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ABSTRACT

Global pooling is one of the most significant operations in many machine learning
models and tasks, whose implementation, however, is often empirical in practice.
In this study, we develop a novel and solid global pooling framework through
the lens of optimal transport. We demonstrate that most existing global pooling
methods are equivalent to solving some specializations of an unbalanced optimal
transport (UOT) problem. Making the parameters of the UOT problem learnable,
we unify various global pooling methods in the same framework, and accord-
ingly, propose a generalized global pooling layer called UOT-Pooling (UOTP)
for neural networks. Besides implementing the UOTP layer based on the clas-
sic Sinkhorn-scaling algorithm, we design new model architectures based on the
Bregman ADMM algorithm, which has comparable complexity but better numer-
ical stability. We test our UOTP layers in several application scenarios, including
multi-instance learning, graph classification, and image classification. In these ap-
plications, our UOTP layers can either imitate conventional global pooling layers
or learn new pooling mechanisms to perform better.

1 INTRODUCTION

As an essential operation of information fusion, global pooling aims to achieve a global representa-
tion for a set of inputs and make the representation invariant to the permutation of the inputs. This
operation has been widely used in many machine learning models. For example, we often leverage
a global pooling operation to aggregate multiple instances into a bag-level representation in multi-
instance learning tasks (Ilse et al.| 2018} |Yan et al., |2018)). Another example is graph embedding.
Graph neural networks apply various pooling layers to merge node embeddings into a global graph
embedding (Ying et al.,|2018; Xu et al.,[2018). Besides these two cases, global pooling is also nec-
essary for convolutional neural networks (Krizhevsky et al.| 2012} He et al., 2016). Therefore, the
design of global pooling operation is a fundamental problem for many applications.

Nowadays, simple global pooling operations like mean-pooling (or called average-pooling) and
max-pooling (Boureau et al.| [2010) are commonly used because of their computational efficiency.
The mixture and the concatenation of these simple operations are also considered to improve
their performance (Lee et al., |2016). Recently, many pooling methods, e.g., Network-in-Network
(NIN) (Lin et al., 2013)), Set2Set (Vinyals et al.| 2015), DeepSet (Zaheer et al.l 2017), attention-
pooling (Ilse et al., [2018), and SetTransformer (Lee et al., [2019a)), are developed with learnable
parameters and more sophisticated mechanisms. Although the above pooling methods work well
in many scenarios, their theoretical study is far lagged-behind — the principles of the methods
are not well-interpreted, whose rationality and effectiveness are not supported in theory. Without
insightful theoretical guidance, the design and the selection of global pooling are empirical and
time-consuming, often leading to suboptimal performance in practice.

In this study, we propose a novel algorithmic global pooling framework to unify and generalize
many existing global pooling operations through the lens of optimal transport. As illustrated in
Figure [I(a)] we revisit a pooling operation from the viewpoint of optimization, formulating it as
optimizing the joint distribution of sample index and feature dimension for weighting and averag-
ing representative “sample-feature” pairs. From the viewpoint of statistical signal processing, this
framework achieves global pooling based on the expectation-maximization principle. We show that
the proposed optimization problem corresponds to an unbalanced optimal transport (UOT) problem.
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Figure 1: (a) An illustration of the proposed UOTP layer. (b) The BADMM-based UOTP layer (left)
and a single BADMM module (right). The input, model parameters, and intermediate variables are
labeled in red, blue, and black. More details are shown in Section[3.1]and Appendix

Moreover, we demonstrate that most existing global pooling operations are specializations of the
UOT problem under different parameter configurations.

By making the parameters of the UOT problem learnable, we design a new generalized global pool-
ing layer for neural networks, called UOT-Pooling (or UOTP for short). Its forward computation
corresponds to solving the UOT problem, while the backpropagation step updates the parameters
of the problem. Besides implementing the UOTP layer based on the well-known Sinkhorn-scaling
algorithm (Cuturi, 2013 |[Pham et al., 2020)), we design a new model architecture based on the Breg-
man alternating direction method of multipliers (Bregman ADMM, or BADMM for short) (Wang
& Banerjeel [2014; [Xul, 2020), as shown in Figure @} Each implementation unrolls the iterative
optimization steps of the UOT problem, whose complexity and stability are analyzed quantitatively.
In summary, the contributions of our work include three folds.

Modeling. To our knowledge, we make the first attempt to propose a unified global pooling frame-
work from the viewpoint of computational optimal transport. The proposed UOTP layer owns the
permutation-invariance property and can cover typical global pooing methods.

Algorithm. We propose a Bregman ADMM algorithm to solve the UOT problem and implement a
UOTP layer based on it. Compared to the UOTP implemented based on the Sinkhorn-scaling algo-
rithm, our BADMM-based UOTP layer owns better numerical stability and learning performance.

Application. We test our UOTP layer in multi-instance learning, graph classification, and image
classification. In most situations, our UOTP layers either are comparable to conventional pooling
methods or outperform them, and thus simplify the design and selection of global pooling.

2 PROPOSED UOT-POOLING FRAMEWORK

2.1 A GENERALIZED FORMULATION OF GLOBAL POOLING OPERATIONS

Denote Xp = {X € RPXN|N € N} as the space of sample sets. Each X = [z1, ...,zy] € RP*N
contains N D-dimensional feature vectors. A global pooling operation f : Xp — R maps each
set to a single vector and ensures the output is permutation-invariant, i.e., f(X) = f(X,) for
X, X € Xp, where X = [x,(1),..., Lr(n)] and 7 is an arbitrary permutation. Following the
work in (Gulcehre et al., [2014; [L1 et al., [2020; Ko et al., 2021), we assume the input data X to
be nonnegative. Note that, this assumption is reasonable in general because the input data is often
processed by nonnegative activations, like ReLU, sigmoid, and so on. For some pooling methods,
e.g., the max-pooling shown below, the nonnegativeness is even necessary.

Typically, the widely-used mean-pooling takes the average of the input vectors as its output, :.e.,
f(X) = % 22[21 x,. Another popular pooling operation, max-pooling, concatenates the maxi-
mum of each dimension as its output, i.e., f(X) = ||2_, max, {z4n}Y_,, where 24, is the d-th
element of x,, and “||” represents the concatenation operator. The attention-pooling in (Ilse et al.,
2018) derives a vector on the (N — 1)-Simplex from the input X and outputs the weighted summa-
tion of the input vectors, i.e., f(X) = Xax and ax = softmax(w”tanh(V X))T € AN-1,
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For each X, its element x4, corresponds to a “sample-feature” pair. Essentially, the above global
pooling operations would like to predict the significance of such pairs and output their weighted
column-wise average. In particular, denote P = [pg,,] € [0, 1]P>*¥ as the joint distribution of the
sample index and the feature dimension. We obtain a generalized formulation of global pooling:

F(X) = (X ®diag " (P1x)P)1x = || Enmpnya [Zans (1)
—_— ——
P=[p, 4]

where © is the Hadamard product, diag(-) converts a vector to a diagonal matrix, and 1y represents
the N-dimensional all-one vector. P1y = p is the marginal distribution of P corresponding to
feature dimensions. diag~'(p)P = P = [p,|4] normalizes the rows of P, and the d-th row leads
to the distribution of sample indexes conditioned on the d-th feature dimension. Therefore, we can
interpret (1)) as calculating and concatenating the conditional expectation of z4,,’s ford =1, ..., D.

Different pooling operations derive P based on different weighting mechanisms. Mean-pooling
treats each element evenly, and thus, P = [5+]. Max-pooling sets P € {0, 5}”*" and p4,, = 5

if and only if n = argmax,, {4} _;. Attention-pooling derives P as a learnable rank-one

matrix, 7.e., P = %1 Da%. All these operations set the marginal distribution p = P1y to be

uniform, i.e., p = [%} while let the other marginal distribution g = P71, unconstrained.

2.2  GLOBAL POOLING VIA SOLVING UNBALANCED OPTIMAL TRANSPORT PROBLEM

The above analysis implies that we can unify typical pooling operations in an interpretable algo-
rithmic framework, in which all these operations aim at deriving the joint distribution P. From
the viewpoint of statistical signal processing (Turinl [1960), the input signal X is modulated by
P. To keep the modulated signal as informative as possible, many systems, e.g., antenna arrays in
telecommunication systems, keep or enlarge its expected amplitude. Following this “expectation-
maximization” principle, we learn P to maximize the expectation in (I):

D
P = arg maXPGH(p,q) E d=1 pdEann‘d[l‘dn] = arg maXPGH(p,q) IE’(d,n)NP[xdn]y (2)
= —_——

(X,P)

where (-, -) represents the inner product of matrices. p € AP~! and ¢ € AN~ are the distri-
bution of feature dimension and that of sample index, respectively, which determine the marginal
distributions of P, i.e., P € II(p,q) = {P > 0|P1y = p, PT1p = q}.

Through (2)), we have connected the global pooling problem to computational optimal transport —
is an optimal transport problem (Villani, |2008), which learns the optimal joint distribution P* to
maximize the expectation of z4,,. Plugging P* into (I)) leads to a global pooling result of X. Note
that, achieving global pooling merely based on (2)) often suffers from some limitations in practice.
Firstly, solving (2) is time-consuming and always leads to sparse solutions because it is a constrained
linear programming problem. A sparse P* tends to filter out some weak but possibly-informative
values in X, which may do harm to downstream tasks. Secondly, solving (2) requires us to know
the marginal distributions p and q in advance, which is either infeasible or too strict in practice.

To make the framework feasible in practice, we improve the smoothness of P* and introduce two
prior distributions (¢.e., pg and gg) to regularize the marginals of P*, which leads to the following
unbalanced optimal transport (UOT) problem (Benamou et al., 2015; Pham et al., 2020):

P (X;0) = arg minp(—X, P) + aoR(P) 4+ a1 KL(P1x/|po) + a2KL(P71p|qo). (3)

Here, R(P) is a smoothness regularizer making the optimal transport problem strictly-convex,
whose significance is controlled by ay. We often set the regularizer to be entropic (Cuturi, [2013),
i.e., R(P) = (P,logP — 1) = Zd’npdn(logpdn — 1), or quadratic (Blondel et al., 2018), i.e.,
R(P) = (P, P). KL(alb) = (a,loga —logb) — (a — b, 1) represents the KL-divergence between
a and b. The two KL-based regularizers in (3)) penalize the differences between the marginals of P
and the prior distributions py and qg, whose significance is controlled by «; and s, respectively.
For convenience, we use 8 = {«g, a1, a2, Po, go} to represent the model parameters.

As shown in (3), the optimal transport Py can be viewed as a function of X, whose parameters are
the weights of the regularizers and the prior distributions, i.e., P (X;@). Plugging it into , we



Under review as a conference paper at ICLR 2023

obtain the proposed UOT-Pooling operation:
fuot(X 500, 1, 02, o, qo) = (X © (diag ™" (P (X;0)18) Py (X;56))) 1y, “)

Our UOT-Pooling satisfies the requirement of permutation-invariance under mild conditions.

Theorem 1. The UOT-Pooling in is permutation-invariant, i.e., fuoi(X) = fuor(Xr) for an
arbitrary permutation T, when the qq in ([B)) is a permutation-equivariant function of X.

Corollary 1.1. The UOT-Pooling in (#)) is permutation-invariant when the qq in (3) is uniform, i.e.,
=+1 X e RPXN
qo = y1n forany X € .

2.3 CONNECTING TO REPRESENTATIVE POOLING OPERATIONS

Our UOT-Pooling provides a unified pooling framework. In particular, we demonstrate that many
existing pooling operations can be formulated as the specializations of () under different settings.
Proposition 1 (UOT for typical pooling operations). Given an arbitrary X € RP*N | the mean-

pooling, max-pooling, and the attention-pooling with attention weights ax can be equivalently
achieved by the f,,,(X; ap, a1, @2, Do, Qo) in (4) under the following configurations:

Pooling methods | fuor(X; a0, a1, 2, Po, Qo)

Mean-pooling a0, Q1,02 — 00, po = 51D, @o = & 1N
Max-pooling a0, a2 = 0,01 — 00, po = 51p, qo = —
Attention-pooling | ao, a1, xa — 00, Po = %1D, go = ax

Here, “qo = —” means that qq is unconstrained, and o1, s — 00 means the regularizers become
strict equality constraints, rather than ignoring the optimal transport term (— X, P).

Additionally, the combination of such UOT-Pooling operations reproduces other pooling mecha-
nisms, such as the mixed mean-max pooling operation in (Lee et al.| 2016):

fmix(X) = wMeanPool(X) + (1 — w)MaxPool(X). %)
When w € (0,1) is a learnable scalar, (3) is called “Mixed mean-max pooling”. When w is param-

eterized as a sigmoid function of X, (9) is called “Gated mean-max pooling”. Such mixed pooling
operations can be achieved by integrating three UOT-Pooling operations in a hierarchical way:

Proposition 2 (Hierarchical UOT for mixed pooling). Given an arbitrary X € RP*N the
Fmix(X) in (5) can be equivalently implemented by fuor([fuor(X;601), fuor(X; 62)]; 03), where 01 =
{OO, 00, 00, E]-Dv %11\7}’ 02 = {07 OO7Oa %1D7 7}’ and 03 = {OO, 00, 00, ﬁle [(JJ, 1- w]T}

The proofs of Theorem|[I] Corollary [I.1] and above Propositions are given in Appendix [A]

3 IMPLEMENTING LEARNABLE UOT-POOLING LAYERS

Beyond reproducing existing pooling operations, we can implement the UOT-Pooling as a learnable
neural network layer, whose feed-forward computation solves (3) and parameters can be learned via
the backpropagation. Typically, when the smoothness regularizer is entropic, we can implement the
UOTP layer based on the Sinkhorn scaling algorithm (Chizat et al., [2018}; |Pham et al.,|2020). This
algorithm solves the dual problem of (3) iteratively: 4) Initialize dual variables as a(®) = 0p and
b(® = 0. i7) In the k-th iteration, update current dual variables a*) and b(*) by

T = exp(@®1] + 1p (0" + X Jag), p*) =TW1y, ¥ =(@®)T1p,

Qb+ — a1(a™ + ag(log po — log p))) pE+1) _ as(b™ + ap(log go — log q(k))). ©)
ap(ap + aq) ’ ag(ao + ag)

iii) After K steps, we obtain P}, := T'). Applying the logarithmic stabilization strategy (Chizat
et al., [2018} [Schmitzer, 2019), we achieve the exponentiation and scaling in @) by “LogSumExp”.

The Sinkhorn-based UOTP layer unrolls the above iterative scheme by stacking K Sinkhorn mod-
ules. Each module implements (6), which takes the dual variables as its input and updates them
accordingly. The parameters include: i) prior distributions {p, € AP~ g; € AY~1}, and
i) module-specific weights {a; = [ 1] € (0,00)%}2_,, in which {a; }2_, are parameters of
the k-th module. As shown in (Sun et al.,|2016; |Amos & Kolter, |2017), introducing layer-specific
parameters improves the model capacity. More details can be found at Appendix



Under review as a conference paper at ICLR 2023

Algorlthm 1 UOTPBADMM(X {a } —0s P, Po, qO)
1: Initialization: Primal and auxiliary variable log P(®) = log §(®) = log(poqd), log p® =

log po, log n(®) = log qo. Dual variables Z(©) = 0p, v, z%o) =0p, zéo) =0y

2: For k=0,..., K — 1 (K BADMM Modules)

3:  Update P by (8) (Log-primal update):
When applying the entropic regularizer, set Y = log S®) 4 (X — Z(0) /py,
When applying the quadratic regularizer, set Y = log S®) 4+ (X — a .S — Z")/py,
Update log P*+1) = (log u®) — LogSumExp,,(Y))1% + Y.

4:  Update S, 1,1 by (9) (Log-auxiliary update):
When applying the entropic regularizer, set Y = (Z*) + p;. log P*+1) (a1, + pi.),
When applying the quadratic regularizer, set Y = log P+ 4+ (Z(*®) — 0,k SEEDY pr,
Update log S*+1) = 15 (logn™ — LogSumExp,,, (Y))" +Y,

()

log pk+1) — Pk log ") a1 4 log po—z{" log n(k+1) — Pk log ™ +az 1, log go—=§
EH PrFa1 k ’ &n PrFaz i

5. Update Z, z;, zo (Dual update): Z(*+1) = Z(*F) 4 o, (PF+1) — glk+1)),
(k+1) (k) (H(k—l—l) _ P(k+1)1N)’ zélﬁrl) (k) +pk(n(k+1) _ S(k+1)T1D)_
6: Output P = P(K ) and apply (4) accordingly.

3.1 PROPOSED BREGMAN ADMM-BASED UOTP LAYER

The Sinkhorn-based UOTP layer is restricted to solve the entropy-regularized UOT problem and
may suffer from numerical instability issues, because the Sinkhorn scaling algorithm is designed for
entropic optimal transport problems and is sensitive to the weight of the entropic regularizer (Xie
et al.| [2020). To extend the flexibility of model design and solve the numerical problem, we develop
a new UOTP layer based on the Bregman ADMM algorithm (Wang & Banerjee, 2014 |Xul [2020).
Here, we rewrite (3) in an equivalent format by introducing three auxiliary variables S, p and 7:

minp_g p1y—p, sT1p=n{—X,P)+ aoR(P,S) + a1KL(u|po) + a2KL(n|qo). @)

These three auxiliary variables correspond to the optimal transport P and its marginals. Here, the
original smoothness regularizer R(P) is rewritten based on the auxiliary variable .S. When using
the entropic regularizer, we can set R(P,S) = (S,log S — 1 F_-] When usrng the quadratic regu-
larizer, we set R(P, S) = (P, S). This problem can be further rewritten in a Bregman-augmented
Lagrangian form by introducing three dual variables Z, z1, z; for the three constraints in (7)), respec-
tively. Accordingly, we solve the UOT problem by alternating optimization: At the k-th iteration,
we rewrite (7)) in the following the Bregman-augmented Lagrangian form for P and update P by

P*H) = arg minpepum ) (X, P) + agR(P, ™) + (Z2®) P — §®)) + pRL(P[S™). (8)

Here, TI(u®),.) = {P > 0|P1y = pu®} is the one-side constraint, and ooy is a row-wise
softmax operation. The KL-divergence term KL(P|S(®)) is the Bregman divergence. Similarly,
given P*+1) we update the auxiliary variables S, p and 1) by

S*HD = arg mingep(. po) a0R(PEHD, 8) + (Z®) PF+D _ §) 4 pKL(S|P*HD),
N(k+1) = arg min,, a; KL(g|po) + (2! (k) - p(k+1)1N> + pKL(N|P(k+1)1N) )

+ (=28 — (ST 1p) + pKL(n|(SE+D)T1p),

All the optimization problems in (8) and (9) have closed-form solutions. Finally, we update the dual
variables as classic ADMM does. More detailed derivation is given in Appendix [C}

As shown in Figure [I(b)] and Algorithm [T} our BADMM-based UOTP layer implements the above
BADMM algorithm by stacking K feed-forward computational modules. Each module updates the
primal, auxiliary, and dual variables, in which the logarithmic stabilization strategy (Chizat et al.|
2018 [Schmitzer), 2019)) is applied. Similar to the Sinkhorn-based UOTP layer, our BADMM-based
UOTP layer also owns module-specific weights of regularizers and shared prior distributions. For
the module-specific weights, besides the {a;}2_,, the BADMM-based UOTP layer contains one
more vector p = [py] € (0,00)%, i.e., the weights of the Bregman divergence terms.

n* ) = arg min,, a,KL(n|qo) +

"Here, the regularizer’s input is just S, but we still denote it as R(P, S) for the consistency of notation.
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Figure 2: (a) Given an arbitrary X € R5*19 we approximate the P*’s corresponding to the
mean-, max-, and attention-pooling operations. In each subfigure, the matrices from top to bottom
are the ground truth and the P*’s obtained by Sinkhorn-and BADMM-based UOTP layers, where
ap = aq = ap = 10* for mean-and attention-pooling, and oy = ap = 0.01 and a; = 10* for max-
pooling. (b) Given X € R5*!0, we learn P*’s under different configurations and calculate || P*||;’s.
Each subfigure shows the || P*||;’s, and the white regions correspond to NaN’s. Our BADMM-based
UOTP obtains the same numerical stability for both entropic and quadratic regularizers.

3.2 IMPLEMENTATION DETAILS AND COMPARISONS

Reparametrization for unconstrained optimization. The above UOTP layers have constrained
parameters: {a;}2_, and p are positive, py € AP~ and qo € AN We set {a; =
softplus(3;)}7_, and p = softplus(T), where {3;}2_, and T are unconstrained parameters. For
the prior distributions, we can either fix them as uniform distributions, i.e., py = %1 p and
qo = %1 N, or implement them as learnable attention modules, i.e., pg = softmax(U X 1y)

and qp = softmax(w”tanh(V X)) (llse et all 2018), where U,V € RP*P and w € R are
unconstrained. As a result, our UOTP layers can be learned by stochastic gradient descent.

Precision of approximating conventional pooling methods. Proposition [I| demonstrates that our
UOTP layers can approximate, even be equivalent to, some existing pooling operations. We verify
this proposition by the experimental results shown in Figure Under the configurations guided
by Proposition [T} we use our UOTP layers to imitate mean-, max-, and attention-pooling operations.
Both the Sinkhorn-based UOTP and the BADMM-based UOTP can reproduce the P* of mean-
pooling perfectly. The Sinkhorn-based UOTP achieves max-pooling with high precision, while
the BADMM-based UOTP approximate max-pooling with some errors. When approximating the
attention-pooling, the BADMM-based UOTP works better than the Sinkhorn-based UOTP.

Numerical stability. We set a; = a and select o, o, g from {1072, ..., 10*} for for each UOTP
layer. Accordingly, we derive 100 P*’s and check whether |[P*|[1 = _, , [Pan| ~ 1 and whether
P* contains NaN elements. Figure shows that the Sinkhorn-based UOTP merely works under
some configurations. Therefore, in the following experiments, we have to restrict the range of its
parameters in some cases. Our BADMM-based UOTP owns better numerical stability, which avoids
NaN elements and keeps || P*||; =~ 1.

Convergence and efficiency. Given N D-dimensional samples, the computational complexity of
our UOTP layer is O(K N D), where K is the number of Sinkhorn/BADMM modules. As shown
in Figure 3(a)} with the increase of K, our UOTP layers reduce the objective of the UOT problem
(i.e., the expectation term (—X, P) and its regularizers) consistently. When K > 4, the objective
has been reduced significantly, and when K > 8, the objective has tended to convergent.

Both the Sinkhorn-based and the BADMM-based UOTP layers involve two LogSumExp opera-
tions (the most time-consuming operations) per step. In practice, the BADMM-based UOTP may
be slightly slower than the Sinkhorn-based UOTP in general — it requires additional element-wise
exponentiation to get P, S, u, 7 when updating dual variables (Line 5 of Algorithm [I)). However,
the runtime of our method is comparable to that of the learning-based pooling methods. Figure[3(b)]
shows the rank of various pooling methods on their runtime per batch. We can find that In par-
ticular, for the BADMM-based UOTP layer with K' = 8, its runtime is almost the same with that
of DeepSet (Zaheer et al., [2017). For the Sinkhorn-based UOTP layer with K = 4, its runtime
is comparable to that of SAGP (Lee et al., 2019b). When setting K < 8, our UOTP layers are
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Figure 3: Given a batch of 50 sample sets, in which each sample set contains 500, 100-dimensional
samples, we plot: (a) The convergence of our UOTP layers with the increase of K; (b) the averaged
feed-forward runtime of various pooling methods in 10 trials on a single GPU (RTX 3090). (c)
Given a batch of MUTAG graphs, we illustrate dynamics of the corresponding P*’s during training.

more efficient than the other pooling methods that stacks multiple computational modules (e.g.,

Set2Set (Vinyals et al., [2015) and DynamicP 2018)). According to the analysis above,

in the following experiments, we set K = 4 for our UOTP layers, which can achieve a trade-off
between effectiveness and efficiency in most situations.

4 RELATED WORK

Pooling operations. Besides simple pooling operations, e.g., mean/add-pooling, max-pooling, and

their mixtures (Lee et al| [2016)), learnable pooling layers, e.g., Network-in-Network (Lin et al.
2013), Set2Set (Vinyals et al., 2015)), DeepSet (Zaheer et al.,[2017), and SetTransformer (Lee et al.

2019a), leverage multi-layer perceptrons, recurrent neural networks, and transformers (Vaswani

etal,, to achieve global pooling. The attention-pooling in and the dynamic-
pooling in merge multiple instances based on self-attentive mechanisms. Besides
the above global pooling methods, some local pooling methods, e.g., DiffPool 2018),
SAGPooling 2019b), and ASAPooling 2020), are proposed for pooling
graph-structured data. Recently, the OTK in (Mialon et al.,[2020) and the WEGL in

[2020) consider the optimal transport between samples and achieve pooling operations for specific
tasks. Different from above methods, our UOTP considers the optimal transport across sample index
and feature dimension, which provides a new and generalized framework of global pooling. Com-
pared with the generalized norm-based pooling (GNP) in 2021), our UOTP covers more
pooling methods and can be interpreted well as an expectation-maximization strategy.

Optimal transport-based machine learning. Optimal transport (OT) theory (Villani, 2008) has
proven to be useful in machine learning tasks, e.g., distribution matching (Frogner et al., 2015}

Courty et al., [2016), data clustering (Cuturi & Doucet, 2014)), and generative modeling (Arjovsky
et al.,[2017;|Tolstikhin et al.,[2018)). The discrete OT problem is a linear programming problem (Kus-

ner et al., 2015). By adding an entropic regularizer (Cuturi, 2013), the problem becomes strictly
convex and can be solved by the Sinkhorn scaling algorithm (Sinkhorn & Knoppl|[1967). Along this
direction, the stabilized Sinkhorn algorithm (Chizat et al.| 2018} [Schmitzer] 2019) and the proxi-
mal point method 2020) solve the entropic OT problem robustly. These algorithms can
be extended to solve UOT problems (Benamou et al, 2015}, [Pham et al) [2020). Recently, some
neural networks are designed to imitate the Sinkhorn-based algorithms, e.g., the Gumbel-Sinkhorn
network (Mena et al.| 2018), the sparse Sinkhorn attention model 2020), the Sinkhorn
autoencoder (Patrini et al.l 2020), and the Sinkhorn-based transformer (Sander et all [2021). How-
ever, these models ignore the potentials of other algorithms, e.g., the Bregman ADMM
[Banerjee], [2014; [2020) and the smoothed semi-dual algorithm (Blondel et all, [2018). None of

them consider implementing global pooling layers as solving the UOT problem.
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Table 1: Comparison on classification accuracy=+Std. (%) for different pooling layers.

Pooling Multi-instance learning Graph classification (ADGCL)
Messidor Component Function  Process NCII PROTEINS MUTAG COLLAB RDT-B RDT-M5K IMDB-B IMDB-M
Add 74334256 93.35:098 96261043 97411021 | 67961043 72971054 89.05: 086 71.061043 80.00+149 50.161097 70.181087 47.561056
Mean 74421047 93.321090 9628066 97.201014 | 6482405 66.091064 86.531162 72.351044 83.6241.18 52.44124 70.341035 48.65100
Max 73924300 93.231076 95.94.048 96.711040 | 65954076 72.274+033 85.90+168 73.071057 82.624105 44.344 103 70.241054 4780054
DeepSet 74421057 93291005 96451051 97.641015 | 66.28 407 73.76 1047 87.841071 69. 744056 82914157 47451054 70.84 1071 48.054071
Mixed 734241229 93451061 96411053 96.961025 | 664641074 72.251045 87.301087 73.221035 84.361262 46.671163 71.281026 48.07025

GatedMixed | 73.251535 93.031100 96.221065 97.01103 | 63.865076 69.404195 87.944 ;5 71.944040 80.60.350 44.784453 70.961060 48.09-044
Set2Set 73.581374 93.191005 96431056 97.161005 | 65104112 68.6114s 87771086 72311073 80081572 49.855277 70.36:055 48.301054
Attention | 74.255367 93.224100 96315066 97.24016 | 64351061 67.701005 88.08%12 72.57 1041 81.551430 51.851066 7060035 47.83:078
GatedAtt | 73.675253 9342109 96511077 97.18 1014 | 64.66105 68.165000 86.914;79 72314037 82.554 106 51471050 70.52:031 48.671035
DynamicP | 73.164212 93.26113 96471058 97.031014 | 62114027 6586055 85401251 70781053 67511152 32114355 69.844073 47.59404s

GNP 69.9215368 91.661196 95401111 96.264125 | 68.2010458 73.441061 88.371125 72.801058 81.93 1023 51.801061 70.341083 48.851051
ASAP — — — — 68.09. 042 70421145 87.68+142 68.204237 73911150 44.581044 68.33 1250 43.921113
SAGP — — — — 67481065 72.631044 87.881227 70.194055 74124986 46.001174 70.341074 47.041122

UOTPsinknom | 75421295 93.291083 96.621045 97.08 1011 | 68.27 105 73.104022 88.84.121 71.204055 81.544138 51.001061 70.741050 47871043
UOTPgapmme | 74834207 93.1611020 96.171043 97154016 | 66.23 1050 67.711170 86.824202 73.8610.44 86.8011.19 52.251075 71.721 058 5048014
UOTPpapmM-Q | 75.081206 93.131094 96.091046 97.0840.17 | 66.18-1076 69.881087 85.42.41.10 74141004 87.72:01.03 52791060 72.34:050 49.361052

" The top-3 results of each data are bolded and the best result is in red.

5 EXPERIMENTS

In principle, applying our UOTP layers can reduce the difficulty of the design and selection of global
pooling — after learning based on observed data, our UOTP layers may either imitate some exist-
ing global pooling methods or lead to some new pooling layers fitting the data better. To verify
this claim, we test our UOTP layers (UOTPginkhorn and UOTPgapyv.g With the entropic regular-
izer, and UOTPpapmm.@ With the quadratic regularizer) in three tasks, 4.e., multi-instance learning,
graph classification, and image classification. The baselines include 7) classic Add-Pooling, Mean-
Pooling, and Max-Pooling; ii) the Mixed-Pooling and the GatedMixed-Pooling in (Lee et al.,
2016)); ii7) the learnable pooling layers like DeepSet (Zaheer et al., 2017)), Set2Set (Vinyals et al.,
2015), DynamicP (Yan et al., 2018)), GNP (Ko et al., 2021}, and the Attention-Pooling and Gate-
dAttention-Pooling in (Ilse et al., 2018); and iv) SAGP (Lee et al) 2019b) and ASAP (Ranjan
et al., [2020) for graph pooling. We ran our experiments on a server with two RTX3090 GPUs.
Experimental results and implementation details are shown below and in Appendix D}

Multi-instance learning. We consider four MIL tasks, which correspond to a disease diagnose
dataset (Messidor (Decenciere et al.| 2014))) and three gene ontology categorization datasets (Com-
ponent, Function, and Process (Blaschke et al., [2005)). For each dataset, we learn a bag-level clas-
sifier, which embeds a bag of instances as input, merges the instances’ embeddings via pooling, and
finally, predicts the bag’s label by a classifier. We use the AttentionDeepMIL in (Ilse et al., [2018)), a
representative bag-level classifier, as the backbone model and plug different pooling layers into it.

Graph classification. We consider eight representative graph classification datasets in the TU-
Dataset (Morris et all [2020), including three biochemical molecule datasets (NCII, MUTAG,
and PROTEINS) and five social network datasets (COLLAB, RDT-B, RDT-M5K, IMDB-B, and
IMDB-M). For each dataset, we implement the adversarial graph contrastive learning method
(ADGCL) (Suresh et al., 2021)), learning a graph isomorphism network (GIN) (Xu et al.| 2018)
to obtain graph embeddings. We apply different pooling operations to the GIN and use the learned
graph embeddings to train an SVM classifier.

Table[T|presents the averaged classification accuracy and the standard deviation achieved by different
methods under 5-fold cross-validation. For the multi-instance learning tasks, the performance of the
UOTP layers is at least comparable to that of the baselines. For the graph classification tasks, our
BADMM-based UOTP layers even achieve the best performance on five social network datasets.
These results indicate that our work simplifies the design and selection of global pooling to some
degree. In particular, none of the baselines perform consistently well across all the datasets, while
our UOTP layers are comparable to the best baselines in most situations, whose performance is
more stable and consistent. Therefore, in many learning tasks, instead of testing various global
pooling methods empirically, we just need to select an algorithm (z.e., Sinkhorn-scaling or Bregman
ADMM) to implement the UOTP layer, which can achieve encouraging performance.

Dynamics and rationality. Take the UOTPgapmm.g layer used for the MUTAG dataset as an exam-
ple. For a validation batch, we visualize the dynamics of the corresponding P*’s in different epochs
in Figure In the beginning, the P* is relatively dense because the node embeddings are not
fully trained and may not be distinguishable. With the increase of epochs, the P* becomes sparse
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Figure 4: (a) The visualizations of two MUTAG graphs and their P*’s. For the “V-shape” sub-
graphs, their submatrices in the P*’s are marked by color frames. (b) The visualizations of two
IMDB-B graphs and their P*’s. For each graph, its key node connecting two communities and the
corresponding column in the P*’s are marked by color frames.

Table 2: Comparisons for ResNets and our ResNets + UOTP on validation accuracy (%)

Learning Strategy ResNetl8 ResNet34 ResNet50 ResNetl0l ~ ResNetl52
Top-5 100 Epochs (A2DP) 89.084 91.433 92.880 93.552 94.048
90 Epochs (A2DP) + 10 Epochs (UOTP) 89.174 91.458 93.006 93.622 94.060
Top-1 100 Epochs (A2DP) 69.762 73.320 76.142 77.386 78.324
90 Epochs (A2DP) + 10 Epochs (UOTP) 69.906 73.426 76.446 77.522 78.446

and focuses more on significant sample-feature pairs. Additionally, to verify the rationality of the
learned P*, we visualize some graphs and their P*’s in Figure [d For the “V-shape” subgraphs in
the two MUTAG graphs, we compare the corresponding submatrices shown in their P*’s. These
submatrices obey the same pattern, which means that for the subgraphs shared by different samples,
the weights of their node embeddings will be similar. For the key nodes in the two IMDB-B graphs,
their corresponding columns in the P*’s are distinguished from other columns. For the nodes be-
longing to different communities, their columns in the P*’s own significant clustering structures.

Image classification. Given a ResNet 2016), we replace its “adaptive 2D mean-pooling
layer (A2DP)” with our UOTPgapmm.g layer and finetune the modified model on ImageNet
et al, 2009). In particular, given the output of the last convolution layer of the ResNet, .e., Xi, €
REXCXHXW “our UOTP layer fuses the data and outputs X, € RP>*C>1x1 T this experiments,
we apply a two-stage learning strategy: we first train a ResNet in 90 epochs; and then we replace its
A2DP layer with our UOTP layer; finally, we fix other layers and train our UOTP layer in 10 epochs.
The learning rate is 0.001, and the batch size is 256. Table [2]shows that using our UOTP layer helps
to improve the classification accuracy and the improvement is consistent for different ResNets.

Limitations and future work. The improvements in Table 2] are incremental because we just re-
place a single global pooling layer with our UOTP layer. When training the ResNets with UOTP lay-
ers from scratch, the improvements are not so significant, either — after training ResNet18+UOTP
with 100 epochs, the top-1 accuracy is 69.920% and the top-5 accuracy is 89.198%. Replacing more
local pooling layers with our UOTP layers may bring better performance. However, given a tensor
X, € REXCXHXW "4 ]ocal pooling merges each patch with size (B x C' x 2 x 2) and outputs

Xou € RBXCX2 X5 which involves £ Ifl W booling operations. Such a local pooling requires an
efficient CUDA implementation of the UOTP layers, which will be our future work.

6 CONCLUSION

In this work, we studied global pooling through the lens of optimal transport and demonstrated
that many existing global pooling operations correspond to solving a UOT problem with different
configurations. We implemented the UOTP layer based on different algorithms and analyzed their
stability and complexity in details. Experiments verify their feasibility in various learning tasks.
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A DELAYED PROOFS

A.1 PROOF OF THEOREM [I]AND COROLLARY [T.1]

Proof. Suppose that o be a permutation-equivariant function of X, i.e., gqg = ¢(X), where
g: Xp— AN"land qy. = g.(X) = g(X,) for an arbitrary permutation 7 : {1,..., N} ~
{1,...., N}. In such a situation, if P* is the optimal solution of (3) given X, then P must be the
optimal solution of (3)) given X because for each term in (3)), we have
<_X7P> = <_X7T7P7T>7
R(P) = R(P,) for both entropic and quadratic cases,
KL(P1y|po) = KL(Pr1x/|po), and

KL(P"1plq0) = KL(PY 1p|g0.x) = KL(P  1pg(X,)).

As a result, P* is also a permutation-equivariant function of X, i.e., P*(X) = P*(X,), and
accordingly, we have

(10)

Juot(X7) =(X7 © (dlag_l(P*(XW)lN)P*(Xﬂ)))lN
=(Xr O (diag™ (PF(X)1n) Py (X))1n
=(X, ® (diag” ' (P*(X)1x)P(X)))1yn €8))
= 1 )

(X © (diag™" (P*(X)1n)P*(X)))1y
Joor(X),

which completes the proof.

Proof of Corollary[L.1} When gy is uniform, we have KL(P"1p|qo) = KL(P; 1p|qo,x), which
provides a special case satisfying the condition shown in Theorem [I] Accordingly, this settmg
also makes the optimal solution P* permutation-equivariant to X and leads to the derivation in
Theorem 11 O

A.2 PROOF OF PROPOSITIONS [T]AND 2]

Proof. Equivalence to mean-pooling: For , when a1, ay — 00, pg = %1 pand gy = %1 N>
we require the marginals of P* to match with pg and g strictly. Additionally, g — co means that
the first term (— X, P) becomes ignorable compared to the second term R (P). Therefore, the
unbalanced optimization problem in (3)) degrades to the following minimization problem:

P* = arg minPeH(élleN)R( ). (12)

When R(P) is the entropic or the quadratlc regularizer, the objective function is strictly-convex, and
the optimal solution is P* = [5 N] Therefore, the corresponding f,,, becomes the mean-pooling
operation.

Equivalence to max-pooling: For (3), when oy = @y — 0, both the entropic term and the KL-
based regularizer on P71y are ignorable. Additionally, oy — oo and py = %1 p mean that

P1y = £1p strictly. The problem in (3) becomes
P* =arg maxpen(%1D7_)<X, P), (13)

whose optimal solution obviously corresponds to setting pJ =~ = % if and only if n =

arg maxm{xdm —1- Therefore, the corresponding f,, becomes the max-pooling operation.

Equivalence to attention-pooling: Similar to the case of mean-pooling, under such a configuration,
the problem in (3) becomes the following minimization problem:

P =arg MaXperi(L1p,ax) R(P). (14)

Similar to the case of mean-pooling, when R(P) is the entropic or the quadratic regularizer, the
objective function is strictly-convex, and the optimal solution is P* = %1 pa’. Accordingly, the
corresponding f,, becomes the self-attentive pooling operation.

13
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Algorlthm 2 UOTPSmkhorn(X {az} —0> Po, QO)
Initialize a(¥) = OD and b© =0y, YO =
: For k =0,..., K — 1 (K Sinkhorn Modules)

1:
2:
3:  logp = LogSumExp,, (Y ®)), logq = LogSumExp,, (Y *)).

4 g+ — ark(@®+aok(logpo—log P)  pk+1) = o2 k(6" +aok(loggo—logq))
5

6

X.

&0,0

ao,k (o, k+a1,k) oo,k (o, k+a2 k)

Logarithmic Scaling: Y *+1) = L -X + aF 1L + 1p(pHINT,
: Output: P* := exp(Y %)) and apply accordingly.

Equivalence to mixed mean-max pooling: For the mixed mean-max pooling, we have
fmix(X) = wMeanPool(X') + (1 — w)MaxPool(X)
= wfuot(X; 01) + (]- - W)fuot(X; 02) = [fuot(X; 01)7 fuot(X; 02)] [(d, 1- w]T

Y EeRDx2

15
o or 5)

o171 1
= (Y @ diag™ (51p 0,1 -] 1) ($1plw, 1= w]) )12 = fun(Y565).
| S —
P*
Here, the first equation is based on Proposition I— we can replace MeanPool(X ) and MaxPool(X)
with fuot(X 01) and fui(X;0-2), respectively, where 6; = {00, 00, 00, DlD7 1x} and 65 =

{0, 0, 0, 1D, }. The concatenation of fio(X;81) and fuot(X;02) is a matrix with size
D x 2 denoted as Y As shown in the third equatron of (15), the fiix(X) in (5) can be rewrit-

ten based on py = 1 D> @0 = [w,1 — w]T, and the rank 1 matrix P* = poql. The for-
mulation corresponds to passing Y through the third ROTP operation, i.e., fu(Y';03), where
05 = {oo,oo,oo,%lD,[w,l—w]T}. O

B THE DETAILS OF SINKHORN SCALING FOR UOT PROBLEM

B.1 THE DUAL FORM OF UOT PROBLEM

In the case of using the entropic regularizer, given the prime form of the UOT problem in (3), we
can formulate its dual form as

b’n n * *
Mingcpd pery Qo Z exp(u) + F*(—a) + G*(-b), (16)

d =1 a{l
where

1
F*(a) = max,cgp z'a — a1KL(z|po) = Oq<eXP(CTa) —1p,po).
1

(17)

* 1

G*(b) = max,cpy 2" b— asKL(z|qo) = 042<€Xp(07b) —1n,q0)-
2
Plugging (I7) into (16) leads to the dual form in (I8):
ag + by, + Tan
S D ] e ==

o=t a0 (18)

1 1
a1(exp(——a),po) + az(exp(——b), qo)-
(e %1 (%)
This problem can be solved by the iterative steps shown in (6).
B.2 THE IMPLEMENTATION OF THE SINKHORN-BASED UOTP LAYER
As shown in Algorithm |2 the Sinkhorn-based UOTP layer unrolls the iterative Sinkhorn scaling
by stacking K modules. The Sinkhorn-based UOTP layer unrolls the above iterative scheme by

stacking K" modules. Each module implements (6), which takes the dual variables as its input and
updates them accordingly.

14
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C THE DETAILS OF BREGMAN ADMM FOR UOT PROBLEM

For the UOT problem with auxiliary variables (i.e., (7)), we can write its Bregman augmented
Lagrangian form as

MiNp. s 4un.z,21,2, (—X, P) + aoR(P, S) + ar KL(p|po) + a2KL(n|qo) + (19)
——
OT problem Regularizer 1 Regularizer 2 Regularizer 3
Constraint 1, for T and S Constraint 2, for g and T Constraint 3, for n and S

(Z,P — 8) + pDiv(P, S) + (z1, u — P1y) + pDiv(p, P1y) + (z2,m — ST1p) + pDiv(n, ST1y) .

Bregman augmented Lagrangian terms

Here, Div(-, -) represents the Bregman divergence term, which is implemented as the KL-divergence
in this work. The second line of (I9) contains the Bregman augmented Lagrangian terms, which
correspond to the three constraints in (7).

At the k-th iteration, given current variables {P(k)7 SE) p®) k) z K zik), zék)}, we update
them by alternating optimization. When updating the primal variable P, we can ignore Constraint

3 and the three regularizers (because they are unrelated to P) and write the Constraint 2 explicitly.
Then, the problem becomes:

minpery,®,.) Lp
= minpep(m o (—X, P) + aoR(P, S®) + (Z®) P — §®) 4 pDiv(P, ™). (20)
———

KL(P|S(*))

When using the entropic regularizer, R(P, S*)) = (§(*) log §() — 1) is a constant. Applying the
first-order optimality condition, we have

OLp
oP
= plogP - X +2Z"® —plog8§* =0

=0

X - Z® 4+ plog S
= P =exp < +plos >
P
o ) . X — Z® 1 5loe S (21)
Frojectiolle ), plk+1) diag(p1™)orrou ( :p = >

Logarimic TP, Jog PR = (log u® — LogSumExp,;(Y))1% + Y,

plog 8®) + X — Z*)
; :

where Y =

When using the quadratic regularizer, we have R(P, S(*)) = (P, S(*)). We obtain the closed-form

. . : ) ) 4 X g §* — Zz®
solution of P*+1) by a similar way, just computing Y = 2085 +X pagS zZ,

Similarly, when updating the auxiliary variable S, we ignore the OT Problem, Constraint 2, and
Regularizers 2 and 3 and write the Constraint 3 explicitly. Then, the problem becomes

minger(..nk) Ls
= mingep. ) RPF, ) +(ZH) pEHD — §) + pDiv(S, PHHY). (22)
N————

KL(S|P(k+1))

15
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When using the entropic regularizer, R(P*+1) §) = (S,logS — 1). Applying the first-order
optimality condition, we have

OLg

oS

= (ap+p)logS—2Z® — plog P*+Y =0

Z/(k) log P(k+1)
= S=exp ( trog )
oo+ p
Project to II(-, n‘*)) S(k+1) = O <Z(k) + plog P(k+1)
o+ p

=0

(23)

) diag(n™)

Logarithmic Update, log S+ = 1 (logn™ — LogSumExp,, (Y))T +Y,
(k) (k+1)
where Y = Z7 tploeh .
ag+p

Similarly, when R(P*+1D §) = (P®*+1) §) we can derive S**1 by computing Y =

(k+1) 4 Z® —aps*+D
log P + » .

When updating the auxiliary variable p, we ignore the OT Problem, Regularizers 1 and 3, Con-
straints 1 and 3. Then, the problem becomes

min,, L,, = min, oy KL(p|po) + (zgk), pw— P10 + pDiv(p, PFHD1y),

(24)
KL(pu| P+ 1)
where P**t1)1 5 actually equals to %) because of the constraint in . Therefore, we have
(k) _ (k)
Ol _ ¢ s 1og py — Q1 108P0 F plog '™ = 2 (25)
op ap+p

Similarly, when updating the auxiliary variable 1), we ignore the OT Problem, Regularizers 1 and 2,
Constraints 1 and 2. Then, the problem becomes

min, L, = min, oy KL(n|qo) + <z§k), n— S*EUT1L) + pDiv(n, SFHUT1 ),

KL(n|S*+D71p)

(26)

where S(*+1T'1 1, actually equals to (%) because of the constraint in . Therefore, we have

(k) _ (k)
Oy _ g 10y = 22108 G0+ ploan” = 2 @7)
on as +p

Finally, the dual variables are updated based on the general rule of ADMM algorithm, i.e.,
Z(t-‘rl) _ Z(t) + p(P(t+1) _ S(t+1)),
z§t+1) _ ZY) + p(u(t+1) o ‘P(tjtl)lN)7 (28)
z§t+1) _ zét) + p(n(t+1) _ (S(H'l))TlD),

which is also applied in (Wang & Banerjeel 2014; Ye et al., 2017} |Xu} [2020).

D MORE EXPERIMENTAL RESULTS AND IMPLEMENTATION DETAILS

D.1 BASIC INFORMATION OF DATASETS AND SETTINGS FOR LEARNING BACKBONE MODELS
For the backbone models used in each learning task, e.g., the AttentionDeepMIL in (Ilse et al.,[2018))

for MIL and the GIN (Xu et al., |2018) for graph embedding, we determine their hyperparameters
(such as epochs, batch size, learning rate, and so on) based on the typical settings used in existing

16
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Table 3: The basic information of the MIL datasets and the hyperparameters for learning

Statistics of data Hyperparameters
Dataset Instance  #total #positive #negative #total Minimum Maximum . Batch Learning Weight
. . ) . . . Epochs .

dimension  bags bags bags instances  bag size bag size size rate decay

Messidor 687 1200 654 546 12352 8 12 50 128 0.0005 0.005
Component 200 3130 423 2707 36894 1 53 50 128 0.0005 0.005
Function 200 5242 443 4799 55536 1 51 50 128 0.0005 0.005
Process 200 11718 757 10961 118417 1 57 50 128 0.0005 0.005

Table 4: The basic information of the graph datasets and the hyperparameters of ADGCL

Statistics of data Hyperparameters of ADGCL

Dataset Average Average Node attribute ~ Augmentation Batch Learnin
#Graphs #nodegs #edgegs #Classes dimension nglethods* Epochs size rate ¢

NCI1 4110 29.87 32.30 2 1 LED 20 32 0.001

PROTEINS 1113 39.06 72.82 2 1 LED 20 32 0.001

MUTAG 188 17.93 19.79 2 1 LED 20 32 0.001

COLLAB 5000 7449  2457.78 3 1 LED 100 32 0.001

RDT-B 2000 429.63  497.75 2 1 LED 150 32 0.001

RDT-M5K 4999 508.52  594.87 5 1 LED 20 32 0.001

IMDB-B 1000 19.77 96.53 2 1 LED 20 32 0.001

IMDB-M 1500 13.00 65.94 3 1 LED 20 32 0.001

* “LED” for learnable edge drop.

methods, i.e., Attention-based deep MI (Ilse et al.,|2018)) and ADGC (Suresh et al.,[2021)). For
the ADGCL, we connect the GIN with a linear SVM classifier. For the hyperparameters of the SVM
classifier, we use the default settings shown in the code of the authors. In summary, Tables [3|and [
show the basic information of the datasets and the settings for learning backbone models. It should
be noted that all the models (associated with different pooling operations) are trained in 5 trials, and
each method uses the same random seed in each trial.

D.2 SETTINGS OF POOLING LAYERS

For the pooling layers used in our experiments, some of them are parametrized by attention mod-
ules, and thus, need to set hidden dimension h. For these pooling layers, we use their default settings
shown in the corresponding references (llse et al., [2018} |Yan et al., 2018} |Lee et al., [2016)). Specif-
ically, we set h = 64 in the MIL experiment and h = 32 in the graph embedding experiment,
respectively.

Additionally, as aforementioned, the configurations of our UOTP layers include ¢) the number of
stacked modules K; ¢7) fixing or learning py and qo; ¢7¢) whether predefining o for the Sinkhorn-
based UOTP for avoiding numerical instability. Table [5]lists the configurations used in our exper-
iments. We can find that our UOTP layers are robust to their hyperparameters in most situations,
which can be configured easily. In particular, in most situations, we can simply set pg and qp as
fixed uniform distributions, K = 4 or 8, and make oy unconstrained for the BADMM-based UOTP
layers. In the cases that the Sinkhorn-based UOTP is unstable, we have to set oy as a large
number.

D.3 MORE EXPERIMENTAL RESULTS

Robustness to K. Our UOTP layers are simple and robust. Essentially, they only have one hyper-
parameter — the number of stacked modules K. Applying a large K will lead to highly-precise
solutions to equation [3]but take more time on both feed-forward computation and backpropagation.
Fortunately, in most situations, our UOTP layers can obtain encouraging performance with small
K’s, which achieves a good trade-off between effectiveness and efficiency. Figure [5| shows the
averaged classification accuracy of different UOTP layers on the 12 datasets with respect to K'’s.
The performance of our UOTP layers is stable — when K € [4, 8], the change of the averaged
classification accuracy is smaller than 0.4%. This result shows the robustness to the setting of K.

Zhttps://github.com/AMLab-Amsterdam/AttentionDeepMIL
*https://github.com/susheels/adgcl
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Table 5: The configurations of our UOTP layers

Task Dataset UOTPsinkhorn UOTPpADMM-E/B
agp Do @ K |aw po Q@ K
Messidor — Fixed Fixed 4 — Fixed Fixed 4
MIL Component — Fixed Fixed 4 | — Fixed Fixed 4
Function — Fixed Fixed 4 — Fixed Fixed 4
Process — Fixed Fixed 4 — Fixed Fixed 4
NCI1 — Fixed Fixed 4 — Fixed Fixed 4
PROTEINS | 2000 Fixed Fixed 4 | — Fixed Fixed 4
MUTAG — Fixed Fixed 4 — Fixed Fixed 4
Graph COLLAB | 10'° Fixed Fixed 4 | — Fixed Fixed 4
Embedding RDT-B 10'?  Fixed Fixed 4 | — Fixed Fixed 4
RDT-M5K | 10'® Fixed Fixed 4 | — Fixed Fixed 4
IMDB-B 102 Fixed Fixed 4 | — Fixed Fixed 4
IMDB-M | 10*' Fixed Fixed 4 | — Fixed Fixed 4

'« means oy is a learnable parameters.

78.017 —*— UOTPSinL'hnrn
UOTPpapMM-E
7794 —*— UOTPpapuy—q

v

4 6 8
The number of modules (K)

T7.81

Classification accuracy (%)
-
N
~

Figure 5: The averaged classification accuracy for the 12 datasets achieved by our UOTP layers
under different K’s.

Robustness to prior distributions’ settings. Besides K, we also consider the settings of the prior
distributions (i.e., po and qp). As mentioned in Section[3.2] we can fix them as uniform distributions
or learn them as parametric models. Take the NCII dataset as an example. Table [6] presents the
learning results of our methods under different settings of py and go. We can find that our UOT-
Pooling layers are robust to their settings — the learning results do not change a lot under different
settings. Therefore, in the above experiments, we fix pg and qg as uniform distributions. Under this
simple setting, our pooling methods have already achieved encouraging results.

The optimal performance achieved by grid search. The results in Table|l|are achieved by setting
K = 4 empirically. To explore the optimal performance of our method, for each dataset, we apply
the grid search method to find the optimal K in the range [0, 16], and show the results in Table
We can find that the results of our UOTP layers are further improved.
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Table 6: The impacts of pg and gq on classification accuracy (%)

Layer Po qo K NCI1
Fixed Fixed 4 | 68271106
. Learned Fixed 4 | 67.97 1048
Sinkhorn | " cd Learned 4 | 69.864045
Learned Learned 4 | 68.60+01s
Fixed Fixed 4 | 66.231050
Learned Fixed 4 | 65.96102
BADMM-E | "piied  Learned 4 | 66.3710
Learned Learned 4 65.11+074
Fixed Fixed 4 | 66.181076
Learned Fixed 4 | 65.5610s6
BADMM-Q | "piod Learned 4 | 6624405
Learned Learned 4 | 65.4040ss

Table 7: Comparison on classification accuracy+Std. (%) for different pooling layers.

Multi-instance learning

Graph classification (ADGCL)

Pooling Messidor Component Function _Process NCII_PROTEINS MUTAG COLLAB RDT-B_RDT-M5K IMDB-B_IMDB-M
Add 74331256 93.351098 96.264048 97411921 | 67.961043 72.97 1054 89.05:086 71.061043 80.004149 50.164097 70.1840587 47.561056
Mean 74421547 93321099 96.28 1066 972041014 | 64.821050 66.091064 86.531160 72.351044 83.6241.18 52.441 124 70.34.1033 48.651001
Max 73.924300 93231076 95941048 96. 711040 | 65.951076 72.271033 85901168 73.071057 82.624125 44.344 93 70.24 1954 47.801054

DeepSet 74425587 93291095 96.454051 97.64 1015 | 66.28,1 072 73.761 047 87.841071 69.741066 82.914137 4745054 70.841071 48.051071
Mixed 73424229 93451061 96.41.4053 96.96.4005 | 66.46.4074 72251045 87301057 73221035 84.361262 46.67 1163 T1.281026 48.071005

GatedMixed 73.254038 93.031100 96.224065 97.011023 | 63.864076 69.404103 87.941128 71.941040 80.604389 44.781453 70961060 48.091044

Set2Set 73.584374 93.191095 96.431056 97161025 | 65.104112 68.611144 87.771086 72.311073 80.08157 49.851277 70.361055 48.301054

Attention 74251367 93221100 96.31066 97.24 1016 | 64.351061 67.701095 88.081120 72.57 1041 81.551430 51.851066 70.60+035 47.83 1078

GatedAtt | 73.671225 93424091 96515077 97184014 | 6466505 68165000 86914179 72315057 82.551106 51475080 70.524051 48.67 4035

DynamicP 73164212 93.264130 96471058 97.03 1014 | 62114027 65.861085 85.401281 70.781088 67.514180 32.114385 69.84:075 47.59+048
GNP 69.92,868 91.661106 95404111 96.264125 | 68.201 048 73.441061 88.371125 72.804058 81.93 4003 51.804061 70.341033 48.851 081

ASAP — — — — 68.09_ 942 70421145 87.684+142 68.204237 73911150 44.581 044 68.331050 43.924) 13

SAGP — — — — 67.48 1065 72.631044 87.884220 70.194055 74.121086 46.001174 70.341 074 47.044 2
oTP K=16) (K=100) (k=4 (K=10) | (K=8 (K=9 (k=4 (K=4) (K=4) (k=8 (k=4 (K=8)
Sinkhom | 75,921 530 93.67 1080 96.62:0.48 97.181015 | 68441050 73361071 88841121 71201055 81541138 52045106 70.741050 47.95:05
UOTP, (K=14) (K=13) (K =16) (K =4) (K=8) (K=8 (K=7 (K=4) (=4 (K=8 (K=8 (K=4)
BADMME | 7575 200 93.394072 96454052 97.1540.16 | 66411073 70551105 88951101 73.8610.44 86.80 1110 52.81 1070 72.561051 5048014
UOTP, (K=11) (KX =16) (K =8) (K =4) (K=4) (K=14) (K=5) (K=4) (K=8) (K=4 (K=4) (K=98
BADMM-Q | 75504220 93351083 96341056 97.0840.47 | 66.18.1076 71.77 1055 87.9211.11 74.14 1024 88.81 1070 52791060 72.341050 49-81 0.4

" The top-3 results of each data are bolded and the best result is in red.
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