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Abstract

This position paper introduces the concept of coexistence for embodied artificial
agents and argues that it is a prerequisite for long-term, in-the-wild interaction
with humans. Contemporary embodied artificial agents excel in static, predefined
tasks but fall short in dynamic and long-term interactions with humans. On the
other hand, humans can adapt and evolve continuously, exploiting the situated
knowledge embedded in their environment and other agents, thus contributing
to meaningful interactions. We take an interdisciplinary approach at different
levels of organization, drawing from biology and design theory, to understand
how human and non-human organisms foster entities that coexist within their
specific environments. Finally, we propose key research directions for the artificial
intelligence community to develop coexisting embodied agents, focusing on the
principles, hardware and learning methods responsible for shaping them.

1 Introduction

Contemporary artificial intelligence (AI) systems have shown remarkable performance across diverse
tasks such as the high-quality generation of data (image, text, video) [54} 2 92]], the creation of
interactive world models [21} 4], and outperforming humans in complex decision-making tasks [[127,
143l [140]. Fundamentally, three ingredients have been mostly responsible for this recent surge in
performance: the creation of large-scale models [[141} 32]], the curation (or creation) of internet-scale
datasets [[123} 53] and a computationally-intensive offline training process [114} (157, 20]. This recipe
has also been replicated for real-world robotic systems, resulting in the creation of large-scale datasets
of expert-level interaction data in the real-world [[L06] and in simulation environments [145]]. This
approach has led to progresses in learning generalist robotic policies, able to perform a wide variety
of manipulation and navigation tasks [[14,[156].

As a community, we now envision concrete use cases of embodied artificial agents{ﬂ for human
interactio Despite their remarkable progress in controlled environments [[18]], embodied agents
still struggle to gain a foothold in-the-wild scenarios [6]]. Rodney Brooks’ famous quip, “The world
is its own best model” [[110] is often used to encapsulate the problem of conceiving and deploying
embodied artificial agents in the real-world [12]. However, we highlight that this challenge does
not only emerge from the complex and dynamic nature of the real-world; it also stems from the
constant tendency of viewing the real-world as an optimization problem [128]]. Interaction in-the-wild,
instead, is co-constructed with the humans in-the-wild [42], which is at odds with the dominant
problematize-solve-optimize-deploy workflow of the contemporary Al community [S9].

'We follow Paolo et al. [I07] that defines embodied artificial agents as “agents that interact with their physical
environment, emphasizing sensorimotor coupling and situated intelligence”. Throughout this paper, we use the
terms agent, embodied agent, and embodied artificial agent interchangeably for simplicity.

’In Appendixwe discuss the scope of interaction in the context of embodied agents.
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We argue that the current approach to agent design is unsuitable for long-term, in-the-wild
interaction with humans. In Section 2] we discuss why current embodied artificial agents are unable
to cope with the strong dynamic nature of human interaction and the agents’ inability to participate
in its ongoing evolution. We emphasize the need for a new paradigm for coexisting embodied
agents: mutable systems capable of continuously leveraging situated knowledge of both the user and
the environment, highlighted in Figure[T] to establish meaningful and reciprocal interactions with the
elements of its system. In Section[3} we formally define coexistence and its properties (situatedness
and mutability) in the context of embodied artificial agents.

Our formal definition is complemented by a more practical approach for such agents to coexist in-
the-wild. In Section[d}, we take an interdisciplinary perspective to understand how human and
non-human organisms foster entities that coexist within their specific environments. Therefore,
we look to evolutionary biology and design theory, two fields that are epistemically grounded in the
real-world There we highlight how biological organisms leverage properties of the real-world to
take form during development (converge), and evolve in times of environmental changes (diverge).
Similarly, we highlight how the double diamond design process (depicted in Figure [2h) has been an
indispensable tool that has allowed designers and engineers to physically explore (diverge) and refine
(converge) creative solutions. This section is not a call for the underlying systems of artificial agents
to more closely resemble those of biological ones (for example, as in Darlow et al. [30]]). Rather, to
acknowledge the dynamic and interconnected nature of biological systems, as well as the existing
methodologies in design theory that are adept with handling similar complexities. Taken together,
they provide direction on building autonomous agents and our relationships with them.

In Section[5, we highlight six key research directions for the AI community to develop coexisting
agents. We focus on the learning methods that enable coexistence, the hardware that sustains it,
and the principles responsible for shaping it. Additionally, we discuss the ethical considerations in
designing embodied agents that coexist with humans and play a role in shaping the future of human
interactions. Finally, in Section [ we contrast coexistence with alternative (predominant) viewpoints
on embodied artificial agents. We see our work as a bridge, enabling the AI community to actively
engage with the design research community in forging a path toward coexisting embodied agents.

2  Current Embodied Agents Exist

Recent advancements in perception, learning and hardware systems have enabled embodied agents
to successfully perform complex actions in unstructured environments [54, 2 92]. We praise
these advancements and believe that the current paradigm, based on multimodal foundation models
for perception, reasoning and interaction, will be sufficient for these agents to exist with humans
and within their environments. However, we argue that the disregard of the issues pertaining to
current embodied agents can have technical and cultural repercussions when employed widely in our
societies. In particular, we focus on two fundamental properties of these agents: their stagnant nature,
a consequence of having their abilities fixed at a specific moment in time, and their generic nature,
due to their instantiation based solely on large amounts of pre-collected data. As current embodied
agents are stagnant and generic, their widespread adoption risks conditioning the evolution of their
interactions towards overly homogeneous ones, a phenomenon we denote by steamrolling.

2.1 Current Embodied Agents are Stagnant

Currently, we implicitly assume that there exists a predefined underlying data distribution, from
which we can extract representative examples, to train and evaluate the behavior of embodied agents:
for example, over the sentences people use when feeling happy, or over the possible socially accepted
distances from humans while navigating a crowded room. Furthermore, it is assumed that this data
distribution is static in time. As such, most of the knowledge acquisition and behavior exploration by
the agent happens before it is deployed in a specific environmen{’} This inability to deal with changes
in their own knowledge and their environment leads to their stagnant nature.

3Qur position builds on past parallels between computers and biological processes [147} [19] 26]).
“Recent approaches for training embodied agents additionally use fine-tuning to adapt the pretrained behavior
of the agent to a specific task. We note that the fine-tuning data distribution is also itself predefined and static.
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Figure 1: Embodied artificial agents must coexist. Current agents exist in the real-world, leveraging
knowledge obtained from large-scale datasets and specific expert-level datasets to interact. We argue
that embodied artificial agents must not only adapt to scenarios such as the ones pictured above but
participate in their continual evolution. To do so, they must coexist, establishing meaningful and
reciprocal relationships with the user and its particular environment by leveraging their diverse and
situated knowledge.

Humans will adapt and change their behavior according to the environment they are situated in,
but also participate in its shaping [33]]. A classic example can be found in medical record cards in
hospital beds: Nygren and Henriksson [[103]] found that the physical properties of the card (e.g., the
handwriting, wear, tear, other marks) were contributing to the physician’s decisions pertaining to both
the patient and the activities surrounding their care. The hospital’s culture and workflows are not
converging to a “fixed” version, rather, they are perpetually evolving as the people, the environment
and their interactions change. This is not only happening on a high functioning level: Vergunst
and Ingold show that even lower level motor skills, such as the way humans walk, are highly
socialized and both culturally and contextually dependent. Therefore, a stagnant agent placed in
this system would not be able to participate in this mutual shaping, as its behavior is a function of
knowledge from a fixed point in time, which can be outdated at deployment time. Even a well-adapted
agent at deployment will drift from the culture as the system evolves.

2.2 Current Embodied Agents are Generic

Recent advances in machine learning have enabled the extraction of general rules (e.g., grammar
and social norms) from large-scale data to bootstrap the behavior of embodied agents [154].
While learning general rules is valuable, we emphasize the crucial distinction between being generic
and being general. General knowledge captures fundamental principles that apply broadly across a
wide range of cases, enabling generalization, a desirable feature in both autonomous systems and
humans P} In contrast, generic knowledge is applied across many situations without accounting
for their specific nuances or contextual diversity. By learning generic information from large-scale
datasets, agents reinforce (potentially harmful) biases that exist on such data [109]]: for example,
image generation models produce images of white men for the prompt “a software engineer” and
women with darker skin tone for the prompt “a housekeeper” [13]]. Current embodied agents, which
often employ such models for interaction purposes, also rely on generic knowledge[7]. Exploiting
only generic knowledge is also inefficient. For example, compare a highly controlled space such as
a factory, where workbenches and machines are specifically configured, to a home or office space.
Each instance of a home or office is unique and contains situated knowledge that is specific to its
configuration and the humans in it [33]. An agent that relies solely on generic knowledge, is at a
clear disadvantage against an agent that also exploits situated knowledge and, just as importantly,
contributes to the ongoing exploration and exploitation of culture and workflow in the space [46].

2.3 Current Embodied Agents Will Steamroll

When a stagnant and generic agent is placed in a dynamic environment, either the agent will become
obsolete and removed from the system over timeﬁ or the humans will adapt to it. Therefore, in the
latter case, human cultures and workflows will start to converge towards those dictated by the agent,

3In Appendix |A| we discuss the challenges of generalization for current embodied agents.
8See Appendix |D|for the case of the novelty effect in the current deployment of social robots.
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limiting the exploration and discovery of novelty [135]. We denote this phenomenon as steamrolling.
Whilst the current prevalence of artificial embodied agents in everyday settings limits the empirical
evidence to support steamrolling, we point to convergent effects in similar socio-technical spaces that
foreshadow steamrolling. Geng and Trotta [44]] estimates that 35% of all scientific paper abstracts
in computer science are now written in “LLM-style”. Székely et al. [[133]] argue that such a style is
spreading from text interactions to more embodied interactions such as speech. Meincke et al. [94]
have shown that in brainstorming sessions, despite having a positive impact on individual creativity,
the pool of LLM-assisted responses exhibits lower diversity. They argue that effective brainstorming
is undermined by the collective use of LLM-tools because instead of creating diverse ideas, similar
thoughts were repeated by multiple participants. In the context of embodied artificial agents, we
expect steamrolling to inhibit divergent behavior, in favor of reinforcing already existing behavior
of both human and agents. We argue that steamrolling will also affect the future capabilities of the
agents we develop: a model trained on a progressively narrower distribution (such as data curated
from its own outputs) suffers from rapid degradation in the quality of its generated output [126].

3 Future Embodied Agents Must Coexist

Long-term interactions between humans and embodied artificial agents have been extensively studied
by the robotics community [85} 131} [79]], focusing on specific properties of the interaction such as
acceptance [31], engagement [115 84] and disclosure [98, 89]. Here we take a holistic view of the
long-term interactions of embodied agents within a system and provide a general-purpose, formal
definition of coexistencd’l

Definition: An embodied artificial agent is coexisting in a system if it sustains meaningful and
reciprocal interactions with humans and their environment over time.

Consider a system S = {A, H, E'} consisting of an embodied agent A; present in a specific envi-
ronment E; alongside a human user H;, at a given time ¢. There exists a quality function Qo ()
that overall describes the system and its evolution, measured from the point of view of an observer
O € S. The quality function is influenced by the interactions between the agent, the user and the
environmenﬂ We note that the goal of the agent does not necessarily align with this quality function
as it may be independent of its intended task (e.g., a household robot assisting with chores may
perform its tasks efficiently but disrupt the human’s workflow and create frustration).

We can define two categories of interactions within this system. A unilateral interaction X; — Y;
occurs if the state of element Y of the system at the next time step (¢ + 1) is influenced by element
X, while the next state of X remains independent of Y,

Yiv1r = fy (Yo, X, ye, v0),  Xewr = fx(Xe, 24), (H
where fx, fy are unknown and dynamic transition functions, and x;, y; are the actions of X and Y
at time ¢. Similarly a reciprocal interaction X; <> Y; occurs if the next state of both elements are
mutually influenced,

Yivr = fr Ve, X, ue,00),  Xepr = fx (Xe, Ya, a4, ye). (2)

Interactions influence the long-term quality of the system, which can be measured after a (system-
dependent) time horizon threshold T's. We define a meaningful interaction as one that, given sufficient
time (i.e., in the long-term), does not decrease the overall quality of the system, as evaluated by all
elements of the interaction, compared to the absence of such interaction. Formally,

s > t, W > Ts, YO € {X,Y}: Qo' | X; —» Y2) > Qo(t' | 0), 3)

where () denotes no interaction and the conditional quality function Qo (¢’ | X;) indicates the value
of the quality function at ¢’ given that process X occurred at ¢ < t'. A coexisting agent A* is
then defined as an agent able to maintain reciprocal and meaningful interactions in the long-term.
Intuitively, this means that, in the long run, the agent benefits the system more than its removal would,

ATs > t,Vt' > Ts,YO € {A*,H} : 4)
Qo(t' | A} < (Hy, Ey), Hy <> Ey) > Qo (t' | Hy <> Ey).

"In Appendix [B|we present additional considerations and limitations of our definition of coexistence.
8In Appendix |C|we discuss in depth how to potentially instantiate and measure the quality of the system.
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3.1 Properties of Coexisting Embodied Agents

Situatedness A coexisting agent A* should actively leverage the fact that it is situated within
a specific environment and exploit the unique situated knowledge embedded in the user and their
environment, rather than relying solely on pretrained knowledge. This capability reflects the agent’s
speciation to its particular system. Formally, this can be expressed as:

ITs > t,Vt' > Ts, VO € {A*, H},YO' € {A* H'} : 5)
Qo(t'| A} < (Hy, Er)) > Qo (' | A + (Hy, Ey)),

where we define a distinct system S’ = {A*, E’, H'} with its own specific quality function Q¢ (t),
but involving the same agent. Note that, contrary to the generic nature of current embodied agents,
we argue that the behavior of coexisting agents should improve the quality of their specific system,
even if the same behavior would result in a overall quality decrease in other distinct systems.

Mutability A coexisting agent A* should be capable of continuously adapting its behavior while
also influencing the behavior of other elements within the system. Formally, this adaptability relates
to the concept of reciprocal interactions:

ATs > t,Vt' > Ts,VO € {A*, H} : (6)
QO(t/ | (Ht,Et) > A:) > Qo(t/ | (H;,Eé) — A:)

This condition implies that coexisting agents and humans should be able to mutually shape each other
in ways that enhance the overall quality of the system. In contrast, the stagnant nature of current
embodied systems often requires a unidirectional training of the human user.

Importantly, changes in the agent’s behavior do not always lead to an immediate improvement in
system quality and may sometimes have the opposite effect. As discussed in Section[d] coexisting
agents must be capable of generating divergent behavior even within a closed system. This ability is
crucial for the long-term success of the system as it enables the exploration of alternative solutions,
not only in the agent’s behavior but also in how its behavior impacts the other elements of the system.

4 Coexistence Elsewhere

Beyond the formalism of coexistence, the question remains of how to instantiate embodied agents
with the ability to coexist in the real-world”| To address this challenge, we take an interdisciplinary
approach to understand how humans and non-human organisms foster entities that coexist at different
levels of organization: from the processes of biology to the methods of design theory. We explore
research in these fields that highlight the value of mutability and situatedness in fostering coexistence.

4.1 Coexistence in Biology

Biological systems offer a unique perspective on coexistence, showing how living organisms evolve,
adapt, and sustain themselves in their own environments. Unlike current embodied agents, which
assume that all necessary knowledge can be extracted from data and encoded, biology balances
encoded information with meaningful interactions with the physical world to shape adaptation,
survival and purpose. In this section, we present examples from genetics and developmental biology
that explore how biology navigates this balance.

Not everything is in the genome Underlying the majority of machine learning models is the
assumption that all necessary knowledge to act/decide optimally can be extracted from data and
subsequently exploited. However, biology provides a perspective shift in regards to the nature and
role of data in the evolution of agents. To illustrate how encoded information is only one part of
what shapes biological organisms, we turn to the Human Genome Project [27]]. When this project
successfully sequenced the entire human genome it was widely believed that the genome could define
what humans are, an “instruction book for life”. However as Ball [9] explains, the project instead
marked the beginning of a paradigm shift in biology that de-throned the genome as an encrypted

°In Appendix@ we examine if current agents already coexist, providing examples on why they fall short.
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source of life’s secrets. Instead it was shown that an organism is not only defined by the genome but
also by principles of self-organization that are enacted by being situated in the physical world [9].

A striking example of this new reality can be seen in developmental biology, where the number,
thickness, and size of a rodent’s digits were not found to be encoded in the genome. Instead, a timing
of particular proteins (namely BMP, SOX9 and WNT) that disperse in physical space determines the
number of digits and the space between them. Raspopovic et al. [116] discovered that they could
manipulate the activity of these proteins and could thus influence the number of digits formed and
their thickness. This example shows how the characteristics of the physical world play a role in
defining information and intelligence, providing an extremely efficient way of acting in the world [9].

Biology is not an optimizer Leveraging the physical world is not only about converging on
optimally efficient solutions but also about diverging from locally competitive landscapes. It is a
common misconception that biology is an optimizer. As Stanley and Lehman [128]] write: “Early
evolutionists believed, and indeed many non-experts still believe, that evolution is progressive, moving
towards some sort of objective perfection, a kind of search for the iiber organism”. In fact, “most
evolutionary changes at the molecular level [DNA] are caused not by Darwinian selection but by
random genetic drift of mutated genes that are selectively neutral” [149].

As an example, consider the protein HSP90, where HSP denotes for “heat shock protein”. HSP90
was discovered to have a kind of plasticity modulation effect on the body plans of the common fruit
fly. In warmer conditions, this protein enables more variation in the morphology of the fruit flies, in
places such as its abdomen, bristles, eyes, legs, thorax and wings [120]. In addition, these traits were
able to be passed down immediately to the next generation [[149]. It is argued that processes like
the ones observed here played a large part in periods of intense diversification in living organisms
during the Cambrian explosion [9]]. This alludes to the idea that evolution, whilst highly divergent, is
both bound and liberated by the laws of nature: by using existing building blocks in creative ways,
it is able to keep a tension between convergence and divergence [45]], conditioning and stimulating
exploration and exploitation of novel solutions within its own laws.

4.2 Coexistence in Design

We have seen how biological organisms exploit being situated in the world to balance convergence
and divergence in order to foster coexistence in their physical setting. However, how a human could
instantiate a similar process, with their plans, goals, morals, and aesthetics is still unclear. The
answer lies in the divergent and convergent processes of design which cause an individual to engage
reciprocally with technology and its environment, as highlighted in Figure 2]

The double diamond The design process often converges to a design outcome, due to performance
specifications [29], or intended functions or styles [119]. In order to deliver an outcome, methods and
heuristics exist within each design discipline [136}[29]. But beneath these formalizations lies a practice
that is tacit and with an improvisational dimension. This dimension is not only a function of expert
knowledge from formal education (industrial, mechanical, electrical, graphical, architectural, etc.),
but a craft-like knowledge of their materials, and a situated understanding of how to use them, built up
over years of experience [124]. This process is popularly characterized by the UK Design Council’s
double diamond [125], highlighted in Figure 2h. Initially when a designer receives a specification,
they begin to explore divergently how to think about the problem: this involves reasoning about the
materials, context, people, social structures, and policy context of the request [[136]. Subsequently,
they begin to converge on a more concrete definition of the problem and present it to the stakeholders
involved. At this moment, all stakeholders diverge again, exploring various designs without limits as
they explore the potential solution space. Finally, the designer converges on a solution, synthesizing
all that they have learned to present a design that is on time, budget, and to specification. The double
diamond merges a designer’s expertise with their situated knowledge and experience.

The outcome-centered perspective inherent in the double diamond brings with it the notion that
a design should be finished and then deployed in its “finished state” [[137,117]. Here we find an
interesting bridge to current embodied artificial agents: they too pass through a phase of training
and are only subsequently deployed when they have reached a pre-defined threshold of performance.
In interaction design, this perspective limits a finished design to its intended function. Despite the
efforts of human factors, user-centered design and participatory design methods [[125]], ethnographic
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Figure 2: The evolution of coexisting embodied agents: a) The double diamond process, with its
distinct problem/solution-focused beginning and end; b) Removing the head and tail off the double
diamond reveals a continuous and reflective engagement with technology as demonstrated by the
field of research through design; c) Revisiting Figure|l| by involving end-users as design researchers,
they are encouraged to draw from their experience to integrate technology into existing contexts and
to actively shape and explore new ones.

studies often reveal the user to be constantly spending time and creative energy to configure these
finished designs and their intended functions into their own lives [33} 1129} 136, [102]]. This has lead to
the increasingly blurred line between what constitutes a designer and a user of technology [[117].

Research through design (the continuous double diamond) The field of human-computer in-
teraction (HCI) has seen in the last two decades the rise of research through design (RtD) [69, 43|
which supports the notion that design is never finished. It is commonly framed as “an active process
of ideating, iterating, and critiquing potential solutions, design researchers continually reframe the
problem as they attempt to make the right thing” [160]. RtD can be understood as a continuous
double diamond (see Figure ), with its tail (problem) and head (solution) lopped off. The design
process then becomes reflective: where the morals, lived experience, and aesthetic preferences of the
designeﬂ can inform their professional training [76], leading to completely new (divergent) ways of
interacting with technology [11]], or familiar (convergent) twists on existing ones [104]. This kind of
continuous design has been termed “drifting” by Krogh et al. [72]] and bears a striking, functional
resemblance the genetic drift discussed in Section @1}

4.3 From Elsewhere to Embodied Agents

By exploring coexistence in biology, we have shown that living organisms leverage the physical world
to offload the need for encoding all necessary information for survival and action, while also enabling
diverse and adaptable behaviors. By exploring coexistence in design, we have highlighted RtD as
a promising approach to balance convergence and divergence in the interaction between humans
and technology. A common thread between these explorations is the notion of drifting, a process
that allows systems at different levels of organization (from microorganisms to human designers) to
cope with changing objectives (mutability) across different environments (situatedness) over time.
In the next section we extend these ideas to embodied agents: leveraging the situated knowledge in
the environment and in the human user enables embodied agents to successfully change, evolve and
interact in a meaningful way within their specific environments.

5 Towards Coexisting Embodied Agents

We have seen how both human and non-human organisms evolve and coexist within their own
environments. What can the AI community learn from these processes? This section outlines six
key research directions toward fostering coexistence and developing coexisting agents, focusing
on the principles that shape coexistence (1, 2), the hardware that supports it (3, 4) and the methods
that enable it (5, 6). Finally, we address ethical considerations of coexistence.

1) Foster coexistence by embracing open-endedness Hughes et al. [58] argues for open-endedness
to design continuously evolving agents, defining it as a property of systems that produce novel

A5 a “first person method” [91]] RtD can trace its theoretical foundations to the theories of embodiment [81].



284
285
286
287
288
289

291
292

294
295
296
297

298
299
300
301

303
304
305

306
307
308
309
310
311
312
313

314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330

332
333

and learnable artifacts from the perspective of an observer. We propose that open-endedness is an
essential principle for the design of coexisting agents. They should be able to continuously evolve
with their environment, changing with it and contributing to its change. This means that both the
agent as well as its objectives are non-static, creating the need for open-endedness. We agree that
open-endedness is essential to achieve coexisting agents, and highlight the shared importance of the
observer’s perspective between open-endedness and RtD. We see the role of the observer as a driver
of continuous change and exploration, not just a creative optimizer for a given task.

2) Foster coexistence by embracing the user as the designer Often the user is seen as someone
who should not have to deal with the complexities that arise from interacting with technology [102].
In RtD, this perspective is rejected in favor of seeing the user as someone who has situated knowledge,
or is a connoisseur of their situation [160, 91]]. Situated knowledge includes tacit, institutional, craft
or social knowledge, and can help mediate an agent’s purpose or behavior in an environment. We
argue that this perspective is essential to coexistence and should guide the development of embodied
agents. In Appendix [F] we provide some examples that demonstrate the potential of this principle.

3) Foster coexistence in the space around the agent Consider an agent using an inside-out
navigation system, (e.g., SLAM [335]]) which is inherently prone to drift. If an outside-in navigation
system is instead used (where the agent navigates relative to a set of beacons), the agent can be
designed such that the situated human can configure the placement of the beacons. Whilst this sounds
like a poorly designed system that requires constant maintenanceE] research on Al education has
favored this more active and experiential approach, as it fosters a kind of tacit understanding of the
capabilities and limitations of the system [41} 150} 163]]. The situated knowledge gained from this
approach can help users coexist with agents in a specific environment.

4) Foster coexistence within the morphology of the agent Evolutionary robotics has demonstrated
that by changing the morphology of an artificial agent, you change their capabilities and limitations
[110]. Additionally, advancements in manufacturing technology are rapidly expanding the potential
forms an agent could take [[70]. This concept has been explored in the context of human-drone
interaction. La Delfa et al. [[77]] gave users a drone that could initially only hover in place. By moving
with the drone, the users were able to selectively expand its perceptive field. As the field grew in size,
unique patterns of interaction emerged based on its the shape and size. The mutability of the drone’s
sensory field allowed for a meaningful relationship to evolve.

5) Foster coexistence by using foundation models as external components Recent methods have
used foundation models or composite systems that incorporate foundation models to generate agent
behavior [18]. While using these models directly as policies is not sufficient for coexisting agents,
foundation models still have valuable properties that can be leveraged (even if these are currently
prone to hallucinations [88, [159]): they can act as an external storage of generic knowledge that an
agent could query for bootstrapping purposes without replacing situated knowledge. This external
knowledge base could help decrease the memory and computation requirements to build embodied
agents [40]. Additionally, foundation models could serve as external teachers to agents to bootstrap
their performance [151] and guide exploration [74]] without replacing situated exploration. While we
understand these models can also be used for multimodal perception and reasoning, we highlight the
risk of embedding such internal components of embodied agents with generic and stagnant knowledge
and encourage researchers to consider using the real-world as “its own best model”[[110].

6) Foster coexistence by learning and evolving with humans as we go In their current form,
even common learning approaches designed to overcome the assumption of a static optimization
problem (e.g., online reinforcement learning, meta-learning, and continual learning) are insufficient
to foster coexistence{lzl To enable mutability and speciation, instead, we advocate for human-in-the-
loop learning with evolutionary algorithms [86, 22]]. Evolutionary algorithms [8} [87] can maintain
diverse candidate solutions throughout the (continuous) learning process, allowing agents to execute
multimodal behavior, both divergent and convergent [97]]. When combined with interactive learning
paradigms [[155}196], such as by using preferences or demonstrations, these evolutionary processes

" As a comparison, we would like to highlight the resources required to create and curate large-scale datasets.
2For an extended argument on why this is the case we refer the reader to Appendix
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can also be progressively shaped through meaningful interactions with the human, allowing the agent
to deal with evolving goals and expectations.

5.1 Should We Foster Coexistence?

Coexistence gives users the ability to shape and be shaped by embodied agents, carrying the inherent
risk of manipulation of the agent’s behavior by malicious users [100] and vice versa. However, when
users are given the responsibility to shape the agents in their environment, we enable them to do so
in their own particular way, resulting in a heterogeneous population of bespoke agents. In contrast,
Székely et al. [133]] and Bongard [[L5]] warn of the risks of malicious manipulation of human users
using homogeneous artificial intelligence agents at internet-scale. We still highlight the importance
of developing agents that have the ability to recognize harmful behavior and respond in a manner that
upholds safety, fairness, and accountability.

The heterogeneity inherent to coexistence, requires a continuous effort and can be a slower process
compared to unidirectional alignment. It also involves high level of ambiguity (e.g., the exploration of
a solution space without a set objective) and an active, reflective engagement on behalf of the end-user
(e.g., the evaluation of said exploration). Similarly, local and diverse Al collectives have been shown
to exhibit strong innovative capabilities and pro-social behavior [80]]. Still, they should not be treated
as the same kind of relationships: we highlight the need for ethical and legal frameworks that elevate
human well-being and safety above that of artificial agents.

6 Alternative Views to Coexistence

AGI/ASI vs. coexistence While coexistence is a goal and property in itself, other positions argue
for different goals and capabilities of long-term interactive artificial agents within our societies. Paolo
et al. [108] argue in favor of attempting to achieve artificial general intelligence (AGI), describing
the goal as “creat[ing] intelligence that either parallels or exceeds human abilities”. They state that
embodiment and situated intelligence are essential conditions for achieving AGI. Similarly, Hughes
et al. [58], argue in favor of artificial superhuman intelligence (ASI) and propose open-endedness
as a prerequisite to ASI. Whilst we share an understanding of the importance of embodiment and
open-endedness, neither position requires mutual co-shaping for the widespread use of artificial
agents in human society. Despite its risks [99, 93], AGI and ASI proponents point to the accelerated
progress and benefit for humanity driven by a single superior intelligence. Instead, we believe that
through the increase in diversity, coexistence aims for something more beneficial and robust: we
place meaningful and reciprocal interactions with humans at the center of our proposal.

Unilateral alignment vs. coexistence Yang et al. [152] state that “unified alignment between
agents, humans and their environment” is key to the success of agents in real-world applications. They
propose that agents not only align with human users, but also with the environment and the agent’s
own constraints. Furthermore, they highlight the difficulty of discovering human intentions due to
partial observability, temporality and stochasticity. Although they discuss the need for agents that can
align with evolving preferences, a process they denote as continual alignment, they still assume that
preferences are something that is known by the human a priori. They write: “the tasks assigned by
humans can be viewed as the initial inputs to the working system (especially to the agents), which
reflects the underlying goals and human intentions”. We instead believe that the human’s goals are
formed through interacting with the agent.

7 Conclusion

In this paper, we have argued that the current paradigm for designing embodied artificial agents is
fundamentally ill-suited for long-term, in-the-wild human interaction. We proposed coexistence as a
new paradigm for the design of embodied agents that emphasizes meaningful, reciprocal interactions
sustained over time. Drawing from biology and design, we showed how human and non-human
organisms leverage the physical world in convergent and divergent ways. We outlined key research
directions for coexisting agents, emphasizing open-ended, human-in-the-loop learning and the user’s
role in shaping both behavior and morphology. We envision a future where artificial agents do not
just exist but coexist, actively shaping and adapting with humans and their environments.
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Figure 3: Fink et al. [38]] and Sung et al. [130]] highlight the various ways users modify their behaviors
and living spaces to integrate autonomous robot vacuum cleaners into daily life.

A Additional Notes on Coexistence

Interaction with humans in coexistence When discussing coexistence, one might ask about
embodied agents that are not directly interacting with humans. Does coexistence apply to them as
well? Why would an embodied agent that has no relationship with humans have to be designed
with interaction in mind? We take the perspective that embodied agents that were made by humans
are interacting with humans, even in cases where such interaction is not evident at first glance.
Supporting our perspective is [Frauenberger s seminal review article on the shifting theoretical
foundations of the field of human-computer interaction. Frauenberger [42]] states that there are no
clear boundaries that separate humans from technology. Instead, the purpose of a technology (e.g.,
an embodied agent such as a robot) is constituted by not only its physical self but its environment
and the surrounding human and non-human agents. Therefore, the vast network of interconnected
technologies that support our every day lives are said to be entangled, and expands the notion of
interaction beyond dyadic “turn taking”.

Take for example, an autonomous robot vacuum cleaner: from an earlier interaction perspective,
its sole purpose is to clean up after humans. From an entanglement perspective, however, a robot
vacuum cleaner is not seen as a simple tool for cleaning, but has an effect that goes beyond that of its
original purpose. This is demonstrated by [Sung et al.[s [130] field work with robot vacuum cleaners.
Their work frequently revealed users cooperating with the robot by preparing the space before it
was cleaned, modifying their environment to facilitate easy navigation and even socially interacting
with it, as highlighted in Figure 3] Therefore, despite most of the robot’s actions taking place in the
absence of any human, the effect of these actions impacts other objects in the home (e.g., moving
furniture, routing cables), human practices (e.g., the habit of tidying before the robot begins its
operation) and the environment itself (e.g., the installation of threshold ramps in doorways). However,
we note that the effects visible in Sung et al. do not, by themselves, constitute coexistence, but
only entanglement. For example, the subsequent in-the-wild study on robot vacuum cleaners by Fink
et al. [38] draws attention to several cases of users unable to adapt to the robot, as their existing
environment and practices were not amenable to the inflexible design of the robot. This highlights
how, by designing robot vacuum cleaners with a fixed and narrow purpose (i.e., cleaning after the
human), we are inhibiting the continuous evolution of its role and effects, and, therefore, coexistence.
We refer the reader to Appendix [D} Social robots, for a complementary discussion that focuses more
on the social aspects of everyday life with robots.

Isn’t coexistence just optimization? With coexistence, we are proposing a form of learning and
development that is not as strictly focused on optimization as current approaches. In classic machine
learning, a task is defined by an objective function, which captures what the model/agent should
do, and then fitting available data to that objective. The agent learns by optimizing towards this
objective. In our position, we provide a different perspective on this practice. We broaden the focus
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by paying attention to system-wide quality (motivated by contemporary views on what interaction
is, see previous paragraph). In order to uphold this quality, it might occasionally be necessary to
go against the objective function, or to acknowledge the fact that a static objective function for
long-term interaction may not even exist. While classic machine learning approaches try to converge
to a solution, we emphasize the necessity to convergence and diverge. Optimization has a place
in coexistence, but it needs to be balanced with continuous exploration. Without it, the ability for
humans and artificial agents to conceive novel objectives (read, to change and evolve as a society)
will be severely distorted (see Section [2).

Designing frameworks for coexistence Considering the design of frameworks that implement
coexistence in practice, we aim to embrace a continuous process that balances divergence and
convergence, inspired by biology and design. As we outline in Section[d.2] the process that produces
the design itself (the continuous double diamond) will result in coexisting entities. Given the
improvisational and situated nature of RtD, any kind of framework that implies a strict procedure
would go against the value of coexistence. Guidance on these kinds of processes is given by Pfeifer
et al. [L11]], who define design principles for Intelligent Systems, as well as Krogh et al. [[73], who
identify and analyze drifting as a property of continuous design processes. La Delfa [[75, p.111]
outlines how these process can be combined in the context of embodied artificial agents.

The role of generalization in coexistence As discussed in Section[2.2] generalization — the ability
to leverage general knowledge to act across similar scenarios — is a desirable feature for embodied
agents. However, we would like to highlight the challenges and potential pitfalls of achieving
generalization at the cost of employing generic knowledge. Consider once again, the example
presented in Section [2.1} Nygren and Henriksson [103]] found that the physical properties of medical
cards of the patients (e.g., the handwriting, wear, tear, other marks) were contributing to the decision-
making of the physician. Achieving such nuanced care and attention from embodied artificial agents
through generalization would be unfeasible, as it would require the collection, and inclusion in the
training procedure, of increasingly fine-grained physical and social cue data. A similar observation
is made by [[139], where the authors reveal that zero-shot generalization of concepts in multimodal
models require an exponential increase in progressively more fine-grained data. One could argue, then,
that we should instead focus on developing increasingly realistic simulators. However, such option
also appears fundamentally unfeasible. Bharadhwaj [12]] argues that “even the best simulators cannot
match reality”, concluding that “scaling simulation frameworks is unlikely to directly help with these
[manipulation] tasks as each of these would require separate nuanced considerations for faithful
simulation”, hindering generalization. We highlight that the impossibility of collecting exponentially
fine-grained data in the real-world to pretrain large-scale models, alongside the infeasibility of
developing faithful simulators of the real-world, further motivates our argument to, instead, develop
agents that are able to continuously leverage the physical and social cues present in their specific
environment to achieve coexistence.

B Additional Notes on the Definition of Coexistence

Nature of Qs and Ts Like all the elements in the system, the operationalization and interpretation
of the quality function () g is dynamic (meaning it changes over time) and specific to every system.
In Appendix [C]we discuss some potential proxy metrics for the quality function. The same can be
said of the time horizon Ts: each particular system should have, even if implicitly, a specific time
horizon to assess the evolution of the system itself.

Assumptions of coexistence For simplification we have implicitly assumed that our system is
closed, meaning that the quality of the interaction is only influenced by the elements within the
system (environment, human and agent). We have also assumed that there is a single human user in
the system. However, we can easily extend this to open systems and multiple users by considering the
correspondent interaction terms with additional elements external to the system (e.g., external societal
rules, other human and agent members of a team), without a significant change on the definition of
coexistence.

Formally, consider a system S = {A* H, A, E} where H; represents the state at time ¢ of the set
of all the humans in the system and A, the state of all additional agents in the system. Let E; be
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the state of the set of external components to the system (e.g., external societal rules or observers
imposed on the system). We still formally define a coexisting agent A* as,

ITs > t,Vt' > Ts,VO € {A*, H, A} :
Qo (t'| A} & (H,,A, Ey), H, <> Ey, Hy < Ay, Ay & E;) > @)
Qo (t' |Hy + Ey, Hy > Ay, Ay & Ey).

We would like to point out that, despite the fact that the system is open, and influenced by the
interactions with E, these external components of the system are not observers of the quality function
Qo of the system. In practice, this means that their assessment of the overall quality of the system
does not influence the quality of the system itself, as it is measured only by the elements that belong
to the system. As an example, consider a companion robot interacting with a teenager (H). Parents
(E) might disapprove of the informal language style used by the robot. However, their external
assessment does not directly affect the quality of the system: instead, it is measured exclusively
based on the perceptions and experiences of the teenager and the robot. In another instantiation of the
system, one that encompasses both the teenager, the robot and the parents, the latter would naturally
influence the quality of that system.

The quality of a system is not monotonically increasing We do not expect the quality of the
system to be monotonically increasing over time; in fact, we argue that it should not. Formally,
there may exist time steps ¢; < t2 such that Qo (f2) < Qo(t1), even in the case of meaningful and
reciprocal interactions. The requirement for coexistence concerns the asymptotic behavior of the
quality function over a system-dependent horizon ¢’ > Ty.

Credit assignment in coexistence A core challenge in evaluating coexistence lies in the credit
assignment problem [112], i.e., determining which interactions are responsible for the changes in the
overall quality of the system over time. This challenge is exacerbated by the fact that the effects of an
interaction may not immediately be observable, as multiple overlapping interactions may contribute
to a shared outcome. Adding to these challenges, the quality function itself is not stationary, due to
the evolution of the human, agent and their environment.

Assigning credit for the long-term impact of meaningful and reciprocal interactions remains an open
research problem. Future work may explore the use of causal inference [95] or multi-agent reinforce-
ment learning techniques [[146] to better disentangle the contributions of individual interactions.

C Measuring Coexistence

One fundamental challenge of implementing coexistence for embodied agents is how to measure
the quality function Qg of a system. As briefly mentioned in Section 3] the human-robot/computer
interaction community has proposed several (often complementary) self-reported metrics to evaluate
the quality of an interaction. For example,

* Trust reflects the human belief that the robot will behave reliably, safely, and as ex-
pected [65]. In collaborative tasks, the performance and attributes of the agent strongly
influence the user’s trust. Trust, in turn, correlates with better team performance and
interaction outcomes [51].

* Engagement reflects how involved, attentive and interested the human is during the interac-
tion. It captures the degree of active participation in the interaction by the human user (e.g.,
paying attention to the agent, responding to it, initiating the interaction) [105].

* Likeability measures how pleasant, friendly, and likeable the agent is to the human user dur-
ing the interaction. Likeability can emerge from the personality of the agent, its appearance
or its behavior [121) 134, 28]].

* Social Presence relates to the feeling that the agent is a social entity present in the system,
as opposed to being a passive machine or tool [24]. A strong sense of social presence usually
indicates a more natural and engaging interaction, which can in turn increase trust and
empathy towards the agent. Conversely, if the agent is seen as having zero social presence,
the user might not engage socially or might not heed social cues from the agent.
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* Acceptance measures how willing users are to interact with the agent and integrate it into
their routines [37]. As such, it is an important proxy for the overall quality of the system, as
it gauges the possibility of maintaining long-term interactions within the system.

One fundamental issue with the measure of these self-reported metrics is the fact that they are
traditionally uni-directional, i.e., from the perspective of the human. They are usually collected
via questionnaires or interviews before and/or after an interaction, capturing the human’s personal
experience, attitudes, and perceptions of the agent or the interaction. Moreover they are intrinsically
task-dependent, as they either measure the quality of a specific interaction, or use the result of a given
interaction to condition the human to predict the quality of future interactions.

Besides self-reported metrics, researchers in human-robot and human-computer interaction often
also rely on objective behavioral interaction metrics, i.e., what users do during the interaction. For
example,

* Eye gaze can reflect the engagement of the user in a given interaction: users that frequently
make eye contact with the agent, or make prolonged eye contact often report a higher
engagement [3|[115}168]. Moreover, since eye contact is also a sign of social connection,
some studies consider mutual gaze episodes (when both the agent and the human look at
each other) as a metric of rapport [[158]], or as a factor influencing the decision-making of
the human user [10]].

* Task fluency refers to how coordinated and seamless the joint actions of the human and
the agent are in the context of a collaborative tasks [56}155)]. A fluent interaction with high
concurrent activity (indicating teamwork) and low idle times often correlates with higher
acceptance [S]] and trust [1O1] in the agent.

* Interaction duration can also be considered an important metric to assess the quality of an
interaction, especially in long-term scenarios. The frequency of voluntary interactions with
the agent can be considered an indicator of engagement and acceptance [62, [66].

Several works have built upon these metrics to develop models that predict the user’s behavior
during the interaction. Guo and Yang [50]] and Chen et al. [23]) explore how to build data-driven
models of the user’s trust for specific collaborative decision-making tasks. Similarly, Lee et al. [82]
introduces a computational framework to model the engagement of the human user in a robotic
storytelling task. We highlight that agents often do not have access to the internal state of the human
and measuring precisely how a user may change as a result of an interaction can be intractable [48]].
Yet, predictive methods of human interaction metrics could, in principle, still be used as a proxy
measurement. However, we carefully point out two limitations of these approaches: (i) they are still
heavily task-dependent, limiting their usefulness for long-term, open interactions such as the ones
enabled by coexistence; (ii) building static models of the behavior of the user, as currently done, will,
once again, lead to the development of generic and stagnant agents, as detailed in Section 2}

Rather, we join Kamino et al. [61] (see Appendix [D] Social robots, for a discussion of this work) to
encourage the Al and interaction communities to shift their emphasis from measuring coexistence
to constructing coexistence. That is, defining the purpose of the artificial agent and refining its
performance is meaningful and reciprocal in and of itself. In other words it is not the task-dependent
metrics that ensure coexistence but the construction of them.

D Are Current Embodied Agents Already Coexisting?

Naturally, one might question whether current embodied agents are already coexisting with humans.
In this section, we present examples and discussions on key challenges inhibiting current agents from
being coexisting.

Social robots A prominent example of embodied agents designed for human interaction are social
robots [17, [85)]. Companies like Jibo and Anki introduced social robots to the market with high
expectations, only to face eventual failure [138]]. A significant factor contributing to this is the
challenge of sustaining long-term interactions by current embodied agents. Without the ability to
change through interaction and become situated into their environment, social robots remain ill-suited
for prolonged use. They often succumb to the novelty effect, where user engagement diminishes over
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time as the robot’s initial appeal wears off [[118]. The ethnographic field study on social robots by
Kamino et al. [61]] highlights a notable exception to this trend. Their empirical evidence suggest that
meaningful, long-term interactions with embodied artificial agents has less to do with specific design
features. Instead meaningful interactions arise from “interconnected moments of situated interaction,
related emotional responses, and meaning-making among people as they interact with robots and each
other at different levels of organization.” We see this exception as opportunity to design coexisting
agents that respond to the broader social and environmental context that they are situated in.

Bias-amplifying interaction Large language models have been widely integrated into the archi-
tecture of embodied agents [[148| [34]]. These models have now been broadly adopted by diverse user
groups. While most Al systems influence human behavior, they themselves do not retain user-driven
modifications beyond the immediate context window. This lack of adaptability is already problematic,
as user-provided knowledge is not incorporated. Worse, studies have shown that interacting with
slightly biased Al systems can amplify biases in users, an effect not observed in human-human
interactions [47]. These systems not only fail to adapt through interaction, reinforcing a unilateral
dynamic, but they also degrade overall system quality by increasing bias in users. As LLMs are
increasingly integrated into interactive robots, these issues are likely to persist, if not worsen, through
prolonged human-robot interactions.

Please, just turn on the light In industrial settings, robotic failures require expert technicians to
debug classifiers, diagnose issues, and retrain models with additional data, such as images captured
under varied lighting conditions. Consider now, instead, a robot designed to tidy up homes and offices
by identifying, classifying, and sorting objects. Relying on expert interventions, similar to those in
industrial settings, is impractical for home-deployed robots. A more viable solution is for robots to
make use of humans’ situated knowledge within their environment. Humans understand their space
and might recognize how the specific lighting affects object classification. Instead of requiring an
expert to retrain the system, a robot could ask for help [64], prompting users to turn on the light
and even learning that doing so improves classification performance. By adapting through situated
interactions, the robot avoids repeated failures and reduces the need for costly expert intervention and
large-scale data collection. This behavior realistically adjusts the human’s expectations on the agent’s
capabilities and invites them to accommodate their limitations. Furthermore, we are argue that such
situated interactions not only improve performance but drive continual evolution and optimization.

E Limitations of Current Learning Algorithms for Coexistence

In this section we argue that, in their current form, standard learning approaches for building embodied
artificial agents, designed to overcome the assumption of a static optimization problem, are still
insufficient to foster coexistence.

Meta-learning is often proposed as a solution for adaptation to new tasks. A meta-learning agent
trains over a distribution of tasks so that it can quickly adapt to unseen task at test time [57].
However, instead of assuming a fixed task (as in an MDP), meta-learning assumes a fixed meta-
distribution of tasks, defined by the designer, from which both training and testing tasks are drawn [39].
Consequently, if the agent encounters a fundamentally novel task outside this distribution, it may not
be able to adapt, as it was never optimized for tasks beyond the anticipated variations.

Continual learning algorithms, instead, relax the fixed training assumption of the previous methods
by exposing agents to a sequence of tasks over time. Often, continual learning algorithms focus on
mitigating catastrophic forgetting and preserving performance across task sequences [144]. However,
similar to meta-learning, most continual learning setups still operate under relatively controlled forms
of novelty: they assume a sequence of tasks or data that, while possibly distinct, follows a predictable
format (for instance, new classes from the same data distribution [[67]). The focus is on incremental
change, not the unknown unknowns [83]] agents may face in the real-world.

Reinforcement learning (RL) is traditionally formulated through a Markov decision process (MDP),
where the state and action spaces, reward and transition functions are defined apriori by the de-
signer [131]. Additionally, the training and testing environment are often assumed to be the same.
The goal of the agent is therefore to maximize the total (discounted) reward accumulated while acting
on that particular environment. Other extensions, such as partially-observable MDPs to deal with
incomplete state information [60]], multi-agent MDPs to deal with multiple agents acting in the same
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environment [49]], domain randomization to deal with environments with different dynamics [25] or
observations [[153], or robust MDPs to introduce safety guarantees in the behavior of the agent [90],
still leave the burden on the researcher to guess the possible perturbations the agent might face
in advance. This is often done by formalizing uncertainty in quantitative terms: assuming any
environment change can be modeled as some stochastic variation in rewards, transition probabilities,
or observation noise. However, these approaches are still unable to deal with structural novelty that
might lie outside the prior distribution of possible phenomena defined by the designer. Recently,
continual reinforcement learning methods, while still severely underexplored [113]], have shown
some promise in allowing agents to carry out search processes indefinitely [[1]], producing behavior
in response to all past experience [16]]. We believe that these approaches could also be used in the
future, complementing evolutionary techniques, to allow agents to explore convergent and divergent
behaviors.

For an extended argument on the limitations of these methods for coexistence, we refer the reader
to Lehman et al. [83]].

F Potential Coexisting Technology Today
In this section, we highlight several examples of technology with properties that foster coexistence.

Mutable morphology and locomotion Figure 4| shows how the morphology of an agent can be
changed to recover from damage and to re-learn how to walk [71]. The agent learns how to walk
through periodically inflating and deflating its individual cells, exploiting its own physical shape.
Although this does not involve a human user, it demonstrates the value of mutable morphologies.
For example, we see great potential in mutable morphology to express various mannerism through
different gaits, especially in the context of [Vergunst and Ingold/s work on the contextual nature
of walking [142]. Thus culminating in rich, heterogeneous populations of artificial agents at scale.
Figure [5] shows Yamaha’s “Motorid”, a shape changing, self-balancing motorcycle [52]]. It has a
twisting chassis and autonomous driving abilities that influence how riding the motorbike feels in real
time. This dramatically changes motorcycling from its culture to its engineering principles. Whilst
not a child of the RtD method, but rather a concept bike, it balances divergent and convergent themes.
Blurring the definition of what is a bike and an autonomous agent.

Mutable perceptive fields in human-drone interaction Figure [6] shows a system that allows
humans to shape how a drone senses its environment. So whilst the human understood how to shape
the perceptive field of the drone, the behavioral outcomes of their actions were not. This enabled rich
explorations with the drone which lead to diverse and meaningful interactions [78].

Mutable interaction interface Figure [7| shows Bewley and Boer s [[11] “Blo-Nut”, a silicone
doughnut that affords the user a blank slate to interact with. The object inflates and deflates and can
be programmed to music. Its non-humanoid shape enables interactions to the human in ambiguous
ways, which Sandry [[122] argues, is an opportunity to build effective communication between humans
and artificial agents.
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recovered

Figure 4: Self recovering locomoting voxels [71]: by virtue of an evolutionary algorithm, the agent is
relearning how to walk by changing the inflation patterns of its individual cells. Each change to the
physical body is likened to a divergent search for a new and unique locomotion gait. Whilst each
improvement in performance in this new body is a convergent search to optimize. Therefore, the
agent is able to explore and exploit to it physical environment by simply existing in it.

Figure 5: Yamaha’s “MOTORQIiD” is a shape changing, self-balancing motorcycle [52]]. Its unique
twisting chassis is able to affect the ride feel in real time as well as drive autonomously.
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Figure 6: “How to Train Your Drone” [[78]: depicted here in orange, clear and blue are the sensory
fields of the drones. By interacting with the drone, its sensory field can be changed with human
intention. However the consequences of such changes are not always predictable. This work
demonstrates the potential of interacting with the sensing and acting capabilities of mutable agents.
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Figure 7: “Blo-Nut” is a silicone doughnut that affords the user a blank slate to interact with [11].
The object inflates and deflates and can be programmed to music.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper we introduce, define and argue in favor of the concept of
coexistence for the design of interactive embodied artificial agents. In Section[2] we discuss
the limitations of current embodied artificial agents. In Section [3| we formally define
coexistence and its properties. In Section ] we look into evolutionary biology and design
theory for inspiration on the mechanisms that can foster coexistence. Finally, in Section 3]
we present key research directions for the Al community to develop coexisting agents, and
discuss the ethical implications of such choice.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section [5.1] we discuss the ethical implications of the development of
coexisting agents. Furthermore, in Section[ we present alternative viewpoints to coexistence
for the design goals of embodied agents.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: While we do not have theoretical proofs, we do present in full our formalism
of coexistence in Section E} Moreover, we present additional considerations, such as
consequences, assumptions and limitations of our formalism in Section [B]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: We do not present experimental results in this paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: We do not present experimental results, neither code nor data.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: We do not present experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: We do not present experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: We do not have experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our work conforms fully to
it.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section [5.1] we discuss the ethical implications of the development of
coexisting agents.
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Guidelines:

The answer NA means that there is no societal impact of the work performed.

If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not provide any novel assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not present any research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not present any research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1385 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1386 may be required for any human subjects research. If you obtained IRB approval, you
1387 should clearly state this in the paper.

1388 * We recognize that the procedures for this may vary significantly between institutions
1389 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1390 guidelines for their institution.

1391 * For initial submissions, do not include any information that would break anonymity (if
1392 applicable), such as the institution conducting the review.

1393 16. Declaration of LLLM usage

1394 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1395 non-standard component of the core methods in this research? Note that if the LLM is used
1396 only for writing, editing, or formatting purposes and does not impact the core methodology,
1397 scientific rigorousness, or originality of the research, declaration is not required.

1398 Answer: [NA]

1399 Justification: We do not use LLMs in this paper as a core method of our research.

1400 Guidelines:

1401 * The answer NA means that the core method development in this research does not
1402 involve LLMs as any important, original, or non-standard components.

1403 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1404 for what should or should not be described.
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