Under review as a conference paper at ICLR 2026

TIME-SERIES CAUSAL DISCOVERY VIA
DIFFERENTIABLE PERMUTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Causal discovery with instantaneous effects in multivariate time series is challeng-
ing, as the instantaneous structure must be acyclic. Prior methods enforce this by
either recovering a causal order through discrete combinatorial search or imposing
algebraic acyclicity constraints via complex augmented Lagrangian optimization,
both of which incur high computational cost. In this work, we propose a fun-
damentally different method: we learn a differentiable permutation of variables
using the Gumbel-Sinkhorn operator and triangularize the instantaneous coeffi-
cient matrix of a Structural Vector Autoregressive (SVAR) model in learned order.
This converts acyclicity from a hard constraint into a parameterization and keeps
it valid throughout optimization. In doing so, our method enables unified, con-
tinuous optimization with gradient-based learning, leading to improved efficiency
in time series causal discovery. Across three real-world benchmarks, our method
achieves the best overall performance compared with 12 baselines in both discov-
ery accuracy and efficiency. On the large-scale benchmark, it further demonstrates
strong scalability, achieving more than a 6x speedup over competing methods.

1 INTRODUCTION

Time-series causal discovery helps recover cause—effect relationships in dynamical systems, and
is widely applied in diverse fields such as economics (Hoover, 2001), earth science (Runge et al.,
2019a)), and industrial systems (Mogensen et al.l 2024). As noted by |Assaad et al.| (2022b)), true
causal discovery methods for time series should account for both instantaneous causal effects, where
x;,¢ affects x; , within the same step; and lagged causal effects, where a past state x; ¢, (with 7 > 0)
influences a future state x;;. These relationships are typically formalized as directed graphs. The
main goal of causal discovery is to build a causal graph from observed data (Assaad et al., [2022b).

To ensure validity, the causal graph needs to satisfy acyclic constraints (as shown in Figure[I)). In
particular, for lagged effects, one could easily avoid cycles by avoiding causal links from the future
to the past. For instantaneous effects, however, cycles may occur if two variables affect each other
within the same time step. To avoid this, instantaneous effects are typically constrained to form a
Directed Acyclic Graph (DAG) to guarantee identifiability of the causal structure (Kilianl 2006).

The central challenge in time-series causal discovery is therefore enforcing acyclicity on instanta-
neous effects. Among existing methods that explicitly enforce acyclicity, two main strategies exist:
(1) discrete combinatorial search for a causal order, followed by estimation of causal effects based on
the obtained order, as in VARLINGAM (Hyvirinen et al., 2010) and TiMINo (Peters et al., [2013));
and (2) algebraic acyclicity constraints enforced by an augmented Lagrangian optimization while
estimating causal effects, as in DYNOTEARS (Pamfil et al., [2020).

While effective, these approaches have notable limitations: (1) They rely on hard acyclicity con-
straints: discrete order search fixes a causal order upfront that cannot adapt even if it poorly fits
the data; and augmented Lagrangian methods enforce strict algebraic constraints that require con-
straint optimization until exact satisfaction. (2) This rigidity forces a multi-stage process, separating
acyclicity enforcement from causal-effect estimation and thereby risking error propagation, as dis-
cussed in (Pamfil et al.,|2020). (3) They incur high computational cost: combinatorial search grows
exponentially, and augmented Lagrangian optimization involves nested loops with unpredictable it-
erations before the constraint is met. These limitations motivate the need for more flexible, unified
methods that efficiently enforce instantaneous acyclicity and scale to high-dimensional data.
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(a) Lagged acyclicity (b) Valid temporal loop (c) Instantaneous acyclicity

Figure 1: Illustration of acyclicity in time-series causal graphs, where nodes denote variables and
arrows indicate directional influences between variables. (a) Lagged acyclicity: cycles cannot occur
across lagged dependencies because future states cannot cause the past. (b) Valid temporal loop:
feedback loops across time are allowed as long as all arrows follow temporal order. (c) Instantaneous
acyclicity: instantaneous cycles within the same time step are forbidden to ensure identifiability.

Contributions We propose a new time-series causal discovery method based on a Structural Vec-
tor Autoregressive (SVAR) model (Swanson & Granger, |1997; Demiralp & Hoover, [2003; Moneta
& Spirtes|, 2006), where causal structure learning is reformulated as the problem of fitting SVAR co-
efficients, from which the causal graph can be directly constructed. Our main contributions include:

* Soft acyclicity (see Section[4.3)). We cast acyclicity as a permutation learning problem and
design a Gumbel-Sinkhorn operator to relax the permutation into a differentiable form.
This enables the causal order to be learned adaptively during optimization rather than fixed
upfront, making it soft, data-driven, and dynamically adaptive to observed time series.

* Unified and scalable optimization (see Sections #.TH4.2). Reparameterizing acyclicity
with a learnable permutation matrix enables joint optimization where both acyclicity en-
forcement and causal effect estimation are handled in a single stage. This avoids con-
strained optimization and the need for multi-stage procedures used in existing methods,
and allows gradient-based optimizers to be applied directly to the entire learning problem,
leading to improved efficiency and scalability for large-scale settings.

* Extensive evaluation on real-world data (see Section [5)). We evaluate on three real-
world benchmarks covering 11 datasets: IT monitoring (Ait-Bachir et al., [2023), SWaT
(Mait1 et al.l 2023), and CausalRiver (Gideon et al.l [2025). Across all datasets, our
method achieves the best overall performance compared with 12 baselines in both discov-
ery accuracy and efficiency. On CausalRiver, the largest benchmark to date, our method
achieves substantially higher accuracy with over 6x speedup compared to competing meth-
ods, demonstrating strong scalability to high-dimensional data.

2 RELATED WORK

Many methods have been developed for time-series causal discovery (Gong et al. [2024). Some
approaches ignore instantaneous dependencies and recover only lagged relationships, most notably
Granger causality (Granger, [1969), which relies on VAR model (Sims, [1980). Examples include
MVGC (Barrett et al.,[2010; Barnett & Seth, [2014), TCDF (Nauta et al.,|2019), and neural Granger
causality (Tank et al., [2021)). Constraint-based methods, in contrast, do not enforce acyclicity on in-
stantaneous effects explicitly but rather handle it implicitly through conditional independence tests,
such as tsFCI (Entner & Hoyer, [2010; \Gerhardus & Runge, 2020), PCMCI+ (Runge et al.l 2019b;
Rungel 2020), and PCGCE (Assaad et al.l [2022a). Since our focus is time-series causal discov-
ery with instantaneous effects for theoretical completeness (following the argument of |Assaad et al.
(2022b)) that true causal discovery should consider both instantaneous and lagged effects), we do not
review above methods in detail, but include them as baselines in our experiments for comparison.

Our main focus is on time-series causal discovery methods that explicitly address the enforcement
of acyclicity on instantaneous effects, most of which extend static causal discovery to temporal
settings. Broadly, two families can be distinguished depending on how acyclicity is enforced.
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The first family relies on discrete combinatorial search for a fixed causal order, followed by causal-
effect estimation. This includes two noise-based methods. First, VARLINGAM (Hyvérinen et al.,
2010) extends LINGAM (Shimizu et al., 2011) by combining a VAR with a non-Gaussian instanta-
neous model. Identifiability is achieved under the assumption of non-Gaussian errors (Shimizu et al.,
2006)), with acyclicity enforced through Independent Component Analysis (ICA) (Leel |1998). Sec-
ond, TiMINo (Peters et al., 2013) generalizes structural equation models to time series, using nonlin-
ear additive noise models (Mooij et al.| 2009) and residual-independence tests to iteratively identify
sources and build an acyclic order. These methods are multi-stage, sensitive to order-estimation
errors, and can have exponential complexity in discrete combinatorial search.

The second family enforces acyclicity by formulating it as an algebraic constraint within a con-
strained optimization problem. Proposed as a score-based method, DYNOTEARS (Pamfil et al.,
2020) adapts NOTEARS (Zheng et al., 2018) to dynamic settings, jointly estimating causal ef-
fects within an SVAR formulation. It imposes acyclicity via the smooth equality constraint
h(W) = tr(eW°W) — d = 0, where W is the weighted instantaneous effects and d is the number
of variables. This constraint is enforced through a complex augmented Lagrangian method (Ne-
mirovsky}, |1999). While this allows joint estimation of intra- and inter-slice effects, the augmented
Lagrangian iterations are computationally demanding and unpredictable in large-scale settings.

In response to the limitations of existing acyclicity handling methods, we propose a new time-series
causal discovery approach built on differentiable permutation learning (Maddison et al., 2017; Jang
et al.,[2017; |Mena et al.,[2018]), particularly the Gumbel-Sinkhorn relaxation. This relaxation maps
hard permutations to differentiable doubly-stochastic matrices for gradient-based learning, with hard
permutations recovered at inference. Although related work on differentiable DAG sampling (Char-
pentier et al., [2022) exists, our method fundamentally differs: (i) their approach targets static DAG
learning, while we address time-series structure; and (ii) they rely on Gumbel-Top-k with straight-
through sampling inside a probabilistic framework, whereas we employ a continuous, learnable
permutation that reparameterizes the causal order and preserves acyclicity throughout optimization.

3 PROBLEM SETUP

While the objective of time-series causal discovery is to construct a valid causal graph that captures
both instantaneous and lagged dependencies among variables, the SVAR model reframes this task as
estimating the model coefficients that best explain the observed data, since each coefficient matrix
B, corresponds to a subgraph. Formally, the SVAR model is given by:

k
Xt = ZBTXt—T + €¢, (1)
7=0

where x; € R is the vector of observed variables at time ¢. k is the maximum lag order considered.
B, € R%*4d ig the coefficient matrix at lag 7: By encodes instantaneous effects, while B, for 7 > 0
encodes lagged effects. €; is the vector of error terms at time ¢.

The linear structure of SVAR offers strong interpretability. Its coefficients not only reveal the pres-
ence of causal relationships but also quantify their strength and direction (positive or negative).
This provides richer information than methods that merely identify links and further enables direct
modeling of system dynamics. For this reason, we adopt the linear SVAR model as our foundation.

Identifiability Identifiability is a central issue in SVAR models (Pamfil et al., [2020). For lagged
effects, identification follows from standard VAR assumptions. In contrast, instantaneous effects are
harder, since covariance information alone is insufficient to uniquely identify By (Hyvirinen et al.,
2010). Two common sufficient conditions under independent €, are: (i) non-Gaussian noise, yield-
ing identifiability via ICA/Marcinkiewicz arguments (Hyvarinen et al., [2010; |[Lanne et al., [2017);
and (ii) Gaussian noise with equal error variances (e.g., standard Gaussian), under which the DAG
is identifiable, together with acyclicity of the instantaneous graph (Peters & Biihlmann, 2014). Fol-
lowing |Pamfil et al.[|(2020), we assume at least one of these conditions holds.
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4 METHODOLOGY

4.1 UNIFIED OPTIMIZATION

As discussed in Section [3] fitting the SVAR model reduces to estimating coefficient matrices that
best explain the observed data. We thus define our optimization objective I(By, { B, }) as the mean

squared error (MSE) of the SVAR residuals, which is equivalent to maximizing the data likelihood:
2

; 2
2
where T is the total number of time points, N = T — k is the number of effective samples, and ||-||3

denotes the squared Lo-norm. Crucially, the optimization is performed over By, the instantaneous
effects matrix constrained to be acyclic. This matrix is derived from an unconstrained matrix B
with the Gumbel-Sinkhorn technique (detailed in Section [4.3)).

T

min 1By {BY) = 5 Y

k
~ (I - BO)Xt — BTthT
BO’{BT}ﬁzl t:k+1 Z

T=1

Since causal structures are typically sparse, L; regularization and its variants are commonly em-
ployed as sparsity penalties (Hyvarinen et al.| [2010). We adopt standard ¢;-regularization, consis-
tent with prior work (Pamfil et al., [2020). This choice isolates the impact of our proposed acyclicity
method from the effects of more advanced sparsity mechanisms. The final penalized objective is:

E

min  f(Bo, {Br}) = UBo, {B-}) + Aol Boll1 + Ar Y| Brlhr, 3)

BO:{BT}£=1 =1

where ||-||1 is the element-wise Li-norm and Ag, A, are penalty hyperparameters.

Direct gradient-based optimization Though this form of optimization objective has been applied
to causal discovery before (Pamfil et al.l [2020), it has so far been used as constrained optimization
solved with nested updates, which makes it impossible to apply a direct gradient-based optimizer
to the entire problem. Our method, however, reparameterizes the acyclicity enforcement (see Sec-
tion[4.3), resolving this issue and relaxing the problem into a unified and unconstrained optimization.
This enables direct gradient-based optimization of the whole objective, which is theoretically more
efficient than constrained approaches in this setting (Nocedal & Wright, 20065 Jaggil 2013).

4.2 THEORETICAL JUSTIFICATION

The theoretical justification for equation [3] is supported by [Aragam et al| (2015). They showed
that penalized least-squares estimators with concave penalties achieve uniform support recovery and
deviation bounds when n 2 dlogp (where n is the sample size, d the maximum in-degree, and p
the number of variables), and that the global minimizer is statistically consistent with exact edge
recovery under a beta-min condition. This provides a strong foundation for our choice of penalized
least-squares. While the theoretical support applies mainly to Gaussian settings, empirical studies
further show that squared loss also works well in non-Gaussian cases (Pam(fil et al., [ 2020).

We acknowledge that minimizing residual noise does not always guarantee recovery of the true
causal structure, which creates a potential mismatch between the optimization objective and the un-
derlying mechanism. The idea here is that, under correct model specification, unexplained variation
should ideally exhibit “clean” properties, such as relative smallness. By minimizing residual er-
ror subject to causal constraints (Section , the SVAR model captures the main causal structure,
while weak or ambiguous links can be pruned in post-processing. Despite this subtle inconsistency,
penalized least-squares remains a valid and statistically consistent estimation strategy.

4.3 ACYCLICITY ENFORCEMENT VIA DIFFERENTIABLE PERMUTATION

The acyclicity of By is satisfied if there exists a permutation matrix P such that P By P is (close to)
strictly lower triangular (Hyvirinen et al.,[2010). Thus, enforcing acyclicity on instantaneous effects
can be framed as finding a permutation that triangularizes By while still fitting the data well. How-
ever, permutation matrices are discrete and therefore incompatible with the continuous optimization
in equation[3] The key challenge is to integrate this combinatorial choice into a differentiable frame-
work. To address this, we employ the Gumbel-Sinkhorn technique (Mena et al., 2018)), which learns
a continuous parameterization that yields a differentiable approximation of P.
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4.3.1 GUMBEL-SINKHORN RELAXATION FOR CAUSAL ORDERING

The Gumbel-Sinkhorn method provides a differentiable relaxation of permutation matrices, en-
abling gradients to backpropagate through them (Mena et al| 2018). We develop a Gumbel—
Sinkhorn method to learn the causal order as follows: we first introduce a learnable matrix of
unconstrained real-valued logits A € R¥9, which encodes the model’s preference over variable
orderings. To encourage exploration during training, we apply the “Gumbel trick” by adding a noise
matrix G with i.i.d. Gumbel entries, forming perturbed scores A + G. The perturbed logits are then
temperature-scaled:

y_A+G @

Ttemp

where Tiep is a temperature parameter: higher values yield smoother distributions for stable early
training, while lower values sharpen the matrix toward a discrete permutation.

We then apply the Sinkhorn operator S(-), which iteratively normalizes the rows and columns of a
positive matrix until convergence to a doubly stochastic matrix (where both rows and columns sum
to 1), i.e. a continuous relaxation of a permutation. The procedure is defined as:

S°(X) = exp(X), (5)
SHX) = T(T(S7H(X)), 1>1, (6)
S(X) = lim S§'(X), (7

where exponentiation in S°(X) ensures strictly positive entries, a requirement for the normaliza-
tion steps, and 7, 7. denote row and column normalization, respectively. In practice, this limit is

approximated with a fixed number of iterations L. The resulting soft permutation matrix P is:

p:S(AJFG)’ ®)

Ttemp

which converges to a discrete permutation as Tiemp — 0, but remains differentiable for Tiemp > 0.

Recovery of Hard Permutation During training, the relaxed permutation P remains differentiable,
which allows gradients to flow through the optimization. However, causal discovery requires a hard
causal ordering. Therefore, we recover a hard permutation matrix by projecting P onto the nearest
discrete permutation. In practice, this can be done by taking the row- and column-wise arg max
after the final Sinkhorn iteration, yielding a valid P. This ensures that the final learned causal order
corresponds to a discrete DAG structure, while the relaxation only serves to enable backpropagation
during optimization.

4.3.2 ENFORCING ACYCLICITY

The differentiable permutation matrix P enables acyclicity enforcement on By directly within the
optimization loop. Starting from the unconstrained instantaneous effects By, we first permute into
the learned causal order:

B, = PByP". ©)
Then apply a strictly lower-triangular mask:

B{ = tril(B}, —1), (10)
which zeros the diagonal and upper-triangular entries to enforce acyclicity in the permuted space.
Finally, map back to the original variable order,

By = P"B}P, (11)

which yields the acyclicity-constrained instantaneous matrix By used in the objective f(By, {B,})
(Eq. B). By embedding these operations in the forward pass, the DAG constraint becomes fully
differentiable, enabling true end-to-end learning of the causal structure.
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5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

5.1.1 DATASETS

As noted by Reisach et al| (2021)), synthetic data is easy to game and may not reflect a method’s
true performance. We therefore exclude synthetic benchmarks and focus on three real-world bench-
marks: the small-scale IT Monitoring |Ait-Bachir et al.| (2023)), the medium-scale SWaT |Maiti et al.
(2023), and the large-scale CausalRivers |Gideon et al.|(2025)). An overview is provided in Table E}

Table 1: Overview of benchmarks and datasets used in our experiments. SR stands for sampling
rate, #D stands for number of time series data, and #V stands for number of variables.

Benchmark Origin Dataset Scenario SR #D #V
MOM 1 . . 288 7
MOM 2 Message-Oriented Middleware 1 sec 364 7
IT Monitoring  UAI2023 Storm Storm ingestion topology 1 min 991 8
Web 1 Web server activit 5 mins 7500 10
Web 2 ; y S 7501 10
AntiV'1 Antivirus impact on server 5 mins 1320 13
AntiV 2 s 1mp serve So1321 13
SWaT Arxiv2023 SWaT Water treatment 1 sec ~97k 51
Flood River discharge (Elbe Flood) 15 min 3010 42
CausalRiver ICLR2025 Bavaria River discharge (Bavaria) 15min ~175k 494

Germany  River discharge (East Germany) 15min =175k 666

5.1.2 BASELINES

For comparison, we use 12 time-series causal discovery methods as baselines, summarized in Ta-
ble[2] selected for their relevance and prevalence in prior studies. Although VAR is not a strict causal
discovery method, we include it as a classical and widely adopted baseline. Most baselines do not
explicitly handle instantaneous effects (see Section[2); notable exceptions are DYNOTEARS (Pam-
fil et al., 2020), VARLiINGAM (Hyvarinen et al., 2010), and TiMINo (Peters et al.l 2013), which
are directly comparable to our method and are of particular interest. We also include TCDF (Nauta
et al.l 2019) and three neural Granger causality variants (Tank et al., 2021) as representatives of
recent deep learning—based approaches for nonlinear, high-dimensional causal discovery.

Table 2: Baselines used in our experiments.

Type Methods
Traditional VAR (Sims, |1980), tsFCI (Entner & Hoyer,|2010), VARLINGAM (Hyvarinen et al., [2010),
TiMINO (Peters et al.}[2013), MVGC (Barnett & Seth, 2014
TCDF (Nauta et al.,[2019), DYNOTEARS (Pamfil et al.| [2020),
State-of-the-art PCMCI+ Runge| (2020), Neural Granger causality variants

(cMLP, cLSTM, cRNN) (Tank et al.l 2021), PCGCE |Assaad et al.| (2022al)

5.1.3 METRICS

We evaluate performance using Precision, Recall, and F1-Score, following prior work |Assaad et al.
(2022b); |A1t-Bachir et al.| (2023); Nauta et al.[ (2019), and report F1-Score in this section. While
some studies use AUC-ROC (Gideon et al., 2025)), this metric can remain high under severe class
imbalance, which is a common issue in causal discovery. In contrast, F1-Score is stricter and directly
balances false positives and false negatives, making it more suitable for evaluation of this task.
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5.1.4 PARAMETER SETTING

Experiments were conducted on an Intel Core i7-14700K (20 cores, 28 threads, 3.4 GHz, 33 MB
cache) and 128GB of DDR5-5600 memory. The CPU was used for fair comparison, as some base-
lines only support CPU execution, and all methods employ multithreaded implementations. Run-
times were limited to 3 hours per run; longer runs are reported as TLE (Time Limit Exceeded).
Baselines were executed with default parameters. Maximum lags of 3, 5, 10, and 15 were used as in
Ait-Bachir et al.| (2023), excluding TCDF which infers lags automatically. VAR-LiINGAM applied
its built-in pruning, while DYNOTEARS, VAR, and our method pruned coefficients below 0.01 |As-
saad et al.| (2022b)); |Ait-Bachir et al.| (2023)). Sparsity penalties Ap, and Ap_ were fixed at 0.001
Pamlfil et al.|(2020). Models were trained with Adam (Ir = 0.002) for up to 6000 epochs with early
stopping, using 20 Sinkhorn iterations |Mena et al.| (2018]).

5.2 PERFORMANCE ANALYSIS

In this section, we report the F1 scores of all methods across three benchmarks. The results on the IT
Monitoring benchmark with a maximum lag of 3 are shown in Table[3] while the results on the SWaT
and CausalRiver benchmarks with maximum lags of 5 and 10 are presented in Table |4} Additional
F1 score results for other lag settings are provided in Appendix with the corresponding Recall
and Precision results given in Appendix [A.5]and Appendix [A.6] respectively.

Table 3: F1 scores on IT Monitoring with a maximum lag of 3. For each dataset, the highest
and second-highest scores are highlighted in dark green and light green, respectively. The last two
columns report the frequency with which each method achieves the highest F1 score (wins, W) and
the second-highest score (runner-ups, R), with the highest frequency also marked in light green.

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl Antiv2 W R
VAR 0.1667 0.1622 0.2449 0.2222  0.2895  0.2047 0.2188 0 1
MVGC 0.0909 0.0000 0.0667 0.2059 0.2400 0.1613 0.1374 0 0
cLSTM 0.3390 0.3390 0.2500 0.2321 0.2500  0.1739 0.1739 0 2
cMLP 0.2857 0.1622 0.1379 0.1905 0.1081 0.2247 0.2857 0O 0
cRNN 0.1714 0.1500 0.2069 0.1778 0.1667 | 0.2273 0.2903 2 0
TCDF 0.0000 0.0000 0.0000 0.0000 0.1053  0.1818 0.2000 0 0
PCMCI+ 0.0000 0.0000 0.0000 0.3243 0.1579  0.0357 0.0833 1 0
tsFCI 0.2286 0.0870 0.0000 0.1818 0.1714  0.1852 0.1159 0 0
PCGCE 0.0909 0.1538 0.1935 0.2143  0.1961 0.2250 0.2400 0 2
DYNOTEARS  0.2857 0.2353 0.1538 0.2623 0.2895  0.1905 0.2056 0o 2
VARLINGAM  0.0000 0.0000 0.3846 0.2593 0.2667  0.1923 0.2188 1 0
TiMINO 0.1538 0.1818 0.0000 0.0000  0.0000  0.0000 0.0000 0 0
Our Method 0.4000 0.3415 0.2769 0.3243 0.3243 @ 0.1830 0.1875 4 1

Table 4: F1 scores on SWaT and CausalRiver with maximum lags of 5 and 10. The last two columns
report the counts of wins (W) and runner-ups (R). TLE: Time Limit (3 hours) Exceeded.

Lag=5 Lag=10

Method W R
SWaT Flood Bavaria Germany SWaT Flood Bavaria Germany
VAR 0.0565 0.0607  0.0059 0.0045 0.0539 0.0574  0.0056 0.0041 0 [4
MVGC 0.0767  0.0559 TLE TLE 0.0787 0.0572 TLE TLE 0 0
cLSTM 0.0279  0.0465 TLE TLE 0.0000  0.0466 TLE TLE 0o 0
cMLP 0.0902 0.1203 TLE TLE 0.0833 0.1158 TLE TLE 0 2
cRNN 0.0788  0.0952 TLE TLE 0.0729  0.1009 TLE TLE 0o 0
TCDF 0.0000  0.0000 TLE TLE 0.0000  0.0000 TLE TLE 0 0
PCMCI+ TLE TLE TLE TLE TLE TLE TLE TLE 0o 0
tsFCI TLE TLE TLE TLE TLE TLE TLE TLE 0o 0
PCGCE 0.0648 0.1116 TLE TLE 0.0827 0.0813 TLE TLE 0 0
DYNOTEARS 0.0206 0.1342 TLE TLE 0.0215 0.1333 TLE TLE 0o 2
VARLINGAM  0.0660 0.0403 TLE TLE 0.0621  0.0362 TLE TLE 0o 0
TiMINo 0.0580  0.0000 TLE TLE 0.0435  0.0000 TLE TLE 0 0
Our Method 0.2202 0.3000 0.1751 0.1351 0.2182 0.3226  0.1860 0.1388 8 0
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On the small-scale IT Monitoring datasets (Table [3)), our method achieves the highest F1 score on
four out of seven datasets and remains competitive on Ingestion, yielding the largest overall count
of wins and runner-ups (5/7). This demonstrates consistent performance, whereas other methods
show strong dataset-specific biases—for example, VARLINGAM excels on Ingestion but fails on
MoM1/2, DYNOTEARS performs well on Web datasets, and cRNN and PCGCE on AntiVirus.
None, however, achieve robust performance across most datasets as our method does.

On AntiV1/AntiV2 our method perform less strongly. This could be due to the sensitivity of pruning
thresholds when applied to these antivirus datasets, which contain sparse and irregular dynamics
arising from mixed sampling rates, partial sleeping series, and interpolation steps (Ait-Bachir et al.,
2023). Under these conditions, the fixed pruning threshold we used can be fragile, where small
but meaningful effects hard to distinguish from noise, while bursty fluctuations can be retained. As
shown in Appendix [A.4] tuning the threshold improves results, which points to a methodological
limitation of sensitivity to pruning and motivates adaptive or stability-based pruning strategies.

On the medium-scale SWaT and Flood datasets and the large-scale Bavaria and Germany datasets,
our method shows a clear advantage. In all eight cases reported in Table[d] it achieves the best per-
formance, with F1 scores often more than double those of the second-best method. This dominance
also holds across other lag settings, as shown in Appendix [A.3] On large-scale datasets, our method
consistently finishes within the 3-hour time limit, while most baselines fail to complete, and still
delivers the highest F1 scores. Moreover, performance remains stable across lag values, indicating
that even as lag doubles, our method captures the key causal links without introducing excessive
spurious ones. Interestingly, despite the reputation of deep learning methods for handling large data,
approaches such as TCDF, cLSTM, cRNN, and cMLP do not show clear advantages in causal dis-
covery. Finally, we observe that performance tends to decline as the number of variables grows,
which indicates the intrinsic difficulty of large-scale causal discovery.

5.3 COMPUTATIONAL EFFICIENCY

In this section, we report the runtime (in seconds) of each method on all datasets with maximum
lag set to 15, as shown in Table [5] where the fastest and second-fastest methods are highlighted.
Results for lags 3, 5, and 10 are provided in Appendix Although VAR is included as a baseline
for accuracy, we exclude it in this section. Unlike other methods, which aim at causal discovery
(with or without explicit acyclicity enforcement), VAR doesn’t attempt to discover the true causal
structure; it only encodes dependencies over time. Its consistently shorter runtimes therefore reflect
solving a simpler problem, and including them would give a misleading impression of efficiency.

Table 5: Runtime (in seconds) with maximum lag of 15. TLE: Time Limit (3 hours) Exceeded. VAR
is excluded from comparison because it does not consider instantaneous causal effects.

Method MoM1 MoM2 Storm Webl Web2 AntiV1l AntiV2 SWaT Flood Bavaria Germany
VAR (Ref. Only) 0.02 0.03 0.03 0.06 0.06 0.06 0.07 0.79 0.60 82.69 151.38
MVGC 0.30 0.36 0.24 2.00 3.48 10.35 10.75 3632.96 4842.76 TLE TLE
cLSTM 32.09 39.31 61.60  199.44  221.08 131.27 125.94 TLE 727.86 TLE TLE
cMLP 12.45 12.58 14.55 43.48 54.03 35.85 35.80 836.62  277.24 TLE TLE
cRNN 22.15 24.26 3421 21656 21254 107.78 117.74  6933.72 1612.64 TLE TLE
TCDF 8.69 9.02 9.94 58.36 58.55 16.65 17.81 550.15  258.03 TLE TLE
PCMCI+ 0.51 0.89 4.50 14598  61.36 34.09 38.51 TLE TLE TLE TLE
tsFCI 1252.319  1232.84 270  4649.73 TLE TLE TLE TLE TLE TLE TLE
PCGCE 0.33 0.68 1.48 10.10 5.62 16.41 8.78 725.87 86.29 TLE TLE
DYNOTEARS 8.36 4.92 0.39 64.06 40392  85.21 490.66  4641.99 79553 TLE TLE
VARLINGAM 0.35 0.38 0.69 9.23 9.60 222 2.14 5077.79  54.87 TLE TLE
TiMINo 1.34 1.99 2.51 16.68 12.77 8.23 6.22 770.68 91.03 TLE TLE
Our Method 7.25 5.62 6.99 9.97 13.99 7.54 8.56 64.29 20.50 191520 3240.05

On the first seven small-scale datasets (from MoM 1 to AntiV 2), our method is not the fastest.
Traditional methods such as VAR, MVGC, and VARLiINGAM have lower runtimes. However, our
method consistently completes its analysis in under 15 seconds in all cases. This performance is
highly competitive and often faster than many complex models like cLSTM, cRNN, and tsFCI. In
practical applications, the minor difference of a few seconds is negligible.

The true advantages of our method become obvious when applied to medium and large-scale
datasets. On the SWaT dataset, for instance, our method is over 8 times faster than the next-best com-
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petitor, TCDF. Since a core focus of this work is efficient acyclicity enforcement, a direct compar-
ison with methods like VARLINGAM, DYNOTEARS, and TiMINo is most telling. On SWaT, our
algorithm is approximately 79 times faster than VARLiINGAM, 72 times faster than DYNOTEARS,
and 12 times faster than TiMINo. This performance gap is also evident on the Flood dataset, where
our method is nearly 39 times faster than DYNOTEARS.

The most compelling evidence of our method’s scalability is observed on the large-scale Bavaria and
Germany datasets. On these complex, high-dimensional tasks, all competing methods, including all
those that explicitly enforce acyclicity, failed to produce a result within the 3-hour time limit. In
contrast, our method successfully completed the analysis in approximately 32 minutes for Bavaria
and 54 minutes for Germany. This indicates our method is at least 6 times faster on Bavaria and 3
times faster on Germany than the other leading acyclicity-enforcing methods.

6 DISCUSSION

Limitations Our work addresses acyclicity enforcement on instantaneous effects and demonstrates
its improved accuracy and efficiency in Section[5] but several limitations remain. We did not analyze
the convergence or potential sub-optimality of the Gumbel-Sinkhorn relaxation beyond empirical
evidence, which could provide deeper insight. While we only examined lag choices, systematic
exploration of optimal lags would be useful. Our analysis of sensitivity to pruning thresholds was
limited, and more detailed experiments could strengthen this evidence. We also did not study the im-
pact of sampling rates, which may affect results and reveal temporal structure. In addition, our eval-
uation focused on runtime efficiency without considering memory or cache usage. Finally, although
the method supports gradient-based optimization, our experiments were limited to CPU execution,
while hardware acceleration on GPUs or FPGAs could further improve efficiency. We acknowledge
these limitations and leave a more detailed investigation to future work.

Causality and Instantaneous Effects As shown in Section @], the VAR model, though not de-
signed for causal discovery, can still perform competitively, highlighting that much of what is
termed “causal discovery” remains statistical estimation of associations rather than identification
of true causal mechanisms. While causality in principle concerns directional influence and inter-
ventions (Pearl & Mackenzie, [2018)), current approaches, including ours, rely on observational data
and probabilistic models that cannot fully resolve this distinction. Moreover, the notion of “instan-
taneous effects” often reflects the compression of interactions within the sampling interval rather
than true immediate causal influences. Such effects may therefore represent aggregated lagged de-
pendencies, with potential biases tied to sampling frequency. Without accounting for these artifacts,
there remains a risk of mistaking statistical regularities for genuine causal mechanisms.

7 CONCLUSION

A major challenge in time-series causal discovery is enforcing acyclicity on instantaneous effects,
which most methods treat as a hard constraint, limiting flexibility and increasing computational
cost. We address this with a new SVAR-based method that uses the Gumbel-Sinkhorn technique
to impose acyclicity via a soft, differentiable permutation, enabling unified and efficient end-to-end
optimization with gradient-based optimizer. Evaluations on IT monitoring, SWaT, and CausalRiver
benchmarks show that our approach is both accurate and scalable: it delivers competitive and stable
results on seven smaller IT monitoring datasets, achieves up to twice the F1 score of the second-best
method on larger datasets, and provides substantial speedups, reaching up to 72x on SWaT and over
6% on CausalRiver compared to methods with explicit acyclicity constraints.

Future Work Several directions remain for future exploration. First, additional experiments could
be conducted to address the limitations discussed in Section [} Second, as discussed in Sec-
tion[5.2] results can be sensitive to the choice of fixed pruning threshold, which motivates adaptive
or stability-based pruning strategies that better distinguish noise from weak but meaningful effects.
Another direction is to extend the model to capture non-linear causal relationships by incorporating
non-linear functions or kernels, since our acyclicity enforcement mechanism is model-agnostic. Fi-
nally, as noted in Section we use simple L; penalties for sparsity control, but strategies such as
progressively increasing penalties across lags can be explored to further regularize causal discovery.
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8 REPRODUCIBILITY STATEMENT

All hyperparameter settings are listed in Section Details on preprocessing and postprocessing
are provided in Appendix [A.T|and Appendix [A.2] respectively.

Our code is anonymously available at https://anonymous.4open.science/r/
Time-Series—-Causal-Discovery-via-Differentiable-Permutations—-6170/.

The IT Monitoring and CausalRiver benchmarks are publicly accessible. The IT Monitoring
benchmark can be obtained from https://github.com/ckassaad/Case_Studies_of_
Causal_Discovery_from IT_Monitoring_Time_Series, and the CausalRiver bench-
mark fromhttps://github.com/CausalRivers/causalrivers. The SWaT dataset is
private and accessible only under agreement; we obtained permission to use it in this study.

For the baselines used in our experiments, all implementations are in Python:

* VAR: available in the stat smodels library.
* MVGC: implemented by us in Python.

* Neural Granger causality variants (cLSTM, cRNN, cMLP): https://github.com/
iancovert/Neural-GC.

e TCDF:https://github.com/M-Nauta/TCDF.
e PCMCI+: https://github.com/jakobrunge/tigramite.

e tsFCI: https://sites.google.com/site/dorisentner/publications/
tsfci|(originally in R; we provide a Python reimplementation).

e PCGCE: https://github.com/ckassaad/PCGCE.

* DYNOTEARS: available in the causalnex library.

¢ VARLINGAM: https://github.com/cdt15/1ingam.

e TiMINo: https://web.math.ku.dk/~peters/code.html (originally in R; we
provide a Python reimplementation).

All experiments can be reproduced using the above code and datasets.
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USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in this work solely as writing assistant. Specifically,
they were employed to refine grammar, improve clarity, shorten text when requested, and polish the
presentation of results (e.g., experimental analysis, future work discussion, and table overviews). In
addition, LLLMs were used to help organize code and improve comments, but not for developing or
directly writing code implementation for the main method.

LLMs were not used for research ideation, methodological design, data analysis, or result interpreta-
tion. All conceptual contributions, experimental design choices, data processing, and analysis were
conducted entirely by the authors. The authors take full responsibility for the contents of this paper.

A APPENDIX

A.1 PREPROCESSING

For all datasets, we preprocess the raw data by removing timestamps to ensure fair comparison
across methods. Since the ground-truth causal graphs are provided in different formats across bench-
marks, we convert them into a standardized summary matrix in . npy format for evaluation.

For the SWaT dataset (Maiti et al., 2023)), we resample the data at 5-second intervals instead of the
original 1-second sampling rate. This is because system responses in SWaT typically exhibit delays
of more than 10 seconds. Without resampling, the valid maximum lag would be unrealistically
large, making evaluation infeasible and potentially producing invalid results. In addition, we remove
variables that remain constant throughout the dataset, since they provide no statistical information
and can cause certain methods (e.g., VARLiINGAM) to crash.

A.2 POSTPROCESSING

All ground-truth graphs are represented as summary graphs (see definition in|Assaad et al.|(2022b)).
Accordingly, we process the outputs of all methods (including VAR, VARLINGAM, and our
method), which generate separate results for different lags, into a single summary graph. Specifi-
cally, for each edge position we take the maximum value across lags, including instantaneous effects.
Following |Assaad et al.|(2022b); |/A1t-Bachir et al.| (2023); |Gideon et al.|(2025)), we remove diagonal
elements when evaluating, as they represent self-autocorrelation, which—although important—does
not provide additional information about causality between variables. Finally, for methods requiring
a pruning threshold, we apply a fixed threshold of 0.01, consistent with prior work (Assaad et al.,
2022b; |A1t-Bachir et al.| [2023)).

A.3 ADDITIONAL F1 RESULTS
Tables@-@]present the F1 scores across all datasets under maximum lags of 3, 5, 10, and 15.

Table 6: F1 scores on all datasets with a maximum lag of 3

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiVv2 SWaT Flood Bavaria East Germany
VAR 0.1667  0.1622 0.2449 02222 0.2895  0.2047 0.2188  0.0590 0.0638  0.0064 0.0049
MVGC 0.0909  0.0000 0.0667 0.2059 0.2400  0.1613 0.1374  0.0758  0.0508 TLE TLE
cLSTM 0.3390  0.3390 0.2500 0.2321  0.2500  0.1739 0.1739  0.0465 0.0465 TLE TLE
cMLP 0.2857  0.1622 0.1379 0.1905 0.1081  0.2247 0.2857  0.0830 0.1139 TLE TLE
cRNN 0.1714  0.1500 0.2069 0.1778 0.1667  0.2273 0.2903  0.0788  0.0991 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.1053  0.1818 0.2000  0.0000  0.0000 TLE TLE
PCMCI+ 0.0000  0.0000 0.0000 03243 0.1579  0.0357 0.0833 TLE TLE TLE TLE
tsFCI 0.2286  0.0870 0.0000 0.1818 0.1714  0.1852 0.1159 TLE TLE TLE TLE
PCGCE 0.0909  0.1538 0.1935 0.2143  0.1961  0.2250 0.2400  0.0820 0.0901 TLE TLE
DYNOTEARS  0.2857  0.2353 0.1538 0.2623  0.2895  0.1905 0.2056  0.0440 0.1311 TLE TLE
VARLINGAM  0.0000  0.0000 0.3846 0.2593  0.2667  0.1923 0.2188  0.0677 0.0326 TLE TLE
TiMINo 0.1538  0.1818 0.0000 0.0000  0.0000  0.0000 0.0000  0.0339  0.0000 TLE TLE
Our Method 0.4000  0.3415 0.2769 03243 0.3243  0.1830 0.1875  0.2162 03125  0.1745 0.1212

First, our method consistently achieves top or near-top performance across datasets and lag settings.
For example, it outperforms all baselines on MoM 1/2, Ingestion, and Web datasets under most lags,

13



Under review as a conference paper at ICLR 2026

Table 7: F1 scores on all datasets with a maximum lag of 5

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 02632 0.2051 0.2400 0.2540 0.2857  0.2047 0.2188  0.0565 0.0607  0.0059 0.0045
MVGC 0.0833  0.1333 0.0667 0.2188 0.2368  0.1185 0.1212  0.0767 0.0559 TLE TLE
cLSTM 0.3390  0.3390 0.2500 0.2321  0.2500  0.1739 0.1739  0.0279  0.0465 TLE TLE
cMLP 0.2857  0.1622 0.1538 0.1860  0.1000  0.2247 0.2571  0.0902 0.1203 TLE TLE
cRNN 0.1714  0.1905 0.2143 0.1818 0.1143  0.2353 0.3030  0.0788  0.0952 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.1053  0.1818 0.2000  0.0000  0.0000 TLE TLE
PCMCI+ 0.0000  0.1000 0.0000 0.2703  0.2051  0.0323 0.0800 TLE TLE TLE TLE
tsFCI 0.2286  0.0870 0.0000 0.1875 0.1212  0.1250 0.1270 TLE TLE TLE TLE
PCGCE 0.0833  0.0769 0.2286 0.1961 0.1132  0.2105 0.2632  0.0648 0.1116 TLE TLE
DYNOTEARS  0.1250  0.3000 0.1538 0.2593  0.3462  0.1765 0.2131  0.0206  0.1342 TLE TLE
VARLINGAM  0.0000  0.0909 0.2500 0.2373  0.2535  0.1584 0.1655  0.0660 0.0403 TLE TLE
TiMINo 0.0000  0.1667 0.0000 0.0000  0.0000  0.0000 0.0000  0.0580  0.0000 TLE TLE
Our Method 04615  0.3784 0.2769 0.2697 0.2899  0.1916 0.2014  0.2202 0.3000  0.1751 0.1351

Table 8: F1 scores on all datasets with a maximum lag of 10

Method MoM1 MoM2 Ingestion Webl Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.2500  0.2927 0.2264 0.2647 0.2785  0.2016 0.2154  0.0539 0.0574  0.0056 0.0041
MVGC 0.0833  0.0000 0.0667 0.2258 0.2368  0.1194 0.1408  0.0787 0.0572 TLE TLE
cLSTM 0.3390  0.3390 0.2500 0.2321  0.2500  0.1739 0.1739  0.0000 0.0466 TLE TLE
cMLP 0.1622  0.1463 0.1481 0.1778 0.1053  0.2198 0.2353  0.0833 0.1158 TLE TLE
cRNN 0.1667  0.1500 0.2069 0.1818 0.1111  0.2299 0.2985  0.0729  0.1009 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.1053  0.1818 0.2000  0.0000  0.0000 TLE TLE
PCMCI+ 0.0000  0.0000 0.0000 0.2927 0.2051  0.0597 0.1071 TLE TLE TLE TLE
tsFCI 0.2353  0.0870 0.0000 0.2000 0.1176  0.0000 0.0000 TLE TLE TLE TLE
PCGCE 0.0000  0.0714 0.2222 0.2917 0.1538  0.1772 0.2933  0.0827 0.0813 TLE TLE
DYNOTEARS  0.2353  0.2222 0.1538 0.2759 0.3673  0.1757 0.2299  0.0215 0.1333 TLE TLE
VARLINGAM  0.2667  0.0000 0.2727 0.2545 0.2308  0.1856 0.1642  0.0621 0.0362 TLE TLE
TiMINo 0.1429  0.2667 0.0000 0.0000  0.0000  0.0000 0.0000  0.0435  0.0000 TLE TLE
Our Method 0.4286  0.4000 0.2812 0.2697 0.3014  0.1905 02162 02182 0.3226  0.1860 0.1388

Table 9: F1 scores on all datasets with a maximum lag of 15.

Method MoM1 MoM2 Ingestion Webl Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.2927  0.2500 0.2308 0.2535 0.2683  0.2000 0.2137  0.0512 0.0561  0.0054 0.0039
MVGC 0.0833  0.0000 0.0667 0.2258 0.2192  0.1231 0.1630  0.0877 0.0556 TLE TLE
cLSTM 0.3390  0.3390 0.2500 0.2321  0.2500  0.1739 0.1739  0.0000  0.0466 TLE TLE
cMLP 02162  0.1579 0.1481 0.1905 0.1053  0.2247 0.2647  0.0844 0.1172 TLE TLE
cRNN 0.2222  0.1463 0.2069 0.1905 0.1111  0.2247 0.2941  0.0753 0.1026 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.1053  0.1818 0.2000  0.0000  0.0000 TLE TLE
PCMCI+ 0.2727  0.0000 0.0000 0.3000 0.2051  0.0870 0.0984 TLE TLE TLE TLE
tsFCI 0.2353  0.0870 0.0000 0.2000 0.1176  0.0000 0.0000 TLE TLE TLE TLE
PCGCE 0.0000  0.0714 0.1579 0.2353  0.1852  0.1707 0.2338  0.0722  0.0735 TLE TLE
DYNOTEARS  0.3636  0.2500 0.1538 0.2963 0.3600  0.1892 0.2273  0.0230 0.1560 TLE TLE
VARLINGAM  0.0000  0.1333 0.2857 0.2642 0.2368  0.1818 0.1395  0.0618 0.0407 TLE TLE
TiMINo 0.1538  0.1667 0.1667 0.0000  0.0000  0.0000 0.0000  0.0364  0.0000 TLE TLE
Our Method 03415 0.4091 0.2769 0.2697 0.3143  0.1893 02222 0.1818 0.3438  0.1997 0.1279

and maintains competitive accuracy on the AntiVirus datasets, where most methods struggle due to
their sparse and irregular event-driven nature.

Second, baseline methods often show dataset-specific strengths but lack robustness. VARLINGAM
performs well on Ingestion but poorly on MoM datasets, DYNOTEARS excels on Web1/Web2 but
degrades on MoM and AntiVirus, while cRNN and PCGCE perform relatively better on AntiVirus
datasets. This indicates that these methods may overfit to particular data characteristics rather than
generalize across domains.

Third, increasing the maximum lag generally benefits our method, especially on larger datasets
such as Flood, Bavaria, and East Germany, where it achieves the strongest performance once longer
temporal dependencies are captured. In contrast, many baselines either fail to scale to these datasets
(TLE) or show little improvement when lag increases.

Overall, these results confirm that our method provides both stable and scalable causal discovery
performance across heterogeneous datasets, whereas existing baselines are less consistent and often
limited to narrow data regimes.
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Table 10: F1 scores on AntiV1 and AntiV2 datasets with different pruning thresholds across lags. A
fixed pruning threshold of 0.01 is used in our main experiments.

Threshold AntiV1 AntiV2

0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
Lag 3 0.1830 0.2128 0.2034 0.2222 0.1875 0.2273 0.2273 0.3030
Lag 5 0.1916  0.2500 0.2500 0.2667 0.2014 0.2857 0.2857 0.2581

Lag 10 0.1905 0.2059 0.2400 0.2400 0.2162 0.2581 0.2581 0.2581
Lag 15 0.1893 0.1778 0.1778 0.1778 0.2222  0.2500 0.2500 0.2500

A.4 ADDITIONAL RESULTS WITH DIFFERENT PRUNING THRESHOLDS

Table[I0]reports F1 scores on the AntiV1 and AntiV2 datasets with different pruning thresholds. In
our main experiments, we fixed the threshold at 0.01, under which the performance of our method
is less impressive compared to other datasets. However, when the pruning threshold is tuned, the
results improve noticeably on both datasets (e.g., AntiV1 increases from 0.1916 at threshold 0.01
to 0.2667 at threshold 0.15 for lag 5; AntiV2 increases from 0.2014 at threshold 0.01 to 0.3030 at
threshold 0.15 for lag 3).

These findings indicate that our method is sensitive to the choice of pruning threshold: a fixed
universal value may not be optimal across different datasets, particularly for the AntiVirus datasets
with sparse and irregular event-driven signals. While tuning the threshold can improve performance
to some extent, this sensitivity also highlights a limitation of our current approach and motivates
future work on developing adaptive pruning strategies that can automatically distinguish spurious
from meaningful causal effects.

A.5 ADDITIONAL RECALL RESULTS

Tables summarize recall across all datasets and lag settings. Several consistent patterns
emerge.

Table 11: Recall on all datasets with a maximum lag of 3. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.3000  0.3000 0.6667 0.5000 0.7857  0.8125 0.8750  0.7297 1.0000  0.9816 0.9339
MVGC 0.1000  0.0000 0.1111 0.5000 0.6429  0.6250 0.5625  0.7297 0.5238 TLE TLE
cLSTM 1.0000  1.0000 1.0000 0.9286 1.0000  1.0000 1.0000  1.0000 0.9762 TLE TLE
cMLP 0.5000  0.3000 0.2222 0.2857 0.1429  0.6250 0.6250  0.2703  0.3810 TLE TLE
cRNN 0.3000  0.3000 0.3333 0.2857 0.2143  0.6250 0.5625  0.3636  0.4048 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.0714  0.1250 0.1250  0.0000  0.0000 TLE TLE
PCMCI+ 0.0000  0.0000 0.0000 0.4286 0.2143  0.0625 0.1250 TLE TLE TLE TLE
tsFCI 0.4000  0.1000 0.0000 0.2143  0.2143 03125 0.2500 TLE TLE TLE TLE
PCGCE 0.1000  0.2000 0.3333 0.4286 0.3571  0.5625 0.5625  0.2703  0.2381 TLE TLE
DYNOTEARS  0.3000  0.2000 0.1111 0.5714  0.6429  0.8750 0.6875  0.0541 0.2857 TLE TLE
VARLINGAM  0.0000  0.0000 0.5556 0.5000 0.5714  0.6250 0.8750  0.7297 0.3333 TLE TLE
TiMINo 0.1000  0.1000 0.0000 0.0000  0.0000  0.0000 0.0000  0.0270  0.0000 TLE TLE
Our method 0.8000  0.7000 1.0000 0.8571 0.8571  0.8750 0.7500  0.3243  0.2381  0.1061 0.0676

Table 12: Recall on all datasets with a maximum lag of 5. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.5000  0.4000 0.6667 0.5714  0.7857  0.8125 0.8750  0.7297 1.0000  0.9837 0.9386
MVGC 0.1000  0.2000 0.1111 0.5000 0.6429  0.5000 0.5000  0.7027  0.6429 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.0714  0.1250 0.1250  1.0000  0.9762 TLE TLE
PCMCI+ 0.0000  0.1000 0.0000 0.3571 0.2857  0.0625 0.1250  0.2973  0.3810 TLE TLE
tsFCI 0.4000  0.1000 0.0000 0.2143  0.1429  0.1875 0.2500  0.3636  0.3810 TLE TLE
PCGCE 0.1000  0.1000 0.4444 0.3571 0.2143  0.5000 0.6250  0.0000  0.0000 TLE TLE
cLSTM 1.0000  1.0000 1.0000 0.9286  1.0000  1.0000 1.0000 TLE TLE TLE TLE
cMLP 0.5000  0.3000 0.2222 0.2857  0.1429  0.6250 0.5625 TLE TLE TLE TLE
cRNN 0.3000  0.4000 0.3333 0.2857  0.1429  0.6250 0.6250  0.2162  0.3095 TLE TLE
DYNOTEARS  0.1000  0.3000 0.1111 0.5000 0.6429  0.7500 0.8125  0.0270  0.2381 TLE TLE
VARLINGAM  0.0000  0.1000 0.3333 0.5000 0.6429  0.5000 0.7500  0.7838 0.3333 TLE TLE
TiMINo 0.0000  0.1000 0.0000 0.0000  0.0000  0.0000 0.0000  0.0541  0.0000 TLE TLE
Our method 0.9000  0.7000 1.0000 0.8571  0.7143  1.0000 0.8750  0.3243 0.2143  0.1061 0.0768
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Table 13: Recall on all datasets with a maximum lag of 10. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.5000  0.6000 0.6667 0.6429 0.7857  0.8125 0.8750  0.7568 1.0000  0.9898 0.9493
MVGC 0.1000  0.0000 0.1111 0.5000 0.6429  0.5000 0.6250  0.6757 0.7381 TLE TLE
cLSTM 1.0000  1.0000 1.0000 0.9286 1.0000  1.0000 1.0000  0.0000 0.9762 TLE TLE
cMLP 0.3000  0.3000 0.2222 0.2857 0.1429  0.6250 0.5000  0.2703  0.3571 TLE TLE
c¢RNN 0.3000  0.3000 0.3333 0.2857 0.1429  0.6250 0.6250  0.3182 0.3810 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.0714  0.1250 0.1250  0.0000  0.0000 TLE TLE
PCMICI+ 0.0000  0.0000 0.0000 0.4286 0.2857  0.1250 0.1875 TLE TLE TLE TLE
tsFCI 0.4000  0.1000 0.0000 0.2143  0.1429  0.0000 0.0000 TLE TLE TLE TLE
PCGCE 0.0000  0.1000 0.4444 0.5000 0.2857  0.4375 0.6875 02973 0.2381 TLE TLE
DYNOTEARS  0.2000  0.2000 0.1111 0.5714 0.6429 08125 0.6250  0.0270  0.2143 TLE TLE
VARLINGAM  0.2000  0.0000 0.3333 0.5000 0.6429  0.5625 0.6875  0.7838  0.2381 TLE TLE
TiMINo 0.1000  0.2000 0.0000 0.0000  0.0000  0.0000 0.0000  0.0270  0.0000 TLE TLE
Our method 0.9000  0.8000 1.0000 0.8571  0.7857  1.0000 1.0000  0.3243 0.2381  0.1163 0.0783

Table 14: Recall on all datasets with a maximum lag of 15. TLE: time limit exceeded (3 hours) limit.

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.6000  0.5000 0.6667 0.6429 0.7857  0.8125 0.8750  0.7297 1.0000  0.9898 0.9508
MVGC 0.1000  0.0000 0.1111 0.5000 0.5714  0.5000 0.6875  0.7027 0.7619 TLE TLE
cLSTM 1.0000  1.0000 1.0000 0.9286 1.0000  1.0000 1.0000  0.0000 0.9762 TLE TLE
cMLP 0.4000  0.3000 0.2222 0.2857 0.1429  0.6250 0.5625 02703  0.3571 TLE TLE
cRNN 0.4000  0.3000 0.3333 0.2857 0.1429  0.6250 0.6250  0.3182 0.3810 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.0714  0.1250 0.1250  0.0000  0.0000 TLE TLE
PCMCI+ 0.3000  0.0000 0.0000 0.4286 0.2857  0.1875 0.1875 TLE TLE TLE TLE
tsFCI 0.4000  0.1000 0.0000 0.2143  0.1429  0.0000 0.0000 TLE TLE TLE TLE
PCGCE 0.0000  0.1000 0.3333 0.4286 0.3571  0.4375 0.5625 02703 0.2143 TLE TLE
DYNOTEARS  0.4000  0.2000 0.1111 0.5714  0.6429  0.8750 0.6250  0.0270  0.2619 TLE TLE
VARLINGAM  0.0000  0.1000 0.3333 0.5000 0.6429  0.5000 0.5625  0.7838  0.2857 TLE TLE
TiMINo 0.1000  0.1000 0.1111 0.0000  0.0000  0.0000 0.0000  0.0270  0.0000 TLE TLE
Our method 0.7000  0.9000 1.0000 0.8571  0.7857  1.0000 1.0000  0.2703 0.2619  0.1286 0.0722

First, our method achieves high recall on small- and medium-scale datasets such as MoM1/2, In-
gestion, and Web, where it often reaches values close to or equal to 1.0. This indicates that our
approach is effective at recovering true causal edges in settings with limited dimensionality, and
performs comparably or better than strong baselines such as cLSTM.

Second, on the AntiVirus datasets, our method maintains strong recall (0.75-1.0), highlighting its
ability to capture the majority of ground-truth causal relations even in event-driven time series. By
contrast, many baselines either underperform or show large variance across different lags.

Third, recall drops substantially on large-scale datasets such as Flood, Bavaria, and East Germany,
where our method records much lower values (e.g., below 0.3 in several cases). In contrast, VAR
consistently achieves nearly perfect recall on these datasets, though at the cost of very low precision
(as shown in Section[A.6). This suggests that our pruning strategy is conservative, favoring precision
over recall in high-dimensional settings.

Overall, these results show that our method provides balanced recall in small- and medium-scale
settings while remaining competitive on more challenging datasets. However, the decline in recall
on large-scale datasets underscores the limitation of using a fixed pruning threshold, which may
discard weak but meaningful causal effects. Developing adaptive pruning strategies could help
alleviate this trade-off and improve recall without sacrificing precision.

A.6 ADDITIONAL PRECISION RESULTS

Tables [[5HI8] report precision across all datasets and lag settings. Several patterns can be observed.

First, our method consistently achieves the highest precision on large-scale datasets such as Flood,
Bavaria, and East Germany, where it maintains values above 0.44 and up to 0.61. This demonstrates
that our approach is effective at avoiding false positives when scaling to high-dimensional settings,
in contrast to most baselines which either fail to scale (TLE) or degrade sharply in precision.

Second, on small- and medium-scale datasets, our method shows more moderate precision compared
to some baselines. For example, DYNOTEARS and VARLINGAM occasionally achieve higher
precision on Web or Ingestion datasets, while TiMINo can reach very high precision in isolated
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Table 15: Precision on all datasets with a maximum lag of 3. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Ingestion Web1l Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.1154  0.1111 0.1500 0.1429 0.1774  0.1171 0.1250  0.0308 0.0329  0.0032 0.0025
MVGC 0.0833  0.0000 0.0476 0.1296  0.1475  0.0926 0.0783  0.0400 0.0267 TLE TLE
cLSTM 0.2041 0.2041 0.1429 0.1327  0.1429  0.0952 0.0952  0.0238  0.0238 TLE TLE
cMLP 0.2000  0.1111 0.1000 0.1429  0.0870  0.1370 0.1852  0.0490 0.0669 TLE TLE
cRNN 0.1200  0.1000 0.1500 0.1290 0.1364  0.1389 0.1957  0.0442  0.0565 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.2000  0.3333 0.5000  0.0000  0.0000 TLE TLE
PCMCI+ 0.0000  0.0000 0.0000 0.2609  0.1250  0.0250 0.0625 TLE TLE TLE TLE
tsFCI 0.1600  0.0769 0.0000 0.1579 0.1429  0.1316 0.0755 TLE TLE TLE TLE
PCGCE 0.0833  0.1250 0.1364 0.1429  0.1351  0.1406 0.1525  0.0483 0.0556 TLE TLE
DYNOTEARS  0.2727  0.2857 0.2500 0.1702  0.2500  0.1069 0.1209  0.0370  0.0851 TLE TLE
VARLINGAM  0.0000  0.0000 0.2941 0.1750 0.1739  0.1136 0.1250  0.0355 0.0171 TLE TLE
TiMINo 0.3333 1.0000 0.0000 0.0000  0.0000  0.0000 0.0000  0.0455  0.0000 TLE TLE
Our method 0.2667  0.2258 0.1607 0.2000 0.2000  0.1022 0.1071  0.1622 0.4545  0.4906 0.5867

Table 16: Precision on all datasets with a maximum lag of 5. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Ingestion Webl Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.1786  0.1379 0.1463 0.1633  0.1746  0.1171 0.1250  0.0294 0.0313  0.0030 0.0022
MVGC 0.0714  0.1000 0.0476 0.1400 0.1452  0.0672 0.0690  0.0406  0.0292 TLE TLE
cLSTM 0.2041 0.2041 0.1429 0.1327 0.1429  0.0952 0.0952  0.0141 0.0238 TLE TLE
cMLP 0.2000  0.1111 0.1176 0.1379  0.0769  0.1370 0.1667  0.0531 0.0714 TLE TLE
cRNN 0.1200  0.1250 0.1579 0.1333  0.0952  0.1449 0.2000  0.0442 0.0544 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.2000  0.3333 0.5000  0.0000  0.0000 TLE TLE
PCMCI+ 0.0000  0.1000 0.0000 0.2174 0.1600  0.0217 0.0588 TLE TLE TLE TLE
tsFCI 0.1600  0.0769 0.0000 0.1667 0.1053  0.0938 0.0851 TLE TLE TLE TLE
PCGCE 0.0714  0.0625 0.1538 0.1351  0.0769  0.1333 0.1667  0.0381 0.0681 TLE TLE
DYNOTEARS  0.1667  0.3000 0.2500 0.1750  0.2368  0.1000 0.1226  0.0167  0.0935 TLE TLE
VARLINGAM  0.0000  0.0833 0.2000 0.1556  0.1579  0.0941 0.0930  0.0344 0.0215 TLE TLE
TiMINo 0.0000  0.5000 0.0000 0.0000  0.0000  0.0000 0.0000  0.0625  0.0000 TLE TLE
Our method 0.3103  0.2593 0.1607 0.1600 0.1818  0.1060 0.1138  0.1667 0.5000  0.5000 0.5618

Table 17: Precision on all datasets with a maximum lag of 10. TLE: time limit exceeded (3 hours).

Method MoM1 MoM?2 Ingestion Web1l Web2 AntiVl AntiVv2 SWaT Flood Bavaria East Germany
VAR 0.1667  0.1935 0.1364 0.1667 0.1692  0.1150 0.1228  0.0280 0.0296  0.0028 0.0021
MVGC 0.0714  0.0000 0.0476 0.1458 0.1452  0.0678 0.0794  0.0418 0.0298 TLE TLE
cLSTM 0.2041  0.2041 0.1429 0.1327  0.1429  0.0952 0.0952  0.0000 0.0239 TLE TLE
cMLP 0.1111  0.0968 0.1111 0.1290 0.0833  0.1333 0.1538  0.0493 0.0691 TLE TLE
cRNN 0.1154  0.1000 0.1500 0.1333  0.0909  0.1408 0.1961  0.0412  0.0582 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.2000  0.3333 0.5000  0.0000  0.0000 TLE TLE
PCMICI+ 0.0000  0.0000 0.0000 02222 0.1600  0.0392 0.0750 TLE TLE TLE TLE
tsFCI 0.1667  0.0769 0.0000 0.1875 0.1000  0.0000 0.0000 TLE TLE TLE TLE
PCGCE 0.0000  0.0556 0.1481 0.2059 0.1053  0.1111 0.1864  0.0480 0.0490 TLE TLE
DYNOTEARS 02857  0.2500 0.2500 0.1818 0.2571  0.0985 0.1408  0.0179  0.0968 TLE TLE
VARLINGAM  0.4000  0.0000 0.2308 0.1707 0.1406  0.1111 0.0932  0.0323 0.0196 TLE TLE
TiMINo 0.2500  0.4000 0.0000 0.0000  0.0000  0.0000 0.0000  0.1111  0.0000 TLE TLE
Our method 02812  0.2667 0.1636 0.1600 0.1864  0.1053 0.1212  0.1644 0.5000 0.4634 0.6071

Table 18: Precision on all datasets with a maximum lag of 15. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Ingestion Webl Web2 AntiVl AntiV2 SWaT Flood Bavaria East Germany
VAR 0.1935  0.1667 0.1395 0.1579 0.1618  0.1140 0.1217  0.0265 0.0289  0.0027 0.0020
MVGC 0.0714  0.0000 0.0476 0.1458 0.1356  0.0702 0.0924  0.0468 0.0288 TLE TLE
cLSTM 0.2041  0.2041 0.1429 0.1327 0.1429  0.0952 0.0952  0.0000 0.0239 TLE TLE
cMLP 0.1481  0.1071 0.1111 0.1429  0.0833  0.1370 0.1731  0.0500 0.0701 TLE TLE
cRNN 0.1538  0.0968 0.1500 0.1429  0.0909  0.1370 0.1923  0.0427 0.0593 TLE TLE
TCDF 0.0000  0.0000 0.0000 0.0000 0.2000  0.3333 0.5000  0.0000  0.0000 TLE TLE
PCMCI+ 0.2500  0.0000 0.0000 0.2308 0.1600  0.0566 0.0667 TLE TLE TLE TLE
tsFCI 0.1667  0.0769 0.0000 0.1875  0.1000  0.0000 0.0000 TLE TLE TLE TLE
PCGCE 0.0000  0.0556 0.1034 0.1622 0.1250  0.1061 0.1475  0.0417 0.0443 TLE TLE
DYNOTEARS  0.3333  0.3333 0.2500 0.2000 0.2500  0.1061 0.1389  0.0200 0.1111 TLE TLE
VARLINGAM  0.0000  0.2000 0.2500 0.1795 0.1452  0.1111 0.0796  0.0322  0.0219 TLE TLE
TiMINO 0.3333  0.5000 0.3333 0.0000  0.0000  0.0000 0.0000  0.0556  0.0000 TLE TLE
Our method 0.2258  0.2647 0.1607 0.1600 0.1964  0.1046 0.1250  0.1370  0.5000  0.4468 0.5595

cases (e.g., MoM2 with lag 3). However, these methods tend to be unstable across datasets, often
collapsing to zero or near-zero precision in other settings, whereas our method remains consistently
competitive.
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Third, precision on the AntiVirus datasets remains relatively low for all methods, including ours,
reflecting the difficulty of handling sparse and irregular event-driven signals. This again highlights
the sensitivity of pruning strategies in such settings, as discussed in Section[A.4]

Overall, these results confirm that while some baselines may excel on particular datasets, our method
provides the best trade-off between stability and scalability. In particular, its strong precision on
large-scale datasets shows its practical value for high-dimensional causal discovery tasks.

A.7 ADDITIONAL RUNTIME RESULTS

Tables [T9H21] report the runtime across all datasets and lag settings. On small-scale datasets (the
first seven columns), our method is not the fastest—linear approaches such as VAR and PCGCE
consistently achieve lower runtime. However, our method still completes within seconds to tens of
seconds, which remains practical for these scales.

Table 19: Runtime (in seconds) for All Datasets with Lag = 3. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Storm Web 1 Web 2 AntiV1l  AntiV2 SWaT Flood Bavaria Germany
VAR 0.000 0.000 0.000 0.015 0.016 0.006 0.002 0.09 0.05 5.32 9.49
MVGC 0.090 0.100 0.079 0.367 0.312 0.592 1.090 135.58  129.37 TLE TLE
cLSTM 22.89 25.684  34.635 67.289 65.577 52.093 44.384 126241 227.32 TLE TLE
cMLP 5.586 5.641 7.257 29.618 30.507 13.395 13.082 209.29 13537 TLE TLE
cRNN 17.165 17.413  21.860 62.714 62.004 47.574 47.899  1144.85 160.22 TLE TLE
TCDF 8.69 9.02 9.94 58.36 58.55 16.65 17.81 550.15  258.03 TLE TLE
PCMCI+ 0.250 0.293 3.233 40.194 31.030 23.617 38.671 TLE TLE TLE TLE
tsFCI 26.378 14421 1.048  100.715 332.605 245.800 620.111 TLE TLE TLE TLE
PCGCE 0.139 0.433 0.858 20.652 4.460 18.210 7.867 777.46 75.00 TLE TLE
DYNOTEARS 2.194 1.701 0.031 15.649 37.256 10.595 161.464  740.44 25933 TLE TLE
VARLINGAM  0.088 0.122 0.128 2.189 2.201 0.437 0.750 409.37 15.02 TLE TLE
TiMINo 1.760 1.809 2.759 17.630 21.774 6.888 6.539 1654.83  79.98 TLE TLE
Our Method 9.679 8.174 8.180 11.881 14.797 8.146 10.065 23.52 2329 71642 1213.15

Table 20: Runtime

(in seconds) for All Datasets with Lag = 5. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Storm Webl Web2 AntiVl AntiV2  SWaT Flood Bavaria Germany
VAR 0 0.00 0.00 0.02 0.02 0.02 0.02 0.17 0.10 12.08 19.69
MVGC 0.110 0.17 0.11 1.41 1.52 4.07 4.10 1064.92  816.72 TLE TLE
cLSTM 20.117 2424 4186 9496  92.77 72.17 7323 4346.78 367.78 TLE TLE
cMLP 6.736 6.91 9.08 3046  36.89 18.81 21.35 261.13  138.31 TLE TLE
cRNN 16.55 19.89 2782 8352 7393 49.95 50.87 184522 274.41 TLE TLE
TCDF 8.69 9.02 9.94 58.36 5855 16.65 17.81 550.15  258.03 TLE TLE
PCMCI+ 0.190 0.37 632 18747 7893 87.51 65.56 TLE TLE TLE TLE
tsFCI 29.77 19.36 094  131.07 20335 368.48  786.60 TLE TLE TLE TLE
PCGCE 0.180 0.54 0.91 13.65 4.65 22.43 9.72 871.41 75.22 TLE TLE
DYNOTEARS  10.77 2.90 0.06 5642 5753 15.33 364.57 1897.80 313.75 TLE TLE
VARLINGAM  0.093 0.13 0.21 4.75 4.58 1.06 1.07 1208.18  29.36 TLE TLE
TiMINo 1.312 1.76 2.12 13.83 17.30 7.07 7.09 1051.04  79.85 TLE TLE
Our Method 8.317 7.47 8.34 12.75 15.87 6.55 8.07 25.06 26.89 92951 1461.60

Table 21: Runtime (in seconds) for All Datasets with Lag = 10. TLE: time limit exceeded (3 hours).

Method MoM1 MoM2 Storm Webl Web2  Antivirus 1  Antivirus2 ~ SWaT Flood Bavaria  East Germany
VAR 0 0.00 0.00 0.03 0.03 0.03 0.05 0.43 0.43 37.35 67.78
MVGC 0.209 0.35 0.19 4.52 4.42 4.83 5.24 2064.97 1265.48 TLE TLE
cLSTM 34.63 3822 5191 12574  165.95 106.02 94.09 TLE 656.06 TLE TLE
cMLP 12.724 14.41 14.86  47.48 47.87 29.79 21.95 359.23  204.77 TLE TLE
cRNN 19.313 2127 2925 167.09 129.71 66.18 66.44 6281.79  797.46 TLE TLE
TCDF 8.69 9.02 9.94 58.36 58.55 16.65 17.81 550.15  258.03 TLE TLE
PCMCI+ 0.619 1.33 7.67  231.03 81.34 39.42 39.85 TLE TLE TLE TLE
tsFCI 93.79 53.46 1.55  549.18 358258 3179.41 TLE TLE TLE TLE TLE
PCGCE 0.299 0.61 1.46 9.09 5.62 38.82 10.85 856.84 81.11 TLE TLE
DYNOTEARS  11.554 12.46 0.30 50.85 365.70 54.52 306.68 3086.13  516.16 TLE TLE
VARLINGAM  0.320 0.34 0.59 8.94 9.44 1.30 1.24 294526  55.11 TLE TLE
TiMINo 1.468 1.48 2.34 14.98 13.57 7.00 7.09 636.87 78.71 TLE TLE
Our Method 7.168 8.60 7.41 12.43 16.38 7.61 7.04 33.78 18.01 1498.22 2521.38

The difference becomes more pronounced on medium- to large-scale datasets. For SWaT and Flood,
our method finishes in tens of seconds, whereas baselines such as cLSTM, cRNN, DYNOTEARS,
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and TiMINo often require hundreds to thousands of seconds, and methods like MVGC, PCMCI+,
and tsFCI regularly exceed the 3-hour timeout. On the largest datasets (Bavaria and East Germany),
nearly all baseline methods fail to return results within the time limit, while our method is able to
complete in under one hour to about forty minutes, depending on the lag setting.

An additional observation is that while deep learning-based methods (cLSTM, cRNN, cMLP) of-
ten scale poorly and time out on larger datasets, our approach remains robust across different lags.
Moreover, causal discovery methods that explicitly enforce acyclicity (e.g., DYNOTEARS, VAR-
LiNGAM, TiMINo) typically exhibit severe runtime growth, while our method avoids this by em-
bedding acyclicity into a differentiable reparameterization, allowing for end-to-end optimization
without expensive combinatorial operations.
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