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ABSTRACT

Recent advances in speech language models have leveraged discrete speech rep-
resentations from pretrained codecs to enable scalable training and generation.
However, existing codecs are primarily designed for compression, without ac-
counting for the autoregressive nature of language model training. This mis-
match leads to suboptimal performance when using compressed speech tokens
for sequence modeling. In this work, we revisit speech discretization from the
perspective of generative modeling and propose a novel framework to align to-
kenization with the autoregressive training paradigm. Specifically, we introduce
autoregressive-compatible constraints into the codec training process, encourag-
ing token sequences that better reflect the temporal consistency and predictability
expected by language models. In addition, we propose using heterogeneous sam-
pling strategy for different layers of audio tokens (semantic versus acoustic) to
enhance the alignment between semantic tokens and the speech’s textual content.
Experiments across multiple benchmarks demonstrate that our approach bridges
the gap between audio compression and generative modeling, enabling more ef-
fective continued pretraining of existing large language models on audio data.
Consistent performance gains across multiple codecs further validate the general-
izability of our proposed method.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across a wide range of natural
language processing tasks (Zhao et al., 2023; Yang et al., 2024; Team, 2025), and recent efforts
have extended their capabilities to audio by incorporating discrete representations extracted from
audio codecs (Du et al., 2023; Xie & Wu, 2024; Wu et al., 2024; Veluri et al., 2024; Défossez
et al., 2024). These codecs, such as XCodec (Ye et al., 2025a), use residual vector quantization
(RVQ) (Zeghidour et al., 2021; Défossez et al., 2022) with multiple codebooks, and encode the
waveform into a set of integer token streams, each representing a quantized latent sequence. At
each time step, there are multiple integers, one per codebook, forming a richer representation. By
mapping tokens back to their codebook embeddings and combining across multiple codebooks, one
can recover the approximate latent representation of the original audio, which the decoder then
converts back into waveform. The generated discrete tokens enable LLMs to process and generate
audio using the same autoregressive modeling paradigm as in text.

However, while such codecs are highly effective for compression efficiency and perceptual quality,
their tokenization schemes are not explicitly designed with autoregressive modeling. This misalign-
ment raises a critical issue: current audio tokenizers produce discrete sequences without modeling
the conditional dependencies that autoregressive LLMs assume by design. As a result, token combi-
nations are not necessarily consistent with the next-token prediction paradigm, weakening the tem-
poral consistency and predictability of audio token streams. To further illustrate this discrepancy, we
examine the statistical distributions of audio tokens generated by several representative codecs. As
shown in Figure 1, unlike textual tokens that naturally follow a Zipfian distribution (Kingsley Zipf,
1932), audio tokens deviate significantly from this pattern, even at the unigram level. This diver-
gence highlights the fact that current compression-oriented tokenizers do not capture the structured
frequency-rank relationships that autoregressive models rely on, thereby increasing the learning bur-
den during multimodal training. Addressing this gap forms a key motivation for our work.
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Figure 1: Zipf’s Law observed in various rep-
resentative audio codecs, illustrating the power-
law relationship between token frequency and
rank commonly seen in natural language.

In this work, we revisit the problem of speech
tokenization from the perspective of generative
modeling and propose a novel codec training
framework that explicitly encourages autoregres-
sive compatibility. Our method introduces an
autoregressive regularizer, which incorporates an
auxiliary next-token prediction loss via an au-
toregressive decoder during codec training. This
constraint aligns the structure of the compressed
speech tokens with the learning dynamics of
LLMs, ensuring that token sequences are both
compact and autoregressively coherent. While
recent speech codecs often adopt multi-layer to-
ken hierarchies to reduce the length of generated
token sequences, the overall token rate remains
significantly higher than that of the correspond-
ing text content, posing challenges for alignment
with language models. Therefore, the top layer
of audio tokens, that typically represents seman-
tic rather than acoustic information, is especially amenable to further compression. Motivated by
this, we introduce a heterogeneous sampling strategy that applies a lower sampling rate to semantic
token layer and higher rates to acoustic ones. In our experiments, we successfully reduce the final
frame rate to 6.25Hz, which shortens the sequence length and improves autoregressive modeling
efficiency. By compressing the semantic layer to a token rate closer to that of the transcript, we
achieve better alignment with the textual modality, making the resulting tokenizations more suitable
for integration with LLMs in cross-modal tasks.

Our approach is model-agnostic and can be integrated into various existing speech codecs. We
demonstrate its generality by applying it to multiple representative codecs and validating its ef-
fectiveness through comprehensive experiments on audio generation tasks. Results show that our
method not only maintains strong compression quality but also significantly enhances the perfor-
mance of LLMs in audio modeling, paving the way for more effective large-scale audio-language
training. Our contributions are as follows:

• We identify and analyze the mismatch between conventional speech codecs and the autore-
gressive nature of LLMs, highlighting the combinatorial ambiguity in audio tokenization
as a key challenge for cross-modal modeling.

• We propose an autoregressive-oriented codec training framework that introduces a next-
token prediction regularizer, which biases the quantizer toward producing autoregressively
coherent token sequences. Furthermore, we incorporate a heterogeneous sampling strategy
across token hierarchy levels to reduce semantic token rates and better align them with
textual data, thereby enhancing efficiency and cross-modal compatibility.

• Our approach is generalizable to various audio codecs. We demonstrate its effectiveness in
multiple representative codecs and show consistent improvements across generation qual-
ity, statistical properties of tokens, and downstream LLM training and tasks without sacri-
ficing compression and tokenization ability.

2 RELATED WORK

Audio Codecs and Discrete Representations Recent progress in neural audio codecs has enabled
efficient compression of waveform signals into discrete token sequences (Zhang et al., 2023a;
Défossez et al., 2024; Wu et al., 2024; Ye et al., 2025a). Models such as Encodec (Défossez
et al., 2022), XCodec (Ye et al., 2025a), CodecBPE (Shen et al., 2024), and FunCodec (Du et al.,
2024) adopt vector quantization Zeghidour et al. (2021) and multi-level encoders to capture high-
fidelity audio representations. These systems are typically optimized for rate-distortion trade-offs
and perceptual metrics (e.g., PESQ (Rix et al., 2001), UTMOS (Saeki et al., 2022)), but are not
designed to support the sequential dependencies required by autoregressive models. Although sev-
eral codecs (Zeghidour et al., 2021; Kumar et al., 2023; Ye et al., 2025a) adopt causal architectures
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(a) Typical Codec Architecture (b) Our ARDDS-Codec
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Figure 2: (a) A general architecture of audio codecs, which convert raw audio into hierarchical token
representations across multiple layers. (b) Overview of our method, that integrates standard audio
codecs with autoregressive regularization and heterogeneous downsampling of the first-layer tokens.

that prevent information leakage from future tokens into past hidden states, such architectures do
not necessarily guarantee the autoregressive predictability of the generated speech tokens. This lim-
itation is further evidenced by the statistical analysis presented in Figure 1. More recent works
like Moshi (Défossez et al., 2024) build on these representations for audio generative modeling, but
majorly rely on multiple layer audio tokens organized with delay pattern. Our work diverges by
modifying the codec training objective itself to make the resulting tokens inherently autoregressive-
compatible.

Speech-Language Modeling with LLMs Efforts to extend LLMs to audio include models like
Llama-Omni (Fang et al., 2024), SpeechGPT (Zhang et al., 2024), and SPIRIT-LM (Nguyen et al.,
2025), which typically process either continuous features or discrete tokens produced by codecs.
While some models fine-tune pretrained encoders or align speech with text via contrastive learning
(e.g., CLAP (Elizalde et al., 2022), BEATs (Chen et al., 2023)), recent trends focus on representing
audio as a language (e.g., GLM-4-Voice (Zeng et al., 2024)) to reuse the autoregressive training
paradigm within LLM through treating audio tokens as textual tokens. However, these approaches
inherit the limitations of their underlying audio tokenizers, which are not optimized for next-token
predictability. Our work addresses this limitation directly at the token generation level by regulariz-
ing the codec to produce LLM-adaptable token sequences.

Autoregressive Modeling & Tokenization Constraints In the text domain, previous works have
explored the importance of tokenizer alignment for generation quality, such as token merging (Xu
et al., 2022), vocabulary regularization (Xu et al., 2021), and prefix tuning (Li & Liang, 2021).
In vision and speech, efforts like VQGAN (Esser et al., 2021) and SpeechTokenizer (Zhang et al.,
2023a) explore more expressive token spaces, but typically ignore autoregressive compatibility. In
contrast, our approach introduces an autoregressive decoder into the codec training loop, enforcing
next-token predictability as an inductive bias. This improves token consistency, and bridges the gap
between compression and generative modeling, a direction that remains underexplored in the current
literature.

3 METHODOLOGY

We propose a novel training framework for audio codecs that explicitly aligns the generated discrete
token sequences with the autoregressive learning paradigm of large language models (LLMs), as
shown in Figure 2. Our key idea is to incorporate an autoregressive regularization objective directly
into the codec training process, ensuring that the resulting token sequences are both compressive and
autoregressively predictable. This section presents the key components of our proposed methodol-
ogy. We begin with a brief overview of standard audio codecs (§3.1), followed by a description of
our autoregressive regularization approach (§3.2). Lastly, we introduce our heterogeneous down-
sampling strategy (§3.3).

3.1 PRELIMINARIES

Let x = [x1, x2, . . . , xT ] denote a raw audio waveform. A conventional neural audio codec typically
consists of three components: an encoder, a quantizer, and a decoder.

3
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Codec Encoder The encoder Eθ maps the continuous audio signal into a sequence of latent features:

z = Eθ(x) = [z1, z2, . . . , zN ] (1)

where zi ∈ Rd and the length of audio tokens N ≪ T due to downsampling.

Quantization to Discrete Tokens A central component in neural audio codecs is the quantization
module Q, which discretizes latent features into integers. The latent vectors z are discretized by
a vector quantization module (e.g., residual vector quantization (RVQ) or product quantization),
producing discrete token indices:

y = Q(z) = [y1, y2, . . . , yN ], yi ∈ {1, 2, . . . ,K} (2)

where K is the size of the codebook. Depending on the codec, each zi may be quantized into one
or more codebook levels. In this work, we focus on multi-level audio tokens as our heterogeneous
downsampling strategy treats acoustic and non-acoustic tokens with different sampling rates.

In addition, another quantization method known as Finite Scalar Quantization (FSQ) has been at-
tracting increasing attention. In FSQ, each dimension of a latent vector is quantized independently
into a fixed number of bins.

Codec Decoder The decoder Dϕ reconstructs the audio waveform from the discrete tokens:

x̂ = Dϕ(y) (3)

The encoder Eθ and decoder Dϕ are typically implemented using convolutional neural networks
(CNNs) to exploit the local structure of audio signals efficiently.

Training Objective The traditional codec is trained based on the GAN framework using multiple
losses: 1) The reconstruction loss: A multi-scale Mel-spectrogram reconstruction loss, computed as
the L1 distance in the spectral domain across multiple scales. The Mel-spectrogram serves as a per-
ceptually relevant representation of audio and is closely correlated with human auditory perception.

Lrecon = ∥x− x̂∥2 (4)

2) Least-square GAN loss: Two types of discriminators are typically employed during codec train-
ing: Multi-Period Discriminator (MPD) (Kong et al., 2020) to capture pitch-dependent periodicity,
and the Multi-Scale STFT Discriminator (MS-STFT) (Défossez et al., 2022), which operates in the
spectral domain to assess fidelity across resolutions. 3) Discriminator Feature Loss: Also known
as perceptual loss (Ledig et al., 2017), this L1 feature-matching objective encourages the genera-
tor to produce perceptually natural outputs by aligning intermediate discriminator activations. 4)
Quantization Loss: For vector quantization, the L1 loss is applied to train the codebook, enabling
bidirectional conversion between continuous features and discrete audio tokens.

This standard training paradigm focuses solely on reconstruction quality and perceptual fidelity, with
no constraints on the sequential structure of the token sequence y. As a result, the resulting tokens
may not exhibit the kind of predictable, conditionally dependent patterns required by autoregres-
sive language models. This limitation motivates our proposed method, which augments the codec
training with an autoregressive regularization objective.

3.2 AUTOREGRESSIVE REGULARIZATION

To ensure that the token sequence y is more compatible with autoregressive modeling, we introduce
an auxiliary decoder Aψ trained to predict the next token in the sequence, thereby encouraging the
codec to produce token sequences that follow the autoregressive paradigm:

LAR = −
N−1∑
t=1

logP (yt+1|y≤t;ψ) (5)

where Aψ can be a lightweight Transformer-based decoder or RNN-based decoder. It is jointly
optimized with the codec components.

A critical challenge in applying this autoregressive regularization is that discrete token IDs y are
non-differentiable, making it difficult to backpropagate gradients through the quantization module.
To address this, we adopt a soft approximation of the discrete token assignment. Let xfeat

t be the
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output feature from the encoder at timestep t, and let C = {c1, c2, . . . , cK} denote the codebook.
Instead of directly using the hard argmin operation to select the nearest codeword, we compute a
soft assignment probability using a temperature-controlled softmax over negative distances:

pt(i) =
exp

(
−∥xfeat

t − ci∥2/τ
)∑K

j=1 exp
(
−∥xfeat

t − cj∥2/τ
) (6)

where τ is a temperature parameter. As τ → 0, pt(i) becomes a sharp distribution approximating
one-hot, and the soft assignment converges to the argmin selection. This soft token distribution is
then used as input to the autoregressive decoder Aψ , enabling gradient flow back through the quan-
tization module and the encoder. This design allows the codec to produce discrete token sequences
that not only support compression quality but also align well with autoregressive modeling.

The overall training objective is a combination of the original codec loss Lori and the regularization:

L = Lori + λLAR (7)

where λ is a weighting coefficient that balances the trade-off between compression fidelity and
autoregressive predictability.

This joint training framework encourages the codec to produce token sequences that are both seman-
tically meaningful for reconstruction and structurally aligned with next-token prediction—a critical
property for continued pretraining in LLMs.

3.3 HETEROGENEOUS DOWNSAMPLING

While audio codecs have adopted multi-layer token representations to reduce sequence length, a
significant mismatch still remains between the number of audio tokens and the number of textual
tokens typically used in language modeling. This discrepancy poses challenges when aligning audio
with text in multimodal large language models. Considering a speech audio, there is potential to
compress the semantic tokens to a length that more closely matches the number of text tokens in its
transcript. Notably, the 0th layers tokens often contain content information that is more relevant to
language modeling than acoustic layers, making them ideal candidates for further compression.

To address this issue, we propose a heterogeneous downsampling strategy that selectively reduces the
token rate of 0th quantization layer more aggressively than those of acoustic layers. Formally, for a
codec producing L token streams {y(0), y(1), . . . , y(L−1)} from bottom (semantic) to top (acoustic),
we assign downsampling rates {r0, r1, . . . , rL−1} such that r0 < r1 = r2 = . . . rL−1. This allows
0th-layer tokens to appear at a coarser temporal resolution, aligning their frequency more closely
with that of textual tokens, while preserving the finer granularity of acoustic details at lower levels.
In our implementation, we apply downsampling at the feature level during quantization process.
Specifically, for the first layer, we perform average pooling over the latent feature vectors within a
fixed window size Wds, effectively summarizing coarse information. This reduces the number of
token emissions while maintaining representational fidelity.

By compressing the first layer to a lower token rate while maintaining higher rates for acoustic layers,
our design enhances the alignment between the semantic content of audio and textual modalities.
This results in audio token sequences that are more compatible with the autoregressive modeling
paradigm used in large language models (LLMs). Our strategy is also motivated by recent Audio
LLM frameworks (Le Lan et al., 2023; Wang et al., 2023; Défossez et al., 2024), which adopt
a delayed generation mechanism wherein textual tokens are generated prior to the corresponding
audio tokens—a paradigm known as text-guided audio generation. This approach has been shown
to outperform purely audio-driven generation. When semantic audio tokens appear at a temporal
resolution comparable to that of text tokens, the interleaved generation becomes more coherent and
structurally aligned, thereby improving both generation quality and the integration between text
and audio modalities. Heterogeneous downsampling complements our autoregressive regularization
(Sec. 3.2), jointly encouraging the codec to produce audio tokens that are compact, expressive, and
structurally aligned with the learning paradigm of LLMs. Our framework is modular and can be
integrated with various vector-quantization-based codecs, including XCodec, SpeechTokenizer, and
BigCodec variants. This ensures high generalizability across different model families and use cases.
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Table 1: Downstream performance of SpeechLM trained with different audio codecs. Evaluation
metrics include accuracy (%) for StoryCloze and TopicStoryCloze, character error rate (CER ↓) for
AISHELL-I (ASR), and word error rate (WER ↓) for SeedTTS (TTS).

Method / Task StoryCloze↑ TopicStoryCloze↑ AIShell-I↓ SeedTTS↓

XCodec (Ye et al., 2025a) 63.7 72.3 5.2 4.7
SpeechTokenizer (Zhang et al., 2023a) 63.4 72.5 4.9 4.6
XCodec-2 (Ye et al., 2025b) 64.2 72.8 4.7 4.2
BigCodec Xin et al. (2024) 63.9 71.7 5.3 4.9
ARDDS-XCodec(Ours) 70.1 +6.4 76.9 +4.6 2.5 -2.7 2.3 -2.4

4 EXPERIMENTS & ANALYSIS

We conduct comprehensive experiments to evaluate the effectiveness of our proposed
autoregressive-compatible codec training framework. Our evaluation spans multiple codec architec-
tures, statistical properties of generated token sequences, and end-to-end training of speech language
models (SpeechLM) following with downstream tasks’ evaluation.

4.1 EXPERIMENTAL SETTINGS

Codec To ensure fair comparisons across different codecs, we train all models on the same Lib-
riSpeech 960-hour corpus. Specifically, we adopt the standard 585-hour clean subset for codec
training, which is widely used in previous work (Zhang et al., 2023a; Du et al., 2024; Ye et al.,
2025a). All audio is resampled to 16 kHz. We evaluate our method on several representative codecs
whose training implementations are publicly available.

For each codec, we retain the original architecture and training hyperparameters, but standardize the
training data and sampling rate across all experiments. For our autoregressive-compatible training,
we set the softmax temperature in Eq.(6) to 0.01 after a grid search. This value results in a distribu-
tion that closely approximates one-hot behavior, without yielding further gains at lower temperatures
in our experiments. The regularization weight λ in Eq.(7) is set to 1. We reduce the final frame rate
of the first quantization layer to 6.25Hz, thereby shortening the sequence length. However, this con-
figuration already represents the stability limit in our experiments; further reductions in the frame
rate result in training instability, even after extensive hyperparameter tuning. We hypothesize that
this instability arises because reducing the frame rate below 6.25Hz (e.g. 3Hz) yields fewer speech
tokens per second than textual tokens in the corresponding transcript under XCodec’s setting. Our
autoregressive decoder is a lightweight Transformer decoder, with 6 layers, a hidden size of 2048,
and 16 attention heads. It is jointly trained with the codec encoder and quantization module. We
use XCodec (Ye et al., 2025a)1 as the representative multi-layer residual-vector-quantization (RVQ)
codec to conduct our experiments.

SpeechLM To evaluate the downstream effectiveness of our method, we perform large-scale speech-
language modeling (SpeechLM) by continuing pretraining on a modified LLaMA-3 8B model. We
make minimal architectural changes: (1) adding learnable embeddings for audio tokens, and (2)
introducing a separate LM head for audio. Audio tokens are first embedded and then concatenated
with textual tokens for autoregressive decoding. We follow prior works (Xie & Wu, 2024; Défossez
et al., 2024; Ye et al., 2025a) in employing a delay-based generation strategy for multi-layer audio
tokens. Training data consists of a large-scale Chinese audio corpus containing approximately 400k
hours. All speech samples are tokenized with the trained codecs under evaluation.

We design three tasks for training: automatic speech recognition (ASR), text-to-speech (TTS), and
interleaved text-audio modeling. The speech-text interleaving pattern segments a long-form speech
utterance into multiple blocks. For each block, either audio tokens or the corresponding textual to-
kens from the transcript are randomly selected as the representation. This mixed-modality sequence
is then used as input to the speech-language model, encouraging the model to learn fine-grained
cross-modal alignment and flexible generation capabilities. This speech-text interleaving approach
has also been adopted in prior work to facilitate multi-modal alignment and generation between
audio and text (Zhang et al., 2023b; Défossez et al., 2024; Xie & Wu, 2024). In practice, we find

1https://github.com/zhenye234/xcodec
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Table 2: Ablation results of different copponents proposed in our method. The left part demonstrates
the downstream performance of SpeechLM trained with different audio codecs, while the right part
shows the analysis of codecs’ original compression ability.

Method / Task StoryCloze↑ TopicStoryCloze↑ AIShell-I↓ SeedTTS↓ WER↓ SPKSIM↑ UTMOS↑

Ours 70.1 76.9 2.5 2.3 4.13 0.88 4.30
w/o AR 67.0 74.2 4.2 3.5 4.11 0.90 4.25
w/o DDS 67.1 74.7 3.8 3.4 4.14 0.90 4.27
w/o both 63.7 72.3 5.2 4.7 4.10 0.86 4.24

(a) 1-Gram (b) 2-Gram (c) 3-Gram (d) 7-Gram

Figure 3: Zipf’s Law analysis (normalized token log-frequency against normalized Log-Rank for
several audio and textual languages) on 1-gram, 2-gram, 3-gram, and 7-gram token frequency dis-
tributions. “XCodec:AR” denotes XCodec with only autoregressive regularization, “XCodec:DDS”
applies only heterogeneous downsampling strategy, and “XCodec:ARDDS” is our full method.

that ASR and TTS are easier to optimize, while interleaved modeling better reflects the complexity
of cross-modal generation. Following Zeng et al. (2024), we adopt the same dynamic sampling
ratio of 90:1:1 for interleave, ASR, and TTS tasks, respectively. The Audio LLM is trained using
the Megatron-LM framework2 on 32 NVIDIA A100 GPUs. We use Adam as the optimizer with
β1 = 0.9, β2 = 0.95, and ϵ = 10−8, and an initial learning rate of 1e−4. Training continues until
convergence on held-out validation sets.

4.2 SPEECHLM PERFORMANCE

We first experiment with XCodec, and compare performance with other open-sourced baselines. To
assess whether our codec outputs are better suited for autoregressive modeling, we train speechLLM
upon audio tokens tokenized from the audio dataset introduced on § 4.1 with different codecs.

Overall results We begin by evaluating the effectiveness of our proposed codec training framework
in enabling better SpeechLM. As shown in Table 1, SpeechLM trained on audio tokens from our
ARDDS-XCodec achieves substantial gains across four downstream tasks—including two speech-
language reasoning benchmarks (StoryCloze, TopicStoryCloze) and two generation-based speech
tasks (AIShell-I for ASR and SeedTTS for TTS). These results consistently confirm that the audio
tokens produced by our codec training framework are more suitable for autoregressive modeling
in SpeechLM. The improvements validate that enforcing autoregressive compatibility during codec
training leads to token sequences that better align with the next-token prediction dynamics required
by LLMs, thereby improving overall speech-language modeling quality.

Impact to codec’s original performance A natural concern is whether such performance gains
come at the cost of degraded codec performance. As shown in Table 2 (right), our augmented
codecs (“Ours”) maintain comparable scores to the vanilla baseline (“w/o both”) in standard metrics
for audio reconstruction quality (WER), speaker similarity (SPKSIM), and perceptual naturalness
(UTMOS). This confirms that our method does not harm the core capabilities of the codec, preserv-
ing its compressive and perceptual performance.

4.3 WHY OUR METHOD WORKS

The language of audio tokens To further understand why our method improves autoregressive
modeling, we analyze the statistical properties of the audio token sequences using Zipf’s Law. In
natural language, token frequencies typically follow a power-law distribution, known as Zipf’s Law,
where the frequency of a token is inversely proportional to its rank. This statistical regularity reflects

2https://github.com/NVIDIA/Megatron-LM
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the structured and compressible nature of language and has been widely used as an indicator of how
well a token sequence is suited for autoregressive modeling and next-token prediction.

We adopt this perspective to examine whether audio tokens produced by different codecs exhibit
similar Zipfian behavior. As illustrated in Figure 3, token distributions from our proposed ARDDS-
XCodec show a significantly more Zipf-like pattern across 1-gram to 7-gram statistics compared to
baselines. This trend suggests that our autoregressive regularization effectively reshapes the token
distribution to be more structurally aligned with natural language, thereby improving the predictabil-
ity and learnability of the sequence for autoregressive LLMs.

Figure 4: SpeechLM’s training loss vs.
trained data volume using XCodec and
ARDDS-XCodec.

SpeechLM Training Efficiency As shown in Fig-
ure 4, models trained with our ARDDS-XCodec to-
kenizer exhibit clearly faster convergence compared
to those trained with the vanilla XCodec. The loss
curve of ARDDS-XCodec drops more rapidly in the
early stages and stabilizes at a lower final loss, indi-
cating improved learning efficiency and better com-
patibility of the generated audio tokens with autore-
gressive modeling.

4.4 ABLATION STUDY & ANALYSIS

To better understand the contribution of each com-
ponent in our proposed codec training framework,
we conduct ablation studies based on the XCodec
model. Specifically, we evaluate three variants: one without the autoregressive regularizer (w/o AR),
one without heterogeneous downsampling (w/o DDS), and one with both components removed (w/o
both). The results are shown in Table 2, which reports both downstream SpeechLLM performance
(left) and intrinsic codec evaluation metrics (right).

Ablation analysis of different components As shown in Table 2 (left), removing either component
results in consistent degradation across all downstream tasks, including reasoning (StoryCloze),
speech understanding (AISHELL-I), and speech generation (SeedTTS). The full model (ARDDS-
XCodec) achieves the best overall performance, while removing both components leads to results
of the original XCodec baseline. These findings confirm that the observed gains stem from the
combined effect of autoregressive regularization and heterogeneous downsampling.

Figure 5: Codec quality comparison. Our
method augmented codecs do not degenerate the
performance against their vanilla ones.

Impact to Codecs’ original performance Im-
portantly, none of the variants exhibit significant
degradation in codec quality. Metrics such as
WER, SPKSIM, and UTMOS remain compara-
ble across configurations, indicating that our pro-
posed modifications do not compromise the orig-
inal reconstruction quality or speaker characteris-
tics of the codec.

Zipfian’s law analysis To further support this
observation, we examine the statistical structure
of the generated token sequences. As shown in
Figure 3, which visualizes the n-gram token fre-
quency distributions, our method (and its par-
tial variants) consistently shifts the token statis-
tics closer to the Zipfian distribution observed
in natural language. The more Zipfian distri-
bution of audio tokens indicates reduced redun-
dancy and higher predictability, which in turn fa-
cilitates more efficient learning under the autore-

gressive modeling paradigm. These results suggest that our approach guides the codec toward gen-
erating more autoregressive-compatible token sequences, without degenerating compression quality.
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Figure 7: Performance comparison between baselines and our method augmented counterparts
across multiple evaluation tasks for the trained SpeechLM.

Generalization Analysis To evaluate the generality of our proposed autoregressive-
compatible codec training framework, we apply it to three additional representative codecs:
SpeechTokenizer, BigCodec, and XCodec-2. Among them, SpeechTokenizer and
BigCodec are another strong open-source baselines, while XCodec-2 is an upgraded version of
XCodec that employs a single-layer finite scalar quantization (FSQ) scheme for improved simplicity
and efficiency. For these codecs, we augment them with our autoregressive regularization (denoted
as XXX:AR) while keeping the codec architecture and reconstruction objective unchanged. Since
XCodec-2 and BigCodec are single-layer models, we only apply the autoregressive regular-
ization without heterogeneous downsampling. As indicated by the WER, SPKSIM, and UTMOS
scores shown in Figure 5, our modifications do not degrade the original compression performance
or perceptual quality of the codecs. The augmented codecs retain comparable reconstruction ability,
while enabling better alignment with the next-token prediction paradigm required by LLMs.

Figure 6: Plot of Zipf’s Law comparison be-
tween baselines and our method augmented
counterparts.

We further visualize the Zipf’s Law statistics (1-
gram frequency vs. rank) for each codec in Fig-
ure 6. The curves of our enhanced codecs shift
closer to those of natural language tokens, demon-
strating that our method systematically improves
the statistical structure of audio token sequences.
These results highlight the general applicability of
our approach, and reinforce the key finding that au-
toregressive compatibility can be effectively intro-
duced into audio tokenization without sacrificing
compression performance.

As shown in Figure 7, across downstream tasks
(StoryCloze, TopicStoryCloze, AISHELL-I, and
SeedTTS), the SpeechLM trained on our aug-
mented codecs consistently outperform their vanilla
counterparts. This trend mirrors the results we ob-
served earlier with XCodec vs. XCodec:ARDDS, confirming that our method improves the tok-
enization in a way that benefits autoregressive modeling across different codec architectures.

5 CONCLUSION

In this work, we revisit the problem of speech codec design from the perspective of autoregres-
sive generative modeling. While existing codecs focus primarily on compression fidelity, their dis-
crete token outputs are not inherently aligned with the autoregressive learning paradigm required
by large language models (LLMs). We propose a general training framework that introduces an
autoregressive regularization objective and a heterogeneous downsampling strategy to encourage
the generation of speech tokens that are both compact and autoregressively coherent. Our method
is codec-agnostic and can be applied to a wide range of neural audio tokenizers. Through exten-
sive experiments across multiple codecs, we demonstrate that our approach consistently improves
the quality of audio token sequences for SpeechLLM training. Statistical analysis further confirms
that our method induces more Zipf-like distributions in the generated audio tokens, aligning them
more closely with natural language patterns. We hope this work opens new directions for unify-
ing compression objectives with generative modeling requirements in future audio and multimodal
systems.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in our writing of this work. We use LLMs for
checking the grammar of our written manuscript. The prompt is ”check the grammar of the following
text and give suggestions for making it more academic: ${draft-content-here}”.

Some cases list as follows:

Case 1:

- Input:
check the grammar of the following text and give suggestions for making it more academic: While
several codecs (Zeghidour et al., 2021; Kumar et al., 2023; Ye et al., 2025a) apply causal archi-
tectures that ensure no information leakage from future tokens into past hidden states, such causal
structures do not guarantee autoregressive predictability of the generated speech tokens. This issue
is also reflected on the statistical analysis shown on Figure 1.

- Output:
Here’s a polished version of your text with grammar fixes and suggestions for making it more aca-
demic in tone and clarity:

Original: While several codecs (Zeghidour et al., 2021; Kumar et al., 2023; Ye et al., 2025a) apply
causal architectures that ensure no information leakage from future tokens into past hidden states,
such causal structures do not guarantee autoregressive predictability of the generated speech tokens.
This issue is also reflected on the statistical analysis shown on Figure 1.

Revised (academic): Although several codecs (Zeghidour et al., 2021; Kumar et al., 2023; Ye et al.,
2025a) adopt causal architectures that prevent information leakage from future tokens into past hid-
den states, such architectures do not necessarily guarantee the autoregressive predictability of the
generated speech tokens. This limitation is further evidenced by the statistical analysis presented in
Figure 1.

Key improvements & rationale:

Replaced “While” with “Although” → smoother for academic writing.

Changed “apply causal architectures” → “adopt causal architectures” (more precise academic verb).
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Added “necessarily” → softens the claim and increases nuance.

Changed “reflected on” → “evidenced by” (more formal and accurate).

Changed “shown on Figure” → “presented in Figure” (correct academic phrasing).

Would you like me to make it more concise (single sentence) or keep it two sentences for clarity?

Case 2:

- Input:
check the grammar of the following text and give suggestions for making it more academic: All
speech is tokenized using the trained codecs under evaluation.

- Output:
Here’s a refined version of your sentence, with grammar corrections and academic tone improve-
ments:

Original: All speech is tokenized using the trained codecs under evaluation.

Revised (academic): All speech samples are tokenized with the trained codecs under evaluation.

Suggestions & rationale:

Changed “speech” → “speech samples” for precision (since you are referring to data instances, not
speech as an abstract concept).

Replaced “using” with “with” → slightly more formal and less colloquial.

Kept the passive voice since it fits academic style, but you could also write:

“We tokenize all speech samples with the trained codecs under evaluation.” (active, clearer respon-
sibility).

Do you want me to keep the phrasing passive (more impersonal, common in academic writing) or
active (clearer attribution, often preferred in CS/ML papers)?
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