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ABSTRACT

Despite the growing popularity of explainable and interpretable machine learn-
ing, there is still surprisingly limited work on inherently interpretable clustering
methods. Recently, there has been a surge of interest in explaining the classic
k-means algorithm, leading to efficient algorithms that approximate k-means clus-
ters using axis-aligned decision trees. However, interpretable variants of k-means
have limited applicability in practice, where more flexible clustering methods are
often needed to obtain useful partitions of the data. In this work, we investigate
interpretable kernel clustering, and propose algorithms that construct decision trees
to approximate the partitions induced by kernel k-means, a nonlinear extension of
k-means. We further build on previous work on explainable k-means and demon-
strate how a suitable choice of features allows preserving interpretability without
sacrificing approximation guarantees on the interpretable model.

1 INTRODUCTION

The increasing predictive power of machine learning has made it a popular tool in many scientific
fields. Sensitive applications such as healthcare or autonomous driving however require more than
just good accuracy—it is also crucial for a model’s decisions to be interpretable (Tjoa & Guan, 2020;
Varshney & Alemzadeh, 2017). Unfortunately, popular machine learning models are not transparent
and are often referred to as “black box” approaches. The demand for explainable machine learning has
led to the development of several tools over the last few years, albeit mostly for supervised learning.
Methods such as LIME or Shapley values (Ribeiro et al., 2016; Lundberg & Lee, 2017) are designed
to explain the prediction of any given machine learning model. However, posthoc-explainability often
is unreliable and has been critized for not providing insight into the underlying model itself (Rudin,
2019). Counterfactual explanations on the other hand explicitly show the change in prediction had
the input variables been different (Wachter et al., 2017), but do not lead to easily interpretable models.
Hence, Rudin (2019) calls on researchers and practitioners to “Stop explaining black box machine
learning models for high stakes decisions and use interpretable models instead”.

Decision trees are at the heart of several inherently interpretable machine learning models (Molnar,
2020; Breiman, 2017), and have recently also gained significant interest in the field of clustering
(Bertsimas et al., 2018; Fraiman et al., 2013; Ghattas et al., 2017). Through recursive partitioning of
the data based on individual features, they provide interpretability on a global scale by identifying
the important features, while at the same time also allowing us to retrace the path of individual
decisions through the tree. Despite the extensive empirical research on decision trees for clustering,
Moshkovitz et al. (2020) were the first to introduce a clustering model based on decision trees that
also satisfies worst-case approximation guarantees. They propose the Iterative Mistake Minimization
(IMM) algorithm which approximates a given k-means clustering by a decision tree with k leaves,
where each leaf represents a cluster. The quality of the resulting interpretable clustering is measured
by the price of explainability, defined as the ratio between the cost of the decision tree and the optimal
k-means cost. IMM returns a decision tree with price of explainability of order O(k2), implying that
the interpretable clusters achieve a cost not much worse than the optimal partition.

Various interpretable clustering solutions for the k-means problem with theoretical guarantees have
emerged (see Appendix A for an overview). However, despite these advancements, a fundamental
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Figure 1: k-means does not perform well on halfmoons data that is not linearly separable, and
explainable k-means naturally inherits its flaws. Kernel k-means perfectly finds the clusters and
hence, its interpretable variant (proposed Kernel IMM) returns an axis-aligned decision tree with
good clustering.

issue persists: the k-means cost is ill-suited for real-world datasets, as it fails to identify clusters that
are not linearly separable. Clustering methods deployed in practice tend to be more complex, and
consequently even less interpretable than standard k-means. The kernel k-means algorithm (Dhillon
et al., 2004) that extends the standard k-means by implicitly mapping data to a reproducing kernel
Hilbert space (RKHS), is particularly notable. It allows to discern clusters beyond Voronoi partitions
of the input space, but this increased flexibility further diminishes the model’s interpretability.

Works on interpretable kernel methods are scarce. Chau et al. (2022) propose efficient methods for
computing Shapley values for kernel regression, which provide post-hoc explanations. Wu et al.
(2019) enforce interpretability in kernel dimension reduction by linearly projecting the data into a
low-dimensional space before computing kernel matrices—in spite of operating on fewer features,
the kernel step of this approach is not interpretable. As such, the interpretability of kernel methods
remains an open problem. We resolve this in the context of clustering by providing decision tree
based interpretable approximations of the kernel k-means algorithm with provable guarantees.

Our contributions. While a significant body of work on decision trees for explaining k-means
has emerged, these algorithms cannot directly be translated to the kernel setting. In particular,
there are cases where explainable k-means does not lead to axis-aligned decision trees for any
choice of features for the popular Gaussian kernel. We prove this in Section 3 by introducing the
notions of interpretable feature maps and interpretable decision trees, which provide a theoretical
characterization of the obstacles that interpretability faces in kernel clustering. Building on these
insights in Section 4, we demonstrate how suitably chosen surrogate features can resolve this issue,
and we derive a kernelized variant of the IMM algorithm (Moshkovitz et al., 2020) that preserves
interpretability. These surrogate features exist for several important product kernels, including the
Gaussian and Laplace kernel. Crucially, the proposed algorithm (Kernel IMM) also comes with
worst-case guarantees on the price of explainability for a class of interpretable Taylor kernels that
include the Gaussian kernel. By incorporating information encoded in the nonlinearity of kernel
k-means, the resulting decision trees lead to significantly better results than explainable k-means,
as Figure 1 illustrates. In Section 5, we further build on previous work (Frost et al., 2020) to derive
two kernelized algorithms (Kernel ExKMC and Kernel Expand) that can be used to further refine the
partitions obtained from Kernel IMM (by adding more leaves to the tree). Both can also be run on
an empty tree, but do not admit worst-case bounds in this case. We conclude by demonstrating the
empirical performance of the proposed methods in Section 6. The algorithms are included in Table 1.

Table 1: Overview of our algorithms (xi denotes i-th coordinate of point x ∈ Rd)

Algorithm Axis-aligned cuts Worst price of explainability

K
er

ne
l

IM
M for additive kernels xi ∈ [θ1, θ2] O(k2) (Remark 1, Appendix H)

for interpretable Taylor kernels xi ∈ [θ1, θ2] O(dk2) (Theorem 4)
for distance-based product kernels xi ∈ [θ1, θ2] O(dk2 · Cdata) (Theorem 5)

Kernel ExKMC on empty tree xi ≷ θ or xi ∈ [θ1, θ2] Provably unbounded (Theorem 6)
Kernel Expand on empty tree xi ≷ θ or xi ∈ [θ1, θ2] Provably unbounded (Remark 2)
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2 BACKGROUND AND PRELIMINARIES

Consider a dataset of n points, X =
{
x(1), x(2), . . . , x(n)

}
⊆ Rd. We use x(i) to denote the i-th data

point in X , while the notation xi denoting the i-th coordinate of any x ∈ Rd appears more frequently.

k-means and kernel k-means. For a partition of X into k disjoint clusters C1, . . . , Ck with means
c1, . . . , ck ∈ Rd, the k-means cost of the partition is defined as

cost(C1, . . . , Ck) =

k∑
l=1

∑
x∈Cl

∥x− cl∥2 . (1)

The optimal k-means cost of X is the minimum achievable cost, over all partitions C1, . . . , Ck. We
defineM = {c1, . . . , ck} as the set of cluster centers obtained from some algorithm designed to
minimize the k-means cost (1). Since finding the optimal set of centers is NP-hard (Dasgupta, 2008),
in practiceM may not necessarily consist of the k optimal cluster centers. Kernel k-means clustering
(Dhillon et al., 2004) replaces the squared Euclidean distance in (1) by a kernel-based distance. A
kernel is a symmetric, positive definite function K : Rd × Rd → R. Every kernel is implicitly
associated with a feature spaceH, called the reproducing kernel Hilbert space (RKHS), and a feature
map ψ : Rd → H satisfying K(x, y) = ⟨ψ(x), ψ(y)⟩ for all x, y ∈ Rd. For algorithms that only
require knowledge of inner products between points ψ(x) and ψ(y), there is no need to compute
the feature map explicitly, but one may instead use the kernel K(x, y) to evaluate ⟨ψ(x), ψ(y)⟩.
Thus the (implicit) feature map ψ transforms the data non-linearly to a high dimensional space that
provides additional flexibility in the model, without increasing the computational complexity. This is
commonly known as the kernel trick. Given data X ⊆ Rd and a kernel K on Rd, kernel k-means
attempts to find a partitioning C = {C1, ..., Ck} of X that minimizes

cost(C1, ..., Ck) =

k∑
l=1

∑
x∈Cl

∥ψ(x)− cl∥2 (2)

where the centers c1, . . . , ck are the means of each cluster in the feature spaceH. Appendix B shows
how the cost (2) is expressed in terms of kernel K and also includes the kernel k-means algorithm.

Explainable k-means. The goal of explainable k-means clustering is to approximate a given
partition C1, . . . , Ck of X ⊆ Rd, with centersM, by an inherently interpretable model. Axis-aligned
decision trees with k leaves have emerged as a natural choice for this purpose, where every leaf
of the tree T corresponds to one cluster. Intuitively, one could think that the tree can simply be
obtained by using a supervised learning algorithm with the cluster assignments as labels. However,
Moshkovitz et al. (2020, Section 3) show that such algorithms can have arbitrarily bad worst-case
approximation guarantees on the cost of the clustering induced by the decision tree, which we denote
by cost(T,X). This observation has sparked the development of more sophisticated approaches
(Moshkovitz et al., 2020; Esfandiari et al., 2022; Charikar & Hu, 2022; Gamlath et al., 2021; Laber &
Murtinho, 2021), all of which construct the tree T in a top-down manner: At every internal node u, an
axis-aligned cut xi ≷ θ partitions the data at node u, while ensuring that every cluster center cl ∈M
ends up in exactly one leaf of T . This last requirement is crucial to obtain approximation guarantees.
While several works restrict T to have exactly k leaves, few also allow more than k leaves for better
approximation (Makarychev & Shan, 2022; Frost et al., 2020). Appendix A provides a review of
works on explainable k-means, while Appendix C gives a more detailed description of the Iterative
Mistake Minimization (IMM) algorithm (Moshkovitz et al., 2020) that we build on in Section 4.

3 EXPLAINABLE KERNEL K-MEANS VIA CUTS ON FEATURE MAPS

The objective of this paper is to present an inherently interpretable model that approximates the
kernel k-means algorithm. In this section, we make the first steps towards this goal. Standard
supervised approaches for learning decision trees are questionable since they, as discussed earlier,
can be arbitrarily bad for approximating even the standard k-means clustering. On the other hand,
the aforementioned iterative decision tree construction admits good worst case guarantees in the
context of k-means. Hence, a natural starting point would be to kernelize it. Unfortunately however,
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the method heavily relies on explicitly characterizing the cluster centers. In kernel clustering, these
cluster centers c1, . . . , ck reside in the RKHSH instead of Rd, and typically do not have a pre-image
in the input space Rd. Thus, operating on centers necessitates explicit computation of the feature
maps, which is in contrast to the typical use of the kernel trick.

A naïve kernelization of existing algorithms would hence aim to operate inH and find axis-aligned
cuts using the coordinates of the projection ψ(x). This approach has two fundamental limitations.
For one, it requires an explicit characterization of the RKHS H or the feature map ψ—the two
famously implicit entities in the kernel trick. Explicit characterizations of H or ψ however are
not known for most kernels, and even if they are known, the dimension of H could be infinite
(Steinwart et al., 2006), making it practically impossible to iterate over all axes. This problem
does not pose a practical concern when clustering a finite set of points. Any kernel matrix K ∈
Rn×n, computed on data X =

{
x(1), . . . , x(n)

}
, can be decomposed as K = ΦΦ⊤ for some

Φ =
[
ϕ1(x

(j)) . . . ϕD(x(j))
]n
j=1
∈ Rn×D through Cholesky or eigendecomposition, providing a

data-dependent feature map that we denote as ϕ : X → RD.

The second concern is how to translate axis-aligned cuts ϕj(x) ≷ θ back to axis-aligned cuts in
Rd. Here, ϕj denotes the j-th coordinate of ϕ : X → RD. This issue is critically important in the
context of interpretability, and can be decomposed into two principle concerns: Firstly, if ϕj(x) is a
function of more than one coordinate xi, then a cut ϕj(x) ≷ θ cannot correspond to an axis-aligned
partition of Rd. Secondly, even if ϕj(x) depends on exactly one coordinate xj , the cut ϕj(x) ≷ θ
cannot correspond to a cut xj ≷ θ′ unless ϕj is monotonic.

These conditions are not trivial and, as we show below, the popular Gaussian kernel does not satisfy
either of the two conditions, whereas some additive kernels satisfy both. To formally show this, we
introduce the notion of interpretable feature maps.
Definition 1. (Interpretable feature maps) Let ϕ : X → RD be a feature map defined on the dataset
X ⊆ Rd such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩ =

∑D
j=1 ϕj(x)ϕj(y) for all x, y ∈ X . We say that the

feature map ϕ = (ϕ1, . . . , ϕD) is interpretable if each ϕj(x) depends exactly on one coordinate of x.

The following result shows that no feature map for the Gaussian kernel can be interpretable, even if
we allow the feature maps to be data-dependent.
Theorem 1. (The Gaussian kernel cannot have interpretable feature maps) Consider the Gaussian
kernel K(x, y) = e−γ∥x−y∥2

2 in d > 1 dimensions. There exists a dataset X such that for any feature
map ϕ : X → RD satisfying ⟨ϕ(x), ϕ(y)⟩ = K(x, y) for all x, y ∈ X , there exists some j ∈ [D]
such that ϕj depends on more than just one input dimension of x ∈ X .

The short proof is given in Appendix D.1. In Section 4, we resolve the inherent non-interpretability
of feature maps for the Gaussian kernel by resorting to suitably chosen surrogate features. However,
this still leaves the concern about monotonicity of ϕj . This too cannot hold for the Gaussian kernel.
Theorem 2. (The Gaussian kernel does not admit monotonic features) Consider the one-
dimensional Gaussian kernel K(x, y) = e−γ|x−y|2 . Then, there exists a dataset X ⊆ R such
that for any feature map ϕ : X → RD there exists a component ϕj , j ∈ [D] that is not monotonic.

The proof is included in Appendix D.2. Theorem 2 suggests that the existing notion of interpretability,
specified through threshold cuts xi ≷ θ, is too restrictive for deriving interpretable decision trees
for kernels. Hence, we propose to expand the definition of interpretability. Although the partitions
at each node should still align with the axes of Rd (this ensures that the important features can be
identified), we allow the partition at the node to be any interval and its complement.
Definition 2. (Interpretable decision trees) Consider a decision tree T that partitions a dataset
X ⊂ Rd into k leaves. We call T an interpretable decision tree if at every node u ∈ T , there exists
some i ∈ [d], θ1 < θ2 ∈ R such that the data Xu that arrives at u is split into two disjoint subsets

Xu
L = {x ∈ Xu : xi ∈ [θ1, θ2]} and Xu

R = {x ∈ Xu : xi /∈ [θ1, θ2]} . (3)

To conclude this section, we remark that several important additive kernels do in fact admit feature
maps that give rise to interpretable decision trees.
Remark 1. (Certain additive kernels have interpretable and monotonic features) Additive kernels
on Rd refer to kernels that can be decomposed as K(x, y) =

∑d
i=1Ki(x, y), where each Ki is
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Algorithm 1 Kernel IMM for interpretable Taylor, or distance-based product kernels

Input: Data X , integer k, kernel K with surrogate feature map ϕ. For interpretable Taylor kernels
see Definition 3, for distance-based kernels see Equation (4).

Output: Interpretable decision tree T that partitions X into k leaves
Get reference clustering C1, . . . , Ck ← KERNEL k-MEANS(X,K, k)
Compute surrogate features Φ =

[
ϕ1(x) . . . ϕd(x)

]
and centersM = {c1, . . . , ck} under ϕ.

Construct a decision tree T ← IMM(Φ, y,M), where y denotes the cluster assignments.
Translate threshold cuts of T back to a decision tree on X .

a kernel on R. Additive kernels are commonly used for comparing histograms, e.g. in computer
vision (Maji et al., 2012; Vedaldi & Zisserman, 2012). In Appendix H, we consider three popular
additive kernels and derive feature maps ϕ for which any threshold cut ϕj(x) ≷ θ translates to an
axis-aligned cut xj ∈ [θ1, θ2]. Hence, one may run IMM on the map ϕ and directly translate the tree
from the feature space to an interpretable decision tree.

4 KERNEL ITERATIVE MISTAKE MINIMIZATION (KERNEL IMM)

In this section, we present an interpretable kernel k-means algorithm that is applicable to a wide range
of bounded product kernels, which include the Gaussian kernel K(x, y) = e−γ∥x−y∥2

2 as well as
other distance-based product kernels such as the Laplace kernel K(x, y) = e−γ∥x−y∥1 . We focus on
the aforementioned idea of constructing interpretable decision trees via axis-aligned cuts of suitably
chosen feature maps ϕ, thereby leveraging existing approximation guarantees. The base interpretable
k-means method that we “kernelize” is the IMM algorithm, primarily due to its simpler analysis.
We believe the same construction can also leverage worst-case approximation guarantees for other
explainable k-means algorithms (with tighter guarantees). The proposed Kernel IMM algorithm is
described in Algorithm 1, and illustrated in Figure 2.

Surrogate features. Bounded product kernels on Rd can be expressed as K(x, y) =∏d
i=1Ki(x, y), where each Ki is a kernel on R, operating on the i-th coordinate of data. We assume

that Ki(x, y) ≤ Ki(x, x) = 1 for all x, y ∈ Rd. The RKHS of a product kernel K is given by the
tensorizationH = H1 ⊗ . . .⊗Hd, whereHi is the RKHS of kernel Ki. The implicit feature map
ψ : Rd → H associated with the product kernel K can be related to the feature maps ψi : R→ Hi

of the d individual kernels Ki via ⟨ψ(x), ψ(y)⟩ =
∏d

i=1⟨ψi(xi), ψi(yi)⟩. In order to preserve axis-
aligned structures, we propose to use a surrogate feature map ϕ = (ϕ1, . . . , ϕd), where each ϕi is a
finite-dimensional approximation to ψi. Notably, ϕ does not approximate a map to H but instead
to the Cartesian space H1 × . . .×Hd, and ⟨ϕ(x), ϕ(y)⟩ ≈

∑d
i=1⟨ψi(xi), ψi(yi)⟩ ≠ ⟨ψ(x), ψ(y)⟩.

Crucially however, we will show later that the additional cost induced by this step can be bounded.
By construction, ϕ = (ϕi)

d
i=1 is an interpretable feature map, and we may compute the set of cluster

centersM in the surrogate feature space associated with ϕ. As described in 1, we let IMM operate
on M. Finally, interpretability of ϕ ensures that axis-aligned cuts of ϕ do in fact correspond to
axis-aligned partitions of the input space Rd. For the Gaussian kernel, our surrogate features ϕi are
Taylor approximations to ψi. We also present an alternative, quite general choice for ϕi that works
for all distance-based product kernels, but leads to data-dependent approximation guarantees.

Interpretable Taylor kernels. We now define a class of kernels over R that we refer to as inter-
pretable Taylor kernels, and construct surrogate features for these kernels.

Definition 3. (Interpretable Taylor kernels and their surrogate features) LetKi be a bounded kernel
on a connected domain Xi ⊆ R, of the form Ki(z, z

′) = f(z)f(z′)g(zz′) for some differentiable
function f and an analytic function g. Denote by g(j) the j-th derivative of g. Assume that g(j)(0) ≥ 0
for all j ∈ N and that zj−1 (zf ′(z) + jf(z)) = 0 has at most one solution z on Xi. Then, we call
Ki an interpretable Taylor kernel. Furthermore, assume K is a product of d interpretable Taylor
kernels K1, . . . ,Kd, defined on a connected domain X ⊂ Rd. Given an integer M , we define the
surrogate feature map for K as ϕ(x) = (ϕi(xi))

d
i=1, where each ϕi : R → RM+1 is given by

ϕi(z) = (ϕi,j(z))
M
j=0 where we define ϕi,j(z) = zjf(z)

√
g(j)(0)/j! for all j ≤M .
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Figure 2: A schematic of Kernel IMM for Interpretable Taylor kernels.

The Gaussian kernel with bandwidth γ > 0 is a product of interpretable Taylor kernels, because with
g(z) = exp(2z) and f(z) = exp(−γz2), zf ′(z) + jf(z) = 0 has at most one solution on (0,∞).
This is sufficient because we can always assume data X that is clustered using the Gaussian kernel to
be contained in (0,∞)d, as shifting does not affect the clustering cost.
Theorem 3. (Threshold cuts in the surrogate feature space of interpretable Taylor kernels yield
interpretable decision trees) Let K be product of interpretable Taylor kernels, and let ϕ denote its
surrogate feature map. Then, a threshold cut of the form ϕi,j(xi) ≷ θ leads to an interpretable
decision tree in Rd.

Our choice of surrogate features doesn’t only provide interpretable decision trees, but also preserves
worst-case bounds on the cost. To formalize this, we generalize the price of explainability to kernels.
Definition 4. (The price of explainability) For a set X ⊂ Rd and an interpretable decision
tree T as defined in 2, the price of explainability of T on X is defined as the ratio p(T,X) =
cost(T,X)/costopt(X), where costopt(X) is the optimal kernel k-means cost. The price of explain-
ability of the data set X is given by p(X) = min

T
p(T,X), where the minimum is taken over all

interpretable decision trees.

The Kernel IMM algorithm admits worst-case guarantees quite similar to the ones obtained in the
linear setting, albeit with an additional factor of order d. This is a result of operating on the surrogate
features that decouple the d input dimensions (see Appendix E).
Theorem 4. (Price of explainability for interpretable Taylor kernels) Let C1, . . . , Ck be the clusters
of a dataset X ⊂ Rd derived from kernel k-means, where the kernel K is an interpretable Taylor
kernel. Denote by Φ = ϕ(X) the surrogate features for K on X . Then, the interpretable decision
tree obtained from Kernel IMM on Φ satisfies p(T,X) = O

(
dk2
)
+ O(dk2δ)

costopt(X) , where δ = δ(M)

depends on the order M of the surrogate feature map and limM→∞ δ(M) = 0 for any dataset X .
Thus, by adaptively choosing M such that δ = O(costopt), we obtain O(dk2) bounds.
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The proof can be found in Appendix F. For interpretable Taylor kernels, Kernel IMM operates in a
feature space of dimension O(dM). In practice, often even low orders M ≤ 5 of the Taylor-based
surrogate features provide enough flexibility to obtain good interpretable clusterings, and hence
Kernel IMM computationally is not much more expensive than standard IMM.

Extension to all distance-based product kernels. To conclude this section, we present an extension
of Kernel IMM to the entire class of distance-based product kernels K(x, y) =

∏d
i=1 h (|xi − yi|),

where h is a decreasing function on the positive real line, with h(0) = 1. Examples include the
Laplace kernel, for which h(t) = exp(−t). For these kernels, we simply set

ϕi,j(x) = Ki(x, x
(j)) = h(|xi − x(j)i |) (4)

where x(j) denotes the jth point in the dataset X . Because ϕi,j(x) ≤ θ if and only if |xi − x(j)i | ≥
h−1(θ), this leads to an interpretable decision tree. However, the worst-case bounds obtained from
IMM do not translate directly.
Theorem 5. (Price of explainability for distance-based product kernels) Let C1, . . . , Ck be the clus-
ters of a dataset X ⊂ Rd derived from kernel k-means, where the kernel K is a distance-based prod-
uct kernel. Denote by Φ = ϕ(X) the surrogate features for K on X , where ϕi,j(x) = Ki(x, x

(j)).
Then, the interpretable decision tree obtained from Kernel IMM on Φ satisfies p(T,X) = O

(
Cdk2

)
,

where C depends on the dataset X and the kernel K.

We discuss this in Appendix G. Despite the data-dependent approximation guarantee, we observe in
practice that the surrogate features defined in (4) perform well, sometimes even outperforming the
surrogate Taylor features of the Gaussian kernel.

5 GREEDY COST MINIMIZATION

While the previous two sections cover several important kernels, there may nonetheless be cases
where Kernel IMM is not applicable (because no suitable surrogate features exist), or not powerful
enough to approximate kernel k-means (due to its restriction to just k leaves, as we illustrate in
Figure 3). To address these issues, we propose kernelized variants of the ExKMC algorithm (Frost
et al., 2020), which greedily add new leaves. This does not require computations in the feature space:
Any set of reference clusters C1, . . . , Ck obtained from kernel k-means implicitly comes with a set
of reference centersM = {c1, . . . , ck} ⊂ H. The kernel trick ensures that the distance between
the feature map of any point ψ(x) ∈ H and a cluster center cl can be evaluated without explicitly
computing the center as

∥ψ(x)− cl∥2 = K(x, x) +
1

|Cl|2
∑

y,z∈Cl

K(y, z)− 2

|Cl|
∑
y∈Cl

K(x, y) (5)

Kernel ExKMC (Algorithm 2). The algorithm proceeds sequentially. For every node u of the
decision tree, let Xu denote the set of points that reach the node u. A threshold cut (i, θ) is chosen,
separating Xu into two subsets Xu

L = Xu ∩ {xi ≤ θ} and Xu
R = Xu ∩ {xi > θ}. The Kernel

ExKMC algorithm chooses (i, θ) as the minimizer of the cost function

costexkmc(u, i, θ) = min
j,l∈[k]

∑
x∈Xu

L

∥ψ(x)− cj∥2 +
∑

x∈Xu
R

∥ψ(x)− cl∥2 (6)

where the squared distances can be computed using (5). One reference center is chosen for each of
the two child nodes of u. To decide on which node to split, we choose the one that maximizes the
difference between the cost of not splitting, given by min

j∈[k]

∑
x∈Xu

∥ψ(x)− cj∥2, and costexkmc(i, θ).

Since all relevant computations happen in the input space, and no explicit feature map ψ is needed, the
algorithm is applicable to arbitrary kernels and can be used to refine any given partition Ĉ1, . . . , Ĉp.
Unfortunately, we can prove that Kernel ExKMC on an empty tree does not admit approximation
guarantees when limited to k leaves.
Theorem 6 (ExKMC does not admit no worst-case bounds). For any m ∈ N there exists a data
set X ⊂ R such that the price of explainability on X is p(X) = 1, IMM attain this minimum, but
ExKMC (initialized on an empty tree) constructs a decision tree T with p(T,X) ≥ m.
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Figure 3: Standard k-means is ill-suited for clustering certain datasets, and this translates to explain-
able k-means (not plotted here). Kernel k-means recovers the ground truth well. However, Kernel
IMM is restricted to 3 leaves and not powerful enough to approximate it. To resolve this, we suggest
Kernel ExKMC and Kernel Expand, which extend the tree to 6 leaves.

Algorithm 2 Kernel ExKMC

Input: Number of leaves m ∈ N,
reference clusters C1 . . . , Ck,
decision tree T with leaves Ĉ1, . . . , Ĉp

Output: Tree with m leaves L
Initialize the set of leafs asL = {Ĉ1, . . . , Ĉp}
while |L| < m do

Choose node Xu ∈ L and a cut (i, θ) min-
imizing (6)

Update L by replacing Xu ∈ L by its two
child nodes Xu

L, X
u
R

end while

Algorithm 3 Kernel Expand

Input: Number of leaves m ∈ N,
reference clusters C1 . . . , Ck,
decision tree T with leaves Ĉ1, . . . , Ĉp

Output: Tree with m leaves L
Initialize the set of leafs asL = {Ĉ1, . . . , Ĉp}
while |L| < m do

Choose data Xu ∈ L and a cut (i, θ) min-
imizing (7)

Update L by replacing Xu ∈ L by its two
child nodes Xu

L, X
u
R

end while

The proof can be found in Appendix J. If Kernel ExKMC is run as a refinement of Kernel IMM
(which constructs an interpretable decision tree in the sense of Definition 2 with two-sided threshold
cuts) then we suggest sticking to this expanded notion of interpretability, and Kernel ExKMC at every
node chooses (i, θ1, θ2) ∈ [d]× R2 and checks whether xi ∈ [θ1, θ2] or not.

Kernel Expand (Algorithm 3). We suggest another algorithm, Kernel Expand, that also adds new
leaves to an existing tree, but maximizes the purity of each leaf. This is achieved by minimizing

costexp(i, θ) = min
j,l∈[k]

(|{x ∈ Xu
L : c(x) ̸= cj}|+ |{x ∈ Xu

R : c(x) ̸= cl}|) (7)

where c(x) denotes the cluster center of x according to the reference partitionM. To decide on
which node to split, we again choose the one that maximizes the difference between the cost of not
splitting, given by min

j∈[k]
|{x ∈ Xu : c(x) ̸= cj}|, and costexpand(i, θ).

Remark 2. (Kernel Expand does not admit worst-case bounds) In the same way as Kernel ExKMC,
Kernel Expand does not admit worst-case bounds when initialized without Kernel IMM. This is
obvious from the example in Section 3 of (Moshkovitz et al., 2020).

Finally, it is important to note that while adding more leaves improves the clustering, it gradually
reduces the interpretability of the tree. Thus, there is a trade-off between explainability and accuracy
in Kernel ExKMC and Kernel Expand.

6 EXPERIMENTS

We validate our algorithms on a number of benchmark datasets, including three synthetic clustering
datasets, Pathbased, Aggregation and Flame (Fränti & Sieranoja) and real datasets, Iris (Fisher, 1936)
and Wisconsin breast cancer (Street et al., 1993). On all five datasets, we evaluate Kernel IMM as
well as the greedy cost minimization algorithms from Section 5, Kernel ExKMC and Kernel Expand,
both of which refine Kernel IMM by adding more leaves. All experiments reported here use either
the Laplace or the Gaussian kernel. In Appendix H, we derive suitable approximate feature maps and
evaluate Kernel IMM for the additive χ2 kernel, which is well-suited for clustering histograms or
distributions. These results underline the usefulness of our method beyond distance-based product
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Figure 4: We verify the approximation properties of our algorithms by computing the price of
explainability (left plot). We also compare the clusters obtained on k-means and IMM, as well as
kernel k-means and our three algorithms to the ground truth via the Rand index (right plot).

kernels. Finally, we also compare Kernel IMM to CART, which performs similarly well. Details
on all experiments can be found in Appendix I. Although Kernel IMM can lead to sub-optimal
solutions, its greedy refinements mostly result in a price of explainability close to 1 (see Figure 3 for
the Pathbased dataset). Figure 4 reports the price of explainability of the three proposed explainable
kernel clustering methods (closer to 1 is better). Since the ground truth is known in all datasets
considered here, Figure 4 also reports the adjusted Rand index (Pedregosa et al., 2011) that measures
the agreement between the interpretable clusters and the true labels (a higher value is better). This
shows that kernel k-means is naturally superior to k-means and explainable k-means, and one can
observe that Kernel ExKMC and Kernel Expand mostly achieve Rand index as good as that of kernel
k-means, establishing that our methods provide both interpretable and accurate clusters. In addition,
Kernel IMM improves over k-means and IMM in recovering the ground truth.

7 CONCLUSION AND DISCUSSION

In this paper, we contribute to the increasing need for interpretable clustering methods by explaining
kernel k-means using decision trees. By operating on carefully chosen features, interpretability can
be preserved, while still allowing for approximation guarantees. We characterize the obstacles that
interpretability faces in kernel clustering, and find that interpretable feature maps play a key role.
These maps may also be useful to understand the interpretability of other kernel methods, which still
rely almost exclusively on post-hoc explainability.

On the price of explainability for kernels. We observe below that the price of explainability for
kernel k-means, as defined in Definition 4, may not be finite for arbitrary kernels.

Theorem 7 (Unbounded price of explainability). Consider either the quadratic kernel K(x, y) =
⟨x, y⟩2 or the ϵ-neighborhood kernel K(x, y) = 1[0,ϵ](∥x− y∥2). For both, there exists a dataset X
such that p(X) =∞.

The above result, proved in Appendix K, is in stark contrast to standard k-means, where IMM
always ensures a bounded price of explainability. Our experiments further show that the price of
explainability is close to 1 even in cases where the interpretable clustering model is quite different
from the reference partition. In fact, if the kernel k-means cost is Ω(n) for a dataset of size n and
the kernel is bounded, then the price of explainability is O(1). This indicates that typical metrics
should be adjusted depending on the kernel and the data. While the Rand index may be used if a
ground truth is known, a fundamental question remains unsolved: Under what conditions on the
data can a decision tree achieve a good agreement with the nonlinear partitions of kernel k-means?
Another question is whether approximation guarantees can be improved. It is very likely that specific
kernels benefit from algorithms tailored to their cost functions. Finally, investigating lower bounds
(beyond the ones a linear kernel inherits from existing results on explainable k-means) also poses an
interesting direction for future work.
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Ethics statement. While we do not expect negative societal impacts of our method, we remark that
clustering algorithms themselves can be biased, and this can translate to its interpretable approxima-
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Reproducibility. We add further details on the experiments in Appendix I. In addition, all proofs
for our theoretical results can be found in the appendix, and have been referenced in the main paper.
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A RELATED WORK ON EXPLAINABLE CLUSTERING

There are several papers that suggest improvements of the original IMM algorithm (Moshkovitz
et al., 2020). Most rely on random threshold cuts to obtain better worst-case bounds on the price
of explainability for k-means and k-medians (Makarychev & Shan, 2022; Esfandiari et al., 2022;
Makarychev & Shan, 2023). As of today, the sharpest known upper bound on the price of explainabil-
ity for k-means is O(k log log k) (Gupta et al., 2023). It is also known that the price of explainability
for k-means is Ω(k) (Gamlath et al., 2021), leaving a small gap. While the above works provide
dimension-independent guarantees, it is also known that in low dimensions, even better guarantees
can be provided (Laber & Murtinho, 2021; Charikar & Hu, 2022). A different line of research has
loosened the restriction to decision trees with k leaves, leading to both improved practical perfor-
mance (Frost et al., 2020) and better worst-case bounds on the price of explainability (Makarychev
& Shan, 2022). In addition, Laber et al. (2023) investigate shallow decision trees for explainable
clustering, while Deng et al. (2023) show that depth reduction is impossible for explainable k-means
and k-medians. There has also been some research on other cost functions such as k-centers (Laber &
Murtinho, 2021) or general ∥·∥p norms (Gamlath et al., 2021). However, to the best of our knowledge,
there has not yet been an extension to the closely related kernel k-means problem, a gap that we aim
to bridge in this work. Other works on interpretable clustering investigate polyhedral descriptions of
the clusters (Lawless & Gunluk, 2023), choose similarity-based prototypes for each cluster (Carrizosa
et al., 2022), or fit sparse oblique trees to describe the clusters (Gabidolla & Carreira-Perpiñán, 2022).

B THE KERNEL K-MEANS ALGORITHM

We first remind the reader of the following result.

Lemma 1. Let K be a kernel operating on data X ⊂ Rd. Denote ϕ for a (possibly data-dependent)
feature map of K. Let C1, . . . , Ck be a partition of X into k clusters with means c1, . . . , ck ∈ H.
Then for any x ∈ X , we have

argmin
l∈[k]

∥ϕ(x)− cl∥2 = argmin
l∈[k]

 1

|Cl|2
∑

y,z∈Cl

K(y, z)− 2

|Cl|
∑
y∈Cl

K(x, y)

 (8)

Proof. First recall the identity ∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2⟨a, b⟩ and note that for any cluster Cl, its
mean is given by

cl =
1

|Cl|
∑
x∈Cl

ϕ(x)

Expressing everything in terms of the kernel K, we see that

∥ϕ(x)− cl∥2 = K(x, x) +
1

|Cl|2
∑

y,z∈Cl

K(y, z)− 2

|Cl|
∑
y∈Cl

K(x, y)

Note that the first term does not depend on l ∈ [k].

Clearly, equation 8 allows computing distances in the feature space by simply evaluating K.
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Figure 5: The threshold cut illustrated by the
black vertical line defines a decision tree T
with 2 leaves. While some points do not end
up in the same leaf as their corresponding
center, the tree T clearly does a good job in
approximating the two clusters.

Algorithm 4 Kernel k-means

Input: Kernel K for data X ⊂ Rd, integer k ∈ N
Output: Partitioning of X into k clusters C = (C1, . . . , Ck)

Initialize the clusters C1, . . . , Ck

Converged← FALSE

while Converged = FALSE do
for x ∈ X do

Assign x to C ′
l such that l = argminj∈[k]∥ϕ(x)− cj∥2 using equation (8)

end for
if C ′

l = Cl for all l ∈ [k] then
Converged← TRUE

end if
Update C = (C ′

1, . . . , C
′
k)

end while

C ITERATIVE MISTAKE MINIMIZATION (IMM) ALGORITHM

In this section, we review the IMM algorithm (Moshkovitz et al., 2020). Consider data X ⊂ Rd

and centersM obtained from the k-means algorithm. For any x ∈ X , we denote c(x) ∈M for the
correct center according to the k-means algorithm. The algorithm constructs a decision tree T that
sequentially the input space Rd into k axis-aligned cells using threshold cuts of the form xi ≷ θ. At
every node u of the tree, IMM chooses the threshold cut that minimizes the number of mistakes. A
mistake happens if a point x that arrives at node u together with its correct cluster center c(x) ∈M,
is now separated from this center as a result of the cut. This happens when xi ≤ θ but ci(x) > θ or
vice versa. For any point x ∈ X , we denote µ(x) for the center that ends up in the same leaf of T as
x. This is not necessarily c(x), as we illustrate in Figure 5.

Let us also briefly recap the theoretical analysis of IMM for k-means, as presented by Moshkovitz
et al. (2020). For each node u of the tree T built by IMM, denote byMu the remaining set of centers
that arrive at the node. The tree T induces a partitioning Ĉ1, . . . , Ĉk. Writing t(u) for the number of
mistakes at a node u ∈ T and denoting D(u) = maxa,b∈Mu ∥a− b∥2, it holds that

cost(Ĉ1, . . . , Ĉk) ≤
k∑

l=1

∑
x∈Ĉl

∥x− µ(x)∥2

≤
k∑

l=1

∑
x∈Ĉl

(
2∥x− c(x)∥2 + 2∥c(x)− µ(x)∥2

)
≤ 2 · cost(C1, . . . , Ck) + 2

∑
u∈T

t(u)D(u)

(9)
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The main argument in IMM is now given by the following result.

Lemma 2. Let u ∈ T be any node of the IMM decision tree T . Denote Xu
cor for the subset of points

x that arrive at u together with their correct center c(x).

1. For any i ∈ [d], it holds that

t(u) · max
a,b∈Mu

(ai − bi)2 ≤ 4k ·
∑

x∈Xu
cor

(xi − ci(x))2 (10)

2. This directly implies

t(u)D(u) ≤ 4k ·
∑

x∈Xu
cor

∥xi − ci(x)∥2 (11)

The proof of the first statement is based on the observation that along every axis i ∈ [d], and for
any threshold cut halfway between two centers a, b ∈Mu (projected to the i-th axis), at least t(u)
mistakes are made, by definition of t(u). The second statement then directly follows from the first
by summing over all d coordinates. Together with Equation 9 and the fact that the maximum depth
of the IMM tree is k, Lemma 2 yields O(k2) bounds on the price of explainability. Let us use this
opportunity to point out two things.

• Since only threshold cuts halfway between two projected centers are considered in the proof
of Lemma 2, the algorithm actually preserves worst-case bounds even when we only check
the number of mistakes along these O(dk) threshold cuts, instead of along all possible
O(dn) cuts. In other words, the IMM algorithm (as well as our kernelized version) can be
run in data-independent time.

• The IMM algorithm is essentially a supervised learning algorithm, recreating a partition
C1, . . . , Ck no matter how optimal it may be. This observation is crucial when we analyze
Kernel IMM on our surrogate features (with respect to a surrogate kernel), for which the
reference clustering may not even be close to the optimal partition with respect to this
surrogate kernel.

D PROOFS FROM SECTION 3

D.1 PROOF OF THEOREM 1

Theorem. (The Gaussian kernel cannot have interpretable feature maps) Consider the Gaussian
kernel in d > 1 dimensions. There exists a dataset X such that for any feature map ϕ : X → RD

satisfying ⟨ϕ(x), ϕ(y)⟩ = K(x, y) for all x, y ∈ X , there exists some j ∈ [D] such that ϕj depends
on more than just one input dimension of x ∈ X .

Proof. We present a simple dataset X such that no feature map for the Gaussian kernel K(x, y) =
exp(−γ∥x− y∥2) can depend only on one input coordinate in each of its elements ϕ1, . . . , ϕD, no
matter how large D may be. Consider three vectors in R2, given by

x(1) =

(
0
0

)
, x(2) =

(
1
0

)
, x(3) =

(
1
1

)
For sufficiently large γ > 0, we know that K1,2 +K2,3 < 1. Assume there exists some interpretable
feature map ϕ : X → RD. Then, we can write ϕ(x) = (f(x), g(x)), where f(x) is a function of x1
and g(x) is a function of x2. By our choice of points, we may write

ϕ(x(1)) = (a, b)

ϕ(x(2)) = (c, b)

ϕ(x(3)) = (c, d)
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for some vectors a, b, c, d. This implies

K1,3 = aT c+ bT d

= aT c+ ∥b∥2 +
(
bT d− ∥b∥2

)
= K1,2 +

(
bT d+ ∥c∥2 − 1

)
= K1,2 +K2,3 − 1

< 0

a contradiction to K1,3 ≥ 0. For other γ > 0, simply rescale the data accordingly.

D.2 PROOF OF THEOREM 2

Theorem. Consider the one-dimensional Gaussian kernel K(x, y) = exp(−|x− y|2). Then, there
exists a dataset X ⊂ R such that for any feature map ϕ = (ϕj)

D
j=1 there exists a component ϕj that

is not monotonic.

Proof. Consider the Gaussian kernel K(x, y) = exp
(
−(x− y)2

)
on R. Choose a dataset X =

{x(1), x(2), x(3)} with x(1) < x(2) < x(3) and corresponding kernel matrix K satisfying

K1,2 +K2,3 <K1,3 + 1

This is surely the case when the points are at a sufficiently large distance. Now assume there
exists a feature map ϕ : X → RD, ϕ(x(i)) = (vi, wi) where (vi) is non-decreasing and (wi) is
non-increasing for i = 1, 2, 3. In other words, we assume there exist two vectors v1, w1 as well as
non-negative vectors ϵ1, ϵ2, ϵ3, δ1, δ2, δ3 such that, writing

Φ =

(
v1 v1 + ϵ1 v1 + ϵ1 + ϵ2
w1 w1 − δ1 w1 − δ1 − δ2

)
=

(
v1 v1 + ϵ1 v1 + ϵ3
w1 w1 − δ1 w1 − δ3

)
it holds that ΦTΦ = K. This condition gives rise to

vT1 v1 + wT
1 w1 = 1

(v1 + ϵ1)
T (v1 + ϵ1) + (w1 − δ1)T (w1 − δ1) = 1

vT1 (v1 + ϵ1) + wT
1 (w1 − δ1) = K1,2

which implies

vT1 ϵ1 − wT
1 δ1 = K1,2 − 1

and hence

∥ϵ1∥2 + ∥δ1∥2 = 2− 2K1,2

Using the same arguments for the two other pairs of points from X , we derive in the same way

∥ϵ2∥2 + ∥δ2∥2 = 2− 2K2,3

∥ϵ3∥2 + ∥δ3∥2 = 2− 2K1,3

Since ϵ3 = ϵ1 + ϵ2 and δ3 = δ1 + δ2, this implies

∥ϵ1∥2 + ∥ϵ2∥2 + 2ϵT1 ϵ2 + ∥δ1∥2 + ∥δ2∥2 + 2δT1 δ2 = 2− 2K1,3

However, this is equivalent to

2− 2K1,2 + 2− 2K2,3 + 2
(
ϵT1 ϵ2 + δT1 δ2

)
= 2− 2K1,3 ⇐⇒

0 < ϵT1 ϵ2 + δT1 δ2 = K1,2 +K2,3 − 1−K1,3 < 0

a contradiction.
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E DECOUPLING DIMENSIONS FOR BOUNDED PRODUCT KERNELS

In this section, we prove that decoupling the input dimensions of bounded product kernels introduces
errors no larger than O(d). Recall that our surrogate feature map is given by

ϕ(x) = (ϕi(x))
d
i=1

where each ϕi is a valid feature map for the one-dimensional kernel Ki. This surrogate feature map
itself is associated with a surrogate additive kernel:

⟨ϕ(x), ϕ(y)⟩ =
d∑

i=1

⟨ϕi(x), ϕi(y)⟩ =
d∑

i=1

Ki(x, y) ̸= K(x, y)

Of course, it is not clear that running IMM with respect to this surrogate kernel is actually sensible
and not only ensures interpretability, but also preserves worst-case bounds. The justification is given
in the following Lemma.

Lemma 3. Let X ⊂ Rd be a dataset, partitioned into k clusters C1, . . . , Ck. Denote by
cost(C1, . . . , Ck) the kernel k-means cost function associated with a distance-based product kernel
K on Rd, and by costi the cost with respect to the feature map ϕi. Then

cost(C1, . . . , Ck) ≤
d∑

i=1

costi(C1, . . . , Ck) ≤ d · cost(C1, . . . , Ck)

Proof. First, use the GM-AM inequality and the fact that Ki(x, y) ≤ 1 to obtain

K(x, y) =

d∏
i=1

Ki(x, y) ≤

(
d∏

i=1

Ki(x, y)

)1/d

≤ 1

d

d∑
i=1

Ki(x, y)

Thus, rewriting the kernel k-means cost function, we see that

cost(C1, . . . , Ck) = |X| −
k∑

l=1

1

|Cl|
∑

x,y∈Cl

K(x, y)

≥ |X| −
k∑

l=1

1

|Cl|
∑

x,y∈Cl

1

d

d∑
i=1

Ki(x, y)

=
1

d

d∑
i=1

|X| − k∑
l=1

1

|Cl|
∑

x,y∈Cl

Ki(x, y)


=

1

d

d∑
i=1

costl(C1, . . . , Ck)

This implies the upper bound from Lemma 3. For the lower bound, note that for any x, y ∈ Rd

∥ϕ(x)− ϕ(y)∥2 = 2 (1−K(x, y))

= 2

(
1−

d∏
i=1

Ki(x, y)

)

≤ 2

(
d∑

i=1

(1−Ki(x, y))

)

=

d∑
i=1

∥ϕi(x)− ϕi(y)∥2
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where we use the fact that |
∏d

i=1 ai −
∏d

i=1 bi| ≤ |
∑

i=1 ai − bi| for any |ai|, |bi| ≤ 1. Rewriting
the kernel k-means cost to make use of this observation, we arrive at

cost(C1, . . . , Ck) =

k∑
l=1

1

2|Cl|
∑

x,y∈Cl

∥ϕ(x)− ϕ(y)∥2

≤
d∑

i=1

k∑
l=1

1

2|Cl|
∑

x,y∈Cl

∥ϕi(x)− ϕi(y)∥2

=

d∑
i=1

costi(C1, . . . , Ck)

F INTERPRETABLE TAYLOR KERNELS

F.1 PROOF OF THEOREM 3

Theorem. (Threshold cuts in the surrogate feature space of interpretable Taylor kernels yield
interpretable decision trees) Let K be product of interpretable Taylor kernels, and let ϕ denote its
surrogate feature map. Then, a threshold cut of the form ϕi,j(xi) ≷ θ leads to an interpretable
decision tree in Rd.

Proof. Recall our notion of surrogate features for interpretable Taylor kernels: For all i ∈ [d] and
x ∈ X , we define

ϕi(x) =

f(xi)xji
√
g(j)(0)

j!

M

j=0

and refer to the concatenation ϕ(x) = (ϕi(x))
d
i=1 as the surrogate feature map of order M . Note that

ϕ′i,j(x) ∝ x
j−1
i (f ′(xi)xi + jf(xi)). For interpretable Taylor kernels, this expression is zero for at

most one point x in the domain of the kernel. Thus, when we run IMM on these surrogate features,
the threshold cuts ϕi,j(x) ≷ θ can be translated to interpretable decision trees in the input space.

F.2 PROOF OF THEOREM 4

Theorem. Let C1, . . . , Ck be the clusters of a dataset X ⊂ Rd derived from kernel k-means,
where the kernel K is an interpretable Taylor kernel. Denote by Φ = ϕ(X) the surrogate features
for K on X . Then, the interpretable decision tree obtained from Kernel IMM on Φ satisfies
p(T,X) = O

(
dk2
)
+ O(dk2δ)

costopt(X) , where δ = δ(M) depends on the order M of the surrogate
feature map and limM→∞ δ(M) = 0 for any dataset X . Thus, by adaptively choosing M such that
δ = O(costopt), we obtain O(dk2) bounds.

Proof. We begin by noting that for all i ∈ [d] and x, y ∈ X , and any integer M , Taylor’s formula
ensures that

|Ki(x, y)− ⟨ϕi(x), ϕi(y)⟩| = f(xi)f(yi) ·

∣∣∣∣∣∣
∞∑

j=M

g(j)(0)

j!
(xiyi)

j

∣∣∣∣∣∣
≤
(
max
x∈X
|f(xi)|2

)
·
∥g(j)∥∞([0,xiyi])(xiyi)

M

M !

Since g is assumed to be analytic, limM→∞⟨ϕi(x), ϕi(y)⟩ = Ki(x, y) for all x, y. Thus, the
surrogate features ϕi approximate the one-dimensional kernels Ki within some δ > 0 that vanishes
as M → ∞. Now, fix a dataset X and let Ĉ1, . . . Ĉk be the interpretable clusters chosen by IMM
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on the surrogate features ϕ. Denote by C1, . . . , Ck the reference clusters obtained from unrestricted
kernel k-means with respect to the original, interpretable Taylor kernel K. Denote by cost the
kernel k-means cost with respect to the product kernel K, by costi the costs with respect to the
univariate kernels Ki, and by c̃osti the cost with respect to the approximate kernel implicitly defined
by virtue of the surrogate feature maps ϕi. Using Lemma 3 from Appendix E and keeping track of
the approximation error, we obtain

cost(Ĉ1, . . . , Ĉk) ≤
d∑

i=1

costi(Ĉ1, . . . , Ĉk)

≤
d∑

i=1

(
c̃osti(Ĉ1, . . . , Ĉk) +O(δ)

)
≤ O(dδ) +

d∑
i=1

(
O(k2) · c̃osti(C1, . . . , Ck)

)
≤ O(dδ) +

d∑
i=1

O(k2) (costi(C1, . . . , Ck) +O(δ))

= O(dk2δ) +

d∑
i=1

O(k2) · costi(C1, . . . , Ck)

≤ O(dk2) · cost(C1, . . . , Ck) +O(dk2δ)

G DISTANCE-BASED PRODUCT KERNELS

Consider a distance-based product kernel K(x, y) =
∏d

i=1 h(|xi − yi|) on Rd. As pointed out in
the main paper, we may define surrogate features via ϕi,j(x) = Ki(x, x

(j)) were x(j) denotes the
jth point in the dataset X . While these features lead to interpretable decision trees, they do not
define features that approximate the one-dimensional kernel: For all i ∈ [d], it must be noted that
⟨ϕi(x), ϕi(y)⟩ ≠ Ki(x, y) under the standard Euclidean inner product. Of course, if we equip Rn

with a new inner product given by ⟨ϕi(x), ϕi(y)⟩ = ϕi(x)
TK−1

i ϕi(y), then our surrogate features
remain valid features for the one-dimensional kernels Ki. Consequently, when setting ϕ = (ϕi)

d
i=1,

we actually map to a space V in which the inner product is given by ⟨u, v⟩ =
∑d

i=1 u
T
i K

−1
i vi.

Running explainable clustering algorithms such as IMM in this space is possible, it however introduces
additional constants that depend on the kernel matrices Ki.
Theorem. Let C1, . . . , Ck be the clusters of a dataset X ⊂ Rd derived from kernel k-means, where
the kernel K is a distance-based product kernel. Denote by Φ = ϕ(X) the surrogate features for K
on X , where ϕi,j(x) = Ki(x, x

(j)). Then, the interpretable decision tree obtained from Kernel IMM
on Φ satisfies p(T,X) = O

(
Cdk2

)
, where C depends on the dataset X and the kernel K.

Proof. To prove Theorem 5 we adopt the general proof strategy from IMM and again decouple
dimensions as discussed in Appendix E. Again, costi denotes the cost with respect to each one-
dimensional kernel Ki.

cost(Ĉ1, . . . , Ĉk) ≤
d∑

i=1

costi(Ĉ1, . . . , Ĉk)

=

k∑
l=1

∑
x∈Ĉl

∥ϕ(x)− µ(x)∥2V

≤ 2 · costV(C1, . . . , Ck) + 2
∑
u∈T

t(u)D(u)

(12)
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Now, we would in principle like to use Lemma 2. However, the space V in which Kernel IMM runs
is equipped with the non-Euclidean inner product. Thus, the second part (11) of Lemma 2 no longer
follows from the first (10). Instead, we arrive at

t(u)D(u) := t(u) · max
a,b∈Mu

∥a− b∥2V

= t(u) · max
a,b∈Mu

d∑
i=1

(ai − bi)TK−1
i (ai − bi)

≤ κ1 · t(u) · max
a,b∈Mu

(a− b)T (a− b)

≤ 4κ1 · k
∑

x∈Xu
cor

(ϕ(x)− c(x))T (ϕ(x)− c(x))

≤ 4κ1κ2 · k
∑

x∈Xu
cor

∥ϕ(x)− c(x)∥2V

where we use the first part of Lemma 2 in the second inequality. The constants κ1, κ2 are given by

κ1 = max
a,b∈Mu

∑d
i=1(ai − bi)TK

−1
i (ai − bi)∑d

i=1(ai − bi)T (ai − bi)

κ2 = max
x∈X

∑d
i=1(ϕi(x)− ci(x))T (ϕi(x)− ci(x))∑d

i=1(ϕi(x)− ci(x))TK
−1
i (ϕi(x)− ci(x))

and depend on the data.

H KERNEL IMM FOR ADDITIVE KERNELS

Additive kernels are of the form K(x, y) =
∑d

i=1Ki(x, y) where every individual Ki is a kernel
on a suitable subset of R, often the positive real line. Feature maps of additive kernels K can be
written as the concatenation of the univariate feature maps associated with each kernel Ki. If these
univariate — and hence interpretable — maps consist of functions that have at most one change
of slope, threshold cuts with respect to the feature map lead directly to interpretable decision trees.
Conveniently, this is the case for several important additive kernels.

• Consider Hellinger’s kernel K(x, y) =
∑d

i=1

√
xiyi on a dataset X ⊂ [0,∞)d. Then K

admits the simple interpretable (and monotonic) feature map ϕ(x) = (
√
x1, . . . ,

√
xd).

• Let K(x, y) =
∑d

i=1 min
(
xβi , y

β
i

)
be the generalized histogram intersection kernel, for

some parameter β > 0. For any dataset X ⊂ [0,∞)d, there again exists a feature map that
yields interpretable decision trees: Given a feature i ∈ [d], denote by z1 < · · · < zmi the
mi unique values in the set {xβi | x ∈ X}. For every component j ∈ [mi], let

ϕi,j(x) =


√
zj − zj−1 , if j ≥ 2 and xβi ≥ zj√
zj , if j = 1

0 , else
(13)

Then the concatenation ϕ = (ϕi,j)i∈[d],j∈[mi] is composed of monotone functions. More-
over, it is straightforward to verify that for all x, y ∈ X it holds thatK(x, y) = ⟨ϕ(x), ϕ(y)⟩.
Thus, ϕ is a valid feature map.
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• As a third example, consider the additive χ2 kernel K(x, y) =
∑d

i=1
2xiyi

xi+yi
on a dataset

X ⊂ (0,∞)d. Given some M ∈ N, the kernel K can be approximated from

K(x, y) =

d∑
i=1

2xiyi ·
∫ 1

0

txi+yi−1dt

=

d∑
i=1

∫ 1

0

√
2/t · xitxi ·

√
2/t · yityidt

≈
d∑

i=1

1

M

M∑
j=1

√
2M/j · xi

(
j

M

)xi

·
√
2M/j · yi

(
j

M

)yi

(14)

We conclude that the concatenation of all functions

ϕi,j(x) =

√
2

j
· xi
(
j

M

)xi

defines an approximate feature map for K. Since each ϕi,j is strictly increasing for xi <
1/ log(M/j), and strictly decreasing for xi > 1/ log(M/j), they give rise to a feature map
for which threshold cuts lead to interpretable decision trees. For normalized histograms we
find that even low values of M ≤ 5 induce the same partitions as the additive χ2 kernel, and
hence O(k2) bounds are preserved when running (Kernel) IMM with respect to the kernel
induced by the map ϕ.

I EXPERIMENTS

Let us now give some details on the experiments. Our code is available on GitHub.

Main experiments for Kernel IMM. We first verify the approximation properties of our proposed
methods on the synthetic datasets “Pathbased”, “Aggregation” and “Flame” (Fränti & Sieranoja)
which have k = 3, k = 7 and k = 2 clusters respectively. We start with linear k-means and IMM on
all three, and then run kernel k-means with both the Laplace as well as the Gaussian kernel over a
range of hyperparameters γ, choosing the best agreement with the ground truth as our starting point
for Kernel IMM. When the Gaussian kernel is chosen, we run Kernel IMM both on the surrogate
Taylor features from Definition 3 withM = 5, as well as on the surrogate features based on the kernel
matrix, as defined in Equation (4), and choose the better one. We then refine the partition induced
by Kernel IMM using both Kernel ExKMC as well as Kernel Expand, constructing m = 6, m = 10
and m = 4 leaves respectively. Note that at every step, Kernel ExKMC and Kernel Expand only
need to check the cost of the threshold cuts at the new nodes (obtained from the previous iteration).
Thus, adding m leaves to an existing tree with p leaves amounts to p+2m iterations over all possible
threshold cuts.

We follow the same procedure for the two real world datasets. In Iris (Fisher, 1936), there are three
classes with 50 observations each. Every class refers to a type of iris plant. As illustrated in the
barplot included in Section 6, kernel k-means slightly improves over k-means and this translates to
Kernel IMM, Kernel ExKMC and Kernel Expand. The Wisconsin breast cancer dataset consists of
569 observations of benign and malignant cells. The 30-dimensional features describe characteristics
of the cell nuclei observed in each image. Interestingly, IMM exactly replicates its suboptimal
reference k-means clustering. Kernel k-means better identifies the ground truth, and Kernel IMM
approximates it well (even achieving a slightly higher agreement with the ground truth). The same is
true for Kernel ExKMC and Kernel Expand.

Kernel IMM for the χ2 kernel. The additive χ2 kernel is evaluated on a toy dataset obtained from
a mixture model of four discrete distributions, with values in four bins. Figure 6 shows a plot of the
different distributions. For all four distribution, we draw 5 instances of 100 random samples, and
compute the fraction of observations in each bin for every instance (thus n = 20 and d = 4). We
repeat this procedure 100 times. We find that the χ2 kernel achieves a Rand index that is consistently
higher than the one of k-means (see Figure 6). This is not very surprising: The denominator of the
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Figure 6: We cluster samples drawn from a mixture model of four discrete distributions by checking
the fraction of observations in each of four bins. The true underlying probabilities are shown in the
left plot. Over 100 draws of samples, the χ2 kernel improves over standard k-means in recovering
the ground truth, as the boxplot on the right shows.

χ2 kernel accounts for the overall number of observations in each bin, penalizing deviations in less
probable bins more than in frequently visited bins — a nonlinear characteristic that standard k-means
lacks.

To provide some more intuition on how Kernel IMM constructs interpretable decision trees, let us now
give some additional details for the χ2 kernel. Having drawn 5 instances (containing 100 samples)
for each distribution, we compute the class probabilities for the four bins and cluster using kernel
k-means. We then map to a higher-dimensional feature space using the features derived for the χ2

kernel (see Appendix H). We choose M = 5 features for every dimension, and hence operate in a
D =Md = 20-dimensional space. Assuming the first threshold cut is chosen along the first axis in
the feature space, Kernel IMM provides us with some θ such that we cut at

ϕ1,1(x) ≤ θ ⇐⇒
√
2x1

(
1

5

)x1

≤ θ ⇐⇒ x1
5x1
≤ θ√

2

All we are now left with is identifying which values of x1 satisfy the above inequality, and which do
not. Equivalently, we can represent this as an interval (or its complement) in the sample space.

Comparison with CART. Standard decision tree algorithms such as CART also perform well in
our experiments. CART achieves a price of explainability very close to the one that Kernel IMM
attains (despite it being known that no approximation results exist for CART in the standard k-means
setting). We show a comparison of the results in Table 2. For the Wisconsin breast cancer dataset,
CART even improves over unconstrained kernel k-means (which has, in this case, not found the
optimal partition).

Table 2: Comparison of price of explainability (PoE) between CART with one-sided cuts and k
leaves, and Kernel IMM.

Dataset Kernel PoE (Kernel IMM) PoE (CART)

Pathbased Gaussian 1.06645 1.07004
Aggregation Laplace 1.00125 1.00125
Flame Gaussian 1.02256 1.02732
Iris Laplace 1.00502 1.00502
Cancer Gaussian 1.00179 0.99330
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J EXKMC ON AN EMPTY TREE ADMITS NO WORST-CASE GUARANTEES
(THEOREM 6)

Theorem. (ExKMC admits no worst-case bounds) For any m ∈ N there exists a data set X ⊂ R
such that the price of explainability on X is p(X) = 1, IMM attain this minimum, but ExKMC
(initialized on an empty tree) constructs a decision tree T with p(T,X) ≥ m.

Proof. Consider a dataset X of size n in R, consisting of three clusters with centers given by
c1 = −1, c2 = 0, c3 = 1. Assume all points of each cluster Ci lie at a distance of exactly ϵ from the
center ci, half of them at ci − ϵ and half of them at ci + ϵ. The optimal k-means cost is then given by

costopt = nϵ2

At the first iteration of ExKMC, suppose it chooses some cut that does not separate points belonging
to the same cluster. We may then assume that w.lo.g. (i, θ) = (1, 0.5), which implies cR = c3 and
w.l.o.g. cL = c1. Thus, the total cost of this cut is

f(i, θ) =
2n

3
ϵ2 +

∑
x∈C2

∥x− c1∥2

=
2n

3
ϵ2 +

n

6
(1− ϵ)2 + n

6
(1 + ϵ)2

This cost can be improved upon when ExKMC cuts along (i, θ) = (1, 0), choosing c1 = cL, c3 = cR,
leading to a cost of

f(i, θ) =
2n

3
ϵ2 +

n

3
(1− ϵ)2

Since ExKMC can now only add one more leaf, it inevitably separates at least n
6 points from their

correct cluster center. Thus, there exists a leaf for which 2n
6 ·

n
3 = n2

9 pairs of points are at distance
of at least 1− 2ϵ, and the final cost of the associated decision tree T is hence

cost(T ) ≥ nϵ2

2
+

1

n
· 2n

2(1− 2ϵ)2

9
=
nϵ2

2
+

2n(1− 2ϵ)2

9

The price of explainability of T is given by

p(T,X) ≥ nϵ2

2nϵ2
+

2(1− 2ϵ)2

9ϵ2

Thus, as ϵ → 0, we see that ExKMC gives rise to decision trees with an arbitrarily large price of
explainability p(T,X) ≥ m. Note that IMM recreates the optimal partition perfectly, since it is
possible to split clusters without making any mistakes. Thus p(X) = 1. Clearly, the fact that ExKMC
restricts our choice of centers to the set of reference centers limits its performance.

K THE PRICE OF EXPLAINABILITY CAN BE INFINITE FOR KERNEL
CLUSTERING (THEOREM 7)

The price of explainability, as defined in Definition 4, may not be finite for all kernels.

Proposition 1. (Unbounded price for the quadratic kernel) Let K(x, y) = ⟨x, y⟩2. Then, there exists
a dataset X ⊂ R2 such that p(X) =∞.

Proof. Let x = (0, 1), y = (0,−1), z = (1, 0), w = (−1, 0) ∈ R2. Consider the quadratic kernel
K(s, t) = (⟨s, t⟩)2 operating on X = {x, y, z, w}. Then quadratic kernel 2-means achieves a cost
of zero by partitioning X into the two clusters C1 = {x, y}, C2 = {z, w}, since K(s, t) = 1 for all
s, t ∈ X from the same cluster. However, no interpretable decision tree can reproduce this partitioning
of X . Every decision tree T with two leaves assigns one pair of points (s, t) from different clusters
to the same leaf. Since K(s, t) = 0 for this pair, cost(T ) > 0 and thus p(X) =∞.
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This may not come as a surprise considering the special geometry of the quadratic kernel. However,
the following result demonstrates that even distance-based kernels can lead to similar problems. For
this, we consider the ϵ-neighborhood kernel K(x, y) = 1(∥x− y∥ < ϵ). While K is not a positive
definite kernel (its kernel matrix may have eigenvalues), it is commonly used in spectral and kernel
clustering nonetheless.
Proposition 2. (Unbounded price for the ϵ-neighborhood kernel) Let ϵ > 0 and let K(x, y) =
1(∥x− y∥ ≤ ϵ). Then, there exists a dataset X such that p(X) =∞.

Proof. For four points x(1), . . . , x(4), there are exactly d′ = 6 ways of assigning to two of them the
value 0, and to the two others the value 1. Similarly, for four other points x(5), . . . , x(8), there are
exactly d′ = 6 ways of assigning to two of them the value 0, and to the two others the value −1.
There are d = (d′)2 = 36 possible combinations of all these assignments. We define a d-dimensional
cluster C1 by concatenating all of the combinations for each of the points x(1) . . . , x(4). Thus, every
x ∈ C1 is a vector in {0, 1}d. Similarly, define C2 by concatenating all of the combinations for each
of the points x(5), . . . , x(8). Thus, the vectors y ∈ C2 are ∈ {0,−1}d. Note that for any x, x′ ∈ C1,
they agree in exactly d/3 dimensions but differ by 1 everywhere else. Thus ∥x−x′∥2 = 24. The same
holds for any pair y, y′ ∈ C2. However, for any pair x ∈ C1, y ∈ C2 from different clusters, they
agree on d/4 = 9 dimensions, but are separated by 1 along d/2 = 18 dimensions and are separated
by 2 elsewhere. Thus, their distance is ∥x− y∥2 = 18 + 36 = 54. By choosing the ϵ-neighborhood
kernel with ϵ =

√
24, we see that K(x, x′) = K(y, y′) = 1 for all x, x′ ∈ C1, y, y

′ ∈ C2. This
implies an optimal kernel k-means cost of zero. However, any threshold cut along any one of the
d dimensions will assign at least one pair (x, y) from distinct clusters to the same leaf, implying
K(x, y) = 0. Thus, the kernel k-means cost for this explainable partition is strictly positive. This
proves p(X) = ∞. To produce the same result for other values of ϵ > 0, simply rescale the data
accordingly.
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