
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOW-RANK CORRECTION FOR QUANTIZED LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of model compression for Large Language Models
(LLMs) at post-training time, where the task is to compress a well-trained model
using only a small set of calibration input data. In this work, we introduce a new
low-rank approach to correct for quantization errors of activations in LLMs: we
propose to add low-rank weight matrices in full precision that act on the unquan-
tized activations. We then solve a joint optimization problem over the quantized
representation of the weights and additional low-rank weight matrices to quantize
both weights and activations. We focus on the case of 4-bit weight-and-activation
quantization (W4A4). Using ranks equivalent to 10% of the original weight ma-
trix size, our approach reduces the accuracy gap with the original model by more
than 50%. Using ranks equivalent to 30% of the original weight matrix, the accu-
racy gap is closed completely. We demonstrate our results on four recent LLMs,
namely Llama-2, Llama-3, Phi-3 and Mixtral models.

1 INTRODUCTION

Large Language Models (LLMs) (Abdin et al., 2024; Dubey et al., 2024; Jiang et al., 2024) have
demonstrated exceptional performances across a wide range of applications. However, due to their
massive size, these models require considerable computational and memory resources at inference.

Post-training quantization (PTQ) is among the most important techniques to solve both memory and
compute issues during LLM inference. The majority of quantization schemes focus on compressing
LLMs by using weight-only quantization (Frantar et al., 2022; Shao et al., 2023; Dettmers et al.,
2023b). One major limitation of PTQ is the presence of magnitude outliers in the model layer
weights, which can severely affects the quantization process (Wei et al., 2022; Xiao et al., 2023)
and deteriorate the performances of quantized models. To handle them, several offline approaches
has been proposed in the literature, such as mixed-precision strategies (Dettmers et al., 2023b),
adapted rescaling Lin et al. (2024), and incoherence processing Chee et al. (2024); Tseng et al.
(2024). Recently, several works have introduced the use of supplementary low-rank weight matrices
in full precision to mitigate quantization errors in weights Kang et al. (2024); Ou et al. (2024).
This approach is analogous to the utilization of additional low-rank weight matrices for fine-tuning
(Dettmers et al., 2023a; Hu et al., 2021).

Weight only quantization methods enable to store LLMs on smaller devices, and accelerate the
General Matrix-Vector Multiply (GEMV) operators in the decoding stage Lin et al. (2024); Frantar
et al. (2022), however, these approaches still require to keep activations in full precision (usually
FP16). To improve on this, several works (Ashkboos et al., 2023; Xiao et al., 2023; Dettmers et al.,
2022; Zhao et al., 2024) aim at quantizing both the weights and activations (and sometime KV cache)
to compute the forward pass in low bit precision. Unlike weight quantization, the quantization of
activations requires online strategies to compute their low bit representations on the fly (Jacob et al.,
2018).To deal with outliers in activations, (Xiao et al., 2023) propose to scale the weights, thus
reducing the magnitude range of activations. (Ashkboos et al., 2024; Liu et al., 2024) propose to
process weights and activations using Hadamard transform. More recently Zhang et al. (2024)
propose to add low-rank correction terms in full precision in order to correct for quantization errors.
Although these approaches has been shown to be effective at W4A8, they still struggle to deal with
the case where activations are quantized in lower bit precision such as W4A4, leaving an opportunity
to improve on current methods in these harder settings.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Contributions. In this work, we improve on current SoTA approaches for PTQ, and introduce
LRC, a new method that leverages low-rank weight matrices in full precision to correct for activation
quantization errors. By jointly optimizing for quantized representations of the original weights
and full precision low-rank weights matrices correcting the errors of activation quantization, our
method allows for quantizing weights, and activations (and KV caches) to 4 bits with minimal loss
in accuracy. Our main contributions are summarized below.

• We introduce a general framework that aims at jointly optimizing for quantized represen-
tations of the original weights acting on the quantized activations, as well as full precision
low-rank weights matrices operating on the unquantized activations.

• We derive an alternative scheme to solve the joint optimization problem and obtain a simple
algorithm easily compatible with recent quantization techniques, such as QuaRot (Ashk-
boos et al., 2024) and GPTQ (Frantar et al., 2022).

• Using our quantization scheme, LRC manages to reduce the accuracy gap with original
models by more than 50% using only low-rank matrices with 10% of the original size, and
outperform all current approaches at W4A4.

1.1 RELATED WORK

Dealing with Outliers. One major limitation of quantization techniques is the presence of outliers
in both weights and activations that can deteriorate the quality of the approximations, and lead to a
considerable drop in performance. A recent line of works (Ashkboos et al., 2024; Liu et al., 2024)
proposed to apply specific rotations (and their inverses), on both weights and activations in order to
remove outliers while preserving exactly the output of the original model. Such a pre-processing
step, in combination with the GPTQ Algorithm (Frantar et al., 2022) enabling efficient quantization
of the weights, and lead to SoTA performances in quantization at W4A8. In this work, we leverage
this pre-processing step, and consider these methods as baselines for our approach where low-rank
weight matrices in full precisions are added to the forward pass in order to correct for quantization
errors on activations, enabling to quantize LLMs at W4A4 with a 50% gain.

Low-Rank Correction. Recent works proposed to leverage low-rank matrices to reduce quanti-
zation errors in LLMs (Zhang et al., 2024; Ou et al., 2024; Saha et al., 2024). In (Zhang et al.,
2024), the authors consider the case where both weights and activations are quantized, and propose
to add well-chosen low-rank matrices in full precision in the forward pass to reduce the quanti-
zation errors. To deal with outliers, they first compute some rescaling matrices (Lin et al., 2024;
Xiao et al., 2023) using a calibration dataset, and then propose to add low-rank approximation of
the rescaled residual errors between the original and quantized weights using SVD. Although the
rescaling process leverages statistical properties of the activations to remove outliers, Zhang et al.
(2024) do not exploit them for computing their low-rank correction terms. In (Ou et al., 2024), the
authors improve on the low-rank approach introduced in Zhang et al. (2024) and propose to apply
a PCA on the output activation errors using a calibration dataset. In (Saha et al., 2024), the authors
consider a joint formulation of the quantization problem to optimize for both the quantized weights
and the low-rank terms. However, in these two works, the authors only focus on the quantization of
the weights, leaving aside the quantization of activations. In this work, we also consider a joint for-
mulation, however our main focus is on improving the quantization of activations. We improve on
prior research by incorporating both the empirical distribution of activations and the errors induced
by activation quantization into our analysis to optimize the low-rank weight matrices.

2 BACKGROUND ON POST-TRAINING QUANTIZATION

Weight Quantization. Weight quantization aims at obtaining new weights with a lower bit pre-
cision, reducing the memory needed to store the model, while preserving the output of the origi-
nal model. One standard approach is to perform layer-wise quantization, where quantized weights
are obtained by solving a reconstruction problem on a calibration dataset. Given a small dataset
of n sampled activations Xℓ ∈ Rdin

ℓ×n at a certain layer ℓ, and the associated weight matrix
Wℓ ∈ Rdout

ℓ ×din
ℓ , the goal is to find a matrix of quantized weights Ŵℓ which minimizes the quadratic

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

error over the dataset (Nagel et al., 2020):

min
Ŵℓ∈C(b)∩Rdout

ℓ
×din

ℓ

Lq(Ŵℓ) := ∥WℓXℓ − ŴℓXℓ∥22 , (1)

where C(b) is the constraint set of matrices admitting a certain bit per weight b > 0 precision. Due
to the non-convexity of the constraints, finding the exact solution of the problem is hard, and many
works have focused on designing algorithms to efficiently approximate a solution (Frantar et al.,
2022; van Baalen et al., 2024; Lin et al., 2024; Egiazarian et al., 2024).

Activation Quantization. While weight quantization enables to store large models at a lower
memory cost, it still requires additional memory space at inference time to perform the forward op-
erations in full precision, usually by de-quantizing weights to FP16. To reduce the memory footprint
and FLOP cost further, it is desirable to quantize the activations during inference to compute ma-
trix multiplications in lower precision, usually using specialized cuda kernels that perform GEMM
in low bit precision (Wei et al., 2022; Yao et al., 2022; Wu et al., 2023; Xiao et al., 2023). The
quantization step of activations generally happens at every layer of a model as one might want to
preserve full precision activations to perform coordinate-wise non-linear transformations of the ac-
tivations (Ashkboos et al., 2024; Xiao et al., 2023). Additionally, as quantizing activations require
additional operations in the forward, this step must only incur a small overhead in time and memory.
Due to this constraint, previous work consider simple, yet efficient techniques such as round-to-
nearest (RTN) (Ashkboos et al., 2024) to quantize activations on the fly at inference time.

In our work we assume a simple on-the-fly quantization, rescaling each activation x by c ·
max(abs(x)) and rounding to the nearest integer. We perform a simple hyper-parameter search
for c. Our main focus is deriving a low-rank correction to the weight matrix that accounts for some
of the error incurred in activation quantization.

3 LOW-RANK CORRECTION

In this work, we propose to add full precision low-rank weight matrices in the forward pass that
act on the unquantized activations to correct for quantization errors of activations. In the following,
we start by presenting the proposed framework to quantize a single weight matrix while correcting
for quantization errors using additional low-rank weight matrices. Then we introduce our proposed
algorithm that effectively computes the quantized representations of the original weights in low-bit
precision and the low-rank weight matrices in full precision. We conclude this section by providing
an overview of the approach when applied on a standard LLM.

3.1 GENERAL FRAMEWORK

Before introducing our framework, we need to establish some clarifying notations.

Figure 1: Computational
scheme of our method, where
both weights and activations
are quantized, and a low-rank
matrix in full precision is
added and operates on the
unquantized activations.

Notations. Given a calibration dataset X ∈ {1, ..., D}n of token
ids where D is the dictionary size, and a modelM with L layers,
we denote (Xℓ)1≤ℓ≤L where Xℓ ∈ Rdin

ℓ×n, the sequence of acti-
vations obtained along the forward pass ofM at each layer ℓ when
applied on X . We also denote (Wℓ)1≤ℓ≤L where Wℓ ∈ Rdout

ℓ ×din
ℓ ,

the sequence of weight matrices ofM which act on the activations
(Xℓ)1≤ℓ≤L respectively along the forward pass. In the following,
we always consider the case where n ≥ max

1≤ℓ≤L
(dout

ℓ , din
ℓ ), as in

practice we use 128 sentences of 2048 tokens, giving n ≃ 200k
while in general d ≃ 10k. We also denote for b > 0, C(b) the
constraint set of matrices admitting a certain bit per weight b > 0
precision, and Qb(·) any quantization operator, that given an input
matrix Z ∈ Rd×d′

produces a matrix of same shape and satisfying
Qb(Z) ∈ C(b). Finally, we call two optimization problems equiva-
lent if they have the same solutions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Low-Rank Correction Problem. We propose to extend the framework introduced in equation 1
for layer-wise quantization of weight matrices only, by also accounting for the errors induced by
the quantization of activations and by adding low-rank weight matrices to correct them. Given the
original activations Xℓ obtained at layer ℓ, the associated weight matrix Wℓ, a bit precision for the
weights bℓ > 0, a bit precision for the activations aℓ > 0, a quantization operator Qaℓ

(·) acting on
the activations at inference time, and a rank 1 ≤ kℓ ≤ min(din

ℓ , d
out
ℓ ), we propose to consider the

following reconstruction problem:

min
Ŵℓ∈C(bℓ)∩Rdout

ℓ ×din
ℓ ,

Uℓ∈Rdout
ℓ ×kℓ ,Vℓ∈Rdin

ℓ ×kℓ

Lqlr(Ŵℓ,Uℓ,Vℓ) := ∥WℓXℓ − ŴℓQaℓ
(Xℓ)−UℓV

⊤
ℓ Xℓ∥22 . (2)

Our goal here is to jointly optimize for both a quantized weight matrix Ŵℓ acting on the quantized
activations and full precision low-rank weight matrices Uℓ, Vℓ acting on the unquantized activations
in order to reconstruct the original output of the weight matrix Wℓ.

Comparison between Lqlr and Lq. While similar in nature with the optimization problem in-
troduced in equation 1, the reconstruction problem defined in equation 2 presents two major dif-
ferences: (i) we propose to account for the quantization errors of activations by considering the
quantized activation Qaℓ

(Xℓ) as input to the quantized weight Ŵℓ, rather than the original acti-
vation Xℓ. (ii) Additionally, we propose to correct the quantization errors of activations using a
low-rank correction matrix UℓV

⊤
ℓ in full precision and applied on the unquantized activations Xℓ.

Figure 1 illustrates the computational scheme proposed in this work.

3.2 LRC ALGORITHM

Let us now present the proposed algorithm to solve equation 2. In the following we drop the de-
pendency on ℓ of our notations for better readability. Starting from initial low-rank weight matri-
ces U (0), V (0), we propose to alternatively optimize for Ŵ and (U ,V ) according to Lqlr. For
t = 1, . . . , T , we propose to perform the following updates:

Ŵ (t) := argmin
Ŵ∈C(b)∩Rdout×din

∥WX − ŴQa(X)−U (t−1)(V (t−1))⊤X∥22 (3)

U (t),V (t) := argmin
U∈Rdout×k,V ∈Rdin×k

∥WX − Ŵ (t)Qa(X)−UV ⊤X∥22 . (4)

On the Update of Ŵ . To update Ŵ , we rely on already existing solvers addressing equation 1.
We show in the next Proposition that the optimization problem defined in equation 3 can be equiva-
lently reformulated as a standard layer-wise quantization problem as defined in equation 1.

Proposition 3.1. Let us denote Y := Qa(X) ∈ C(a) ∩ Rdin×n, and assume Y is full rank. Then,
by denoting W̃ (t) := (W −U (t)(V (t))⊤)XY ⊤(Y Y ⊤)−1, we have that the optimization problem
defined in equation 3 is equivalent to the following reconstruction problem:

min
Ŵ∈C(b)∩Rdout×din

∥W̃ (t)Y − ŴY ∥22 . (5)

Therefore, updating Ŵ according to equation 3, is equivalent to solving equation 5, which can be
approximated by using any solvers designed for equation 1 such as (Frantar et al., 2022; Lin et al.,
2024; Egiazarian et al., 2024). In practice, we use the GPTQ algorithm (Frantar et al., 2022) that
only requires access to the target weight matrix W̃ (t) and the covariance matrix Y Y ⊤. Algorithm 2
presented in Appendix B summarizes this step.
Remark 3.2. It is important to highlight that the choice of GPTQ (Frantar et al., 2022) to solve
of equation 5 is arbitrary. Any alternative solver capable of efficiently addressing the problem for-
mulated in equation 5 could be employed in its place.

On the Update of U ,V . While solving exactly equations 1, or 5 is still an open question due to
the non-convexity of the constraints, obtaining the update for U ,V , that is solving equation 4, can
be done in closed form, as shown in the following Proposition.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 3.3. Assume that X is full rank and let us denote Y := Qa(X). Then the optimization
problem defined in equation 4 is equivalent to the following optimization problem:

max
U∈Rdout×k∩O,V ∈Rdin×k

Tr(U⊤(Σ1 +Σ
(t)
2 −Σ

(t)
3 )U)

s.t. V =
[
W⊤ − (XX⊤)−1XY ⊤(Ŵ (t))⊤

]
U ,

(6)

where O is the set of matrices with orthnormal columns,

Σ1 := WXX⊤W⊤, Σ
(t)
2 := Ŵ (t)Y X⊤(XX⊤)−1XY ⊤(Ŵ (t))⊤, and

Σ
(t)
3 := Ŵ (t)Y X⊤W⊤ +WXY ⊤(Ŵ (t))⊤ .

In addition, a solution can be obtained by defining U as the k unit eigenvectors of Σ(t) := Σ1 +

Σ
(t)
2 −Σ

(t)
3 associated to its k largest eigenvalues, and V as in equation 6.

To compute the updated U (t),V (t), we require an access to the original weight matrix W , the
current quantized approximation Ŵ (t), and the covariance and cross-covariance XX⊤ and XY ⊤

respectively. The pseudo-code of this step is detailed in Algorithm 3 in Appendix B.

Initialization. To initialize our algorithm, that is to instantiate U (0) and V (0), we propose to
consider a relaxed formulation of the original optimization problem defined in equation 2, where we
remove the constraint on Ŵ . More formally we consider the following optimization problem:

min
W̃∈Rdout×din

,

U∈Rdout×k,V ∈Rdin×k

Lqlr(W̃ ,U ,V ) . (7)

In fact, equation 7 can be solved in closed form as shown in the following Proposition.
Proposition 3.4. Let us denote Y := Qa(X) and assume that Y is full rank. Then the optimization
problem defined in equation 7 is equivalent to the following optimization problem:

max
W̃∈Rdout×din

,

U∈Rdout×k∩O,V ∈Rdin×k

Tr(U⊤ΣinitU)

s.t. V = W⊤U and W̃ =
[
W −UV ⊤]XY ⊤(Y Y ⊤)−1 ,

(8)

where O is the set of matrices with orthnormal columns, and Σinit := WX[In −
Y ⊤(Y Y ⊤)−1Y ]X⊤W⊤. In addition, a solution can be obtained by defining U as the k unit
eigenvectors of Σinit corresponding to the k largest eigenvalues, and V and W̃ as in equation 8.

Therefore we can initialize U (0) and V (0) according to equation 7 in closed form. We present the
initialization step in Algorithm 4 of Appendix B. It is worth noting that the solution W̃ obtained
in equation 8 can be used to measure an oracle performance of our alternating minimization scheme,
i.e. the effect of correcting for activation quantization, assuming a perfect weight quantizer.
Remark 3.5. Observe that the update on Ŵ obtained in equation 5 aims at quantizing W̃ (t), which
can be seen as the optimal unconstrained weight matrix when the low-rank correction matrices are
fixed and set to U (t),V (t).

Numerical Stability. Let us now discuss the assumptions made in our previous results. In the
proposed updates, we either need XX⊤, or Y Y ⊤ to be full rank. To avoid the case where these
matrices are singular, we add a regularization term to these matrices, and consider instead:

Σx := XX⊤ + ϵxIdin , and Σy := Y Y ⊤ + ϵyIdin ,

where Id denotes the identity matrix of size d. In practice we set ϵx := 1e−2
din Tr(XX⊤), and

similarly, ϵy := 1e−2
din Tr(Y Y ⊤).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

LRC Algorithm. Finally, we present the full algorithm for LRC 1 that aims at approximating
a solution of equation 2. Note that in practice, we accumulate batches of activations X to avoid
running out of memory, and update Σx,Σy,Σxy , as defined in lines 3, 4, 5, in an online fashion
before initializing U ,V in line 6.

Algorithm 1 LRC(W ,X, b, a, k)

1: Input: Original weight matrix W , activation X , the bit precision for weights b, the bit precision
for activation a, the rank k, and number of iterations T .

2: Output: Quantized weight matrix Ŵ , low-rank weight matrices U ,V
3: Σx ←XX⊤ + ϵxIdin

4: Y ← Qa(X), Σy ← Y Y ⊤ + ϵyIdin

5: Σxy ←XY ⊤

6: U ,V ← Init-LR(W ,Σx,Σy,Σxy, k), using Alg. 4
7: for t = 1, ..., T do
8: Ŵ ← Update-Quant(W ,U ,V ,Σy,Σxy, b), using Alg. 2
9: U ,V ← Update-LR(W , Ŵ ,Σx,Σxy, k), using Alg. 3

10: end for
11: return Ŵ ,U ,V

Application of LRC on LLMs. LRC consists of two stages: (1) the model is first pre-processed
according to the QuaRot procedure (Ashkboos et al., 2024), where Hadamard rotation matrices are
fused with the weights to reduce the incoherence of both weights and activations, while maintaining
the outputs of the original model. (2) Then, the model is quantized using the LRC algorithm 1, where
both weights and activations are quantized, and optimized low-rank matrices in FP16 precision are
added to the forward pass of each weight matrix.

To compute the Hessians (Σxy,Σx,Σy) we follow Frantar et al. (2022) in using calibration dataset
taken from Wikitext-2: 128 randomly selected sequences of length 2048. We found that computa-
tion of these matrices required 64-bit precision for numerical accuracy. By default, our subroutine
for quantization follows GPTQ (Frantar et al., 2022), (we study other subroutines in the following
section). LRC works sequentially through the weight matrices of the model, computing activations
for each weight matrix, obtaining the covariance and cross-covariances matrices needed to apply
Algorithms 1 and solving the optimization problem 2 for each before moving to the next layer.

4 EXPERIMENTS

This section aims to achieve two primary objectives: (i) to demonstrate that LRC reduces the ac-
curacy gap with the original models by more than 50% while utilizing low-rank matrices with only
10% of the original size, and surpasses all existing methods under W4A4 settings; and (ii) to show
that when ranks corresponding to 30% of the original weight matrix are used in LRC, the accuracy
gap is fully eliminated. Furthermore, we establish that when activations remain unquantized and
only weights are quantized, the inclusion of low-rank correction terms becomes unnecessary.

In all our experiments, we build on top of the QuaRot (Ashkboos et al., 2024) codebase, extending
the method to include our approach. All our experiments focus on 4-bit quantization. We experiment
with quantization of Phi-3 (mini-4k-instruct), LLama-2 (7 and 13 B), Llama-3 (8B) and Mixtral
(8x7B). All results in the table are simulated using Pytorch.

4.1 BENCHMARK

We first present our main results. Our ambition is to close the gap between our main benchmark,
QuaRot, and the original FP16 model by adding ranks equivalent to 10% of the original weight
matrix size. To show the effect of the LRC algorithm relative to previous approaches (Zhang et al.,
2024; Ou et al., 2024) we also consider a baseline of the QuaRot approach with SVD applied to the
weight-matrix error (we denote this approach as SVD in tables 1, 2 and 3).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We apply our LRC approach with a single iteration (denoted LRC (1)) and 5 iterations (LRC (5)).
The runtime of our approach is comparable to the QuaRot method, though we require additional
memory to store the statisitcs of the activations. Quantizing the Mixtral model on 4xA100 GPUs
required 7 hours to complete 1 iteration, or 9 hours to complete 5. In general we see only modest
accuracy improvements when running LRC for more iterations.

Table 1 shows the wikitext-2 perplexity (PPL) and lm-eval (Gao et al., 2024) results for each method,
on each model. The tasks we considered are PIQA (PQ), HellaSwag (HS), Arc-Easy (A-e), Arc-
challenge (A-c), Winogrande (WG) and Lambada (LA ). We also show the average accuracy across
tasks (Avg). We see that for the Phi-3 model, LRC (69.7%) recovers a substantial portion of the
FP16 accuracy (72%) relative to QuaRot (64.8%). The simpler SVD approach does not close the
accuracy gap. For the larger models Llama-2 (7 and 13 B), Llama-3 (8B) and Mixtral, we also see
significant improvements.

To improve the accuracy of quantization, multiple approaches have considered use of groupsizing,
where weight and activation matrices are divided into groups of size e.g. 128, and each group is
scaled separately. This adds to the overall bitwidth, but improves accuracy. LRC can also be applied
with groupsizing: we repeated the experiment in Table 1 in Table 2, this time applying a groups size
of 128 (for activations only) to each method. Again, we see that LRC achieves multiple percentage-
point improvements relative to QuaRot that are not possible with simple SVD.

Weights only. To examine the effects of loss due to activation quantization, we re-ran the ex-
periements presented above without quantizing the activations. We used the same set up as above,
but we do no apply any quantizer operator in the forward pass (i.e. Qa is set to be the identity map),
such that no activation quantization is performed. Table 3 shows the performances. We see that all
methods are able to recover (almost) perfectly the accuracy of the original models in the W4 regime.
This experiment indicates that when only the weights are quantized, there is minimal error to correct
for SoTA approaches, and as a result, low-rank terms do not provide any additional improvement.

4.2 ABLATION STUDIES

Phi-3 Mixtral

Figure 2: We show the effect of the rank, chosen as a percentage of the original weight matrices,
on the performances of Phi-3 and Mixtral for lm-eval tasks when quantized at W4A4. We also
show the effect of groupsizing activations. As baselines (dashed lines), we plot the performances of
QuaRot with and without groupsizing, as well as the performance of the original models.

We perform two ablations to study the performances of LRC in different settings. We investigate the
effect of the rank k and the choice of the quantizer used in line 5 of Algorithm 2.

On the effect of Rank. In Figure 2, we show how the choice of the rank affects our proposed al-
gorithm LRC 1 at W4A4. We compare the average accuracy obtained across all the tasks previously
described when varying the rank, chosen as a percentage of the size of weight matrices. Note that
this choice of rank is adaptive to the weight matrix, and ensures that the total overhead in memory

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

is at most this percentage. We fix the LLM to be either Phi-3 or Mixtral and we compare the perfor-
mances obtained with the QuaRot baseline where no low-rank additional matrices are added. First
we observe that even with ranks equal to 10% of the original matrix size, LRC outperforms QuaRot:
we also see that if we allow ranks equal to 30% of the weight-size, LRC enables close-to-lossless
performance. These results hold irrespective of the use of groupsizing.

Figure 3: We show the effect of apply-
ing LRC with two quantization schemes,
namely GPTQ and RTN, on the perfor-
mances of Phi-3 on lm-eval tasks at W4A4.

On the effect of Quantizer. In Figure 3 we show
how the effect of applying LRC using different quan-
tizer in the update of Ŵ at W4A4 on Phi-3 . In Al-
gorithm 2, we only require to have access to a solver
of the layer-wise quantization problem. By default,
we use GPTQ Frantar et al. (2022) in our main exper-
iments, but here we aim at investigating the effect of
additional low-rank matrices when using other quan-
tizers, such as simple round-to-neatest (RTN) strate-
gies to quantize weights. We observe that, LRC is al-
ways able to improve on its baseline version where no
additional low-rank matrices are added, and this gap is
even more pronounced when using simpler quantiza-
tion strategies like RTN.

5 CONCLUSION & LIMITATIONS

We have studied low-rank corrections for LLM quantization. Our main innovation is to connect the
low-rank matrix to the original, pre-quantized activations, whilst processing the quantized activa-
tions with a quantized weight matrix. Our method, LRC, solves jointly for the quantization of the
original weights and low rank structure to correct for errors induced by the quantization of activa-
tions. We have shown that a straight-forward approach to constructing the ranks, using SVD is not
effective. Our method has the added complexity of computing activation statistics Σ, but this al-
lows us to significantly close the accuracy gap at W4A4 by incorporating low-rank weight matrices
with ranks set to 10% of the original matrix sizes. To close the gap completely, we showed that
we needed ranks equal to 30% of the model size. Finally, we showed that LRC is composable with
other quantization techniques, including groupsizing.

Limitations. In this work we have not studied the computational costs of adding low-rank com-
putations to the forward pass. Some works have speculated that that the low-rank computation may
be computable in parallel with the low-bitwidth computation: we leave such an implementation and
a thorough study to future work.

We found that running our LRC procedure for multiple iterations did not comprehensively improve
the performance. We found that a single iteration was often sufficient, and anecdotally we found that
convergence was dependent on the damping factors used in Cholesky computations. We speculate
that larger calibration set may improve the condition of the Hessians.

Finally, our work highlights that for W4A4, there is significant information lost in quantizing activa-
tions. We have followed previous works in using a scale-then-round scheme, with hyper-parameter
search for the best scale. The need to perform activation quantization on-the-fly means that fast
(simple!) schemes are needed. this appears to be a productive direction for future improvements.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Model PPL PQ HS A-e A-c WG LA Avg.

FP16

Phi-3

6.01 0.808 0.775 0.786 0.566 0.733 0.653 0.72
QuaRot 7.81 0.77 0.695 0.74 0.479 0.635 0.568 0.648
SVD 7.72 0.751 0.701 0.734 0.501 0.622 0.573 0.647
LRC (1) 7.26 0.786 0.731 0.796 0.545 0.68 0.642 0.697
LRC (5) 7.2 0.77 0.734 0.799 0.545 0.668 0.639 0.693

FP16

Llama-3 (8B)

6.13 0.807 0.792 0.778 0.533 0.726 0.76 0.733
QuaRot 7.78 0.765 0.74 0.721 0.441 0.663 0.704 0.672
SVD 7.73 0.769 0.746 0.697 0.46 0.68 0.699 0.675
LRC (1) 8.05 0.773 0.736 0.749 0.476 0.707 0.731 0.695
LRC (5) 7.94 0.764 0.742 0.758 0.483 0.705 0.739 0.698

FP16

Mixtral

3.84 0.837 0.84 0.834 0.596 0.766 0.784 0.776
QuaRot 4.55 0.813 0.814 0.794 0.569 0.726 0.746 0.744
SVD 4.51 0.817 0.814 0.802 0.559 0.726 0.761 0.746
LRC (1) 4.42 0.81 0.801 0.811 0.561 0.724 0.818 0.754
LRC (5) 4.41 0.801 0.8 0.813 0.555 0.736 0.814 0.753

FP16

Llama 2 (7B)

5.47 0.791 0.76 0.745 0.462 0.691 0.739 0.698
QuaRot 6.13 0.77 0.728 0.703 0.417 0.663 0.712 0.665
SVD 6.12 0.77 0.729 0.711 0.436 0.665 0.717 0.671
LRC (1) 5.77 0.776 0.731 0.726 0.424 0.676 0.747 0.68
LRC (5) 5.75 0.774 0.733 0.727 0.439 0.669 0.748 0.682

FP16

Llama 2 (13B)

4.88 0.805 0.794 0.774 0.491 0.721 0.767 0.725
QuaRot 5.34 0.784 0.767 0.755 0.481 0.709 0.747 0.707
SVD 5.31 0.792 0.772 0.755 0.486 0.699 0.747 0.709
LRC (1) 5.09 0.788 0.77 0.764 0.482 0.702 0.781 0.715
LRC (5) 5.08 0.786 0.774 0.769 0.478 0.706 0.781 0.716

Table 1: Accuracy on LLM-EVAL with weight and activation quantization (W4A4) and no group-
scaling. LRC and SVD methods use low-rank matrices with 10% of the orignal matrix ranks. We
have highlighted in bold the best performances among the quantized models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method Model PPL PQ HS A-e A-c WG LA Avg.

FP16

Phi-3

6.01 0.808 0.775 0.786 0.566 0.733 0.653 0.72
QuaRot 7.65 0.778 0.7 0.768 0.511 0.665 0.548 0.661
SVD 7.54 0.77 0.696 0.751 0.52 0.666 0.555 0.659
LRC (1) 7.28 0.786 0.722 0.815 0.567 0.693 0.644 0.704
LRC (5) 7.25 0.776 0.728 0.797 0.539 0.706 0.65 0.699

FP16

Llama-3 (8B)

6.13 0.807 0.792 0.778 0.533 0.726 0.76 0.733
QuaRot 7.42 0.782 0.747 0.75 0.469 0.712 0.731 0.699
SVD 7.36 0.779 0.759 0.762 0.479 0.72 0.717 0.703
LRC (1) 7.03 0.78 0.762 0.77 0.505 0.715 0.764 0.716
LRC (5) 7.02 0.783 0.761 0.766 0.494 0.735 0.765 0.717

FP16

Mixtral

3.84 0.837 0.84 0.834 0.596 0.766 0.784 0.776
QuaRot 4.44 0.822 0.816 0.809 0.578 0.736 0.763 0.754
SVD 4.41 0.821 0.821 0.818 0.574 0.747 0.765 0.758
LRC (1) 4.26 0.816 0.811 0.815 0.567 0.729 0.821 0.76
LRC (5) 4.25 0.817 0.812 0.817 0.572 0.738 0.815 0.762

FP16

Llama 2 (7B)

5.47 0.791 0.76 0.745 0.462 0.691 0.739 0.698
QuaRot 6.12 0.763 0.725 0.701 0.41 0.669 0.715 0.664
SVD 6.11 0.778 0.725 0.694 0.416 0.657 0.718 0.665
LRC (1) 5.69 0.779 0.734 0.736 0.444 0.672 0.748 0.685
LRC (5) 5.68 0.78 0.734 0.727 0.434 0.677 0.747 0.683

FP16

Llama 2 (13B)

4.88 0.805 0.794 0.774 0.491 0.721 0.767 0.725
QuaRot 5.35 0.782 0.762 0.758 0.472 0.702 0.75 0.705
SVD 5.34 0.783 0.768 0.748 0.476 0.699 0.753 0.705
LRC (1) 5.05 0.789 0.777 0.763 0.491 0.717 0.783 0.72
LRC (5) 5.04 0.798 0.776 0.762 0.491 0.7 0.78 0.718

Table 2: Accuracy on LLM-EVAL with weight and activation quantization (W4A4). For each
method we use a groupsize of 128 for activations. We have highlighted in bold the best perfor-
mances among the quantized models.

Method Model Size PPL PQ HS A-e A-c WG LA Avg.

FP16

Phi-3

6.75 6.01 0.808 0.775 0.786 0.566 0.733 0.653 0.72
QuaRot 1.69 6.3 0.804 0.756 0.781 0.561 0.719 0.642 0.711
SVD 2.59 6.24 0.808 0.759 0.779 0.567 0.727 0.646 0.714
LRC 2.59 6.21 0.805 0.76 0.772 0.558 0.723 0.641 0.71

FP16

Llama-3 (8B)

13 6.13 0.807 0.792 0.778 0.533 0.726 0.76 0.733
QuaRot 3.25 6.55 0.805 0.779 0.774 0.519 0.742 0.74 0.727
SVD 4.95 6.49 0.799 0.783 0.765 0.508 0.738 0.749 0.724
LRC 4.95 6.47 0.8 0.78 0.761 0.51 0.731 0.747 0.722

FP16

Mixtral

86.5 3.84 0.837 0.84 0.834 0.596 0.766 0.784 0.776
QuaRot 21.6 3.98 0.836 0.836 0.825 0.593 0.757 0.781 0.771
SVD 32.1 3.96 0.835 0.837 0.832 0.593 0.766 0.787 0.775
LRC 32.1 3.95 0.84 0.839 0.825 0.593 0.754 0.783 0.772

Table 3: Accuracy on LLM-EVAL with weight only quantization. We have highlighted in bold the
best performances among the quantized models. The size is given in GB.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language mod-
els. arXiv preprint arXiv:2310.09259, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms (2023). arXiv preprint arXiv:2305.14314, 52:3982–3992, 2023a.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Lin Ou, Jinpeng Xia, Yuewei Zhang, Chuzhan Hao, and Hao Henry Wang. Adaptive quantization
error reconstruction for llms with mixed precision. In First Conference on Language Modeling,
2024.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea J Goldsmith, and Mert Pilanci. Compress-
ing large language models using low rank and low precision decomposition. arXiv preprint
arXiv:2405.18886, 2024.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm quan-
tization. arXiv preprint arXiv:2402.15319, 2024.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. Understanding int4
quantization for transformer models: Latency speedup, composability, and failure cases. arXiv
preprint arXiv:2301.12017, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantiza-
tion error reconstruction for llms. arXiv preprint arXiv:2402.02446, 2024.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL BACKGROUND

GPTQ Algorithm. The GPTQ algorithm, introduced by Frantar et al. (2022), is a post-training
quantization technique designed to efficiently reduce the precision of weights in large language
models (LLMs) while maintaining their performance. To achieve this, the authors propose to ap-
proximate a solution of the layer-wise quadratic approximation problem defined as:

min
Ŵ∈C(b)∩Rdout×din

Lq(Ŵ ) := ∥WX − ŴX∥22 ,

where W is the original weight matrix, and C(b) is the constraint set of matrices admitting a certain
bit per weight b > 0 precision. The main difficulty of solving exactly this optimization problem re-
sides in the constraint set C(b), making the problem non-convex. To approximate a solution, (Frantar
et al., 2022) propose to improve the computational scheme of the greedy approach originally pro-
posed by LeCun et al. (1989) for pruning, and then adapted for quantization in (Frantar & Alistarh,
2022), by removing the ordering in the greedy quantization process, and applying the algorithm in
parallel over multiple columns.

Cholesky Factorization. Cholesky factorization is a numerical method used to decompose a sym-
metric positive-definite matrix (PD) into the product of a lower triangular matrix with positive diag-
onal coefficients and its transpose. This technique is particularly useful in solving systems of linear
equations, performing matrix inversion, and computing the determinant of a matrix. More formally
given Σ a symmetric PD matrix, there exists a unique lower triangular matrix L such that

Σ = LL⊤ .

To compute the Cholesky factor L, one can rely on the Cholesky Algorithm which is a modified
version of the Gaussian elimination and requires O(n3) FLOPs where n is the size of Σ.

B ALGORITHMS

On the Update of Ŵ . According to Proposition 3.1, updating Ŵ according to equation 3, is
equivalent to solving equation 5, which can be approximated by using any solvers designed for equa-
tion 1 such as (Frantar et al., 2022; Lin et al., 2024; Egiazarian et al., 2024). In practice, we use the
GPTQ algorithm (Frantar et al., 2022) that only requires access to the target weight matrix W̃ (t)

and the covariance matrix Y Y ⊤.

Algorithm 2 Update-Quant(W ,U ,V ,Y Y ⊤,XY ⊤, b)

1: Input: Original weight matrix W , low-rank weight matrices U ,V , covariance matrix Y Y ⊤,
cross-covariance matrix XY ⊤, and the bit precision b.

2: Output: Quantized weight matrix Ŵ .
3: LY ← Cholesky(Y Y ⊤)

4: W̃ ← (W −UV ⊤)XY ⊤(L⊤
Y )−1L−1

Y

5: Ŵ ← GPTQ(W̃ ,Y Y ⊤, b) using Alg. of Frantar et al. (2022)
6: return Ŵ

Remark B.1. In line 3 of Algorithm 2, we use the Cholesky decomposition of the covariance Y Y ⊤

to compute (W −UV ⊤)XY ⊤(Y Y ⊤)−1 for better numerical stability.

On the Update of U ,V . While solving exactly equations 1, or 5 is still an open question due to
the non-convexity of the constraints, obtaining the update for U ,V , that is solving equation 4, can
be done in closed form, as shown in the Proposition 3.3.

Note that in line 8 of the Algorithm 3, we denote eigk(·) the operator that returns the k first unit
eigenvectors of a symmetric matrix ranked in the decreasing order w.r.t their eigenvalues.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 3 Update-LR(W , Ŵ ,XX⊤,XY ⊤, k)

1: Input: Original weight matrix W , quantized weight matrix Ŵ , covariance matrix XX⊤,
cross-covariance matrix XY ⊤, and the rank k.

2: Output: Low-rank weight matrices U ,V .
3: Σ1 ←WXX⊤W⊤

4: Σ3 ← ŴY X⊤W⊤ +WXY ⊤Ŵ⊤

5: LX ← Cholesky(XX⊤), S ← L−1
X XY ⊤Ŵ⊤

6: Σ2 ← S⊤S
7: Σ← Σ1 +Σ2 −Σ3

8: U ← eigk(Σ), V ←
[
W⊤ − (XX⊤)−1XY ⊤Ŵ⊤

]
U

9: return U ,V

Initialization. To initialize our algorithm, that is to instantiate U (0) and V (0), we propose to
consider the optimization problem defined in equation 7, which can be solved in closed form as
shown in the Proposition 3.4.

Algorithm 4 Init-LR(W ,XX⊤,Y Y ⊤,XY ⊤, k)

1: Input: Original weight matrix W , covariance matrices XX⊤, Y Y ⊤, cross-covariance matrix
XY ⊤, and the rank k.

2: Output: Low-rank weight matrices U ,V .
3: Σ1 ←WXX⊤W⊤

4: LY ← Cholesky(Y Y ⊤), S ← L−1
Y Y X⊤W⊤

5: Σ2 ← S⊤S
6: Σinit ← Σ1 −Σ2

7: U ← eigk(Σinit), V ←W⊤U
8: return U ,V

LRC Algorithm. We are now ready to present the full LRC algorithm, as presented in the main
text in Alg. 1.

Algorithm 5 LRC(W ,X, b, a, k)

1: Input: Original weight matrix W , activation X , the bit precision for weights b, the bit precision
for activation a, the rank k, and number of iterations T .

2: Output: Quantized weight matrix Ŵ , low-rank weight matrices U ,V
3: Σx ←XX⊤ + ϵxIdin

4: Y ← Qa(X), Σy ← Y Y ⊤ + ϵyIdin

5: Σxy ←XY ⊤

6: U ,V ← Init-LR(W ,Σx,Σy,Σxy, k), using Alg. 4
7: for t = 1, ..., T do
8: Ŵ ← Update-Quant(W ,U ,V ,Σy,Σxy, b), using Alg. 2
9: U ,V ← Update-LR(W , Ŵ ,Σx,Σxy, k), using Alg. 3

10: end for
11: return Ŵ ,U ,V

C ADDITIONAL EXPERIMENTS

C.1 EFFECT OF THE CALIBRATION DATASET

In this section, we investigate the effect of the calibration dataset selection on the performance of
LRC. Our observations indicate that the choice of the calibration dataset does not significantly affect

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

the performance of the quantized models on downstream tasks. In tables 4, 5, we compare the LRC
performance with a rank set to 10% of the original size on Phi-3 at W4A4.

Dataset Avg. A-c A-e HS LA PQ WG

Alpaca 0.7024 0.5478 0.7795 0.7234 0.6553 0.7884 0.7198

wikitext2 0.7 0.5452 0.779 0.7264 0.6505 0.784 0.7151

Table 4: Accuracy of LRC on downstram tasks when using either the Wikitext2 or Alpaca dataset
with groupsizing (128) on activations.

Dataset Avg. A-c A-e HS LA PQ WG

Alpaca 0.6891 0.5273 0.7626 0.699 0.6588 0.7737 0.7135

Wikitext2 0.6917 0.5341 0.7782 0.713 0.6511 0.7835 0.6906

Table 5: Accuracy of LRC on downstram tasks when using either the Wikitext2 or Alpaca dataset
without groupsizing.

C.2 LATENCY OF LRC

In our experiments presented in Tables 2, 1, 3, we settled on setting the rank to 10% of the original
size which incurs an additional memory 13% of the original model (see the sizes reported in Table 3).
Therefore, we are effectively at 6.08 bits (4 + 0.13 ∗ 16).

In this section, we set up a simple timing experiment on an Nvidia A100 device to time the cost of a
forward pass. We use a batch size of 32, sequence length of 2048, and matrix sizes from the Llama
model series. We used Cutlass to implement a basic int4 kernel. We timed the cost of quantizing
the activations, computing the int4 kernel, computing the low-rank matmul in fp16, and adding the
results. Our pytorch module looks like this:

baseline_mod = torch.nn.Linear(feature_dim_in, feature_dim_out, bias=
False).cuda().to(torch.float16)

class Int4Lowrank(torch.nn.Module):
def __init__(self):

super().__init__()
self.quant = Quantizer(input_clip_ratio=1.0)
self.U = torch.nn.Linear(feature_dim_in, ranks, bias=False).to(

torch.float16)
self.V = torch.nn.Linear(ranks, feature_dim_out, bias=False).to(

torch.float16)
self.lin_4bit = Linear4bit.from_float(baseline_mod, weight_scales

=s_w)
@torch.compile()
def forward(self, x):

return self.lin_4bit(self.quant(x)) + self.V(self.U(x))

Listing 1: Python code snippet of a naive implementation of LRC.

Here are the timings of this simple layer, with warmup, repeated 100x. Matrix sizes taken from the
Llama family.

We see that adding low-rank weight matrices does increase the latency of these operations as ex-
pected, though we still retain speedup relative to full FP16. In each row of each table, we have
highlighted the choice of ranks that is above (next power 2) the 10% factor we used in the main
experiments in the paper.

We have included numbers from very small ranks to emphasize a limitation of this experiment: even
with a very small number of ranks added (128) there is latency loss. This implies that data movement
is important, and that a fused kernel could improve latency.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ranks matrix dim time (ms) speedup over fp16
0 11008x4096 13.89 +- 0.23 1.97

128 11008x4096 18.04 +- 0.16 1.52
256 11008x4096 19.019 +- 0.21 1.45
512 11008x4096 21.284 +- 0.2 1.29
1024 11008x4096 25.87 +- 0.26 1.06

Table 6: Performance metrics for matrix dimension 11008x4096

ranks matrix dim time (ms) speedup over fp16
0 13824x5120 20.15 +- 0.03 2.03

128 13824x5120 25.15 +- 0.09 1.63
256 13824x5120 26.25 +- 0.05 1.56
512 13824x5120 29.140 +- 0.08 1.40
1024 13824x5120 34.77 +- 0.15 1.18

Table 7: Performance metrics for matrix dimension 13824x5120

This experiment is also limited in that it does not account from groupsizing, which would make
the addition of low-rank matrices more appealing in terms of latency since int4 operations would
themselves be reduced in speed.

C.3 CLOSING THE ACCURACY GAP WITH LRC AT W4A4

In addition to the experiment presented in Figure 2, we also investigate the effect of the rank in
LRC on Llama-3 (8B). As previously observed for Phi-3 and Mixtral, we observe that when the
rank is set to 30% of the original size, LRC is able to recover the performances of the original
models. In Figure 4, we show how to choice of the rank impacts the performances of the LLM on
the downstream tasks considered in this work. Additionally, we report in tables 9, 10 detailed scores
obtained by quantized LLMs with LRC using 30% additional ranks.

D PROOFS

D.1 PROOF OF PROPOSITION 3.1

Let us first denote the objective function defined in equation 3:

Lq(Ŵ ) := ∥WX − ŴY −UV ⊤X∥22

Figure 4: We show the effect of the rank, chosen as a percentage of the original weight matrices,
on the performances of Llama-3 (8B) for lm-eval tasks when quantized at W4A4. We also show the
effect of groupsizing activations. As baselines (dashed lines), we plot the performances of QuaRot
with and without groupsizing, as well as the performance of the original model.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ranks matrix dim time (ms) speedup over fp16
0 28672x8192 54.83 +- 0.71 2.44

128 28672x8192 64.40 +- 0.17 2.07
256 28672x8192 66.77 +- 0.18 2.0
512 28672x8192 72.03 +- 0.2 1.86

1024 28672x8192 82.98 +- 0.40 1.62

Table 8: Performance metrics for matrix dimension 28672x8192

Method Model Size PPL PQ HS A-e A-c WG LA Avg.

FP16 Phi-3 6.75 6.01 0.808 0.775 0.786 0.566 0.733 0.653 0.72
LRC 4.39 6.4 0.801 0.746 0.808 0.579 0.721 0.649 0.718

FP16 Llama-3 (8B) 13 6.13 0.807 0.792 0.778 0.533 0.726 0.76 0.733
LRC 8.35 6.72 0.799 0.771 0.784 0.503 0.744 0.771 0.729

FP16 Mixtral 86.5 3.84 0.837 0.84 0.834 0.596 0.766 0.784 0.776
LRC 53 4.12 0.821 0.825 0.827 0.584 0.759 0.818 0.772

Table 9: Accuracy on LLM-EVAL with weight and activation quantization (W4A4) and no group-
scaling. LRC method uses low-rank matrices with 30% of the orignal matrix ranks. The size is
given in GB.

where we omit the superscript t of U ,V for simplicity. By simply developing the objective and dis-
carding the constant term (i.e. those independent of Ŵ ), we can reformulate the objective function
as:

⟨Ŵ , ŴΣy⟩ − 2[⟨Ŵ , (W −UV ⊤)XY ⊤⟩]

= ⟨Ŵ , ŴΣy⟩ − 2[⟨Ŵ , (W −UV ⊤)XY ⊤ΣyΣ
−1
y ⟩]

where Σy := Y Y ⊤, and the second equality holds under the the assumption that Y is full rank
with n ≥ din. Then by denoting

W̃ := (W −UV ⊤)XY ⊤Σ−1
y

we obtain that the objective, as function of Ŵ is equivalent to

⟨Ŵ − W̃ , (Ŵ − W̃ )Σy⟩ = ∥ŴY − W̃Y ∥22
which conclude the proof.

D.2 PROOF OF PROPOSITION 3.3

Let us first denote the objective function defined in equation 4 as

Llr(U ,V ) := ∥WX − ŴY −UV ⊤X∥22

Method Model Size PPL PQ HS A-e A-c WG LA Avg.

FP16 Phi-3 6.75 6.01 0.808 0.775 0.786 0.566 0.733 0.653 0.72
LRC 4.39 6.31 0.796 0.752 0.8 0.574 0.73 0.658 0.719

FP16 Llama-3 (8B) 13 6.13 0.807 0.792 0.778 0.533 0.726 0.76 0.733
LRC 8.35 6.58 0.794 0.775 0.788 0.517 0.725 0.772 0.728

FP16 Mixtral 86.5 3.84 0.837 0.84 0.834 0.596 0.766 0.784 0.776
LRC 53 4.04 0.831 0.826 0.835 0.596 0.762 0.811 0.777

Table 10: Accuracy on LLM-EVAL with weight and activation quantization (W4A4). LRC method
use low-rank matrices with 30% of the orignal matrix ranks and a groupsize of 128 for activations.
The size is given in GB.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where we omit the superscript t of Ŵ for simplicity. Let us now write the first order condition for
V . Indeed we obtain that:

∂Llr

∂V
= 0 which gives U⊤UV ⊤Σx = U⊤[WΣx − ŴY X⊤]

where Σx := XX⊤ Under the assumption that X is full rank with n ≥ din, we deduce that

U⊤UV ⊤ = U⊤[W − ŴY X⊤Σ−1
x ]

which always admits a solution. Then by denoting (U⊤U)−1 the Moore–Penrose inverse of U⊤U ,
we obtain that:

V ⊤ = (U⊤U)−1U⊤[W − ŴY X⊤Σ−1
x ]

Then by plugging this expression into the original objective, we obtain the following equivalent
optimization problem:

min
U∈Rdout×k

∥WX − ŴY −U(U⊤U)−1U⊤[W − ŴY X⊤Σ−1
x ]X∥2F

and as {U(U⊤U)−1U⊤ : U ∈ Rdout×k} spans the space of orthogonal projection onto subspaces
of dimension at most k, we can reparameterize the optimization problem as:

min
U∈Rdout×k∩O

∥WX − ŴY −UU⊤[W − ŴY X⊤Σ−1
x ]X∥22

Then by developing the objective and discarding the constant terms (i.e. those independent of U ),
we obtain the following equivalent objective:

Tr(U⊤[ŴY X⊤W⊤ +WXY ⊤Ŵ⊤]U)− Tr(U⊤WΣxW
⊤U)− Tr(U⊤ŴY X⊤Σ−1

x XY ⊤Ŵ⊤U)

Therefore minimizing the above objective w.r.t U ∈ Rdout×k ∩ O, is equivalent to maximize w.r.t
U ∈ Rdout×k ∩ O the following objective:

Tr(U⊤(Σ1 +Σ2 −Σ3)U)

where

Σ1 := WXX⊤W⊤, Σ2 := ŴY X⊤(XX⊤)−1XY ⊤Ŵ⊤, and

Σ3 := ŴY X⊤W⊤ +WXY ⊤Ŵ⊤ .

which is exactly the optimization problem defined in Proposition 3.3. Finally observe Σ := Σ1 +
Σ2 − Σ3 is symmetric but not necessarily positive semi-definite. However, observe that for any
symmetric matrix Σ ∈ Rd×d, U ∈ Rd×k ∩ O and α > 0, we have:

Tr(U⊤ΣU) = Tr(U⊤(Σ+ αId)U)− αTr(U⊤U) = Tr(U⊤(Σ+ αId)U) + kα

So by taking α sufficiently large such that Σ+ αId is P.D., we deduces that U can be chosen to be
the k first unit eigenvectors of Σ+ αId, which are the same as Σ, and that concludes the proof.

D.3 PROOF OF PROPOSITION 3.4

Observe that we can rewrite the optimization problem as:

min
U∈Rdout×k,V ∈Rdin×k

min
W̃∈Rdout×din

Lqlr(W̃ ,U ,V ) .

Now given U ∈ Rdout×k,V ∈ Rdin×k, we can derive the first order condition of the inner optimiza-
tion problem, that is:

∂Lqlr

∂W̃
= 0 which gives W̃Σy = [W −UV ⊤]XY ⊤

where Σy := Y Y ⊤. Now under the assumption that Y ∈ Rdin×n is full rank where n ≥ din, we
obtain that

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

W̃ = [W −UV T ]XY TΣ−1
y

from which we deduce the equivalent optimization problem:

min
U∈Rdout×k,V ∈Rdin×k

∥(W −UV ⊤)X̃∥22

where X̃ := X −XY ⊤Σ−1
y Y . Again, by fixing U and by deriving the first order condition for

V , we obtain that:

U⊤UV ⊤X̃X̃⊤ = U⊤WX̃X̃⊤

Assuming that X̃ is full rank, we recover the normal equation

U⊤UV ⊤ = U⊤W

which always admit a solution. Then by denoting (U⊤U)−1 the Moore–Penrose inverse of U⊤U ,
we obtain that:

V ⊤ = (U⊤U)−1U⊤W

Plugging back this expression to the previous objective leads to the following optimization problem:

min
U∈Rdout×k

∥(Id −U(U⊤U)−1U⊤)WX̃∥22

and by denoting O := WX̃ , we recover the PCA of O, that is:

min
U∈Rdout×k

∥(Id −U(U⊤U)−1U⊤)O∥22

as {U(U⊤U)−1U⊤ : U ∈ Rdout×k} spans the space of orthogonal projection onto subspaces of
dimension at most k. Now observe that

OO⊤ = WX[In − Y ⊤(Y Y ⊤)−1Y ]X⊤W⊤ = Σinit

which conclude the proof.

19


	Introduction
	Related Work

	Background on Post-training Quantization
	Low-Rank Correction
	General Framework
	LRC Algorithm

	Experiments
	Benchmark
	Ablation Studies

	Conclusion & Limitations
	Additional Background
	Algorithms
	Additional Experiments
	Effect of the Calibration Dataset
	Latency of LRC
	Closing the Accuracy Gap with LRC at W4A4

	Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.3
	Proof of Proposition 3.4


