy to see that the value functions
in this extended state space correspond the the utility-based values introduces in eqs. 10, 11):
v′π(s

′
t) = vuπ(st,Rt) and q′π(s

′
t, at) = vuπ(st,Rt, at). This extended MDP can be viewed

as a projection of the original MOMDP, and both share the same optimal policy. By moving to this
extended space, the Bellman equation becomes valid again, which allows TD prediction to be applied
in a REINFORCE-like framework. Concretely, when computing qu(st,Rt, at) at time step t, this is
equivalent to evaluating q′(s′t, at). In a standard RL setting, it is natural to approximate this quantity
with TD bootstrapping rather than relying on a full Monte Carlo return. Because all intermediate
transitions yield zero reward, the target can be expressed directly through the successor state, giving
qu(st,Rt, at) = q′(s′t, at) ≈ v′(s′t+n) = vu(st+n,Rt+n), where n denotes the horizon in n-step
TD. This establishes how TD prediction can effectively substitute for Monte Carlo estimates within
policy gradient updates when viewed through the extended MDP(details in appendix A.1).

4.3 Multi-Objective Utility Actor Critic (MOUAC)

MOUAC 1 is an on-policy algorithm that uses trajectories to estimate parametrised approximators πθ

and vuω (parametrised by ω) for the optimal policy π and corresponding value function vu respectively.
The learning procedure could be described as repeating the following process until convergence:
(1) use the current policy πθ to roll out a trajectory τ ; (2) update the policy function πθ with utility
critic eq. 15; (3) use u(R(τ)) to update vuω in a mean square error way. In MOUAC, we use a
eligibility trace qu ≈ δ̄(st, Rt) (see below for more details) to combine TD-learning and Monte
Carlo estimation. We will discuss this in detail in section 4.4 below.

5

Algorithm 1 Multi-Objective Utility Actor Critic

1: Initialize: Policy πθ, Utility Critic vuω , learning rate α,
2: Repeat:
3: Collect one trajectory τ using policy πθ(a|s,R)
4: Compute policy gradient estimate15:
5: ∇θJ(θ) = E

[∑T
t=0

(
δ̄(st,Rt)− vuω(st,Rt)

)
∇θ log πθ(at | st,Rt)

]
6: Update policy parameters :
7: θ ← θ + α∇θJ(θ)
8: Update utility critic ω
9: Increment episodes count, and clean the buffer

10: Until convergence

4.4 Mean n-step expected scalarized return(MnES-return)

While introducing a baseline can help lower variance, it is still insufficient on its own. From the
perspective of credit assignment — the core challenge in policy evaluation — the advantage estimate
we used above looks ahead n steps, which is equivalent to Monte Carlo estimation usually with high
variance and low bias. More generally, to better manage the bias-variance trade-off in learning, we
can modify the qu term in equation eq. 12 by incorporating past evaluations(TD-learning).

The classical λ-return method offers one such approach: it introduces a parameter λ that balances
attention between shorter and longer horizons. When λ is small, the algorithm emphasises short-term
outcomes, similar to TD(0); as λ approaches 1, it behaves closer to TD(1) or Monte Carlo estimation,
focusing more on long-term, full-trajectory returns. Building on this classical credit assignment
framework, we derive two options for handling multi-objective reinforcement learning.

Let’s recap the λ-return [17] at time t is defined as a weighted sum of all n-step returns:R(λ)+
t =

(1− λ)
∑∞

n=1 λ
n−1R

(n)+
t where the n-step return is looking n-step ahead before update:R(n)+

t =
rt+1 + γrt+2 + · · ·+ γn−1rt+n−1 + γnV (st+n). Alternatively, it can be computed recursively by
advantage function using the temporal difference (TD) error[15], Generalised Advantage Estimation:
R

(λ)+
t = (rt + γV (st+1)− V (st)) + γλR

(λ)+
t+1 . However recall that, in our MOUAC algorithm, the

Bellman equation does not hold in the non-linear ESR setting. These challenges mean that traditional
n-step return and λ-return (or GAE) do not work in our case.

Inspired by the above work, here we could first try to consider the scalarised n-step return: at time
step t, with accrued reward Rt, look ahead n step, then update. We notice that a defined expected
state utility could directly give us this evaluation because of its reward-conditioned nature. Then
scalarised n step return at time step t could be directly represented with vuπ(st+n, Rt+n). If we
directly use this scalarised n step return and n is infinity, it means we use u(R(τ)) to replace qu.

Furthermore, we put forward a mean n-step expected scalarized return(MnES-return) :

δ̄(st, Rt) =

T−t∑
n=1

vuπ(st+n, Rt+n)/(T − t) (13)

Similarly, Extending from GAE(lambda return), we could define λ-step expected sclarized return(λ-
ES-return) at timestep t as

δ(λ)(st, Rt) = (1− λ)

∞∑
n=1

λn−1vuπ(st+n, Rt+n) (14)

which is a natural extension of λ-return from single objective to multi-objective. Here we uniformly
use the credit assignment at time t to replace the qu in eq12. So the final update equation comes to:

∇θJ(θ) = Eτ∼π

[
T∑

t=0

(
δ̄ω(st, Rt)− vuα(st,Rt)

)
∇θ log πθ(at | st,Rt)

]
. (15)

Of course, we could use equation14 or V (st+n, Rt+n) to replace the δ(st, Rt) .

In later experiments, we empirically find that MnESR-return outperforms λ-ES-return.

6

4.5 why does MOUAC work?

Method Policy Evaluation Policy Improvement objective
Policy Iteration Exact Vπ Exact greedy π′ single objective
REINFORCE MC return Rt Gradient step single objective
AC TD or MC estimate of Vπ gradient step single objective
A2C Advantage estimate of

Q(s, a) and baseline
gradient step single objective

PPO/TRPO GAE estimation of Aπ Constrained policy updates single objective
Q-learning Qπ update via TD Greedy w.r.t. Q single objective
EUPG Scalarized MC return u(Rt) Gradient Step MO:ESR
MOCAC Advantage function over

TD estimated distirbutional
Z(z⃗ | st, Rt)

Gradient Step MO:ESR

MOUAC Advantage estimate of
MnESR-return estimation
and baseline

Gradient step MO:ESR

Table 1: GPI view for different policy gradient algorithms.

Sutton [17] noted that Generalized Policy Iteration (GPI) underpins nearly all reinforcement learning
(RL) algorithms, framing them as iterative cycles of policy evaluation followed by policy improvement.
In Table 1, we classify several popular algorithms from both RL and multi-objective RL (MORL)
through the lens of GPI. Traditional RL methods, from Policy Iteration to PPO, focus on how a
policy affects expected return — an approach insufficient for MORL settings. We argue that EUPG,
MOCAC, and MOUAC successfully address episodic single-run (ESR) problems with nonlinear
utility functions because they deliver accurate utility-based policy evaluation and perform policy
improvement according to Eq. 12.

Here, based on the Policy Gradient Theorem [17], we present two simple lemmas to clarify the
workings of MOUAC.
Lemma 1. In MOMDP, the objective function: Jθ = Eτ∼πθ

[u(R(τ)] could be approximated by the

gradient∇θJ(θ) = Eτ∼πθ

[∑T
t=0(u(R(τ))− b(st, Rt))∇θ log πθ(at|st, Rt)

]
without bias.

Lemma 2. In MOMDP, whose objective function J(θ) = quπ , let τ be a trajectory generated under
policy πθ, and δ̄(st, Rt) =

∑T−t
n=1 v

u
π(st+n, Rt+n)/(T − t) then:

∇J(θ) = Eτ∼π,µ

[
T∑

t=0

(δ̄(st, Rt)− b)∇ log π(at|st, Rt)

]
is an unbiased estimation.

The proof for these lemmas could be found in appendix A.2 and A.3. Lemma 1 also has been proved
by [12].

5 Simulation

Except in the simple policy section, we implement MOUAC, MOCAC, and EUPG using a three-layer
MLP. MOUAC consistently outperforms MOCAC and EUPG on Fishwood and LadderWorld. To
validate our EUPG and MOCAC implementations, we replicate the Fishwood setup from [12]. We
also conduct an ablation study on MOUAC to assess the MnES-return component. Additionally, we
test a one-parameter policy on a larger LadderWorld to gauge its gap from the optimal policy. For
interested readers, additional details are provided in the appendix, along with two supplementary
experiments on the Deep-Sea Treasure environment for evaluation. In these experiments, MOUAC
continues to outperform the other methods.

5.1 LadderWorld

To test our algorithm in stochastic environment, we firstly test algorithms in the task called Ladder-
World. The environment consists of two parallel rails connected by n rungs, forming a total of 2n

7

(a) LadderWorld environment (b) Fishwood under different conditions

Figure 1: MOUAC versus EUPG versus MOCAC

Figure 2: Ablation Study in LadderWorld: In a LadderWorld where length is 20, transition probability
0.9, cost 0.1, and the utility function is u(X) = min(x1, x2). Run every algorithms 5 times and
show its average result.

states. An initial state distribution µ determines the starting rail. At each state, the agent can choose
between two actions: moving forward (F) along the current rail or crossing (C) to the opposite rail.
Transitions are stochastic, with success probabilities pF and pC for forward and crossing actions,
respectively. The reward vector depends on the actual (not the intended) outcome of the action.
Specifically, moving forward along the top rail yields a reward r = (1, 0), while moving forward on
the bottom rail yields r = (0, 1). Crossing between rails results in a penalty with reward r = −(ϵ, ϵ).
Fig. 1a shows the performance from MOCAC, EUPG and MOUAC. To notice, in the original MOCAC
paper, MOCAC updates with the mini-batch in one epoch; except for MOCAC, other methods all
update with one epoch of data in once. In the figure, MOUAC shows the best performance; MOCAC
at the beginning converge to a not bad result, but later gets stuck at this level and becomes the worst
algorithm; EUPG learns slowly, but outperforms MOCAC; MOUAC shows a stable learning curve
than the others.

5.2 Fishwood

[12] suggests MOCAC outperforms EUPG in fishwood in Fig. 1b. We adapt the open-source code of
MOCAC to the fishwood and keep the environment’s parameters the same as using the following
parameters: pf = 0.25,pw = 0.65,l = 13 where pf, pw, l are the probabilities of getting fish, wood,
and the duration of an episode, respectively. Untiltiy function is u = min{fish, [wood/2]}. Our
method MOUAC, outperforms EUPG(MOREINFORCE) and MOCAC. To note, the MOCAC result
in the original paper is 1.4(since around 100k steps in their experiment), but in our simulation, only
around 1.3(after 200k). This slight difference could come from the fine-tuning. This could support
the argument that compared to MOCAC’s complexity (parameters categories, value’s bound, mini
batch size, etc.), MOUAC with fewer parameters to tune is more friendly. Even compared to the best
result of MOCAC in the original paper, MOUAC is as good as MOCAC, as MOUAC’s utility is also
1.4[12].

8

(a) EU-AFO performance (b) Simple learning dynamics (c) Theta evolution

Figure 3: Experiment for ladder of length n = 60: TOP: Expected utility (based on Monte Carlo
rollouts) for the 1-parameter policy πθ specified in eq. 28 as a function of θ. For a crossing cost
xcost = −0.5 and medium stochasticity pF = pC = 0.75, the optimal value θ∗ ≈ 12.75 with a
corresponding optimal utility u∗ ≈ 20.17. However, notice that the utility curve is relatively flat to
the right of its maximum, hence it would be more accurate to state 8 ≤ θ∗ ≤ 15. Results are based
on 500 Monte Carlo rollouts per θ-value. Recall that for a deterministic environment the maximally
achievable utility would be approximately 40. MIDDLE: Evolution utility u(R(τ)) under gradient
ascent driven by EUPG (red, cf. eq. 9 and MOUAC (blue, cf. eq. 15). Notice how both methods
reach the optimal utility u∗ ≈ 20 but MOUAC is more sample efficient. BOTTOM: Corresponding
evolution of θ under the same dynamics. Notice how the dynamics stops in the neighbourhood of
θ = 8 where the utility hits a plateau (see TOP).

5.3 Ablation study MOUAC

Fig 2 contains the MOUAC with different eligibilty trace(to replace qu in utility critic and bu is always
vu(st, Rt)) and contains EUPG without bu as a baseline. Among all the methode MOUAC_MnES-
return13 outperforms all the other methods, and this is also what we use in alg.1. MOUAC_nstep with
u(R(τ)) minus baseline is slightly lower than MnES-return. EUPG is worse than MOUAC_nstep
that support decreasing baseline is effective. EUPG and λ-ES-return converge to a similar result but
EUPG is lower. GAE as our expectation give a bias compared to λ-ES-return.

5.4 Verify MOUAC optimality with simple policy

To test the proposed approach we compare EUPG to our algo for the following 1-parameter policy in
the ladder world setting. The idea underpinning this policy is that the best action is the one that keeps
the two components of the vector reward nearly balanced at all times: qR(1)

t ≈ R
(2)
t . To encode this

idea in the policy we denote the imbalance between both outcomes as zt = R
(2)
t − qR

(1)
t . Basically,

the policy dictates to move forward, unless the difference zt becomes too extreme. The switch point
is determined by the parameter θ, and if we use σ(x) to denote the standard sigmoid function (and
σ(x) = 1− σ(x)), then we can write the policy as:

πθ(a = F | s, z) =
{

σ(z + θ) if s on top rail
σ(z − θ) if s on bottom rail (16)

Indeed, if we are on the top rail then we will want to move forward unless qR(1) exceeds R(2) by
more than θ (i.e. qR(1) > R(2) + θ, or equivalently, z = R(2) − qR(1) < −θ). This behaviour is
captured by the shifted sigmoid σ(z+ θ), and a similar argument holds for the bottom rail. In Fig. 28,
based on the above 1-parametric sigmoid function, MOUAC still slightly outperforms EUPG(speed)
but ends with a lower θ. This latter obsevation could be the due to the flatness of the utility curve
nears its maximum (see Fig. 3).

6 Related Works

Multi-Objective RL [13, 11] has quite long history study on finding pareto front without given utility
and find policy with given utility. To reduce the reading load, we focus on the works that at include
policy search method to solve MOMDP given utility function at least as a sub-problem. This will
lead us to focus on the work either solve MOMDP with given utiltily or pareto front searching by

9

decomposition method[4]. Agarwal et al. [1] adapt a Multi Objective Actor Critic to nonlinear utility
function problem but it use the linear utility function. [10, 9] has use policy based method to recover
the continuous pareto front and they use linear utility function as well.

In the specific ESR setting of MORL given nonlinear utility function we are looking at, the solutions
are quite limited at this moment. Roijers et al. [14] put forward EUPG the first algrithm to solve ESR.
MOCAC[12] integrated C51[3] into EUPG so that it can approximate the expected utility based on
the expected value distribution; this work is extremely suitable for risk-sensitive scenarios. To our
humble knowledge, EUPG and MOCAC are the only policy based method aiming at ESR problem
with non-linear utility function. The alternative way to solve this problem is MCTS variant: Hayes
et al. [6] puts forward NLU-MCTS and Distributional Monte Carlo Tree Search(DMCTS) which
learns a posterior distribution over the utility of the returns of a full episode.

In the past, researchers have developed many successful single-objective policy gradient methods,
starting from REINFORCE, advancing to the Actor-Critic family[2, 8] that incorporates value
baselines and temporal credit assignment, followed by stabilization techniques such as TRPO[15]
and PPO[16], and more recently, improved exploration methods like Soft Actor-Critic[5]. Multi-
objective reinforcement learning (MORL) has adapted these popular algorithms, leveraging advantage-
style credit assignment for multi-objective scenarios. However, research on eligibility trace-based
algorithms in this context remains rare, even though eligibility trace methods[15, 18] can help improve
learning efficiency and reduce variance.

7 Conclustion

Given a nonlinear utility function, computing an optimal policy in multi-objective reinforcement
learning (MORL) requires solving correlated Expected Scalarized Return (ESR) problems. Existing
multi-objective policy-based methods face challenges such as sensitivity to parameters, difficulty in
training, and low learning efficiency. This work introduces a new on-policy, policy-based approach
called Multi-Objective Utility Actor-Critic (MOUAC) to address these issues. Unlike existing
methods, MOUAC employs a utility critic and, for the first time, introduces an eligibility trace called
MnES-return in the MORL setting to improve policy evaluation. As a result, MOUAC approximates
state-of-the-art (SOTA) performance on ESR problems with nonlinear utility functions. We validate
the effectiveness of the algorithm through simulations and provide a simple analysis explaining why
MOUAC can solve multi-objective Markov decision processes (MOMDPs) more efficiently. The
future direction could be extending MOUAC to offline MORL and MAMORL.

References
[1] Mridul Agarwal, Vaneet Aggarwal, and Tian Lan. Multi-objective reinforcement learning with

non-linear scalarization. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pages 9–17, 2022.

[2] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Re-
inforcement learning through asynchronous advantage actor-critic on a gpu. arXiv preprint
arXiv:1611.06256, 2016.

[3] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[4] Florian Felten, El-Ghazali Talbi, and Grégoire Danoy. Multi-objective reinforcement learning
based on decomposition: A taxonomy and framework. Journal of Artificial Intelligence
Research, 79:679–723, 2024.

[5] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[6] Conor F Hayes, Mathieu Reymond, Diederik M Roijers, Enda Howley, and Patrick Mannion.
Distributional monte carlo tree search for risk-aware and multi-objective reinforcement learning.

10

In Proceedings of the 20th international conference on autonomous agents and multiagent
systems, pages 1530–1532, 2021.

[7] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz,
et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36(1):26, 2022.

[8] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[9] Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca Bascetta, and Marcello Restelli. Policy
gradient approaches for multi-objective sequential decision making. In 2014 International Joint
Conference on Neural Networks (IJCNN), pages 2323–2330, 2014. doi: 10.1109/IJCNN.2014.
6889738.

[10] Matteo Pirotta, Simone Parisi, and Marcello Restelli. Multi-objective reinforcement learning
with continuous pareto frontier approximation. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015.

[11] Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé. Multi-objective
multi-agent decision making: a utility-based analysis and survey. Autonomous Agents and
Multi-Agent Systems, 34(1):10, 2020.

[12] Mathieu Reymond, Conor F Hayes, Denis Steckelmacher, Diederik M Roijers, and Ann Nowé.
Actor-critic multi-objective reinforcement learning for non-linear utility functions. Autonomous
Agents and Multi-Agent Systems, 37(2):23, 2023.

[13] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of
multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 48:
67–113, 2013.

[14] Diederik M Roijers, Denis Steckelmacher, and Ann Nowé. Multi-objective reinforcement
learning for the expected utility of the return. In Proceedings of the Adaptive and Learning
Agents workshop at FAIM, volume 2018, 2018.

[15] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[17] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

[18] Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and
Diana Borsa. Expected eligibility traces. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 9997–10005, 2021.

11

A Appendix

A.1 extended MDP from MOMDP

Here we define the extended MDP from 4.2 in detail.

Given the MOMDP <S,A, Tr, γ, µ, r> with a nonlinear utility function u(R⃗), we want to optimise
the ESR. Our target is to find a conditioned policy π : S × Rd × A → [0, 1] that optimises the qu

and vu functions we defined above.

Now we define a trajectory occupancy measure, conditioned on both state and accrued reward:

σπ(τ, s, r) = P(τ |s0 = s, r0 = r, π),

for this trajectory τ , that we use, (sτT , R⃗
τ
T) to denote the last state of the trajectory; additionaly, T

means the horizon of the trajectory; then we would have Terminal Set for this MOMDP with all the
possible trajectories T {(sτT , R⃗τ

T)}
Then we could rewrite the eq 11 and eq 10 in such a way:

vuπ(s, R⃗) =
∑

σπ(τ, s, R⃗)u(τH) =
∑

σπ(τ, s, R)u(R⃗τ
T))

and,
quπ(s,R, a) =

∑
s1,R1

P(s,R, a, s′1) v
u
π(s1, R1) where s′1 = (s1, R1).

Now we build a define the extended MDP M ′ = <S′, A, Tr′, γ, µ′, r′>: State space S′ = S × Rd,
Action space is A′(s, R⃗) = A(s), , Transition probability as Tr′ : P(s′1 = (s1, R⃗ + r⃗(s, a))s′0 =

(s0, R⃗), a0 = a) = P(s1s0, a) where P (s1|s0, a) is the transition probability in the above MOMDP,
discount factor γ , initial state probability µ′, and reward function:

R′((s0, R⃗0), a, (s1, R⃗1)) =

{
u(R⃗1), if s′ ∈ T ,
0, if s′ /∈ T ,

where R⃗1 = R⃗0 + r(s).

.

Then, in this MDP we will get the value function and q function as:

Vπ(s, R⃗) =
∑

σπ(τ, s, R⃗) ∗
∑

R′(s′t, a, s
′
t+1) (17)

=
∑

σπ(τ, s, R⃗) ∗ u(R⃗τ
T) (18)

Here we notice,
Vπ(s

′ = (s, R⃗)) = vuπ(s, R⃗) (19)

In this sense, the MOMDP and its extended MDP share the same state space, transition dynamics,
discount factor, and initial state distribution. With the specified reward-space transformation, they
also yield the same objective function J(πθ) = E[u(R(τ))]. Consequently, the optimal trajectory
distribution σ is identical in both formulations, and the optimal policy π∗ must also coincide.

A.2 Lemma 1 Proof

Let’s follow Policy Gradient Theorem[17] to prove that our MOUAC’s policy improvement does not
add bias to the original objective function.

Proof. The objective can be written as:

∇θJ(θ) = ∇θEτ∼πθ
[u(R(τ))] = ∇θ

∫
pθ(τ)u(R(τ)) dτ.

Using the log-derivative trick:

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ),

12

we get:

∇θJ(θ) =

∫
pθ(τ)∇θ log pθ(τ)u(R(τ)) dτ = Eτ∼πθ

[u(R(τ))∇θ log pθ(τ)] .

Assuming the environment dynamics are independent of θ, the policy is the only θ-dependent term in
pθ(τ). Therefore,

log pθ(τ) =

T∑
t=0

log πθ(at | st,Rt),

and

∇θ log pθ(τ) =

T∑
t=0

∇θ log πθ(at | st,Rt).

Substituting back:

∇θJ(θ) = Eτ∼πθ

[
u(R(τ))

T∑
t=0

∇θ log πθ(at | st,Rt)

]
.

Now, introduce a baseline b(st,Rt, τ) that is independent of at. Since its expectation over actions
under the policy is constant with respect to θ, we can subtract it without bias:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

(u(R(τ))− b(st,Rt, τ))∇θ log πθ(at | st,Rt)

]
.

■

A.3 Lemma 2Proof

Proof. Here we start with the extended MDP equivalent to the given MDP. In the extended MDP, we
use the policy gradient theorem with a baseline as the unbiased estimation∇J(θ).

∇J(θ) = Eτ∼π,µ

[
T−1∑
t=0

(R′(τ)− b)∇ log π(at|s′t)

]
(20)

= Eτ∼π,µ

[
T−1∑
t=0

(Q(s′t, a)− b)∇ log π(at|s′t)

]
(21)

= Eτ∼π,µ

[
T−1∑
t=0

(R′(s′t, a, s
′
t+1) + Vπ(s

′
t+1)− b)∇ log π(at|s′t)

]
(22)

= Eτ∼π,µ

[
T−1∑
t=0

(

n∑
i=0

R′(s′t, a, s
′
t+i) + Vπ(s

′
t+n)− b)∇ log π(at|s′t)

]
(23)

Eq 22 and Eq 23 above are separately 1-step TD and n-steps TD expansion from the original Actor-
Critic. Because, R′(s′t, a, s

′
t+1) = 0 unless s′ ∈ T , then we could remove the R′ above; n-step

version would be:

∇J(θ) = Eτ∼π,µ

[
T−1∑
t=0

(Vπ(s
′
t+n)− b)∇ log π(at|s′t)

]
(24)

Then, for any state we want to estimate, we could average all predictions for the successor states
along the trajectory. Therefore, we have an equation like

∇J(θ) = Eτ∼π,µ

[
T−1∑
t=0

(

∑T−t
n=1(Vπ(st+n, R⃗t+n))

T − t
− b)∇ log π(at|s′t)

]
(25)

13

Figure 4: Explicit fig. 1

For we know eq 19, then we get

∇J(θ) = Eτ∼π,µ

[
T−1∑
t=0

(

∑T−t
n=1(v

u
π(st+n, R⃗t+n))

T − t
− b)∇ log π(at|st, Rt)

]
(26)

Then we get the estimator δ̄ is unbiased.

A.4 Fishwood

Fig. 4 shows an explicit version of Fishwood’s result in Fig. 1. In this experiment, all the algorithms
use a 2-layer MLP with 50 neurons in each layer to represent the actor and critic; the learning
rate is 0.001, discounter factor 1. to specify, MOCAC’s unique parameter: c = 11, nstep = 9,
vmin = (0, 0), vmax = (4, 7),clip_grad_norm = 50. The fish and wood setting is below: :
pf = 0.25,pw = 0.65,l = 13.

A.5 LadderWorld

Definition of the Ladder World (LW) environment To test the proposed methodology we
introduce a simple environment that captures all the relevant aspect of the problem. Consider the
following structured state space (see Fig. 5) which takes the shape of a ladder.

Figure 5: Ladder world: Each rail has n (regular) states (in this case, n = 4), in addition to the
start state (S) and the absorbing terminal state (T). The arrows indicate the two possible actions
in each (regular) state: forward (F) or cross (C). Moving forward yields an immediate reward
rf = (1, 0) or (0, 1) depending on whether you’re on top or bottom rail. Crossing incurs a cost
rC = (−ϵ,−ϵ).

14

The ladder has two rails (top and bottom, say). States are located where rungs meet rails. There is a
START state S and a terminal STOP state in which the final utility is computed. In the starting state,
either the top or bottom rail is randomly chosen with equal probability. We will assume that there are
n states on each rail and we use the following naming convention:

• Top rail: n states labeled: 1, 3, 5, . . . 2n− 1 (odd state addresses)
• Bottom rail: n states labeled: 2, 4, 6, . . . 2n (even state addresses)

The initial starting state S gets label 0, the absorbing terminal state gets label −1.

Actions, transitions, rewards, and utility

• In each (regular) state there are two actions: F (forward) and C (cross);
• For each action, the corresponding transition has a fixed and constant success rate. Specifi-

cally, let pF be the probability that action F does indeed result in moving forward along the
same rail, rather than crossing over (which therefore happens with probability qF = 1−pF).
Similarly, pC is the success rate for the crossing transition. Notice that if pF = pC = 1, the
transitions are deterministic.

• For each action (and corresponding transition) the reward vector r is determined solely by
the actual transition. Moving forward along the same rail results in a reward of r = (1, 0)
for the top rail and r = (0, 1) for bottom rail. Crossing incurs a slight cost r = (−ϵ,−ϵ).

• The total return RT is the sum of all the incremental rewards r. RT

• We will focus on the following non-linear utility for the final reward R = (R(1), R(2)):

u(R) := min(qR(1), R(2)) (27)

where q ≥ 1. In our experiments we take q = 2 which means that moving forward on the
top rail is "twice as valuable" as moving forward on the bottom rail.

In addition to the neural network results presented in the main paper, we also employ one-parameter
and two-parameter functions to represent the policy. This simplified formulation facilitates the
identification of the optimal policy through numerical simulation. We evaluate EUPG and MOUAC
under this setting, while MOCAC is excluded since it requires a neural network to predict categorical
distributions.

One-parameter policy for the ladder problem To test the proposed approach we compare
EUPG to our algo alg. 1 for the following 1-parameter policy in the ladder world setting. The idea
underpinning this policy is that the best action is the one that keeps the two components of the
vector reward nearly balanced at all times: qR

(1)
t ≈ R

(2)
t . To encode this idea in the policy we

denote the imbalance between both outcomes as zt = R
(2)
t − qR

(1)
t . Basically, the policy dictates

to move forward, unless the difference zt becomes too extreme. The switch point is determined by
the parameter θ, and if we use σ(x) to denote the standard sigmoid function (and σ(x) = 1− σ(x)),
then we can write the policy as:

πθ(a = F | s, z) =
{

σ(z + θ) if s on top rail
σ(z − θ) if s on bottom rail (28)

Indeed, if we are on the top rail then we will want to move forward unless qR(1) exceeds R(2) by
more than θ (i.e. qR(1) > R(2) + θ, or equivalently, z = R(2) − qR(1) < −θ). This behaviour is
captured by the shifted sigmoid σ(z + θ), and a similar argument holds for the bottom rail. Notice
however, that since proceeding along the top rail is "twice as valuable" as doing so along the bottom
rail (as q = 2), crossing behaviour should be different for the two rails.

The optimal value θ∗ depends on the amount of stochasticity in the environment (i.e. pF and pC), as
well as the crossing cost (ϵ). Obviously, if ϵ ≈ 0 then frequent crossing as little impact on the final
utility and it pays to constantly balance both components of the reward (i.e. θ∗ ≈ 0, especially in
highly stochastic environments. By the same token , increasing the crossing cost ϵ will give rise to
higher values for θ∗, as the policy will try and avoid costly crossings. The result is shown in Fig. 6

15

Figure 6: Experiment for ladder of length n = 60: TOP: Expected utility (based on Monte Carlo
rollouts) for the 1-parameter policy πθ specified in eq. 28 as a function of θ. For a crossing cost
xcost = −0.5 and medium stochasticity pF = pC = 0.75, the optimal value θ∗ ≈ 12.75 with a
corresponding optimal utility u∗ ≈ 20.17. However, notice that the utility curve is relatively flat near
its maximum, hence it would be more accurate to state 8 ≤ θ∗ ≤ 15. Results are based on 500 Monte
Carlo rollouts per θ-value. Recall that for a deterministic environment the maximally achievable
utility would be approximately 40. MIDDLE: Evolution utility u(R(τ)) under gradient ascent driven
by EUPG (red, cf. eq. ??) and MOUAC (blue, cf. eq. 15). Notice how both methods the optimal
θ∗ ≈ 20 but MOUAC is more sample efficient. BOTTOM: Corresponding evolution of θ under the
same dynamics. Notice how the dynamics stops in the neighourhood of θ = 8 where the utility hits a
plateau (see TOP).

16

Two-parameter Simple Policy Similarto one-parameter policy, algorithms are estimated by two
parameters, a simple policy defined as:

πθ(F |n, s,R−, q) :=

{
σ(s− 2nα) · 1 + σ(s− 2nα) · σ(γx) if s on top rail 1
σ(s− 2nβ) · 1 + σ(s− 2nβ) · σ(γx) if s on bottom rail 2 (29)

where γ as above, and x = R−
2 − qR−

1 .

The numerical simulation results are shown in Fig. 7, and the corresponding training results are
presented in Fig. ??. Fig. 7 illustrates the outcomes of the numerical simulation for a given environ-
ment. By executing the policy in Eq. 29 with systematically varied parameters α and β, we evaluate
the resulting policies and construct the heatmap. The X-axis represents the values of α, while the
Y-axis represents the values of β. Figures ?? and 8 respectively present the estimation results and
the parameter variations for EUPG and MOUAC. From this analysis, we observe that MOUAC
successfully identifies the optimal parameter configuration in this setting.

Figure 7: HeatMap to show the numerical simulation result.In ladder where length 60,pf = pc = 0.75
and penalty = 0.5 and with utility function u(x, y) = min(2x, y).

17

18

Figure 8: In the ladder shown in 7. We test EUPG and MOUAC with 2-parameter simple policy. The
last part of each algorithms’ name means how much episodes are collected before updating the policy.

19

A.6 Deep Sea Treasure

We compare MOUAC, MOCAC, and EUPG in the Deep-Sea Treasure environment (MOCAC’s
setting and MOGymnasium implementation), where the objective is to explore and collect the deepest
treasures. The agent operates in a grid world, receiving higher treasure rewards at greater depths.
Each move consumes one unit of oil, incurring a negative reward.

Repete experiments in deep-sea-treasure Moreover, we replicate the Deep-Sea Treasure experi-
ment from the MOCAC paper [12]. In this setting, following their design, we represent the state as a
one-hot vector over a 12× 11 grid. The reward signal is defined as (r0, r1), where r0 corresponds to
the treasure obtained and r1 denotes the oil consumed (treated as a positive quantity).

Their utility function is defined as: f(x) =

{
ln(1 + er0−d0), r1 ≤ d1
ln(1 + er0−d0)− (r1 − d1)

2 − p, r1 > d1
where

d0 = 45, d1 = 10, p = 10. The detailed results and experimental settings can be found in Figs. 6
and 8 of the MOCAC paper [12]. We adopt the same algorithmic parameters as specified for MOCAC:
the actor is a three-layer MLP with architecture [132, 50, 4], while the critic is a four-layer MLP with
architecture [132, 50, 50, 121] (with c = 11). The value bounds are set to Vmin = (0,−20.1) and
Vmax = (0, 100.1).

Slightly deviating from their hyperparameter configuration, we tune a few general parameters for
stability: the learning rate is set to 0.005, with γ = 0.95, vcoef = 0.1, and entropycoef = 0.1. The
settings for EUPG and MOUAC remain as described earlier, and both demonstrate relatively stable
training dynamics.

As shown in Fig. 9, we evaluate performance across 10 independent runs. Due to the sparse reward
structure of this task, all algorithms occasionally become trapped in sub-optimal saddle points.
Overall, however, MOUAC consistently outperforms both MOCAC and EUPG.

To reproduce the original experiments, we adapted the authors’ implementation to our framework.
Since MOCAC’s original dependencies (e.g., legacy versions of gym) are no longer readily available
online, we ported their algorithm into our environment, in a manner similar to MORL_baseline. Nev-
ertheless, we observed that MOCAC’s training is less stable and more sensitive to hyperparameters,
likely due to the combined challenges of deep exploration and parameter tuning. In particular, we
found MOCAC to be highly sensitive to the random seed in PyTorch, leading to non-negligible
variability in outcomes. As our focus is on mean estimators rather than distributional estimators, we
leave a more systematic investigation of MOCAC—especially regarding exploration mechanisms
such as entropy regularization and clamping technique.

deeper exploration in deep-sea-treasure task In Fig. 10, we compare MOUAC, MOCAC, and
EUPG in the Deep-Sea Treasure environment (MOGymnasium implementation), where we adopt a
nonlinear utility function

u(x, y) = min
(
x, 0.5 · (y + 100)

)
, (30)

where the first dimension (x, treasure) is prioritized. The bias of 100 in the second dimension
effectively offsets oil consumption, transforming it into a positive term that encourages deeper
exploration. To explain, the reason why we do not extend the MOMCAC’s utility function is except
this Leontief Function is also used in other experiments, it is also convenient to avoid the gradient
explosion brought by high utility.

The agent’s neural network input consists of its coordinates (2 dimensions) and the accumulated re-
ward (2 dimensions). Both the actor and critic are parameterized as two-layer MLPs with architecture
[50, 50] and tanh activations.

Under this utility formulation, a more effective algorithm should discover treasures at greater depths.
As shown in Fig. 10, EUPG tends to remain stuck at shallow treasures (around 8.2), while MOCAC
converges at an intermediate level (∼ 16). In contrast, MOUAC consistently outperforms both,
attaining values around 23.2. Notably, the superiority of MOCAC over EUPG is consistent with the
findings of [12], though in contrast to their reported results on the LadderWorld environment.

20

Figure 9: The environment in MOCAC[12] and our experiments with 10 runs. The line curve shows
the mean ESR and its std error. In this setting, the optimal utility should happen in (56,10), which
utility is around 10; (44,7) is 0.3 and (48,8) is 0.8.

21

Figure 10: Deep-Sea Treasure results. Using the nonlinear utility function

u(x, y) = min
(
x, 0.5 · (y + 100)

)
,

the agent primarily prioritises the first dimension (treasure). Under this formulation, EUPG consis-
tently gets stuck at shallow treasures, MOCAC achieves intermediate depths, while MOUAC reliably
discovers the deepest treasure.

22

	Introduction
	Preliminary
	MORL
	 Maximising Expected Scalarized Returns (ESR)

	From Single Objective Policy Gradient to Multi Objective Policy Gradient for ESR
	Recap of policy gradient theorem and (Advantage) Actor-Critic (A2C) algorithm
	Multi-objective Policy Gradient for ESR

	MOUAC Methodology
	Expected state utility, Expected state-action utility and utility critic
	KEY INSIGHT
	Multi-Objective Utility Actor Critic (MOUAC)
	 Mean n-step expected scalarized return(MnES-return)
	why does MOUAC work?

	Simulation
	LadderWorld
	Fishwood
	Ablation study MOUAC
	Verify MOUAC optimality with simple policy

	Related Works
	Conclustion
	Appendix
	extended MDP from MOMDP
	Lemma 1 Proof
	Lemma 2Proof
	Fishwood
	LadderWorld
	Deep Sea Treasure

