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Abstract

This position paper introduces the concept of coexistence for embodied artificial1

agents and argues that it is a prerequisite for long-term, in-the-wild interaction2

with humans. Contemporary embodied artificial agents excel in static, predefined3

tasks but fall short in dynamic and long-term interactions with humans. On the4

other hand, humans can adapt and evolve continuously, exploiting the situated5

knowledge embedded in their environment and other agents, thus contributing6

to meaningful interactions. We take an interdisciplinary approach at different7

levels of organization, drawing from biology and design theory, to understand8

how human and non-human organisms foster entities that coexist within their9

specific environments. Finally, we propose key research directions for the artificial10

intelligence community to develop coexisting embodied agents, focusing on the11

principles, hardware and learning methods responsible for shaping them.12

1 Introduction13

Contemporary artificial intelligence (AI) systems have shown remarkable performance across diverse14

tasks such as the high-quality generation of data (image, text, video) [54, 2, 92], the creation of15

interactive world models [21, 4], and outperforming humans in complex decision-making tasks [127,16

143, 140]. Fundamentally, three ingredients have been mostly responsible for this recent surge in17

performance: the creation of large-scale models [141, 32], the curation (or creation) of internet-scale18

datasets [123, 53] and a computationally-intensive offline training process [114, 157, 20]. This recipe19

has also been replicated for real-world robotic systems, resulting in the creation of large-scale datasets20

of expert-level interaction data in the real-world [106] and in simulation environments [145]. This21

approach has led to progresses in learning generalist robotic policies, able to perform a wide variety22

of manipulation and navigation tasks [14, 156].23

As a community, we now envision concrete use cases of embodied artificial agents1 for human24

interaction2. Despite their remarkable progress in controlled environments [18], embodied agents25

still struggle to gain a foothold in-the-wild scenarios [6]. Rodney Brooks’ famous quip, “The world26

is its own best model” [110] is often used to encapsulate the problem of conceiving and deploying27

embodied artificial agents in the real-world [12]. However, we highlight that this challenge does28

not only emerge from the complex and dynamic nature of the real-world; it also stems from the29

constant tendency of viewing the real-world as an optimization problem [128]. Interaction in-the-wild,30

instead, is co-constructed with the humans in-the-wild [42], which is at odds with the dominant31

problematize-solve-optimize-deploy workflow of the contemporary AI community [59].32

1We follow Paolo et al. [107] that defines embodied artificial agents as “agents that interact with their physical
environment, emphasizing sensorimotor coupling and situated intelligence”. Throughout this paper, we use the
terms agent, embodied agent, and embodied artificial agent interchangeably for simplicity.

2In Appendix A we discuss the scope of interaction in the context of embodied agents.
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We argue that the current approach to agent design is unsuitable for long-term, in-the-wild33

interaction with humans. In Section 2, we discuss why current embodied artificial agents are unable34

to cope with the strong dynamic nature of human interaction and the agents’ inability to participate35

in its ongoing evolution. We emphasize the need for a new paradigm for coexisting embodied36

agents: mutable systems capable of continuously leveraging situated knowledge of both the user and37

the environment, highlighted in Figure 1, to establish meaningful and reciprocal interactions with the38

elements of its system. In Section 3, we formally define coexistence and its properties (situatedness39

and mutability) in the context of embodied artificial agents.40

Our formal definition is complemented by a more practical approach for such agents to coexist in-41

the-wild. In Section 4, we take an interdisciplinary perspective to understand how human and42

non-human organisms foster entities that coexist within their specific environments. Therefore,43

we look to evolutionary biology and design theory, two fields that are epistemically grounded in the44

real-world 3. There we highlight how biological organisms leverage properties of the real-world to45

take form during development (converge), and evolve in times of environmental changes (diverge).46

Similarly, we highlight how the double diamond design process (depicted in Figure 2a) has been an47

indispensable tool that has allowed designers and engineers to physically explore (diverge) and refine48

(converge) creative solutions. This section is not a call for the underlying systems of artificial agents49

to more closely resemble those of biological ones (for example, as in Darlow et al. [30]). Rather, to50

acknowledge the dynamic and interconnected nature of biological systems, as well as the existing51

methodologies in design theory that are adept with handling similar complexities. Taken together,52

they provide direction on building autonomous agents and our relationships with them.53

In Section 5, we highlight six key research directions for the AI community to develop coexisting54

agents. We focus on the learning methods that enable coexistence, the hardware that sustains it,55

and the principles responsible for shaping it. Additionally, we discuss the ethical considerations in56

designing embodied agents that coexist with humans and play a role in shaping the future of human57

interactions. Finally, in Section 6 we contrast coexistence with alternative (predominant) viewpoints58

on embodied artificial agents. We see our work as a bridge, enabling the AI community to actively59

engage with the design research community in forging a path toward coexisting embodied agents.60

2 Current Embodied Agents Exist61

Recent advancements in perception, learning and hardware systems have enabled embodied agents62

to successfully perform complex actions in unstructured environments [54, 2, 92]. We praise63

these advancements and believe that the current paradigm, based on multimodal foundation models64

for perception, reasoning and interaction, will be sufficient for these agents to exist with humans65

and within their environments. However, we argue that the disregard of the issues pertaining to66

current embodied agents can have technical and cultural repercussions when employed widely in our67

societies. In particular, we focus on two fundamental properties of these agents: their stagnant nature,68

a consequence of having their abilities fixed at a specific moment in time, and their generic nature,69

due to their instantiation based solely on large amounts of pre-collected data. As current embodied70

agents are stagnant and generic, their widespread adoption risks conditioning the evolution of their71

interactions towards overly homogeneous ones, a phenomenon we denote by steamrolling.72

2.1 Current Embodied Agents are Stagnant73

Currently, we implicitly assume that there exists a predefined underlying data distribution, from74

which we can extract representative examples, to train and evaluate the behavior of embodied agents:75

for example, over the sentences people use when feeling happy, or over the possible socially accepted76

distances from humans while navigating a crowded room. Furthermore, it is assumed that this data77

distribution is static in time. As such, most of the knowledge acquisition and behavior exploration by78

the agent happens before it is deployed in a specific environment4. This inability to deal with changes79

in their own knowledge and their environment leads to their stagnant nature.80

3Our position builds on past parallels between computers and biological processes [147, 19, 26].
4Recent approaches for training embodied agents additionally use fine-tuning to adapt the pretrained behavior

of the agent to a specific task. We note that the fine-tuning data distribution is also itself predefined and static.
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Figure 1: Embodied artificial agents must coexist. Current agents exist in the real-world, leveraging
knowledge obtained from large-scale datasets and specific expert-level datasets to interact. We argue
that embodied artificial agents must not only adapt to scenarios such as the ones pictured above but
participate in their continual evolution. To do so, they must coexist, establishing meaningful and
reciprocal relationships with the user and its particular environment by leveraging their diverse and
situated knowledge.

Humans will adapt and change their behavior according to the environment they are situated in,81

but also participate in its shaping [33]. A classic example can be found in medical record cards in82

hospital beds: Nygren and Henriksson [103] found that the physical properties of the card (e.g., the83

handwriting, wear, tear, other marks) were contributing to the physician’s decisions pertaining to both84

the patient and the activities surrounding their care. The hospital’s culture and workflows are not85

converging to a “fixed” version, rather, they are perpetually evolving as the people, the environment86

and their interactions change. This is not only happening on a high functioning level: Vergunst87

and Ingold [142] show that even lower level motor skills, such as the way humans walk, are highly88

socialized and both culturally and contextually dependent. Therefore, a stagnant agent placed in89

this system would not be able to participate in this mutual shaping, as its behavior is a function of90

knowledge from a fixed point in time, which can be outdated at deployment time. Even a well-adapted91

agent at deployment will drift from the culture as the system evolves.92

2.2 Current Embodied Agents are Generic93

Recent advances in machine learning have enabled the extraction of general rules (e.g., grammar94

and social norms) from large-scale data to bootstrap the behavior of embodied agents [132, 154].95

While learning general rules is valuable, we emphasize the crucial distinction between being generic96

and being general. General knowledge captures fundamental principles that apply broadly across a97

wide range of cases, enabling generalization, a desirable feature in both autonomous systems and98

humans 5. In contrast, generic knowledge is applied across many situations without accounting99

for their specific nuances or contextual diversity. By learning generic information from large-scale100

datasets, agents reinforce (potentially harmful) biases that exist on such data [109]: for example,101

image generation models produce images of white men for the prompt “a software engineer” and102

women with darker skin tone for the prompt “a housekeeper” [13]. Current embodied agents, which103

often employ such models for interaction purposes, also rely on generic knowledge[7]. Exploiting104

only generic knowledge is also inefficient. For example, compare a highly controlled space such as105

a factory, where workbenches and machines are specifically configured, to a home or office space.106

Each instance of a home or office is unique and contains situated knowledge that is specific to its107

configuration and the humans in it [33]. An agent that relies solely on generic knowledge, is at a108

clear disadvantage against an agent that also exploits situated knowledge and, just as importantly,109

contributes to the ongoing exploration and exploitation of culture and workflow in the space [46].110

2.3 Current Embodied Agents Will Steamroll111

When a stagnant and generic agent is placed in a dynamic environment, either the agent will become112

obsolete and removed from the system over time 6, or the humans will adapt to it. Therefore, in the113

latter case, human cultures and workflows will start to converge towards those dictated by the agent,114

5In Appendix A we discuss the challenges of generalization for current embodied agents.
6See Appendix D for the case of the novelty effect in the current deployment of social robots.
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limiting the exploration and discovery of novelty [135]. We denote this phenomenon as steamrolling.115

Whilst the current prevalence of artificial embodied agents in everyday settings limits the empirical116

evidence to support steamrolling, we point to convergent effects in similar socio-technical spaces that117

foreshadow steamrolling. Geng and Trotta [44] estimates that 35% of all scientific paper abstracts118

in computer science are now written in “LLM-style”. Székely et al. [133] argue that such a style is119

spreading from text interactions to more embodied interactions such as speech. Meincke et al. [94]120

have shown that in brainstorming sessions, despite having a positive impact on individual creativity,121

the pool of LLM-assisted responses exhibits lower diversity. They argue that effective brainstorming122

is undermined by the collective use of LLM-tools because instead of creating diverse ideas, similar123

thoughts were repeated by multiple participants. In the context of embodied artificial agents, we124

expect steamrolling to inhibit divergent behavior, in favor of reinforcing already existing behavior125

of both human and agents. We argue that steamrolling will also affect the future capabilities of the126

agents we develop: a model trained on a progressively narrower distribution (such as data curated127

from its own outputs) suffers from rapid degradation in the quality of its generated output [126].128

3 Future Embodied Agents Must Coexist129

Long-term interactions between humans and embodied artificial agents have been extensively studied130

by the robotics community [85, 31, 79], focusing on specific properties of the interaction such as131

acceptance [31], engagement [115, 84] and disclosure [98, 89]. Here we take a holistic view of the132

long-term interactions of embodied agents within a system and provide a general-purpose, formal133

definition of coexistence7.134

Definition: An embodied artificial agent is coexisting in a system if it sustains meaningful and
reciprocal interactions with humans and their environment over time.

135

Consider a system S = {A,H,E} consisting of an embodied agent At present in a specific envi-136

ronment Et alongside a human user Ht, at a given time t. There exists a quality function QO(t)137

that overall describes the system and its evolution, measured from the point of view of an observer138

O ∈ S. The quality function is influenced by the interactions between the agent, the user and the139

environment8. We note that the goal of the agent does not necessarily align with this quality function140

as it may be independent of its intended task (e.g., a household robot assisting with chores may141

perform its tasks efficiently but disrupt the human’s workflow and create frustration).142

We can define two categories of interactions within this system. A unilateral interaction Xt → Yt143

occurs if the state of element Y of the system at the next time step (t+ 1) is influenced by element144

X , while the next state of X remains independent of Y ,145

Yt+1 = fY (Yt, Xt, yt, xt), Xt+1 = fX(Xt, xt), (1)
where fX , fY are unknown and dynamic transition functions, and xt, yt are the actions of X and Y146

at time t. Similarly a reciprocal interaction Xt ↔ Yt occurs if the next state of both elements are147

mutually influenced,148

Yt+1 = fY (Yt, Xt, yt, xt), Xt+1 = fX(Xt, Yt, xt, yt). (2)

Interactions influence the long-term quality of the system, which can be measured after a (system-149

dependent) time horizon threshold TS . We define a meaningful interaction as one that, given sufficient150

time (i.e., in the long-term), does not decrease the overall quality of the system, as evaluated by all151

elements of the interaction, compared to the absence of such interaction. Formally,152

∃TS > t,∀t′ > TS ,∀O ∈ {X,Y } : QO(t
′ | Xt → Yt) ≥ QO(t

′ | ∅), (3)

where ∅ denotes no interaction and the conditional quality function QO(t
′ | Xt) indicates the value153

of the quality function at t′ given that process X occurred at t < t′. A coexisting agent A∗ is154

then defined as an agent able to maintain reciprocal and meaningful interactions in the long-term.155

Intuitively, this means that, in the long run, the agent benefits the system more than its removal would,156

∃TS > t,∀t′ > TS ,∀O ∈ {A∗, H} : (4)

QO

(
t′ | A∗

t ↔ (Ht, Et), Ht ↔ Et

)
≥ QO

(
t′ | Ht ↔ Et

)
.

7In Appendix B we present additional considerations and limitations of our definition of coexistence.
8In Appendix C we discuss in depth how to potentially instantiate and measure the quality of the system.
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3.1 Properties of Coexisting Embodied Agents157

Situatedness A coexisting agent A∗ should actively leverage the fact that it is situated within158

a specific environment and exploit the unique situated knowledge embedded in the user and their159

environment, rather than relying solely on pretrained knowledge. This capability reflects the agent’s160

speciation to its particular system. Formally, this can be expressed as:161

∃TS > t,∀t′ > TS , ∀O ∈ {A∗, H},∀O′ ∈ {A∗, H ′} : (5)

QO

(
t′ | A∗

t ↔ (Ht, Et)
)
≥ Q′

O′

(
t′ | A∗

t ↔ (H ′
t, E

′
t)
)
,

where we define a distinct system S′ = {A∗, E′, H ′} with its own specific quality function Q′
O′(t),162

but involving the same agent. Note that, contrary to the generic nature of current embodied agents,163

we argue that the behavior of coexisting agents should improve the quality of their specific system,164

even if the same behavior would result in a overall quality decrease in other distinct systems.165

Mutability A coexisting agent A∗ should be capable of continuously adapting its behavior while166

also influencing the behavior of other elements within the system. Formally, this adaptability relates167

to the concept of reciprocal interactions:168

∃TS > t,∀t′ > TS ,∀O ∈ {A∗, H} : (6)

QO

(
t′ | (Ht, Et) ↔ A∗

t

)
> QO

(
t′ | (H ′

t, E
′
t) → A∗

t

)
.

This condition implies that coexisting agents and humans should be able to mutually shape each other169

in ways that enhance the overall quality of the system. In contrast, the stagnant nature of current170

embodied systems often requires a unidirectional training of the human user.171

Importantly, changes in the agent’s behavior do not always lead to an immediate improvement in172

system quality and may sometimes have the opposite effect. As discussed in Section 4, coexisting173

agents must be capable of generating divergent behavior even within a closed system. This ability is174

crucial for the long-term success of the system as it enables the exploration of alternative solutions,175

not only in the agent’s behavior but also in how its behavior impacts the other elements of the system.176

4 Coexistence Elsewhere177

Beyond the formalism of coexistence, the question remains of how to instantiate embodied agents178

with the ability to coexist in the real-world9. To address this challenge, we take an interdisciplinary179

approach to understand how humans and non-human organisms foster entities that coexist at different180

levels of organization: from the processes of biology to the methods of design theory. We explore181

research in these fields that highlight the value of mutability and situatedness in fostering coexistence.182

4.1 Coexistence in Biology183

Biological systems offer a unique perspective on coexistence, showing how living organisms evolve,184

adapt, and sustain themselves in their own environments. Unlike current embodied agents, which185

assume that all necessary knowledge can be extracted from data and encoded, biology balances186

encoded information with meaningful interactions with the physical world to shape adaptation,187

survival and purpose. In this section, we present examples from genetics and developmental biology188

that explore how biology navigates this balance.189

Not everything is in the genome Underlying the majority of machine learning models is the190

assumption that all necessary knowledge to act/decide optimally can be extracted from data and191

subsequently exploited. However, biology provides a perspective shift in regards to the nature and192

role of data in the evolution of agents. To illustrate how encoded information is only one part of193

what shapes biological organisms, we turn to the Human Genome Project [27]. When this project194

successfully sequenced the entire human genome it was widely believed that the genome could define195

what humans are, an “instruction book for life”. However as Ball [9] explains, the project instead196

marked the beginning of a paradigm shift in biology that de-throned the genome as an encrypted197

9In Appendix D, we examine if current agents already coexist, providing examples on why they fall short.

5



source of life’s secrets. Instead it was shown that an organism is not only defined by the genome but198

also by principles of self-organization that are enacted by being situated in the physical world [9].199

A striking example of this new reality can be seen in developmental biology, where the number,200

thickness, and size of a rodent’s digits were not found to be encoded in the genome. Instead, a timing201

of particular proteins (namely BMP, SOX9 and WNT) that disperse in physical space determines the202

number of digits and the space between them. Raspopovic et al. [116] discovered that they could203

manipulate the activity of these proteins and could thus influence the number of digits formed and204

their thickness. This example shows how the characteristics of the physical world play a role in205

defining information and intelligence, providing an extremely efficient way of acting in the world [9].206

Biology is not an optimizer Leveraging the physical world is not only about converging on207

optimally efficient solutions but also about diverging from locally competitive landscapes. It is a208

common misconception that biology is an optimizer. As Stanley and Lehman [128] write: “Early209

evolutionists believed, and indeed many non-experts still believe, that evolution is progressive, moving210

towards some sort of objective perfection, a kind of search for the über organism”. In fact, “most211

evolutionary changes at the molecular level [DNA] are caused not by Darwinian selection but by212

random genetic drift of mutated genes that are selectively neutral” [149].213

As an example, consider the protein HSP90, where HSP denotes for “heat shock protein”. HSP90214

was discovered to have a kind of plasticity modulation effect on the body plans of the common fruit215

fly. In warmer conditions, this protein enables more variation in the morphology of the fruit flies, in216

places such as its abdomen, bristles, eyes, legs, thorax and wings [120]. In addition, these traits were217

able to be passed down immediately to the next generation [149]. It is argued that processes like218

the ones observed here played a large part in periods of intense diversification in living organisms219

during the Cambrian explosion [9]. This alludes to the idea that evolution, whilst highly divergent, is220

both bound and liberated by the laws of nature: by using existing building blocks in creative ways,221

it is able to keep a tension between convergence and divergence [45], conditioning and stimulating222

exploration and exploitation of novel solutions within its own laws.223

4.2 Coexistence in Design224

We have seen how biological organisms exploit being situated in the world to balance convergence225

and divergence in order to foster coexistence in their physical setting. However, how a human could226

instantiate a similar process, with their plans, goals, morals, and aesthetics is still unclear. The227

answer lies in the divergent and convergent processes of design which cause an individual to engage228

reciprocally with technology and its environment, as highlighted in Figure 2.229

The double diamond The design process often converges to a design outcome, due to performance230

specifications [29], or intended functions or styles [119]. In order to deliver an outcome, methods and231

heuristics exist within each design discipline [136, 29]. But beneath these formalizations lies a practice232

that is tacit and with an improvisational dimension. This dimension is not only a function of expert233

knowledge from formal education (industrial, mechanical, electrical, graphical, architectural, etc.),234

but a craft-like knowledge of their materials, and a situated understanding of how to use them, built up235

over years of experience [124]. This process is popularly characterized by the UK Design Council’s236

double diamond [125], highlighted in Figure 2a. Initially when a designer receives a specification,237

they begin to explore divergently how to think about the problem: this involves reasoning about the238

materials, context, people, social structures, and policy context of the request [136]. Subsequently,239

they begin to converge on a more concrete definition of the problem and present it to the stakeholders240

involved. At this moment, all stakeholders diverge again, exploring various designs without limits as241

they explore the potential solution space. Finally, the designer converges on a solution, synthesizing242

all that they have learned to present a design that is on time, budget, and to specification. The double243

diamond merges a designer’s expertise with their situated knowledge and experience.244

The outcome-centered perspective inherent in the double diamond brings with it the notion that245

a design should be finished and then deployed in its “finished state” [137, 117]. Here we find an246

interesting bridge to current embodied artificial agents: they too pass through a phase of training247

and are only subsequently deployed when they have reached a pre-defined threshold of performance.248

In interaction design, this perspective limits a finished design to its intended function. Despite the249

efforts of human factors, user-centered design and participatory design methods [125], ethnographic250
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Figure 2: The evolution of coexisting embodied agents: a) The double diamond process, with its
distinct problem/solution-focused beginning and end; b) Removing the head and tail off the double
diamond reveals a continuous and reflective engagement with technology as demonstrated by the
field of research through design; c) Revisiting Figure 1, by involving end-users as design researchers,
they are encouraged to draw from their experience to integrate technology into existing contexts and
to actively shape and explore new ones.

studies often reveal the user to be constantly spending time and creative energy to configure these251

finished designs and their intended functions into their own lives [33, 129, 36, 102]. This has lead to252

the increasingly blurred line between what constitutes a designer and a user of technology [117].253

Research through design (the continuous double diamond) The field of human-computer in-254

teraction (HCI) has seen in the last two decades the rise of research through design (RtD) [69, 43]255

which supports the notion that design is never finished. It is commonly framed as “an active process256

of ideating, iterating, and critiquing potential solutions, design researchers continually reframe the257

problem as they attempt to make the right thing” [160]. RtD can be understood as a continuous258

double diamond (see Figure 2b), with its tail (problem) and head (solution) lopped off. The design259

process then becomes reflective: where the morals, lived experience, and aesthetic preferences of the260

designer10 can inform their professional training [76], leading to completely new (divergent) ways of261

interacting with technology [11], or familiar (convergent) twists on existing ones [104]. This kind of262

continuous design has been termed “drifting” by Krogh et al. [72] and bears a striking, functional263

resemblance the genetic drift discussed in Section 4.1.264

4.3 From Elsewhere to Embodied Agents265

By exploring coexistence in biology, we have shown that living organisms leverage the physical world266

to offload the need for encoding all necessary information for survival and action, while also enabling267

diverse and adaptable behaviors. By exploring coexistence in design, we have highlighted RtD as268

a promising approach to balance convergence and divergence in the interaction between humans269

and technology. A common thread between these explorations is the notion of drifting, a process270

that allows systems at different levels of organization (from microorganisms to human designers) to271

cope with changing objectives (mutability) across different environments (situatedness) over time.272

In the next section we extend these ideas to embodied agents: leveraging the situated knowledge in273

the environment and in the human user enables embodied agents to successfully change, evolve and274

interact in a meaningful way within their specific environments.275

5 Towards Coexisting Embodied Agents276

We have seen how both human and non-human organisms evolve and coexist within their own277

environments. What can the AI community learn from these processes? This section outlines six278

key research directions toward fostering coexistence and developing coexisting agents, focusing279

on the principles that shape coexistence (1, 2), the hardware that supports it (3, 4) and the methods280

that enable it (5, 6). Finally, we address ethical considerations of coexistence.281

1) Foster coexistence by embracing open-endedness Hughes et al. [58] argues for open-endedness282

to design continuously evolving agents, defining it as a property of systems that produce novel283

10As a “first person method” [91] RtD can trace its theoretical foundations to the theories of embodiment [81].
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and learnable artifacts from the perspective of an observer. We propose that open-endedness is an284

essential principle for the design of coexisting agents. They should be able to continuously evolve285

with their environment, changing with it and contributing to its change. This means that both the286

agent as well as its objectives are non-static, creating the need for open-endedness. We agree that287

open-endedness is essential to achieve coexisting agents, and highlight the shared importance of the288

observer’s perspective between open-endedness and RtD. We see the role of the observer as a driver289

of continuous change and exploration, not just a creative optimizer for a given task.290

2) Foster coexistence by embracing the user as the designer Often the user is seen as someone291

who should not have to deal with the complexities that arise from interacting with technology [102].292

In RtD, this perspective is rejected in favor of seeing the user as someone who has situated knowledge,293

or is a connoisseur of their situation [160, 91]. Situated knowledge includes tacit, institutional, craft294

or social knowledge, and can help mediate an agent’s purpose or behavior in an environment. We295

argue that this perspective is essential to coexistence and should guide the development of embodied296

agents. In Appendix F we provide some examples that demonstrate the potential of this principle.297

3) Foster coexistence in the space around the agent Consider an agent using an inside-out298

navigation system, (e.g., SLAM [35]) which is inherently prone to drift. If an outside-in navigation299

system is instead used (where the agent navigates relative to a set of beacons), the agent can be300

designed such that the situated human can configure the placement of the beacons. Whilst this sounds301

like a poorly designed system that requires constant maintenance11 research on AI education has302

favored this more active and experiential approach, as it fosters a kind of tacit understanding of the303

capabilities and limitations of the system [41, 150, 63]. The situated knowledge gained from this304

approach can help users coexist with agents in a specific environment.305

4) Foster coexistence within the morphology of the agent Evolutionary robotics has demonstrated306

that by changing the morphology of an artificial agent, you change their capabilities and limitations307

[110]. Additionally, advancements in manufacturing technology are rapidly expanding the potential308

forms an agent could take [70]. This concept has been explored in the context of human-drone309

interaction. La Delfa et al. [77] gave users a drone that could initially only hover in place. By moving310

with the drone, the users were able to selectively expand its perceptive field. As the field grew in size,311

unique patterns of interaction emerged based on its the shape and size. The mutability of the drone’s312

sensory field allowed for a meaningful relationship to evolve.313

5) Foster coexistence by using foundation models as external components Recent methods have314

used foundation models or composite systems that incorporate foundation models to generate agent315

behavior [18]. While using these models directly as policies is not sufficient for coexisting agents,316

foundation models still have valuable properties that can be leveraged (even if these are currently317

prone to hallucinations [88, 159]): they can act as an external storage of generic knowledge that an318

agent could query for bootstrapping purposes without replacing situated knowledge. This external319

knowledge base could help decrease the memory and computation requirements to build embodied320

agents [40]. Additionally, foundation models could serve as external teachers to agents to bootstrap321

their performance [151] and guide exploration [74] without replacing situated exploration. While we322

understand these models can also be used for multimodal perception and reasoning, we highlight the323

risk of embedding such internal components of embodied agents with generic and stagnant knowledge324

and encourage researchers to consider using the real-world as “its own best model”[110].325

6) Foster coexistence by learning and evolving with humans as we go In their current form,326

even common learning approaches designed to overcome the assumption of a static optimization327

problem (e.g., online reinforcement learning, meta-learning, and continual learning) are insufficient328

to foster coexistence12. To enable mutability and speciation, instead, we advocate for human-in-the-329

loop learning with evolutionary algorithms [86, 22]. Evolutionary algorithms [8, 87] can maintain330

diverse candidate solutions throughout the (continuous) learning process, allowing agents to execute331

multimodal behavior, both divergent and convergent [97]. When combined with interactive learning332

paradigms [155, 96], such as by using preferences or demonstrations, these evolutionary processes333

11As a comparison, we would like to highlight the resources required to create and curate large-scale datasets.
12For an extended argument on why this is the case we refer the reader to Appendix E
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can also be progressively shaped through meaningful interactions with the human, allowing the agent334

to deal with evolving goals and expectations.335

5.1 Should We Foster Coexistence?336

Coexistence gives users the ability to shape and be shaped by embodied agents, carrying the inherent337

risk of manipulation of the agent’s behavior by malicious users [100] and vice versa. However, when338

users are given the responsibility to shape the agents in their environment, we enable them to do so339

in their own particular way, resulting in a heterogeneous population of bespoke agents. In contrast,340

Székely et al. [133] and Bongard [15] warn of the risks of malicious manipulation of human users341

using homogeneous artificial intelligence agents at internet-scale. We still highlight the importance342

of developing agents that have the ability to recognize harmful behavior and respond in a manner that343

upholds safety, fairness, and accountability.344

The heterogeneity inherent to coexistence, requires a continuous effort and can be a slower process345

compared to unidirectional alignment. It also involves high level of ambiguity (e.g., the exploration of346

a solution space without a set objective) and an active, reflective engagement on behalf of the end-user347

(e.g., the evaluation of said exploration). Similarly, local and diverse AI collectives have been shown348

to exhibit strong innovative capabilities and pro-social behavior [80]. Still, they should not be treated349

as the same kind of relationships: we highlight the need for ethical and legal frameworks that elevate350

human well-being and safety above that of artificial agents.351

6 Alternative Views to Coexistence352

AGI/ASI vs. coexistence While coexistence is a goal and property in itself, other positions argue353

for different goals and capabilities of long-term interactive artificial agents within our societies. Paolo354

et al. [108] argue in favor of attempting to achieve artificial general intelligence (AGI), describing355

the goal as “creat[ing] intelligence that either parallels or exceeds human abilities”. They state that356

embodiment and situated intelligence are essential conditions for achieving AGI. Similarly, Hughes357

et al. [58], argue in favor of artificial superhuman intelligence (ASI) and propose open-endedness358

as a prerequisite to ASI. Whilst we share an understanding of the importance of embodiment and359

open-endedness, neither position requires mutual co-shaping for the widespread use of artificial360

agents in human society. Despite its risks [99, 93], AGI and ASI proponents point to the accelerated361

progress and benefit for humanity driven by a single superior intelligence. Instead, we believe that362

through the increase in diversity, coexistence aims for something more beneficial and robust: we363

place meaningful and reciprocal interactions with humans at the center of our proposal.364

Unilateral alignment vs. coexistence Yang et al. [152] state that “unified alignment between365

agents, humans and their environment” is key to the success of agents in real-world applications. They366

propose that agents not only align with human users, but also with the environment and the agent’s367

own constraints. Furthermore, they highlight the difficulty of discovering human intentions due to368

partial observability, temporality and stochasticity. Although they discuss the need for agents that can369

align with evolving preferences, a process they denote as continual alignment, they still assume that370

preferences are something that is known by the human a priori. They write: “the tasks assigned by371

humans can be viewed as the initial inputs to the working system (especially to the agents), which372

reflects the underlying goals and human intentions”. We instead believe that the human’s goals are373

formed through interacting with the agent.374

7 Conclusion375

In this paper, we have argued that the current paradigm for designing embodied artificial agents is376

fundamentally ill-suited for long-term, in-the-wild human interaction. We proposed coexistence as a377

new paradigm for the design of embodied agents that emphasizes meaningful, reciprocal interactions378

sustained over time. Drawing from biology and design, we showed how human and non-human379

organisms leverage the physical world in convergent and divergent ways. We outlined key research380

directions for coexisting agents, emphasizing open-ended, human-in-the-loop learning and the user’s381

role in shaping both behavior and morphology. We envision a future where artificial agents do not382

just exist but coexist, actively shaping and adapting with humans and their environments.383
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Figure 3: Fink et al. [38] and Sung et al. [130] highlight the various ways users modify their behaviors
and living spaces to integrate autonomous robot vacuum cleaners into daily life.

A Additional Notes on Coexistence800

Interaction with humans in coexistence When discussing coexistence, one might ask about801

embodied agents that are not directly interacting with humans. Does coexistence apply to them as802

well? Why would an embodied agent that has no relationship with humans have to be designed803

with interaction in mind? We take the perspective that embodied agents that were made by humans804

are interacting with humans, even in cases where such interaction is not evident at first glance.805

Supporting our perspective is Frauenberger’s [42] seminal review article on the shifting theoretical806

foundations of the field of human-computer interaction. Frauenberger [42] states that there are no807

clear boundaries that separate humans from technology. Instead, the purpose of a technology (e.g.,808

an embodied agent such as a robot) is constituted by not only its physical self but its environment809

and the surrounding human and non-human agents. Therefore, the vast network of interconnected810

technologies that support our every day lives are said to be entangled, and expands the notion of811

interaction beyond dyadic “turn taking”.812

Take for example, an autonomous robot vacuum cleaner: from an earlier interaction perspective,813

its sole purpose is to clean up after humans. From an entanglement perspective, however, a robot814

vacuum cleaner is not seen as a simple tool for cleaning, but has an effect that goes beyond that of its815

original purpose. This is demonstrated by Sung et al.’s [130] field work with robot vacuum cleaners.816

Their work frequently revealed users cooperating with the robot by preparing the space before it817

was cleaned, modifying their environment to facilitate easy navigation and even socially interacting818

with it, as highlighted in Figure 3. Therefore, despite most of the robot’s actions taking place in the819

absence of any human, the effect of these actions impacts other objects in the home (e.g., moving820

furniture, routing cables), human practices (e.g., the habit of tidying before the robot begins its821

operation) and the environment itself (e.g., the installation of threshold ramps in doorways). However,822

we note that the effects visible in Sung et al. [130] do not, by themselves, constitute coexistence, but823

only entanglement. For example, the subsequent in-the-wild study on robot vacuum cleaners by Fink824

et al. [38] draws attention to several cases of users unable to adapt to the robot, as their existing825

environment and practices were not amenable to the inflexible design of the robot. This highlights826

how, by designing robot vacuum cleaners with a fixed and narrow purpose (i.e., cleaning after the827

human), we are inhibiting the continuous evolution of its role and effects, and, therefore, coexistence.828

We refer the reader to Appendix D, Social robots, for a complementary discussion that focuses more829

on the social aspects of everyday life with robots.830

Isn’t coexistence just optimization? With coexistence, we are proposing a form of learning and831

development that is not as strictly focused on optimization as current approaches. In classic machine832

learning, a task is defined by an objective function, which captures what the model/agent should833

do, and then fitting available data to that objective. The agent learns by optimizing towards this834

objective. In our position, we provide a different perspective on this practice. We broaden the focus835
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by paying attention to system-wide quality (motivated by contemporary views on what interaction836

is, see previous paragraph). In order to uphold this quality, it might occasionally be necessary to837

go against the objective function, or to acknowledge the fact that a static objective function for838

long-term interaction may not even exist. While classic machine learning approaches try to converge839

to a solution, we emphasize the necessity to convergence and diverge. Optimization has a place840

in coexistence, but it needs to be balanced with continuous exploration. Without it, the ability for841

humans and artificial agents to conceive novel objectives (read, to change and evolve as a society)842

will be severely distorted (see Section 2).843

Designing frameworks for coexistence Considering the design of frameworks that implement844

coexistence in practice, we aim to embrace a continuous process that balances divergence and845

convergence, inspired by biology and design. As we outline in Section 4.2, the process that produces846

the design itself (the continuous double diamond) will result in coexisting entities. Given the847

improvisational and situated nature of RtD, any kind of framework that implies a strict procedure848

would go against the value of coexistence. Guidance on these kinds of processes is given by Pfeifer849

et al. [111], who define design principles for Intelligent Systems, as well as Krogh et al. [73], who850

identify and analyze drifting as a property of continuous design processes. La Delfa [75, p.111]851

outlines how these process can be combined in the context of embodied artificial agents.852

The role of generalization in coexistence As discussed in Section 2.2, generalization – the ability853

to leverage general knowledge to act across similar scenarios – is a desirable feature for embodied854

agents. However, we would like to highlight the challenges and potential pitfalls of achieving855

generalization at the cost of employing generic knowledge. Consider once again, the example856

presented in Section 2.1: Nygren and Henriksson [103] found that the physical properties of medical857

cards of the patients (e.g., the handwriting, wear, tear, other marks) were contributing to the decision-858

making of the physician. Achieving such nuanced care and attention from embodied artificial agents859

through generalization would be unfeasible, as it would require the collection, and inclusion in the860

training procedure, of increasingly fine-grained physical and social cue data. A similar observation861

is made by [139], where the authors reveal that zero-shot generalization of concepts in multimodal862

models require an exponential increase in progressively more fine-grained data. One could argue, then,863

that we should instead focus on developing increasingly realistic simulators. However, such option864

also appears fundamentally unfeasible. Bharadhwaj [12] argues that “even the best simulators cannot865

match reality”, concluding that “scaling simulation frameworks is unlikely to directly help with these866

[manipulation] tasks as each of these would require separate nuanced considerations for faithful867

simulation”, hindering generalization. We highlight that the impossibility of collecting exponentially868

fine-grained data in the real-world to pretrain large-scale models, alongside the infeasibility of869

developing faithful simulators of the real-world, further motivates our argument to, instead, develop870

agents that are able to continuously leverage the physical and social cues present in their specific871

environment to achieve coexistence.872

B Additional Notes on the Definition of Coexistence873

Nature of QS and TS Like all the elements in the system, the operationalization and interpretation874

of the quality function QS is dynamic (meaning it changes over time) and specific to every system.875

In Appendix C we discuss some potential proxy metrics for the quality function. The same can be876

said of the time horizon TS : each particular system should have, even if implicitly, a specific time877

horizon to assess the evolution of the system itself.878

Assumptions of coexistence For simplification we have implicitly assumed that our system is879

closed, meaning that the quality of the interaction is only influenced by the elements within the880

system (environment, human and agent). We have also assumed that there is a single human user in881

the system. However, we can easily extend this to open systems and multiple users by considering the882

correspondent interaction terms with additional elements external to the system (e.g., external societal883

rules, other human and agent members of a team), without a significant change on the definition of884

coexistence.885

Formally, consider a system S = {A∗,H,A, E} where Ht represents the state at time t of the set886

of all the humans in the system and At the state of all additional agents in the system. Let Et be887
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the state of the set of external components to the system (e.g., external societal rules or observers888

imposed on the system). We still formally define a coexisting agent A∗ as,889

∃TS > t,∀t′ > TS ,∀O ∈ {A∗,H,A} :

QO (t′ | A∗
t ↔ (Ht,At, Et), Ht ↔ Et, Ht ↔ At, At ↔ Et) ≥ (7)

QO (t′ | Ht ↔ Et, Ht ↔ At, At ↔ Et) .

We would like to point out that, despite the fact that the system is open, and influenced by the890

interactions with E, these external components of the system are not observers of the quality function891

QO of the system. In practice, this means that their assessment of the overall quality of the system892

does not influence the quality of the system itself, as it is measured only by the elements that belong893

to the system. As an example, consider a companion robot interacting with a teenager (H). Parents894

(E) might disapprove of the informal language style used by the robot. However, their external895

assessment does not directly affect the quality of the system: instead, it is measured exclusively896

based on the perceptions and experiences of the teenager and the robot. In another instantiation of the897

system, one that encompasses both the teenager, the robot and the parents, the latter would naturally898

influence the quality of that system.899

The quality of a system is not monotonically increasing We do not expect the quality of the900

system to be monotonically increasing over time; in fact, we argue that it should not. Formally,901

there may exist time steps t1 < t2 such that QO(t2) < QO(t1), even in the case of meaningful and902

reciprocal interactions. The requirement for coexistence concerns the asymptotic behavior of the903

quality function over a system-dependent horizon t′ > TS .904

Credit assignment in coexistence A core challenge in evaluating coexistence lies in the credit905

assignment problem [112], i.e., determining which interactions are responsible for the changes in the906

overall quality of the system over time. This challenge is exacerbated by the fact that the effects of an907

interaction may not immediately be observable, as multiple overlapping interactions may contribute908

to a shared outcome. Adding to these challenges, the quality function itself is not stationary, due to909

the evolution of the human, agent and their environment.910

Assigning credit for the long-term impact of meaningful and reciprocal interactions remains an open911

research problem. Future work may explore the use of causal inference [95] or multi-agent reinforce-912

ment learning techniques [146] to better disentangle the contributions of individual interactions.913

C Measuring Coexistence914

One fundamental challenge of implementing coexistence for embodied agents is how to measure915

the quality function QS of a system. As briefly mentioned in Section 3, the human-robot/computer916

interaction community has proposed several (often complementary) self-reported metrics to evaluate917

the quality of an interaction. For example,918

• Trust reflects the human belief that the robot will behave reliably, safely, and as ex-919

pected [65]. In collaborative tasks, the performance and attributes of the agent strongly920

influence the user’s trust. Trust, in turn, correlates with better team performance and921

interaction outcomes [51].922

• Engagement reflects how involved, attentive and interested the human is during the interac-923

tion. It captures the degree of active participation in the interaction by the human user (e.g.,924

paying attention to the agent, responding to it, initiating the interaction) [105].925

• Likeability measures how pleasant, friendly, and likeable the agent is to the human user dur-926

ing the interaction. Likeability can emerge from the personality of the agent, its appearance927

or its behavior [121, 134, 28].928

• Social Presence relates to the feeling that the agent is a social entity present in the system,929

as opposed to being a passive machine or tool [24]. A strong sense of social presence usually930

indicates a more natural and engaging interaction, which can in turn increase trust and931

empathy towards the agent. Conversely, if the agent is seen as having zero social presence,932

the user might not engage socially or might not heed social cues from the agent.933
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• Acceptance measures how willing users are to interact with the agent and integrate it into934

their routines [37]. As such, it is an important proxy for the overall quality of the system, as935

it gauges the possibility of maintaining long-term interactions within the system.936

One fundamental issue with the measure of these self-reported metrics is the fact that they are937

traditionally uni-directional, i.e., from the perspective of the human. They are usually collected938

via questionnaires or interviews before and/or after an interaction, capturing the human’s personal939

experience, attitudes, and perceptions of the agent or the interaction. Moreover they are intrinsically940

task-dependent, as they either measure the quality of a specific interaction, or use the result of a given941

interaction to condition the human to predict the quality of future interactions.942

Besides self-reported metrics, researchers in human-robot and human-computer interaction often943

also rely on objective behavioral interaction metrics, i.e., what users do during the interaction. For944

example,945

• Eye gaze can reflect the engagement of the user in a given interaction: users that frequently946

make eye contact with the agent, or make prolonged eye contact often report a higher947

engagement [3, 115, 68]. Moreover, since eye contact is also a sign of social connection,948

some studies consider mutual gaze episodes (when both the agent and the human look at949

each other) as a metric of rapport [158], or as a factor influencing the decision-making of950

the human user [10].951

• Task fluency refers to how coordinated and seamless the joint actions of the human and952

the agent are in the context of a collaborative tasks [56, 55]. A fluent interaction with high953

concurrent activity (indicating teamwork) and low idle times often correlates with higher954

acceptance [5] and trust [101] in the agent.955

• Interaction duration can also be considered an important metric to assess the quality of an956

interaction, especially in long-term scenarios. The frequency of voluntary interactions with957

the agent can be considered an indicator of engagement and acceptance [62, 66].958

Several works have built upon these metrics to develop models that predict the user’s behavior959

during the interaction. Guo and Yang [50] and Chen et al. [23]) explore how to build data-driven960

models of the user’s trust for specific collaborative decision-making tasks. Similarly, Lee et al. [82]961

introduces a computational framework to model the engagement of the human user in a robotic962

storytelling task. We highlight that agents often do not have access to the internal state of the human963

and measuring precisely how a user may change as a result of an interaction can be intractable [48].964

Yet, predictive methods of human interaction metrics could, in principle, still be used as a proxy965

measurement. However, we carefully point out two limitations of these approaches: (i) they are still966

heavily task-dependent, limiting their usefulness for long-term, open interactions such as the ones967

enabled by coexistence; (ii) building static models of the behavior of the user, as currently done, will,968

once again, lead to the development of generic and stagnant agents, as detailed in Section 2.969

Rather, we join Kamino et al. [61] (see Appendix D, Social robots, for a discussion of this work) to970

encourage the AI and interaction communities to shift their emphasis from measuring coexistence971

to constructing coexistence. That is, defining the purpose of the artificial agent and refining its972

performance is meaningful and reciprocal in and of itself. In other words it is not the task-dependent973

metrics that ensure coexistence but the construction of them.974

D Are Current Embodied Agents Already Coexisting?975

Naturally, one might question whether current embodied agents are already coexisting with humans.976

In this section, we present examples and discussions on key challenges inhibiting current agents from977

being coexisting.978

Social robots A prominent example of embodied agents designed for human interaction are social979

robots [17, 85]. Companies like Jibo and Anki introduced social robots to the market with high980

expectations, only to face eventual failure [138]. A significant factor contributing to this is the981

challenge of sustaining long-term interactions by current embodied agents. Without the ability to982

change through interaction and become situated into their environment, social robots remain ill-suited983

for prolonged use. They often succumb to the novelty effect, where user engagement diminishes over984
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time as the robot’s initial appeal wears off [118]. The ethnographic field study on social robots by985

Kamino et al. [61] highlights a notable exception to this trend. Their empirical evidence suggest that986

meaningful, long-term interactions with embodied artificial agents has less to do with specific design987

features. Instead meaningful interactions arise from “interconnected moments of situated interaction,988

related emotional responses, and meaning-making among people as they interact with robots and each989

other at different levels of organization.” We see this exception as opportunity to design coexisting990

agents that respond to the broader social and environmental context that they are situated in.991

Bias-amplifying interaction Large language models have been widely integrated into the archi-992

tecture of embodied agents [148, 34].These models have now been broadly adopted by diverse user993

groups. While most AI systems influence human behavior, they themselves do not retain user-driven994

modifications beyond the immediate context window. This lack of adaptability is already problematic,995

as user-provided knowledge is not incorporated. Worse, studies have shown that interacting with996

slightly biased AI systems can amplify biases in users, an effect not observed in human-human997

interactions [47]. These systems not only fail to adapt through interaction, reinforcing a unilateral998

dynamic, but they also degrade overall system quality by increasing bias in users. As LLMs are999

increasingly integrated into interactive robots, these issues are likely to persist, if not worsen, through1000

prolonged human-robot interactions.1001

Please, just turn on the light In industrial settings, robotic failures require expert technicians to1002

debug classifiers, diagnose issues, and retrain models with additional data, such as images captured1003

under varied lighting conditions. Consider now, instead, a robot designed to tidy up homes and offices1004

by identifying, classifying, and sorting objects. Relying on expert interventions, similar to those in1005

industrial settings, is impractical for home-deployed robots. A more viable solution is for robots to1006

make use of humans’ situated knowledge within their environment. Humans understand their space1007

and might recognize how the specific lighting affects object classification. Instead of requiring an1008

expert to retrain the system, a robot could ask for help [64], prompting users to turn on the light1009

and even learning that doing so improves classification performance. By adapting through situated1010

interactions, the robot avoids repeated failures and reduces the need for costly expert intervention and1011

large-scale data collection. This behavior realistically adjusts the human’s expectations on the agent’s1012

capabilities and invites them to accommodate their limitations. Furthermore, we are argue that such1013

situated interactions not only improve performance but drive continual evolution and optimization.1014

E Limitations of Current Learning Algorithms for Coexistence1015

In this section we argue that, in their current form, standard learning approaches for building embodied1016

artificial agents, designed to overcome the assumption of a static optimization problem, are still1017

insufficient to foster coexistence.1018

Meta-learning is often proposed as a solution for adaptation to new tasks. A meta-learning agent1019

trains over a distribution of tasks so that it can quickly adapt to unseen task at test time [57].1020

However, instead of assuming a fixed task (as in an MDP), meta-learning assumes a fixed meta-1021

distribution of tasks, defined by the designer, from which both training and testing tasks are drawn [39].1022

Consequently, if the agent encounters a fundamentally novel task outside this distribution, it may not1023

be able to adapt, as it was never optimized for tasks beyond the anticipated variations.1024

Continual learning algorithms, instead, relax the fixed training assumption of the previous methods1025

by exposing agents to a sequence of tasks over time. Often, continual learning algorithms focus on1026

mitigating catastrophic forgetting and preserving performance across task sequences [144]. However,1027

similar to meta-learning, most continual learning setups still operate under relatively controlled forms1028

of novelty: they assume a sequence of tasks or data that, while possibly distinct, follows a predictable1029

format (for instance, new classes from the same data distribution [67]). The focus is on incremental1030

change, not the unknown unknowns [83] agents may face in the real-world.1031

Reinforcement learning (RL) is traditionally formulated through a Markov decision process (MDP),1032

where the state and action spaces, reward and transition functions are defined apriori by the de-1033

signer [131]. Additionally, the training and testing environment are often assumed to be the same.1034

The goal of the agent is therefore to maximize the total (discounted) reward accumulated while acting1035

on that particular environment. Other extensions, such as partially-observable MDPs to deal with1036

incomplete state information [60], multi-agent MDPs to deal with multiple agents acting in the same1037
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environment [49], domain randomization to deal with environments with different dynamics [25] or1038

observations [153], or robust MDPs to introduce safety guarantees in the behavior of the agent [90],1039

still leave the burden on the researcher to guess the possible perturbations the agent might face1040

in advance. This is often done by formalizing uncertainty in quantitative terms: assuming any1041

environment change can be modeled as some stochastic variation in rewards, transition probabilities,1042

or observation noise. However, these approaches are still unable to deal with structural novelty that1043

might lie outside the prior distribution of possible phenomena defined by the designer. Recently,1044

continual reinforcement learning methods, while still severely underexplored [113], have shown1045

some promise in allowing agents to carry out search processes indefinitely [1], producing behavior1046

in response to all past experience [16]. We believe that these approaches could also be used in the1047

future, complementing evolutionary techniques, to allow agents to explore convergent and divergent1048

behaviors.1049

For an extended argument on the limitations of these methods for coexistence, we refer the reader1050

to Lehman et al. [83].1051

F Potential Coexisting Technology Today1052

In this section, we highlight several examples of technology with properties that foster coexistence.1053

Mutable morphology and locomotion Figure 4 shows how the morphology of an agent can be1054

changed to recover from damage and to re-learn how to walk [71]. The agent learns how to walk1055

through periodically inflating and deflating its individual cells, exploiting its own physical shape.1056

Although this does not involve a human user, it demonstrates the value of mutable morphologies.1057

For example, we see great potential in mutable morphology to express various mannerism through1058

different gaits, especially in the context of Vergunst and Ingold’s work on the contextual nature1059

of walking [142]. Thus culminating in rich, heterogeneous populations of artificial agents at scale.1060

Figure 5 shows Yamaha’s “Motorid”, a shape changing, self-balancing motorcycle [52]. It has a1061

twisting chassis and autonomous driving abilities that influence how riding the motorbike feels in real1062

time. This dramatically changes motorcycling from its culture to its engineering principles. Whilst1063

not a child of the RtD method, but rather a concept bike, it balances divergent and convergent themes.1064

Blurring the definition of what is a bike and an autonomous agent.1065

Mutable perceptive fields in human-drone interaction Figure 6 shows a system that allows1066

humans to shape how a drone senses its environment. So whilst the human understood how to shape1067

the perceptive field of the drone, the behavioral outcomes of their actions were not. This enabled rich1068

explorations with the drone which lead to diverse and meaningful interactions [78].1069

Mutable interaction interface Figure 7 shows Bewley and Boer’s [11] “Blo-Nut”, a silicone1070

doughnut that affords the user a blank slate to interact with. The object inflates and deflates and can1071

be programmed to music. Its non-humanoid shape enables interactions to the human in ambiguous1072

ways, which Sandry [122] argues, is an opportunity to build effective communication between humans1073

and artificial agents.1074
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Figure 4: Self recovering locomoting voxels [71]: by virtue of an evolutionary algorithm, the agent is
relearning how to walk by changing the inflation patterns of its individual cells. Each change to the
physical body is likened to a divergent search for a new and unique locomotion gait. Whilst each
improvement in performance in this new body is a convergent search to optimize. Therefore, the
agent is able to explore and exploit to it physical environment by simply existing in it.

Figure 5: Yamaha’s “MOTOROiD” is a shape changing, self-balancing motorcycle [52]. Its unique
twisting chassis is able to affect the ride feel in real time as well as drive autonomously.
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Figure 6: “How to Train Your Drone” [78]: depicted here in orange, clear and blue are the sensory
fields of the drones. By interacting with the drone, its sensory field can be changed with human
intention. However the consequences of such changes are not always predictable. This work
demonstrates the potential of interacting with the sensing and acting capabilities of mutable agents.

Figure 7: “Blo-Nut” is a silicone doughnut that affords the user a blank slate to interact with [11].
The object inflates and deflates and can be programmed to music.
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asset is used.1356

• At submission time, remember to anonymize your assets (if applicable). You can either1357

create an anonymized URL or include an anonymized zip file.1358

14. Crowdsourcing and research with human subjects1359

Question: For crowdsourcing experiments and research with human subjects, does the paper1360

include the full text of instructions given to participants and screenshots, if applicable, as1361

well as details about compensation (if any)?1362

Answer: [NA]1363

Justification: We do not present any research with human subjects.1364

Guidelines:1365

• The answer NA means that the paper does not involve crowdsourcing nor research with1366

human subjects.1367

• Including this information in the supplemental material is fine, but if the main contribu-1368

tion of the paper involves human subjects, then as much detail as possible should be1369

included in the main paper.1370

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1371

or other labor should be paid at least the minimum wage in the country of the data1372

collector.1373

15. Institutional review board (IRB) approvals or equivalent for research with human1374

subjects1375

Question: Does the paper describe potential risks incurred by study participants, whether1376

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1377

approvals (or an equivalent approval/review based on the requirements of your country or1378

institution) were obtained?1379

Answer: [NA]1380

Justification: We do not present any research with human subjects.1381

Guidelines:1382

• The answer NA means that the paper does not involve crowdsourcing nor research with1383

human subjects.1384
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1385

may be required for any human subjects research. If you obtained IRB approval, you1386

should clearly state this in the paper.1387

• We recognize that the procedures for this may vary significantly between institutions1388

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1389

guidelines for their institution.1390

• For initial submissions, do not include any information that would break anonymity (if1391

applicable), such as the institution conducting the review.1392

16. Declaration of LLM usage1393

Question: Does the paper describe the usage of LLMs if it is an important, original, or1394

non-standard component of the core methods in this research? Note that if the LLM is used1395

only for writing, editing, or formatting purposes and does not impact the core methodology,1396

scientific rigorousness, or originality of the research, declaration is not required.1397

Answer: [NA]1398

Justification: We do not use LLMs in this paper as a core method of our research.1399

Guidelines:1400

• The answer NA means that the core method development in this research does not1401

involve LLMs as any important, original, or non-standard components.1402

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1403

for what should or should not be described.1404
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