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Abstract

Large reasoning models such as DeepSeek-R1 achieve strong performance on
complex reasoning tasks but their size and computational demand limit practical use.
Distilling their reasoning capabilities into smaller models via supervised fine-tuning
offers a way to democratize reasoning ability, but resource constraints demand
data-efficient training strategies. We propose a skill-centric distillation framework
with two components: (1) skill-based data selection, which preferentially samples
more examples for skills where the model shows lower proficiency from a large
pool of expert reasoning traces, and (2) skill-aware fine-tuning, which trains
models to explicitly articulate the sequence of skills they will apply before solving
a problem, reinforcing skill composition and improving generalization. Operating
within a budget of 1,000 training examples, our distillation framework consistently
outperforms the standard baseline of fine-tuning with randomly sampled data. Our
approach yields average absolute accuracy improvements of +1.6% with Qwen3-
4B and +1.4% with Qwen3-8B across five mathematical reasoning benchmarks.
Further analysis confirms that these gains are aligned with the emphasized skills,
validating the efficacy of targeted training for data-efficient reasoning distillation.

1 Introduction

Large reasoning models such as DeepSeek-R1 [2] have demonstrated impressive performance on
complex reasoning tasks, but their size and computational demands make them difficult to use
in practice. Distilling these capability into smaller models via supervised fine-tuning (SFT) is a
promising way to broaden the access, especially in light of recent findings that high-quality small
reasoning data can outperform much larger ones [21]]. A key challenge, however, is the strategy of
choosing the right SFT data. Current pipelines typically adopt a one-size-fits-all approach, treating all
training examples uniformly [2]]. This overlooks the latent structure of data—such as the underlying
skills and difficulty of examples—as well as the model’s current knowledge state. In contrast, human
learning is highly structured—specialized training that builds on a learner’s existing knowledge
often proves most effective [4} [19]. Motivated by this analogy, we ask whether structured train
data selection can similarly benefit LLMs, improving both learning efficiency and generalization in
long-form reasoning tasks such as mathematics.

In the context of LLM training, a skill is usually defined as an “atomic” learned competency (e.g.,
addition, multiplication, etc.) when solving problems [1,[10]. Recent studies [[10] have explored skill-
oriented training for LLMs, often by classifying training data at a high level and emphasizing broader
skill coverage and data quality as key factors for performance gains [21]]. Yet these approaches have
two limitations. First, these approaches usually segment problems at the level of whole questions [[22],
ignoring the fact that a single question often involves many atomic skills (e.g., multiplication skill
appears across countless tasks). These overlaps in skills and problems was largely ignored in prior
work. Second, prior work [14,21]] generally does not adapt training to the strengths and weaknesses
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Figure 1: Overview of our skill-centric distillation framework. (1) Skill Tree Attribution: Each
problem is mapped to nodes on a hierarchical skill tree [9]] via top-down LLM-based skill attribution
(2) Skill-based Sampling: The target model’s per-skill accuracy guides sampling, with weaker skills
emphasized. (3) Skill-aware Training: Selected examples are augmented with explicit skill chains
(as shown in red) for skill-aware training.

of specific LLMs. A model already proficient in geometry, for example, should not be saturated with
additional geometry training. Our approach rests on a simple principle: LLMs should be trained more
intensively on the atomic skills they struggle with, and less on the ones they already master. Explicitly
identifying and tracking latent skills—such as arithmetic, factoring, or subgoal planning—can enable
more targeted training and diagnosis.

Another challenge lies in enabling LLMs to grasp the hierarchical structure of skills. In typical
training, models only see input—output pairs, and the relationships among underlying skills remain
implicit. Prior work [3] has shown that prompting models with an explicit list of skills can significantly
improve performance. Inspired by this, we inject structured skill information into training data so
that models not only learn to solve problems but also internalize how different levels of skills relate
to each other.

In this work, we introduce a skill-centric data construction framework for training LLMs on math-
ematical reasoning. The hierarchical structure of the skill tree allows new training examples to be
mapped quickly onto multiple relevant skill chains. By estimating a model’s proficiency in each skill,
we can then select targeted subsets of data for training. Moreover, by embedding interpretable skill
chains into the data, the model learns to reason explicitly over a set of skills before attempting to
solve a problem. Experiments demonstrate that both skill-based data selection and skill-aware data
construction yield clear improvements in model performance, highlighting the promise of structured,
skill-aware training for advancing LLM reasoning.

2 Method

Our approach is motivated by two simple intuitions: (1) models should receive more training data on
skills they are weak at, and (2) models can generalize more effectively if they are explicitly trained to
recognize explicit skill structures. Our workflow, as shown in Figure[T] begins with a curated corpus



of 100K math QA pairs, and a pre-defined skill tree that categorizes mathematical problems into
hierarchical skills.

Step 1: SKkill tree attribution FEach training problem is mapped onto the tree by at-
tributing its reference solution to relevant skills.  Starting from the root, we prompt
Qwen/Qwen2.5-32B-Instruct[l5] to decide which high-level skill is involved (prompt shown
in Appendix [C). For each selected skill, the LLM is further asked to drill down the decision at the
next level of the tree, until the leaf node is reached. This recursive process leverages the hierarchi-
cal structure (with O(log N) complexity) to avoid overwhelming the model with a flat multi-label
decision and ensures comprehensive coverage of all required skills. [1_-]

Step 2: Skill-based sampling To adapt training data to a model’s weaknesses, we evaluate the
target model on the 100K corpus. For each leaf skill, we compute the model’s accuracy, yielding
a skill-wise performance profile. Training examples are then sampled with probabilities inversely
proportional to these accuracies:

~ 1
clip(aceyyyy, 0, Wmax)

- 1
> kil Chp(aCCskill” 0, wmfiX)

P(skill) =

where wn, is empirically set to 10,000 to cap divide-by-zero issue. This mechanism ensures
that underrepresented or difficult skills are emphasized while preventing excessive redundancy in
well-mastered ones. Using this distribution, we construct training subsets of 1K examples.

Step 3: Skill-aware training Finally, we prepare skill-aware variants of the training data by
embedding the explicit skill chain into each instance. For each problem, the ordered sequence of
required skills—e.g., “Skills: [Mathematics — Probability — Bayes’ theorem]”—is prepended
before the solution. This encourages the model to explicitly traverse the required skills before
attempting the solution, rather than relying on shortcuts, enabling fine-grained diagnostics of model
performance at the skill level.

3 Experiments

We conduct a series of experiments to evaluate the effectiveness of our skill-tree-based data selection
framework for SFT in mathematical reasoning tasks.

3.1 Setup

We experiment with two reasoning models from the Qwen3 family: Qwen3-4B and Qwen3-8B [16].
We use OpenMathReasoning [[13] as the primary dataset, a large-scale math reasoning corpus
containing 306K unique problems with 3.2M solutions sampled from DeepSeek-R1 [2]. From this
corpus, we extract a clean set of 100K unique QA pairs as our training pool (Details in Appendix [B).
We ensure that there is no data leakage between our training corpus and the evaluation benchmarks.
In our experiments, we adopt the existing 3-layer skill tree structure proposed in the Instruct-SkillMix
paper [9] and labeled skills for all data, though our pipeline is readily adaptable to other skill tree
designs.

All models are fine-tuned for 5 epochs unless otherwise noted (details in Appendix D). Evaluation is
conducted on five diverse math benchmarks: AMC23, AIME2024, AIME2025, MATH L5 (Level
5) [[7], and OlympiadBench [6], all consisting of competition-style math questions. Avg@8 accuracy
(calculated by the average accuracy over 8 independent samples per question) is reported; however,
for random selection, we averaged the Avg@8 over three random seeds.

3.2 Main Results and Analysis

Table[T] shows the performance across different training strategies. We observe that: Skill-tree-based
data selection generally outperforms random sampling. For Qwen3-4B, Skill-based data selection

'We manually inspected ~100 random QA pairs and found no evidence of missing or mislabeled skills.



Base Model Data Selection Fine-tuning Strategy AMC23 AIME2024 AIME2025 MATHLS OlympiadBench Average

- Base 90.1 61.1 50.7 84.3 49.1 67.1
Full (100K) Standard SFT 81.9 46.7 34.6 80.2 47.0 58.1
Qwen3-4B Random Standard SFT 89.5 60.1 50.3 85.3 49.0 66.8
Random Skill-aware SFT 90.9 62.2 49.9 85.8 49.0 67.6
Skill-based Standard SFT 89.1 62.5 50.0 85.5 49.5 67.3
Skill-based Skill-aware SFT 91.9 64.6 50.8 85.3 49.6 68.4
- Base 88.2 61.1 50.2 84.7 49.1 66.7
Full (100K) Standard SFT 82.4 47.1 355 80.6 46.7 58.5
Qwen3-8B Random Standard SFT 90.2 62.6 50.8 86.0 50.7 68.1
Random Skill-aware SFT 91.5 65.7 52.6 86.6 50.4 694
Skill-based Standard SFT 934 62.1 513 86.2 49.7 68.5
Skill-based Skill-aware SFT 91.9 67.1 50.0 86.6 51.6 69.5

Table 1: Accuracy (%) of Qwen3-4B and Qwen3-8B under different training data selection and
fine-tuning strategies using 1K training examples. Each column of a base model is bolded at its
highest value and underlined at its second highest. Results are reported using Avg@8 across five
math benchmarks.
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Figure 2: Data proportion shift of skill-based selection and per-skill accuracy on MATH-500. Skill-
based sampling improves weaker skills while preserving strong ones, flattening the accuracy curve
toward balanced mastery. Skill-aware augmentation further enhances robustness across skills.

yields a +0.5 gain in average accuracy, with the largest improvements on AIME2024 (+2.4). Similarly,
Qwen3-8B has a +0.4 average gain with significant improvement on AMC23 (+3.2). These results
indicate that aligning training with the model’s weaker skills provides consistent benefits to LLMs.
Second, skill-aware training consistently provides additional gains. Adding explicit skill chains
improves average accuracy in nearly all settings, with the largest boost on AIME2024 (up to +5.0),
and strongest overall gains of up to +0.8 for Qwen3-4B and +1.3 for Qwen3-8B. Combining Skill-
based data selection with skill-aware augmentation further amplifies the effect, yielding significant
improvements over random selection (+1.6 for Qwen3-4B and +1.4 for Qwen3-8B) and delivering the
strongest overall results, including challenging benchmarks such as AIME2024 and OlympiadBench.
These findings confirm that skill-aware sampling and training are complementary and robust.

To examine the effect of our skill-based oversampling strategy on individual skills, we further
evaluate 500 problems from the MATH-500 [12] benchmark. As presented in Figure[2] the bars show
the distribution shift of sampled data under skill-based sampling, while the lines report skill-wise
accuracies across different settings (each position on the x-axis represents a distinct skill). We
observe clear improvements over the base model: both random and skill-based sampling substantially
improve accuracy over the base model. Skill-based oversampling effectively aligns finetuning data
distribution with model weaknesses. For weaker skills (those below the average accuracy), skill-
based oversampling leads to large improvements that bring performance close to the overall average
(e.g., algebraic manipulation and equations). Moreover, the accuracy of stronger skills remains high
although sampled less frequently, suggesting that random sampling may waste training cost on areas
where the model already performs well. Therefore, skill-based training curve becomes notably
flatter, showing that the model achieves more balanced and robust performance across skills.
Adding skill-aware augmentation further strengthens this effect, yielding even greater consistency in
skill performance.



3.3 Ablation Studies

Effect of Sampling Aggressiveness We examine how
the aggressiveness of skill-based weakness sampling in-

fluences performance by varying the exponent of accu- Setting Avg Accuracy
racy (replacing the inverse acc—! in the formula with Effect of Sampling Aggressiveness
acc™T). As shown in Table [2} performance slightly im- =05 70.7
proves and then saturates as sampling becomes more ag- =075 71.3
gressive, but significantly degrades when 7" < 1.0. Thus, T=10 71.9

. . . . T=20 72.0
setting 7" = 1.0 provides a simple and effective balance. T—30 719

Is the Full Chain of Skills Necessary? Our skill-aware I8 the Full Skill Chain Necessary?

SFT provides models with the full hierarchical skill chain. Full skill chain 729
But is this structure indispensable? To examine this, we Root Skills Only 2.2
p ‘ ’ Leaf Skills Only 727

test variants that expose only a single layer, either the top-
level skills or only the leaf skills. As shown in Table[2} pro-
viding only high-level skills yields minimal gains, while  ¢yeness and Hierarchical Skill Chain.
using only leaf-level skills leads to moderate improvement  pyefault settings are bolded. Full results
but still lags behind the full chain. This suggests that ex- ;.6 ip Appendix Table[3]

posing the complete skill tree structure during training is

beneficial for model learning.

Table 2: Ablations on Sampling Aggres-

4 Conclusion

This research demonstrates that skill-based data selection and skill-aware training enable more
capable, data-efficient, and interpretable reasoning distillation. By prioritizing examples of weaker
skills and embedding explicit skill structures during fine-tuning, our approach allows smaller models
to acquire more balanced and robust reasoning abilities. These findings highlight the potential of
skill-centric training as a general framework for improving training efficiency and transparency.
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A Related Work

Distillation of LLM Reasoning Knowledge distillation was first introduced as a way to compress
large neural networks into smaller ones [8]], later popularized in NLP [17]. Building on these
foundations, recent work has shifted toward distilling reasoning abilities. For example, (author?)
[2] showed that large expert models can successfully transfer complex multi-step reasoning traces
into smaller students with ~800k R1 outputs, establishing a practical recipe for democratizing
reasoning power. Follow-up studies such as OpenMath-Nemotron [13]], Table-R1 [20], Tiny-R1 [18]
demonstrate that distilling reasoning can yield compact models that approach or even rival much
larger systems in reasoning capability.

Data Selection for Efficient Training Selecting the most informative training examples has long
been studied as a way to improve model performance under limited data budgets. Recent studies
show that small but carefully curated datasets can yield strong reasoning performance. For example,
LIMO [21], s1 [14], and NaturalThoughts [11] all demonstrate that high-quality and diverse examples
often outperform large-scale random sampling. Building on this insight, structured selection methods
such as MASS [10]] and Skill-It [1] leverage graphs and learning dependencies to guide sampling,
enhancing efficiency by prioritizing the most instructive reasoning examples.

Skill Decomposition and Structured Reasoning A growing line of work views complex reasoning
as a composition of simpler skills and leverages this structure for improved evaluation and training.
Didolkar et al. [3]] showed that prompting LLMs to identify relevant skills improves math performance.
Zeng et al. [22] introduced EvalTree, which organizes tasks into a hierarchical skill tree to locate
weak skills for synthesizing targeted data. Instruct-SkillMix [9] combines pre-defined skills to create
instruction data, enabling an 8B model to match far larger ones.

B Data Filtering Details

From the OpenMathReasoning corpus [13]], we construct an 100K clean training pool by applying
several filtering steps. First, we discard problems without a ground-truth answer. Each unique
problem is associated with approximately ten candidate responses; we retain only those generated by
DeepSeek-R1 [2]] and only when the predicted final answer exactly matches the ground truth. For each
problem, we then keep a single valid response to avoid duplication. This procedure yields roughly
105K problem—solution pairs. Finally, we randomly remove 5K instances to obtain a balanced set of
100K unique QA pairs used in our experiments.

C SKkill Tree Attribution Details

The prompt we used on Qwen/Qwen2.5-32B-Instruct[15] for top-down skill attribution are listed
below:

Given the following Math problem:
Q&A: {qa_input}

Which of the following skills are involved to understanding or
solving the problem? Even the most basic skills such as simple



addition and subtraction must be taken into account. You can
select multiple options if needed. Just return a list of skill
names .

Skills:
{chr (10) . join([£f"- {name}" for name in child_names])}

Answer as a Python 1list of strings.
23

D Training Details

Environment. All experiments were conducted using NVIDIA A40 GPUs with 48GB memory.
The software environment was configured as follows:

* 360-LLaMA-Factory [S] (A long-CoT adapted version of LLaMA-Factory 0.9.1 [23])

* torch 2.7.0

* transformers 4.51.3

* accelerate 1.0.1

* datasets 3.1.0

* tr10.9.6

* peft 0.12.0

* deepspeed 0.14.4

SFT Training. For SFT training, we used the following settings:

¢ Batch size: 32 (8 GPUs * 4 Gradient Accumulation)
* Epoch: 5

* Learning rate: le-5

* Optimizer: AdamW

 Learning rate scheduler: cosine with warmup

e Warmup ratio: 0.1

Cutoff length: 8192

* Time Cost: 4 hours per run

Decoding Setup. During inference, we applied the following decoding settings:
* Temperature: 0.6
* Max tokens: 16384
* Top-p: 0.95

E Additional Experiment Results

Full version of Table[2]is shown in Table[3l



Ablation Setting AMC23 AIME2024 AIME2025 MATHLS Average

T=05 89.7 60.0 479 85.2 70.7

. . T=10 89.1 62.5 50.0 85.7 71.9

Effect of Sampling Aggressiveness T—920 90.6 62.5 488 85.9 72.0
T=30 91.6 61.7 48.8 85.6 71.9

Full skill chain 91.9 64.2 50.4 85.1 72.9

Is the Full Skill Chain Necessary?  Root Skills Only 91.6 58.3 52.5 86.3 72.2
Leaf Skills Only 90.9 62.9 50.0 86.9 72.1

Table 3: Ablations on sampling aggressiveness (7') and on exposing different portions of the skill
hierarchy during skill-aware SFT. Within each ablation block, the highest value per column is bolded
and the second-highest is underlined.
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