
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXLLM: EXPERIENCE-ENHANCED LLM OPTIMIZA-
TION FOR MOLECULAR DESIGN AND BEYOND

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular design involves an enormous and irregular search space, where tradi-
tional optimizers such as Bayesian optimization, genetic algorithms, and generative
models struggle to leverage expert knowledge or handle complex feedback. Re-
cently, LLMs have been used as optimizers, achieving promising results on bench-
marks such as PMO. However, existing approaches rely only on prompting or extra
training, without mechanisms to handle complex feedback or maintain scalable
memory. In particular, the common practice of appending or summarizing expe-
riences at every query leads to redundancy, degraded exploration, and ultimately
poor final outcomes under large-scale iterative search. We introduce ExLLM, an
LLM-as-optimizer framework with three components: (1) a compact, evolving
experience snippet tailored to large discrete spaces that distills non-redundant
cues and improves convergence at low cost; (2) a simple yet effective k-offspring
scheme that widens exploration per call and reduces orchestration cost; and (3)
a lightweight feedback adapter that normalizes objectives for selection while for-
matting constraints and expert hints for iteration. ExLLM sets new state-of-the-art
results on PMO and generalizes strongly—in our setup, it sets records on circle
packing and stellarator design, and yields consistent gains across additional do-
mains—requiring only a task-description template and evaluation functions to
transfer.

1 INTRODUCTION

Molecular design underpins drug discovery and materials science, yet the search space is vast and
highly discrete, making efficient optimization difficult. Classical machine learning approaches:
Bayesian optimization (BO), genetic algorithms (GA), reinforcement learning (RL), multi-objective
optimization (MOO), and MCMC, treat the problem largely as black-box search (Tripp et al., 2021;
Jensen, 2019; Nigam et al., 2019; Liu et al.; Verhellen, 2022; Xie et al., 2021; Sun et al., 2022;
Olivecrona et al., 2017; Jin et al., 2020). Deep generative models improve proposal quality by
learning molecular distributions (e.g., JTVAE, VJTNN, DST, diffusion and transformer-based models
such as MOOD, MolGPT, MOLGEN) and enable latent-space search (Jin et al., 2018a;b; Fu et al.,
2021; Lee et al., 2023; Bagal et al., 2021; Fang et al., 2024; Abeer et al., 2024). However, these
lines typically rely on scalarized rewards and fixed pipelines, making it hard to incorporate rich
priors (chemist heuristics, textual rules) and to handle heterogeneous feedback (multiple objectives,
hard/soft constraints) without task-specific re-engineering; practical protocols such as PMO further
highlight the need to optimize under a fixed evaluation budget due to costly oracle calls (Gao et al.,
2022).

Large language models (LLMs) offer a complementary opportunity: they encode broad domain
knowledge, support reasoning, and can be steered with prompts (Vaswani, 2017; AI4Science &
Quantum, 2023; Brown, 2020). Recent work explores LLMs as optimizers or operators within
evolutionary loops (e.g., OPRO, LMEA, AlphaEvolve; reasoning–acting with ReAct) and reports
encouraging results on numerical, coding, and planning tasks (Yang et al., 2024; Liu et al., 2024b;
Novikov et al., 2025a; Yao et al., 2022; Wu et al., 2024a). In molecular design, systems such as
ChemCrow, LICO, MolReGPT, Prompt-MolOpt, and MOLLEO demonstrate that pre-trained LLMs
or LLM–GA hybrids can guide candidate generation and multi-parameter search (M. Bran et al.,
2024; Nguyen & Grover, 2024; Li et al., 2024; Wu et al., 2024b; Wang et al., 2024a). Yet these efforts
remain early-stage: most are heavily prompt-dependent or require additional parameter training,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and lack a memory mechanism tailored to molecular optimization which has large, discrete search
loops. Existing memory systems were developed primarily for QA, coding, or short-horizon decision
making; they append per-step summaries and retrieve them at inference (RAG, RETRO, MemoryBank,
MemLLM, A-Mem, Memory-R1), which—when naively reused over long optimization runs—inflate
prompts, accumulate redundancy, and bias the search (Lewis et al., 2020; Borgeaud et al., 2022;
Zhong et al., 2024; Modarressi et al., 2024; Xu et al., 2025; Yan et al., 2025). Moreover, unified
handling of heterogeneous feedback (multi-objective signals, constraints, and expert textual hints)
remains limited in practice.

We propose ExLLM, an LLM-as-optimizer framework designed for molecular optimization. ExLLM
treats the LLM as the optimizer itself and introduces three complementary mechanisms: a single,
evolving experience distilled from good and bad cases to avoid memory bloat; a k-offspring sampling
scheme that leverages the autoregressive factorization to widen exploration per query; and a unified
feedback adapter that integrates objectives, constraints and textual feedback for iterative prompting.
The framework is simple to transfer with our task template custom evaluation functions and does not
require any training.

Contributions. (1) We introduce an evolving experience mechanism tailored to large discrete
spaces: a compact, low-redundancy snippet updated each generation, which improves convergence
and results while controlling cost and avoiding exploration collapse, contrasting with retrieval-style
memories (Zhao et al., 2023; Lewis et al., 2020; Borgeaud et al., 2022). (2) We propose a k-offspring
strategy that increases exploratory breadth per LLM call and yields consistent gains under a fixed
budget, with an empirical trade-off curve for k. (3) We develop a feedback adapter that unifies
multi-objective signals for selection and incorporates constraints/expert text as concise prompts;
promoting critical, variable constraints to explicit objectives improves stability without additional
training. (4) We demonstrate strong results on molecular optimization: ExLLM achieves a PMO
aggregate score of 19.165 (max 23), ranking first on 17/23 tasks and improving over the previous
SOTA (17.862) by +7.3% (Gao et al., 2022; Wang et al., 2024a). We package these contributions into
a general optimizer for large discrete spaces: with only a task-description template and evaluation
functions, it sets new records in circle packing and stellarator design, and delivers consistent gains
across additional domains (e.g., MOTSP/MOCVRP, SACS, NK2R peptide, GCU operator design).

2 RELATED WORK

2.1 MOLECULAR DESIGN WITH MACHINE LEARNING

Molecular optimization has long been approached as a black-box search problem using Bayesian op-
timization (BO), genetic algorithms (GA), reinforcement learning (RL), multi-objective optimization
(MOO), and MCMC variants. Representative GA/BO lines include GB-GA and its extensions—e.g.,
diversity-aware discriminators and Tanimoto-kernel Gaussian processes—which remain competitive
on classic property maximization tasks (Jensen, 2019; Nigam et al., 2019; Tripp et al., 2021; Gómez-
Bombarelli et al., 2018). BO-style MOO with learned encoders (MLPS) (Liu et al.) and graph-based
MOO (Verhellen, 2022) likewise seek Pareto-optimal solutions in latent or combinatorial spaces.
Sampling-based methods such as MARS (MCMC) and Monte-Carlo tree search further explore
chemical spaces probabilistically to identify molecules with desired properties (Xie et al., 2021;
Sun et al., 2022). RL pipelines train generative policies from reward signals (e.g., REINVENT and
rationale-guided GNNs) (Olivecrona et al., 2017; Jin et al., 2020), with recent variants such as DyMol,
Augmented Memory and Genetic-GFN improving multi-objective handling, utilize data augmentation
and experience replaying, or blending evolutionary operators with flow-based generators (Shin et al.,
2024; Guo & Schwaller, 2024; Kim et al., 2024). While these families achieve strong results on
several PMO tasks (Gao et al., 2022), they typically optimize only via function evaluations, making it
difficult to incorporate domain priors (chemist heuristics, expert constraints) beyond hand-crafted
rewards, and requiring nontrivial re-engineering or additional training when objectives or constraints
change.

Deep generative models advanced the field by learning molecular distributions and enabling higher-
quality proposals. Autoencoding and structured-latent approaches (e.g., JTVAE,VJTNN, DST)
capture scaffold and substructure regularities (Jin et al., 2018a;b; Fu et al., 2021), and diffusion
and transformer-based models (MOOD, MolGPT, MOLGEN) further improve sample fidelity and
cross-domain applicability (Lee et al., 2023; Bagal et al., 2021; Fang et al., 2024). Latent-space

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

optimization (LSO) shows that multi-objective search in the learned space can be effective for deep
generators (Abeer et al., 2024). However, limitations exist: (1) Models largely learn from data and
scalar rewards; codifying rich textual heuristics, design rules, or exception-heavy lab wisdom into
training signals is cumbersome and brittle. (2) Combining multiple objectives, hard/soft constraints,
and heuristic rules in a single training loop often requires bespoke reward shaping, delicate weighting,
or separate pipelines. Many systems require task-specific fine-tuning or reward engineering when the
optimization goal changes, limiting plug-and-play transfer to new objectives or domains (Gao et al.,
2022; Liu et al.; Verhellen, 2022).

2.2 MOLECULAR DESIGN WITH LLM

LLMs with domain knowledge are increasingly explored for drug and materials discovery (AI4Science
& Quantum, 2023). Agentic tool-use systems such as ChemCrow show that LLMs can plan, call
external chemistry tools, and iteratively refine candidates (M. Bran et al., 2024). In LICO (Nguyen
& Grover, 2024), in-context learning is strengthened by pretraining with separated embedding and
prediction layers to improve molecule generation; later Moayedpour et al. (2024) extends this idea
to multi-objective settings. MolReGPT targets few-shot molecular optimization with additional
parameterization for rapid adaptation (Li et al., 2024). MOLLEO integrates LLMs with a genetic
algorithm to guide mutations/edits during search, illustrating a viable LLM-as-optimizer pattern
(Wang et al., 2024a), but it lacks an explicit experience-reuse mechanism, explores this framework
at a relatively early stage, and is mainly scoped to molecular-design benchmarks. Prompt-MolOpt
explicitly leverages the domain knowledge of LLMs via property-specific prompt embeddings and
a sequence-to-sequence Transformer trained on substructure-annotated pairs, demonstrating strong
zero-/few-shot behavior on property-driven tasks (Wu et al., 2024b). However, existing LLM-based
molecular design approaches are still highly prompt-dependent or need additional training, and lack
an experience mechanism tailored to vast exploration spaces that can distill and reuse knowledge
during optimization. The ability to handle complex feedback is still limited.

2.3 LLM-AS-OPTIMIZER AND MEMORY MECHANISM

We have put this part to appendix 7.2.

3 METHOD

We first provide an overview of our framework, also shown in figure 8, and then give detailed
elaborations of the key components.We cast the LLM as an evolutionary optimizer under a fixed
evaluation budget B following PMO benchmark settings Gao et al. (2022). Let Pt denote the
population at generation t:

Initialization. Construct the initial population P0 (e.g., random seeds, scaffold templates, or domain
priors).

LLM-as-optimizer with k-offspring. For every randomly selected pair of parents (xi, xj) ⊆ Pt, a
proprietary commercial LLM (e.g., GPT, Gemini) proposes k candidate offspring:

Ct(xi, xj) = {y(1), . . . , y(k)}, y(i) ∼ pθ
(
·
∣∣ (xi, xj), task template, Et

)
,

where pθ is the autoregressive distribution and Et is the distilled experience from the previous
generation (§3.1). The complete candidate set at iteration t is then

Ct =
⋃

(xi,xj)∈M(Pt)

Ct(xi, xj),

where M(Pt) denotes the set of parent pairs selected from the current population Pt. The prompt
is constructed using a designed template that includes the task description, requirements, objective
specifications, parent information, mutation/crossover instructions, output guidelines, and other
constraints.

Feedback aggregation. Each y ∈ Ct is evaluated to obtain: (i) a vector of objective values
f(y) = [f1(y), . . . , fM (y)]; the raw objective values are preserved so that they can be explicitly

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overall framework of ExLLM. The process begins with an initialized population, followed
by LLM-based k-offspring generation, evaluation and feedback aggregation, hybrid selection (fitness
+ Pareto), and experience update. These steps repeat until the evaluation budget is exhausted.

included in the prompt, which facilitates the LLM’s understanding of task semantics. All objectives
form a unified vector representation that is subsequently employed for Pareto-based selection. (ii)
constraint values g(y) = [g1(y), . . . , gJ(y)]; (iii) optional expert/textual feedback ξ(y). The feedback
adapter (§3.3) normalizes objectives into a comparable vector used for selection, and formats g(y)
and ξ(y) into compact, structured text that can be injected back to the LLM in the next generation.

Selection (Fitness + Pareto). To construct the next generation, we employ a hybrid strategy: half of
the candidates are selected by ranking according to the scalar fitness value

F (y) =

M∑
i=1

wi f̂i(y),
∑
i

wi = 1, (1)

where weights are equal in our experiments, the remaining half are drawn from the Pareto front based
on dominance relations over the normalized objective vectors. This design balances exploitation of
high-performing individuals with preservation of diversity across the multi-objective space. Because
some molecules may achieve relatively high fitness values and exhibit structural diversity with good
potential, but share similar objective distributions which make them dominated by many other points,
fitness-based selection ensures these candidates are retained. Meanwhile, molecules with lower
fitness may still excel on specific objectives and remain non-dominated; such molecules are preserved
by Pareto-front selection for their potential.

Experience update. From all historically evaluated candidates up to generation t, we identify a set
of good examples Gt (top-r by F ) and sample a set of bad examples Bt uniformly from the lower
half of the fitness ranking. We then update the experience Et+1 by combining Et with distilled
insights from Gt∪Bt and discarding stale content; see §3.1. Then it jumps to LLM-as-optimizer with
k-offspring and repeats until the total evaluation calls reach B (PMO protocol) (Gao et al., 2022).

3.1 EVOLVING EXPERIENCE

Why not a retrieval-style memory. As discussed in §7.3, traditional memories maintain per-query
summaries and then re-inject many of them at every LLM call. We implemented this variant as a
control: after each generation, we summarize the new LLM outputs, rank the pool, and insert the
top-K (K ≤ 100) entries into every subsequent prompt (Table 1). In large discrete search, this leads

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Memory
Method Hypervolume Top10 AUC Uniqueness LLM

queries Cost (USD) Running
time (h)

Memory
(MB)

Retrieval-style 0.427 ± 0.155 3.904 ± 0.427 0.139 ± 0.043 18055 ± 567 > 100 > 24 ≈ 350
No memory 0.545 ± 0.189 3.974 ± 0.061 0.511 ± 0.062 3625 ± 1036 2.940 ± 0.734 0.262 ± 0.029 0.000 ± 0.000
Our design 0.750 ± 0.007 4.070 ± 0.026 0.615 ± 0.035 3312 ± 725 4.291 ± 1.743 0.390 ± 0.200 0.002 ± 0.000

Table 1: Experiments with different memory mechanisms on a 5-objective molecular optimization
task, identical to the task in Table 2, using Gemini-2.5-flash without thinking mode.

to (i) memory bloat and higher prompt cost, (ii) exploration collapse with repeated proposals. Some
runs of retrieval style memory were terminated early after repeatedly failing to produce novel valid
candidates. Accordingly, the reported cost and runtime are lower bounds measured at termination, and
memory is the approximate peak usage. We also observed a marked drop in uniqueness (sometimes
even below 10%) and hypervolume, large LLM query costs, significantly longer running time and
much larger storage space used compared to no memory and our design.

Inspired by summary-style experience from ReEvo and ExpeL, we keep one continually updated
experience Et into few hundreds of words. It captures actionable, transferable cues (e.g., frequently
binding constraints, robust edit patterns, common invalid cases) without retrieving multiple entries.
This avoids prompt bloat and reduces the risk of over-constraining exploration. From all historically
evaluated candidates up to generation t, form an evidence set Dt = Gt ∪ Bt, where Gt are the
top-r candidates by fitness F and Bt are uniformly sampled from the lower-half of the fitness
ranking. Let Sθ(·) denote the same LLM used by the optimizer, prompted to produce a single
concise memo (a few hundred words) that merges new evidence with prior experience. We update:
Et+1 = Sθ

(
Et, Dt) Operationally, Sθ folds in “good” and “bad” cases to reduce bias, promotes

non-redundant micro-insights, and overwrites outdated content so that Et remains compact, general
and up-to-date. At generation t+1, Et+1 is inserted directly into the LLM context without retrievals.
To prevent over-exploitation, the experience is included in the prompt with probability pexp ∈ [0, 1],
sampled independently per call:

I{inject Et} ∼ Bernoulli(pexp).

This mechanism keeps prompts short on average, amortizes summarization cost (one update per
generation), and maintains exploration headroom. We ablate pexp in §5 and observe that intermediate
values yield the best trade-off between sample efficiency and diversity.

3.2 UTILIZE AUTOREGRESSIVE EXPLORATION BY k-OFFSPRING

How can we increase exploration within a closed-source LLM without finetuning? We exploit their
autoregressive factorization to sample k offspring per parent in a single call. Because later proposals
can condition on earlier samples within the same context, this yields diverse-but-plausible edits with
low orchestration overhead. This strategy provides a simple way to strengthen exploratory breadth:
under a fixed evaluation budget, generating the same number of candidates requires fewer LLM
queries, fewer prompt tokens overall, and less running time than issuing one-off calls. However,
overly large k may over-explore a local region and reduce marginal gains. We therefore study
the trade-off by varying k and report the resulting gains and generalization under both single- and
multi-objective settings in the ablations.

3.3 HANDLING COMPLEX FEEBACK AND GENERALIZATION

The adapter normalizes all objectives to [0, 1] to prevent any large-magnitude objective from dominat-
ing the fitness; because our fitness follows a “larger-is-better” convention, we convert minimization
goals to maximization by taking 1 minus their normalized values. (ii) Constraints and textual feedback
are converted into a concise, formatted message that highlights violations, near-feasible margins, and
expert hints.When a constraint is critical and variable, we optionally promote it to an explicit objective
(e.g., minimize scaffold similarity or stellarator error), improving stability without parameter updates.
We empirically validate these design choices and their impact on optimization in §7.4.3.

Based on the efficient and effective evolving experience designed for large discrete search spaces, as
well as the easy-to-scale k-offspring mechanism and the unified feedback adapter, our framework

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

can be readily transferred to other problems and domains while maintaining strong performance. To
facilitate adoption, we provide a simple template in which users only need to prepare two files: one
specifying the task description and another defining the evaluation functions that return complex
feedback. We demonstrate the strong performance of our framework across many problems and
domains in Appendix 7.4.

4 EXPERIMENT

Task Settings Five-objective optimization. Following Wang et al. (2024a), we consider a five-
objective molecular optimization task with a fixed evaluation budget of B=5,000 oracle calls. The
objectives are: minimize SA (Synthetic Accessibility), DRD2 (Dopamine Receptor D2 affinity),
and GSK3β (Glycogen Synthase Kinase 3 Beta); and maximize QED (Quantitative Estimate of
Drug-likeness) and JNK3 (c-Jun N-terminal kinase 3). Although PMO (Gao et al., 2022) tasks are
closely related to GuacaMol (Brown et al., 2019), PMO explicitly emphasizes budgeted evaluation
due to the practical cost of property assessment (e.g., simulations or wet-lab proxies). A fixed
budget thus encourages efficient exploration and enables fair comparison. While under a fixed
budget, the initial population can substantially affect outcomes, yet this factor is often under-specified
in evolution-based methods. To control for it, we compute fitness over ZINC250K (Irwin et al.,
2012) and construct three fixed initial populations (size 100 each):Best-init: top-100 by fitness;
Worst-init: bottom-100;Random-init: 100 uniformly sampled molecules. All algorithms are run
from the same three initial populations, yielding a fair and comprehensive comparison. Best- and
random-initialization reflect common practical use, whereas worst-initialization stresses robustness on
a harder search. Beyond this five-objective setting, we follow the official PMO protocols and evaluate
the full PMO benchmark to assess overall generality. For all experiments unless otherwise noted,
ExLLM uses a fixed set of parameters with fixed proprietary LLM, experience injection probability
pexp=0.5, k=2, crossover probability 0.8, mutation probability 0.2, and population size 50. For the
five-objective experiments, we reproduce MOLLEO using their code and use GPT-4o-2024-05-13 for
both MOLLEO and our model.

Metrics Objectives are normalized and direction-unified as in Sec. 3.3; fitness F follows Eq. equa-
tion 1 with equal weights, consistent with Wang et al. (2024a). Hypervolume. Multi-objective cover-
age on the normalized (maximization) objective vectors using the reference point r = (1.1, . . . , 1.1);
larger values indicate better Pareto coverage. AUC Area under the curve of F versus oracle eval-
uations up to budget B; this rewards methods that reach high values with fewer oracle calls (Gao
et al., 2022). Validity: fraction passing RDKit parsing. Uniqueness: fraction of unique molecules
proposed. Novelty: fraction absent from ZINC250K. Diversity: average pairwise Tanimoto distance
between the Morgan fingerprints within the top-100. Efficiency LLM queries, API cost (USD),
wall-clock time (hours) under the same budget.

Baselines We compare against strong baselines spanning GA, BO, MCMC, RL, DL, and LLM-
based methods: GB-GA, GB-BO, JT-VAE, MARS, REINVENT, MOLLEO, DyMol, and Genetic-
GFN. For PMO-provided implementations (GB-GA, GB-BO, JT-VAE, MARS, REINVENT), we use
the official PMO code and its default hyperparameters. For MOLLEO, DyMol, and Genetic-GFN, we
use the authors’ public code with their default settings as documented in code/papers. For RL-based
baselines (REINVENT, DyMol, Genetic-GFN), we use the scalar fitness F as the reward signal
during training.

4.1 FIVE-OBJECTIVE EXPERIMENT RESULTS

Table 10 reports mean± std over five seeds; best scores are bold and second best are underlined.
RL-based baselines (REINVENT, DyMol, Genetic-GFN) do not expose a mechanism to fix the
initial population, so they are included only in the random-init condition. ExLLM attains the best F
and AUC across all settings. For hypervolume, ExLLM is best under worst-init and random-init,
and second best under best-init. In both random- and worst-initialization, the mean Top-10 F
of ExLLM exceeds the Top-1 F of the second-best method, indicating strong improvement under
the same budget. Novelty w.r.t. ZINC 250K is near 100% across models and settings; since this
offers little differentiation for our objectives, we omit it from the table for space. Under best-init,
MOLLEO matches ExLLM on Top-1 F , but ExLLM’s mean Top-10 F and AUC remain higher

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Metric Initial GB-GA JT-VAE GB-BO MARS REINVENT MOLLEO DyMol Genetic-GFN ExLLM(ours)

(Worst initial)
Top1 F 2.689 4.048 ± 0.114 3.838 ± 0.042 3.665 ± 0.129 3.891 ± 0.018 - 4.096 ± 0.155 - - 4.229 ± 0.050

Top10 F 2.683 4.019 ± 0.101 3.784 ± 0.027 3.647 ± 0.135 3.852 ± 0.019 - 4.044 ± 0.157 - - 4.186 ± 0.029
AUC-Top10 - 3.789 ± 0.079 3.712 ± 0.027 3.489 ± 0.104 3.740 ± 0.010 - 3.825 ± 0.102 - - 3.915 ± 0.010
Hypervolume 0.163 0.474 ± 0.190 0.364 ± 0.075 0.167 ± 0.050 0.488 ± 0.110 - 0.720 ± 0.172 - - 0.737 ± 0.038

Diversity 0.876 0.583 ± 0.032 0.847 ± 0.007 0.657 ± 0.033 0.826 ± 0.011 - 0.656 ± 0.111 - - 0.603 ± 0.055
Uniqueness - 0.786 ± 0.032 1.000 ± 0.000 1.000 ± 0.000 0.488 ± 0.128 - 0.672 ± 0.032 - - 0.829 ± 0.021

Validity - 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 - 0.930 ± 0.075 - - 0.937 ± 0.010

(Random initial)
Top1 F 3.804 4.017 ± 0.095 3.874 ± 0.067 4.003 ± 0.121 3.931 ± 0.055 4.230 ± 0.196 4.190 ± 0.076 4.232 ± 0.170 4.243 ± 0.253 4.336 ± 0.246

Top10 F 3.741 3.975 ± 0.095 3.831 ± 0.019 3.968 ± 0.104 3.868 ± 0.025 4.136 ± 0.219 4.076 ± 0.020 4.164 ± 0.132 4.202 ± 0.213 4.300 ± 0.164
AUC-Top10 - 3.861 ± 0.052 3.771 ± 0.011 3.802 ± 0.057 3.789 ± 0.011 3.930 ± 0.133 3.949 ± 0.021 4.001 ± 0.054 4.078 ± 0.150 4.116 ± 0.040
Hypervolume 0.236 0.643 ± 0.268 0.428 ± 0.127 0.507 ± 0.287 0.409 ± 0.111 0.742 ± 0.259 0.860 ± 0.088 0.868 ± 0.146 0.871 ± 0.288 0.905 ± 0.200

Diversity 0.884 0.623 ± 0.047 0.778 ± 0.012 0.717 ± 0.017 0.819 ± 0.015 0.640 ± 0.111 0.670 ± 0.015 0.581 ± 0.069 0.633 ± 0.066 0.494 ± 0.032
Uniqueness - 0.821 ± 0.032 0.956 ± 0.005 1.000 ± 0.000 0.477 ± 0.120 0.690 ± 0.132 0.575 ± 0.075 0.986 ± 0.005 0.349 ± 0.004 0.872 ± 0.015

Validity - 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.979 ± 0.002 0.938 ± 0.007 1.000 ± 0.000 0.998 ± 0.000 0.908 ± 0.019

(Best initial)
Top1 F 4.329 4.583 ± 0.154 4.329 ± 0.000 4.605 ± 0.047 4.419 ± 0.074 - 4.699 ± 0.000 - - 4.699 ± 0.000

Top10 F 4.132 4.582 ± 0.167 4.132 ± 0.000 4.467 ± 0.066 4.181 ± 0.029 - 4.564 ± 0.064 - - 4.628 ± 0.043
AUC-Top10 - 4.130 ± 0.088 4.091 ± 0.000 4.237 ± 0.112 4.137 ± 0.028 - 4.362 ± 0.075 - - 4.481 ± 0.055
Hypervolume 0.917 0.968 ± 0.183 0.917 ± 0.000 1.275 ± 0.027 0.975 ± 0.041 - 1.168 ± 0.106 - - 1.175 ± 0.067

Diversity 0.793 0.424 ± 0.070 0.792 ± 0.001 0.630 ± 0.024 0.788 ± 0.002 - 0.600 ± 0.052 - - 0.491 ± 0.057
Uniqueness - 0.729 ± 0.041 1.000 ± 0.000 1.000 ± 0.000 0.432 ± 0.053 - 0.678 ± 0.000 - - 0.942 ± 0.006

Validity - 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 - 0.913 ± 0.022 - - 0.790 ± 0.024

Table 2: Unconstrained molecular design results, objectives: QED↑ + SA↓ + DRD2↓ + GSK3β ↓ +
JNK3↑

than all other methods, suggesting more reliable batch-level gains. ExLLM maintains 80–95%
uniqueness across three settings, while MOLLEO is typically 55–70%, because they use the same
LLM, this indicates our framework has higher exploration ability. Validity is slightly lower than some
baselines because we generate SMILES and discard invalid strings rather than post-hoc repairing
them; this has negligible impact on final outcomes, and PMO notes SMILES is not necessarily
inferior to 100%-valid representations (Gao et al., 2022). The diversity of the final top-100 set is
somewhat lower, which reflects a common fitness–diversity trade-off: tighter, high-value exploration
can reduce spread. Notably, ExLLM delivers substantial gains over the initial populations in all three
init schemes, while trading some diversity for finer exploitation; coverage remains competitive as
evidenced by strong hypervolume.

4.2 RESULTS ON PMO

We evaluate ExLLM on the full PMO suite covering property, name-based, and structure-based
optimization (Table 3). Best values are bold; the second and third best are underlined. Following the
official scoring, we report an aggregate leaderboard score with a maximum of 23 points. ExLLM
attains a total score of 19.165, ranking first in 17/23 tasks and achieving the highest overall ranking.
Compared to the previous SOTA (17.862), this corresponds to a +7.3% improvement in the aggregate
score. To assess the contribution of the experience module, we also report an ablation without the
evolving experience (ExLLM w/o experience), which still reaches 18.165. This result suggests that
the k-offspring exploration is a strong contributor on its own, while the evolving experience provides
consistent additional gains overall.

4.3 EXTENDED EXPERIMENTS

We put the full tables and plots of the following experiments in the appendix. Cross-domain transfer.
ExLLM achieves new records on circle packing and stellarator design, and shows strong performance
on MOTSP/MOCVRP, SACS, NK2R peptide, and GCU operator design, with minimal task-specific
changes. Constraint handling. We compare prompt-only penalties with promoting constraints to
explicit objectives. The latter yields more stable optimization and better budgeted performance on
tasks where constraint values are critical and variable.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Task type Objective(↑) REINVENT Augmented
Memory Graph GA GP BO MOLLEO Genetic GFN ExLLM (Ours)

Property
optimization

QED 0.941 ± 0.000 0.941 ± 0.000 0.940 ± 0.000 0.937 ± 0.000 0.948 ± 0.000 0.942 ± 0.000 0.943 ± 0.000
JNK3 0.783 ± 0.023 0.773 ± 0.073 0.553 ± 0.136 0.564 ± 0.155 0.790 ± 0.027 0.764 ± 0.069 0.732 ± 0.078

DRD2 0.945 ± 0.007 0.962 ± 0.005 0.964 ± 0.012 0.923 ± 0.017 0.968 ± 0.012 0.974 ± 0.006 0.980 ± 0.003
GSK3β 0.865 ± 0.043 0.889 ± 0.027 0.788 ± 0.070 0.851 ± 0.041 0.863 ± 0.047 0.881 ± 0.042 0.818 ± 0.050

Name-based
optimization

mestranol_similarity 0.618 ± 0.048 0.764 ± 0.035 0.579 ± 0.022 0.627 ± 0.089 0.972 ± 0.009 0.708 ± 0.057 0.980 ± 0.005
albuterol_similarity 0.896 ± 0.008 0.918 ± 0.026 0.874 ± 0.020 0.902 ± 0.019 0.985 ± 0.024 0.949 ± 0.010 0.989 ± 0.000

thiothixene_rediscovery 0.534 ± 0.013 0.562 ± 0.028 0.479 ± 0.025 0.559 ± 0.027 0.727 ± 0.052 0.583 ± 0.034 0.910 ± 0.004
celecoxib_rediscovery 0.716 ± 0.084 0.784 ± 0.011 0.582 ± 0.057 0.728 ± 0.048 0.864 ± 0.034 0.891 ± 0.033 0.891 ± 0.033

troglitazone_rediscovery 0.452 ± 0.048 0.556 ± 0.052 0.377 ± 0.010 0.405 ± 0.007 0.562 ± 0.019 0.511 ± 0.054 0.726 ± 0.111
perindopril_mpo 0.537 ± 0.016 0.598 ± 0.008 0.538 ± 0.009 0.493 ± 0.011 0.600 ± 0.031 0.595 ± 0.014 0.797 ± 0.016
ranolazine_mpo 0.760 ± 0.009 0.802 ± 0.003 0.728 ± 0.012 0.735 ± 0.013 0.769 ± 0.022 0.819 ± 0.018 0.855 ± 0.021
sitagliptin_mpo 0.021 ± 0.003 0.479 ± 0.039 0.433 ± 0.075 0.186 ± 0.055 0.584 ± 0.067 0.634 ± 0.039 0.555 ± 0.048

amlodipine_mpo 0.642 ± 0.044 0.686 ± 0.046 0.625 ± 0.040 0.552 ± 0.025 0.773 ± 0.037 0.761 ± 0.019 0.874 ± 0.010
fexofenadine_mpo 0.769 ± 0.009 0.686 ± 0.010 0.779 ± 0.025 0.745 ± 0.009 0.847 ± 0.018 0.856 ± 0.039 0.984 ± 0.006

osimertinib_mpo 0.834 ± 0.046 0.856 ± 0.013 0.808 ± 0.012 0.762 ± 0.029 0.835 ± 0.024 0.860 ± 0.008 0.902 ± 0.018
zaleplon_mpo 0.347 ± 0.049 0.438 ± 0.082 0.456 ± 0.007 0.272 ± 0.026 0.510 ± 0.031 0.552 ± 0.033 0.723 ± 0.007

median1 0.372 ± 0.015 0.335 ± 0.012 0.287 ± 0.008 0.325 ± 0.012 0.352 ± 0.024 0.379 ± 0.010 0.384 ± 0.007
median2 0.294 ± 0.006 0.290 ± 0.006 0.229 ± 0.017 0.308 ± 0.034 0.275 ± 0.045 0.294 ± 0.007 0.475 ± 0.002

Structure-based
optimization

isomers_c7h8n2o2 0.842 ± 0.029 0.954 ± 0.033 0.949 ± 0.036 0.662 ± 0.071 0.984 ± 0.008 0.969 ± 0.003 0.984 ± 0.001
isomers_c9h10n2o2pf2cl 0.642 ± 0.054 0.830 ± 0.016 0.719 ± 0.047 0.469 ± 0.180 0.874 ± 0.053 0.897 ± 0.007 0.961 ± 0.028

deco_hop 0.666 ± 0.044 0.688 ± 0.060 0.619 ± 0.004 0.629 ± 0.018 0.942 ± 0.013 0.733 ± 0.109 0.956 ± 0.014
scaffold_hop 0.560 ± 0.019 0.565 ± 0.008 0.517 ± 0.007 0.548 ± 0.019 0.971 ± 0.004 0.615 ± 0.100 0.916 ± 0.127

valsartan_smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.867 ± 0.092 0.135 ± 0.271 0.831 ± 0.043

Total (↑) 14.036 15.356 13.823 13.182 17.862 16.213 19.165
Rank (↓) 5 4 6 7 2 3 1

Table 3: Top-10 AUC of tasks in PMO (Gao et al., 2022) benchmark, including single-objective
optimization and multi-objective optimization for 3 task types. ExLLM attains a total score of 19.165
(+7.3% improvement compared to the previous SOTA by MOLLEO), ranking first in 17/23 tasks
and achieving the highest overall ranking.

5 ABLATION STUDY

To fully characterize the framework, we ask: (1) how to determine k and what’s the trade-off?; (2) how
frequently should evolving experience be injected; (3) how does performance change with number
of objectives; (4) how should constraints be handled for stable, budgeted gains? We hence quantify
budgeted gains vs. local over-exploration by varying k∈{1, . . . , 6} in single-/multi-objective settings
with two LLM backbones. And then identify when experience helps vs. hinders exploration by
sweeping pexp∈ [0, 1]. We finally Tests scalability from 1 to 6 objectives including comparison with
MOLLEO. Detailed tables and the 4th ablation study are in the appendix.

Figure 2: k-offspring ablation studies. Top: single-objective optimization (JNK3). Bottom: five-
objective optimization. The most consistent improvement on results and exploration occurs at k=2
and 3, while higher k may lead to local over-exploration.

k-offspring trade-offs Figure 2 shows the results of varying k without using experience. For the
five-objective plot, we subtract 3.5 from both AUC and F before plotting to improve readability.
Increasing k improves exploratory breadth, especially in the single-objective JNK3 task, yet overly

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

large k tends to over-explore locally and limits global search under a fixed budget. Across tasks,
k=2 yields the largest and most stable gains in our sweep; k=3 is less stable, and larger k becomes
increasingly unstable or degrades improvement.

Pexp Top10 F AUC-Top10 Hypervolume Uniqueness Validity Diversity

0.0 4.245 ± 0.121 4.015 ± 0.074 0.850 ± 0.224 0.870 ± 0.014 0.900 ± 0.003 0.556 ± 0.106
0.3 4.260 ± 0.145 4.004 ± 0.077 0.881 ± 0.201 0.879 ± 0.014 0.905 ± 0.010 0.509 ± 0.057
0.5 4.301 ± 0.164 4.116 ± 0.040 0.905 ± 0.200 0.872 ± 0.015 0.908 ± 0.019 0.494 ± 0.032
0.7 3.986 ± 0.032 3.892 ± 0.007 0.555 ± 0.188 0.843 ± 0.016 0.930 ± 0.015 0.586 ± 0.070
0.9 4.030 ± 0.098 3.923 ± 0.051 0.571 ± 0.228 0.856 ± 0.020 0.926 ± 0.002 0.496 ± 0.021

Table 4: The ablation study of Pexp shows that incorporating experience can notably improve
performance and convergence, but it must be properly controlled to avoid restricting the exploration
direction.

Experience Injection Our evolving experience is lightweight and general, yielding steady perfor-
mance gains with only a modest impact on diversity. That said, in molecular optimization which has
large discrete spaces, Pexpshould be properly controlled to prevent over-conditioning the search and
restricting exploration.

Figure 3: Experiment of different number of objectives.

More number of Objectives We conduct experiments using random initialization across scenarios
with one to six objectives, starting with only QED↑ to QED↑ + SA↓ + DRD2↓ + GSK3β ↓ + JNK3↑
+ BBBP↑ (Blood-Brain Barrier Permeability) as shown in figure 3 (full table in appendix 7.6). BBBP
(Blood-Brain Barrier Permeability) as a sixth objective, as it is a more complex and less predictable
property with limited domain knowledge. As the number of objectives increases, the performance
gap between ExLLM and MOLLEO widens, particularly when optimizing more than four objectives,
showing the gains of increasing complexity of the task. In MOLLEO uniqueness and validity tend
to degrade significantly when optimizing fewer objectives, this indicates the exploration ability is
seriously affected. ExLLM consistently achieves high uniqueness and validity, showing its stable
exploration ability across different task complexity. We put reproducibility in appendix 7.1.

6 CONCLUSION

We presented ExLLM, an LLM-as-optimizer framework for large discrete optimization, instantiated
for multi-objective molecular design. The method couples three simple components: a single,
evolving experience that distills non-redundant cues at low cost; a k-offspring sampling scheme that
widens exploration per query; and a feedback adapter that normalizes objectives for selection while
formatting constraints and expert hints for iteration. Under a fixed evaluation budget, ExLLM attains
state-of-the-art results on PMO (total score 19.165, ranking first on 17/23 tasks, +7.3% over prior
SOTA) and generalizes beyond chemistry, setting new records on circle packing and stellarator design
while delivering strong performance across additional domains. The probabilistic experience injection
improves efficiency without over-constraining exploration. Looking forward, we plan to (i) adapt k
and the experience-injection rate online, (ii) incorporate oracle uncertainty and 3D/physics-informed
feedback, and (iii) broaden evaluation to additional scientific design tasks. We release templates
for rapid transfer, lowering the barrier to applying ExLLM as a general optimizer for large discrete
spaces.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

ANM Nafiz Abeer, Nathan M Urban, M Ryan Weil, Francis J Alexander, and Byung-Jun Yoon.
Multi-objective latent space optimization of generative molecular design models. Patterns, 5(10),
2024.

Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large language models
on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361, 2023.

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):
2064–2076, 2021.

Julian Blank and Kalyanmoy Deb. Pymoo: Multi-objective optimization in python. Ieee access, 8:
89497–89509, 2020.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Shuvayan Brahmachary, Subodh M Joshi, Aniruddha Panda, Kaushik Koneripalli, Arun Kumar Sago-
tra, Harshil Patel, Ankush Sharma, Ameya D Jagtap, and Kaushic Kalyanaraman. Large language
model-based evolutionary optimizer: Reasoning with elitism. arXiv preprint arXiv:2403.02054,
2024.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Santiago A Cadena, Andrea Merlo, Emanuel Laude, Alexander Bauer, Atul Agrawal, Maria Pascu,
Marija Savtchouk, Enrico Guiraud, Lukas Bonauer, Stuart Hudson, et al. Constellaration: A
dataset of qi-like stellarator plasma boundaries and optimization benchmarks. arXiv preprint
arXiv:2506.19583, 2025.

Yin Fang, Ningyu Zhang, Zhuo Chen, Lingbing Guo, Xiaohui Fan, and Huajun Chen. Domain-
agnostic molecular generation with chemical feedback. In The Twelfth International Conference
on Learning Representations, 2024.

Erich Friedman. Erich’s packing center. https://erich-friedman.github.io/
packing/, 2025. Accessed: 2025-09-22.

Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W Coley, and Jimeng Sun. Differentiable
scaffolding tree for molecular optimization. arXiv preprint arXiv:2109.10469, 2021.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
for practical molecular optimization. Advances in neural information processing systems, 35:
21342–21357, 2022.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Jeff Guo and Philippe Schwaller. Augmented memory: Sample-efficient generative molecular design
with reinforcement learning. Jacs Au, 4(6):2160–2172, 2024.

Beichen Huang, Xingyu Wu, Yu Zhou, Jibin Wu, Liang Feng, Ran Cheng, and Kay Chen Tan.
Exploring the true potential: Evaluating the black-box optimization capability of large language
models. arXiv preprint arXiv:2404.06290, 2024.

10

https://erich-friedman.github.io/packing/
https://erich-friedman.github.io/packing/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018a.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization. arXiv preprint arXiv:1812.01070, 2018b.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International conference on machine learning, pp. 4849–4859.
PMLR, 2020.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided GFlownets for sample
efficient molecular optimization. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=B4q98aAZwt.

Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pp. 18872–18892.
PMLR, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and Qing Li. Empowering
molecule discovery for molecule-caption translation with large language models: A chatgpt
perspective. IEEE Transactions on Knowledge and Data Engineering, 2024.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. arXiv preprint arXiv:2203.15386, 2022.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large
language model. arXiv preprint arXiv:2311.15249, 2023.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024a.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024b.

Wanyi Liu, Long Chen, and Zhenzhou Tang. Large language model aided multi-objective evolutionary
algorithm: a low-cost adaptive approach. arXiv preprint arXiv:2410.02301, 2024c.

Yiping Liu, Jiahao Yang, Zhang Xinyi, Yuansheng Liu, Bosheng Song, Hisao Ishibuchi, et al.
Multi-objective molecular design through learning latent pareto set.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelligence,
pp. 1–11, 2024.

11

https://openreview.net/forum?id=B4q98aAZwt


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Saeed Moayedpour, Alejandro Corrochano-Navarro, Faryad Sahneh, Shahriar Noroozizadeh, Alexan-
der Koetter, Jiri Vymetal, Lorenzo Kogler-Anele, Pablo Mas, Yasser Jangjou, Sizhen Li, et al.
Many-shot in-context learning for molecular inverse design. arXiv preprint arXiv:2407.19089,
2024.

Ali Modarressi, Abdullatif Köksal, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Memllm:
Finetuning llms to use an explicit read-write memory. arXiv preprint arXiv:2404.11672, 2024.

Tung Nguyen and Aditya Grover. Lico: Large language models for in-context molecular optimization.
arXiv preprint arXiv:2406.18851, 2024.

AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alán Aspuru-Guzik. Augmenting
genetic algorithms with deep neural networks for exploring the chemical space. arXiv preprint
arXiv:1909.11655, 2019.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
volve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131,
2025a.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
volve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131,
2025b.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9:1–14, 2017.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Frederike Sass, Tao Ma, Jeppe H Ekberg, Melissa Kirigiti, Mario G Ureña, Lucile Dollet, Jenny M
Brown, Astrid L Basse, Warren T Yacawych, Hayley B Burm, et al. Nk2r control of energy
expenditure and feeding to treat metabolic diseases. Nature, 635(8040):987–1000, 2024.

Dong-Hee Shin, Young-Han Son, Deok-Joong Lee, Ji-Wung Han, and Tae-Eui Kam. Dynamic
many-objective molecular optimization: Unfolding complexity with objective decomposition and
progressive optimization. In Kate Larson (ed.), Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI-24, pp. 6026–6034. International Joint Conferences
on Artificial Intelligence Organization, 8 2024. doi: 10.24963/ijcai.2024/666. URL https:
//doi.org/10.24963/ijcai.2024/666. Main Track.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Mengying Sun, Jing Xing, Han Meng, Huijun Wang, Bin Chen, and Jiayu Zhou. Molsearch: search-
based multi-objective molecular generation and property optimization. In Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining, pp. 4724–4732, 2022.

Austin Tripp, Gregor NC Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jonas Verhellen. Graph-based molecular pareto optimisation. Chemical Science, 13(25):7526–7535,
2022.

Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Streith-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
chemical space with large language models. arXiv preprint arXiv:2406.16976, 2024a.

12

https://doi.org/10.24963/ijcai.2024/666
https://doi.org/10.24963/ijcai.2024/666


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zeyi Wang, Songbai Liu, Jianyong Chen, and Kay Chen Tan. Large language model-aided evolution-
ary search for constrained multiobjective optimization. In International Conference on Intelligent
Computing, pp. 218–230. Springer, 2024b.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation in
the era of large language model: Survey and roadmap. arXiv preprint arXiv:2401.10034, 2024a.

Zhenxing Wu, Odin Zhang, Xiaorui Wang, Li Fu, Huifeng Zhao, Jike Wang, Hongyan Du, Dejun
Jiang, Yafeng Deng, Dongsheng Cao, et al. Leveraging language model for advanced multiproperty
molecular optimization via prompt engineering. Nature Machine Intelligence, pp. 1–11, 2024b.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars: Markov
molecular sampling for multi-objective drug discovery. arXiv preprint arXiv:2103.10432, 2021.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma,
Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language model agents
to manage and utilize memories via reinforcement learning. arXiv preprint arXiv:2508.19828,
2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
03409.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners, 2023. URL https://arxiv.org/abs/2308.10144.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

13

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2308.10144


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

7 APPENDIX

7.1 REPRODUCIBILITY

We commit to releasing the full implementation upon acceptance of the paper. The public repository
will include all code to reproduce the results reported in this work, covering not only the experiments
in the main text but also the extended templates and evaluation functions for other domains. All prompt
templates used in our optimizer will also be released to ensure transparency and reproducibility.

7.2 RELATED WORK

7.3 LLM-AS-OPTIMIZER AND MEMORY MECHANISM

Recent work tends to use LLM as optimizer to utilize domain knowledge and reasoning ability to
guide efficient high-dimensional exploration without training (AI4Science & Quantum, 2023; Wu
et al., 2024a; Brown, 2020). OPRO and LMEA cast LLMs as crossover/mutation operators within GA-
style loops, balancing exploitation–exploration via prompt design and temperature control (Yang et al.,
2024; Liu et al., 2024b); AlphaEvolve further systematizes this LLM-in-the-loop evolutionary pattern,
and ReAct exemplifies reasoning–acting procedures that can guide decision making (Novikov et al.,
2025a; Yao et al., 2022). In molecular settings, constrained prompt engineering shows encouraging
alignment effects (Wang et al., 2024b), while several studies report that GA+LLM pipelines can
be efficient and competitive against standalone LLMs and traditional MOO when coupled with
well-structured workflows (Liu et al., 2023; 2024a;c; Huang et al., 2024; Brahmachary et al., 2024),
indicating LLM as a promising optimizer for numerical optimizations, coding and planning problems.

External memory is widely used to inject up-to-date knowledge and reduce parametric forget-
ting—ranging from RAG (retrieve-then-concatenate) (Lewis et al., 2020) and RETRO (cross-attending
to retrieved neighbors) (Borgeaud et al., 2022) to persistent, editable stores such as MemoryBank
(human-like forgetting/refresh) and MemLLM (explicit read/write) (Zhong et al., 2024; Modarressi
et al., 2024). Hybrid controllers like A-Mem and RL-trained Memory-R1 further learn when to
add/update/delete/consume memories (Xu et al., 2025; Yan et al., 2025). While effective for QA, code
and planning tasks, these designs are not tailored to large discrete optimization: massive iteration
counts and huge candidate spaces make append-only or dense-retrieval memories prone to memory
bloat and redundancy, drive up per-query prompt cost, and bias exploration when similar histories are
repeatedly injected, as shown in table 1. We address this by a compact, low-redundancy experience
pool that is both efficient and effective with much lower costs.

7.4 MORE APPLICATIONS

7.4.1 CIRCLE PACKING IN A UNIT SQUARE

Task. Place n circles inside a unit square to maximize the common radius without overlap or boundary
violations; this classic geometric packing problem has long-standing community records and curated
best-known configurations (Friedman, 2025; Novikov et al., 2025a).

Challenges for our optimizer. (1) End-to-end instability: tiny coordinate nudges can flip feasibility,
making naive prompt-only updates easily to voliate the constraints. (2) Variable abstraction: the raw
state of the problem is described only by a list of circle centers and their individual radii (xi, yi, ri).
This representation is highly abstract and purely numerical, making it difficult for an LLM to derive
intuitive geometric insights directly from the prompt. And the feedback is only the total radius.

Method n=26 n=27 n=28 n=29 n=30 n=31 n=32

Current record
Friedman

(2025)
2.634+ 2.685+ 2.737+ 2.790+ 2.842+ 2.889+ 2.936+

AlphaEvolve 2.635977 - - - - - 2.937+
ExLLM 2.635983 2.65898 2.73740 2.79034 2.84267 2.88997 2.939+

Table 5: Circle packing in a unit square results for n=26 to 32.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: Best layouts found by our optimizer: (left) n = 26, (right) n = 32.

Our approach. We keep the ExLLM optimizer fixed (same hyperparameters as in the main text)
and modify only the task template and the evaluation function. The template succinctly describes
the target (pack n circles in a unit square) and specifies a simple output format (center coordinates
and radii). To stabilize end-to-end outcomes, we post-process ExLLM’s proposals with a fixed
off-the-shelf solver—SLSQP from SciPy—which enforces non-overlap and boundary constraints and
locally increases the radii given the LLM’s initial centers/radii. In contrast to methods that retrain or
tune a bespoke solver (e.g., evolving the solver itself), we hold the optimizer constant and use a fixed
solver purely for feasibility/finetuning, while ExLLM focuses on generating strong initializations.

Results and visualization. All results are shown in figure 4 and table 5. In our setup, we obtain new
best-known results for n = 26 and n = 32. For n = 27–31, our solutions match the publicly reported
records up to the available three-decimal precision; because reference values beyond three decimals
are not published, we cannot determine whether we strictly surpass them. We include figures of
our best layouts and a table of achieved radii n. Notably, our algorithm often discovers multiple
distinct arrangements that attain the same maximal score. The experiments were conducted with
2500 evaluation budget, and it takes about only 3 hours to complete and find achieved new records.

7.4.2 STELLARATOR DESIGN

Task. Optimize quasi-isodynamic (QI) stellarator plasma boundaries under strict physics and engi-
neering constraints using the ConStellaration benchmark (Cadena et al., 2025): (P2) Simple-to-build
QI (favor coil simplicity subject to QI/geometry constraints) and (P3) MHD-stable QI (trade off
compactness vs. coil simplicity under MHD stability and turbulence-proxy constraints). We adopt
the official scoring and evaluation protocol of the benchmark release.

Challenges for our optimizer. (1) Constraint hardness & multiplicity: Problem 2 is single objective
optimization with 5 constraints, and problem 3 is even harder with 2 objective optimization and 5
constraints including edge rotational transform, quasi isodynamicity residual, vacuum well etc. (2)
Sparse nonzero solution: setting the number of field periods to 3 according to official code, sweeping
the about 180k released designs yields no nonzero scores under the strict benchmark tolerances. (3)
The official gradient-based (scipy-trust-constr) and derivative-free (COBYQA) baselines fail
to produce feasible points on P2/P3; only the ALM–NGOpt pipeline attains nonzero scores, and
sparsely so.

Our approach. We keep the ExLLM optimizer fixed (same hyperparameters as in the main text)
and change only the task template and evaluation to match P2/P3. Because feasibility is hard—any
violation yields a zero score—and the key feasibility indicator is a measurable scalar (the feasibility
score must be <0.01), we treat this constraint as an explicit objective. Concretely, besides using the
official targets, we add a feasibility term that rewards minimizing feasibility score; this follows our

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

adapter’s rule for promoting critical, variable constraints into objectives. In practice, this substantially
accelerates convergence to nonzero scores and stabilizes progress, the proportion of nonzero scores
largely increases.

Results and visualization. On both benchmarks we surpass the official SOTA (ALM–NGOpt),
obtaining many feasible points in a single run while tightly respecting constraints, 17% improvement
on problem 2 and 3% improvement on problem 3. Figure 5 shows visualization of our best solutions;
Table 6 compares scores.

Method Simple-to-build QI (P2) ↑ MHD-stable QI (P3) ↑

Official scipy-trust-constr Failed Failed
Official COBYQA Failed Failed
Official best (ALM–NGOpt) 0.431 129.796 ; (Best single point: 97)
MOLLM (Ours) 0.505 133.634 ; (Best single point: 103)

Table 6: ConStellaration benchmarks: ExLLM-based optimizer (MOLLM) exceeds the official SOTA
on both P2 and P3, while generating hundreds of nonzero feasible points per run and adhering closely
to the constraint set.

Figure 5: A visualization of our best solution for problem 2.

7.4.3 MOCPOP (MULTI-OBJECTIVE COMBINATORIAL PATH OPTIMIZATION PROBLEMS)

Task. The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Capaci-
tated Vehicle Routing Problem (MOCVRP) are both classical NP-hard combinatorial optimization
tasks. MOTSP seeks a single Hamiltonian circuit that, starting and ending at a given depot, visits
every city exactly once while simultaneously minimizing multiple conflicting objectives. MOCVRP
designs a set of capacitated vehicle routes that originate from a common depot, serve all customer
demands, and jointly minimize the total travel distance and the makespan. All benchmark instances
used in this study were generated with the scalable generator proposed by Lin et al. (2022)

Challenges for our optimizer. (1) Implicit dimensional coupling: MOTSP exhibits a scale–sensitive
embedding, a microscopic rescaling of one coordinate can flip the relative distances of a city pair
from the global minimum to the global maximum. Consequently, the gradient direction that appears
Pareto-improving in one scalarization step may become strongly misleading after an infinitesimal
δ-shift, rendering classical directional updates ineffective and causing severe oscillations on the Pareto
front. (2) Pareto-conflict trap: In MOCVRP, the total travel distance and the makespan form a deeply
antagonistic pair, minimizing the former tends to squeeze all routes into a few “spokes,” whereas
minimizing the latter forces a balanced, yet longer, set of tours. A single scalarized surrogate—no
matter how sophisticated the weight schedule—collapses the true Pareto front into a narrow ridge
and inevitably misses the knee regions that dominate most practical trade-offs. (3) Destructive
heuristic search bias: Offspring generated by canonical route-based crossover (e.g., OX, MPX)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

inherit disconnected fragments or violate capacity constraints with > 90 % probability. The resulting
infeasible individuals are rejected outright, so the search wastes the vast majority of evaluations and
the effective population size collapses—an effect we term “lethal recombination drag.” Advanced
repair mechanisms partially alleviate the issue, yet they simultaneously erode the schema that parental
high-fitness routes originally encoded, decelerating convergence toward the Pareto set

Our approach. For MOCPOP, our ExLLM employs deliberately fuzzy prompts that fully exploit
the intrinsic experience and reasoning capacity of the large language model. The model proposes
inference-based, feasible offspring instead of rigidly applying heuristics such as OX or PMX, which
would otherwise produce a high proportion of invalid children. We also integrate an LLM + Solver
scheme: after the large model generates high-quality feasible solutions, a solver—guided by a
heuristic also proposed by the LLM—further refines these solutions to produce a superior population.
This hybrid strategy guarantees both the quality and the speed of ExLLM’s search.

Results. Across both benchmarks, ExLLM attains highly competitive performance (Table 8). MOTSP
instances comprise n = 100 cities, and MOCVRP instances comprise n = 100 customers and
m = 20 vehicles. We adopt hyper-volume as the universal performance indicator. Baselines include
the human-designed solver Pymoo (Blank & Deb, 2020), as well as recent search-based algorithms
ReEvo (Ye et al., 2024), AlphaEvolve (Novikov et al., 2025b), and other representative model.
ExLLM achieves new SOTA hyper-volume on MOCVRP and ranks second only to AlphaEvolve on
MOTSP, demonstrating the effectiveness of the LLM-guided hybrid paradigm.

Method MOTSP(n=100) MOCVRP(n=50,m=20)

Pymoo 0.983488 0.955802
ReEvo 1.028890 1.034541
GreedyRefine (Shinn et al., 2023) 1.031825 1.031764
AIDE (Jiang et al., 2025) 1.020798 1.005552
Funsearch (Romera-Paredes et al., 2024) 1.023301 1.032126
AlphaEvolve 1.029279 1.031803
ExLLM(ours) 1.027333 1.070412

Table 7: MOCPOP benchmark: ExLLM surpasses SOTA hyper-volume on MOCVRP and ranks
second to AlphaEvolve on MOTSP.

7.4.4 SACS (STRUCTURAL ANALYSIS COMPUTER SYSTEM)

Task. To validate the cross-domain transferability of our framework, we apply ExLLM to a challeng-
ing real-world engineering problem: the structural optimization of offshore platform jackets. This
system intelligently adjusts the dimensions of structural components to simultaneously achieve three
conflicting goals: 1) Minimize the structural weight to reduce material and construction costs; 2)
Ensure structural strength is sufficient to withstand extreme axial load conditions; and 3) Ensure
structural strength is sufficient to resist extreme bending and torsional loads. The optimization is
performed using the SACS finite element analysis software as the evaluation oracle.

Challenges for our optimizer. (1) Complex mixed-variable parameter space: The optimization
involves a hybrid of discrete and continuous variables. It requires selecting standard cross-sections
from a catalog using discrete string representations, while simultaneously optimizing other continuous
design parameters. This mixed-variable nature presents a significant challenge for many optimization
algorithms. (2) Computationally expensive feedback loop: Each proposed design must be evaluated
using the SACS finite element software, which involves computationally intensive simulations. This
places a strict limit on the number of evaluations possible, demanding high sample efficiency from the
optimizer. (3) Balancing competing objectives: The goals of minimizing weight while maximizing
strength against two different types of critical loads are inherently contradictory. Finding a balanced
solution on the Pareto front requires sophisticated exploration and exploitation strategies. (4) Black-
box feedback: The optimizer receives performance metrics (weight, stress, displacement) from SACS
without direct access to the software’s internal gradients, treating it as a black box.

Our approach. Demonstrating the framework’s ’plug-and-play’ capability, we kept the core ExLLM
optimizer and its hyperparameters identical to those used in the molecular design experiments. The
transfer to this new domain required only the creation of a task-specific template—which instructs
the LLM to propose modifications to a vector of design parameters—and a corresponding evaluation
function that interfaces with the SACS software. The feedback adapter then processes the results

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

from SACS—structural weight and stress safety factors—and formats them for the next optimization
iteration. The evolving experience mechanism is particularly valuable for identifying promising
design patterns (e.g., which members are most sensitive to change) and avoiding repeated evaluation
of inferior designs, which is critical given the high cost of SACS simulations.

Results. By applying ExLLM, we successfully automated the iterative design process for the
offshore jacket structure. As shown in Table 8, our LLM-based approach discovered a design
with a final weight of only 13.6 tons, a reduction of over 93% compared to the 218.0-ton human-
designed baseline, while maintaining the maximum stress ratio within safe limits (<1.0). This result
significantly outperforms traditional optimization algorithms like Genetic Algorithm (GA), MOEAD,
and Random Search (RS) in terms of final structural weight. The convergence plots in Figure 6
further illustrate the efficiency of our method. The LLM-based optimizer (labeled LLM and LLM
Ablation) demonstrates substantially faster convergence and achieves superior final values for both
the Top 10 Fitness (F) and hypervolume metrics compared to other baselines. This indicates that the
ExLLM framework not only finds better solutions but also does so with significantly fewer evaluation
calls, a critical advantage for computationally expensive, real-world engineering problems.

Method Final Total Weight (tons) Maximum Stress Ratio

Human Baseline Design 218.00 0.024
LLM (ours) 13.60 0.508
LLM Ablation (ours) 14.90 0.814
GA (Genetic Algorithm) 32.24 0.093
MOEAD 37.76 0.137
RS (Random Search) 49.33 0.435

Table 8: Comparison of optimization results for the offshore jacket structure.

Figure 6: Performance comparison on the SACS benchmark. (Left) Top 10 F metric vs. evaluation
calls. Our LLM-based methods show significantly faster convergence and achieve a higher final
fitness score. (Right) Hypervolume evolution vs. evaluation calls. The LLM-based approaches
achieve a substantially larger and more stable hypervolume, demonstrating superior performance in
balancing the multi-objective trade-offs.

7.4.5 PEPTIDE DESIGN FOR NK2R

Task and background. This task comes from the peptide design competition organized by Tsinghua
University’s FBS(Frontiers In Biological Structures) lab, aiming to discover anti-obesity therapeutics
via the Neurokinin-2 receptor (NK2R)1. NK2R (UniProt P21452) is a promising target because acti-
vating it can reduce food intake via central mechanisms and increase energy expenditure peripherally;
thus, efficacious NK2R agonists could provide dual-action weight-loss benefits Sass et al. (2024). It
requires designing short peptide agonists that can outcompete the native ligand Neurokinin A (NKA)
at NK2R under the competition’s evaluation protocol (AlphaFold3 complex modeling with NK2R,
Gα, NKA and designed peptide).

Challenge specification. Candidates must satisfy two hard success criteria: (i) sequence similarity
to NKA (HKTDSFVGLM) must be < 30% by mmseqs2; (ii) under the same AlphaFold3 setup, the

1https://www.fbs.frcbs.tsinghua.edu.cn/competition/2025Peptide

18

https://www.fbs.frcbs.tsinghua.edu.cn/competition/2025Peptide


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

peptide’s complex ipTM with NK2R must exceed the ipTM of NKA (i.e., ipTMours > ipTMNKA).
Higher ipTM is better, and successful designs will proceed to wet-lab synthesis and activity testing in
later rounds.

Challenges for our optimizer. (1) Hard constraints dominate success: without meeting the similari-
ty/length filters and the “beat-NKA” ipTM criterion, candidates effectively score zero. (2) Sparse,
coupled feedback: AlphaFold3 provides a small set of structural scores (e.g., ipTM), and the success
condition is relative to NKA rather than an absolute threshold, coupling objectives and constraints
tightly.

Our approach. We keep the ExLLM optimizer fixed (same hyperparameters as in the main text) and
provide the task template and evaluation function using AlphaFold3. The task template compresses
all rules (length, similarity, formatting) and objectives into a compact, structured description; the
feedback adapter enforces filters and exposes per-iteration diagnostics. We optimize a two-term
objective: maximize ipTMours (peptide–NK2R complex) and minimize ipTMNKA under the same
NK2R target, subject to the length and mmseqs2 similarity constraints. We start from 25 random
UniProt peptides (≤ 40 aa); none beat NKA initially. Under a budget of 1,000 evaluations, ExLLM
designs many candidates with positive margins.

Results. Table 9 lists representative top candidates (sorted by ∆); all reported sequences satisfy the
competition’s length and similarity filters in our screen. Notably, the best margin reaches +0.67
ipTM, and we routinely observe dozens of non-zero successes in a single run.

Peptide (ours) ipTM(NKA) ipTM(ours) ∆

Peptide1 0.16 0.83 0.67
Peptide2 0.10 0.76 0.66
Peptide3 0.11 0.76 0.65
Peptide4 0.12 0.75 0.63
Peptide5 0.16 0.78 0.62
Peptide6 0.16 0.77 0.61
Peptide7 0.14 0.74 0.60
Peptide8 0.18 0.76 0.58
Peptide9 0.17 0.74 0.57
Peptide10 0.22 0.77 0.55

Table 9: NK2R results (AF3 ipTM). Candidates are ranked by margin ∆ = ipTMours − ipTMNKA;
larger is better. Budget: 1,000 evaluations.

7.4.6 GCU OPERATOR DESIGN

Task. This track targets high-performance kernel development on Tencent’s GCU using the of-
ficial operator SDK and TopsCC toolchain; submissions are auto-graded for both correctness
and latency across 10 test cases per operator. The qualifier includes three operators (Var, SiLU,
GEMM v2). Competition page: https://aiarena.tencent.com/aiarena/zh/match/
open-competition-2025.

Challenges for our optimizer. (1) Limited public expertise. GCU is a new accelerator; kernels are
built on a new framework, so CUDA-centric patterns from LLM pretraining transfer poorly. (2) Low
naïve compile success. Direct LLM-generated kernels compile successfully in <10% of attempts.
(3) Long iteration latency. Each compile–run test takes 5–10 minutes, making failed trials especially
costly and throttling exploration.

Our approach. We keep ExLLM fixed (same hyperparameters as in the main text) and adapt
only the task template and evaluation harness. First, we distill the official SDK documentation
into a few-hundred-word prior (key APIs, vectorization rules, memory/resource limits) and inject
it into the prompt. Second, the feedback adapter returns compact, structured diagnostics from
TopsCC—compiler errors, resource overuse (register/SMEM), numeric checks, and latency. These
messages are surfaced verbatim to ExLLM and summarized into the evolving experience so that
subsequent generations see parents’ error traces plus accumulated general rules summarized by
evolving experience.

Results. With only 300 evaluations per operator, ExLLM-produced kernels pass all platform
accuracy checks and substantially reduce latency for Var, SiLU, and GEMM v2. Our compile

19

https://aiarena.tencent.com/aiarena/zh/match/open-competition-2025
https://aiarena.tencent.com/aiarena/zh/match/open-competition-2025


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

success rate rises from <10% (naïve prompting) to 85% with error-aware feedback and evolving
experience, enabling rapid iteration despite 5–10 minute test cycles. The submission ranked in
the top-10 of the qualifier and was close to the top score (exact rank withheld for anonymity).
All submitted kernels were authored by ExLLM under the above template and harness, with no
human-written lines of code—every kernel was fully model-generated without manual edits.

7.5 EXPERIENCE EXAMPLES

This section demonstrates experience from two tasks, the 5-objective optimization and single-objective
optimization. The experience of 5-objective optimization task with random initilization is extracted
from the experiments in Table 1 in the main content. And the single-objective task is optimizing
JNK3 on PMO benchmark.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Initial experience of 5 objectives

1. Excellent Molecules:
• Balanced Substituents: Molecules with balanced, non-bulky substituents tend to have lower

SA values.

• Heterocycles & Aromatic Rings: Incorporation of heterocyclic systems and aromatic rings
contributes to favorable DRD2 and QED values.

• Hydrophobic and Polar Groups: Presence of hydrophobic aromatic systems along with po-
lar functional groups like amides, ethers, and amines enhances GSK3β and JNK3 selectivity.

• Stereochemistry: Utilization of chiral centers often aids in achieving higher QED and
specificity for GSK3β and JNK3.

2. Poor-Performing Molecules:
• High SA Scores: Often due to bulky, complex substituents and extensive branching.

• Low QED Values: Simplicity or lack of functional diversity can result in lower QED scores.

• High DRD2 Values: Overly hydrophobic or basic molecules tend to have higher DRD2
values, possibly leading to off-target effects.

Strategies to Optimize New Molecules
1. Decrease SA Value:

• Favor linear or moderately branched structures with controlled stereochemistry.

• Avoid excessive bulky groups and complex fused rings.

2. Decrease DRD2 Value:
• Integrate balanced hydrophobic and hydrophilic groups to avoid nonspecific binding.

• Use heterocycles to enhance specificity.

3. Increase QED Value:
• Aim for a balance in molecular weight, lipophilicity, and aromatic character.

• Incorporate functional groups that enhance drug-likeness, such as amides, esters, and ethers.

4. Decrease GSK3β Value:
• Select functional groups known for specific enzyme interactions, like amides and imides.

• Leverage computational tools to tailor interactions for GSK3β.

5. Increase JNK3 Value:
• Incorporate chiral centers to improve selectivity.

• Include moieties known for JNK3 interactions, such as specific aromatic or heterocyclic
systems.

Avoiding Suboptimal Properties
• Reduce Molecular Complexity: Avoid overly complex molecules with high SA values.

• Enhance Functional Diversity: Ensure a good mix of polar and non-polar groups to avoid
low QED.

• Modulate Hydrophobicity: Avoid excessive hydrophobicity, which increases DRD2 values
and off-target effects.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Final experience of 5 objectives

• Aromatic Cores: Utilize benzene and thiophene rings for stability and enhanced bioactivity.

• Functional Groups: Prefer amides, carbamates, esters, and ethers to enhance QED and
JNK3 while reducing GSK3β.

• Halogen Substitution: Introduce halogens, especially monosubstitution in aromatic rings, to
improve SA and bioactivity.

• Structural Simplicity: Favor simpler, smaller structures to achieve lower SA values.

• Selective Substitution: Utilize monosubstitution in aromatic rings to balance low SA and
high bioactivity.

• Bioactivity Optimization: Enhance QED and JNK3 values while minimizing DRD2 and
GSK3β values.

• Avoid Bulky Groups: Minimize bulky groups to maintain simplicity, lower SA, and sustained
bioactivity.

• Functional Integration: Combine hydrophobic and polar groups strategically to optimize
bioactivity and maintain low SA.

• Linear and Compact Structures: Avoid complex branching; favor linear and compact
molecules to minimize DRD2 and GSK3β.

Initial experience of JNK3

Summary of Molecular Optimization Insights
1. Characteristics of High-Performing Molecules

• The presence of aromatic rings and heterocycles is prevalent.

• Functional groups such as amines, ethers, and sulfoxides are common.

• Chiral centers and stereochemistry play a significant role.

• Substitution on aromatic rings with electron-withdrawing groups like chlorine and fluorine
enhances performance.

• Alkyl side chains and central amine linkages contribute to activity.

2. Strategies for Designing New Molecules
• Incorporate aromatic systems and heterocyclic structures to increase stability and specificity.

• Introduce functional groups like amines, ethers, and sulfoxides to enhance binding interac-
tions.

• Leverage chiral centers and stereochemistry to improve efficacy and selectivity.

• Utilize electron-withdrawing groups for aromatic ring substitutions to enhance activity.

• Ensure balanced lipophilicity and solubility through careful side chain selection.

3. Reasons for Poor Performance in Low-Scoring Molecules
• Lack of aromatic or heterocyclic components reduces stability and binding efficacy.

• Absence of key functional groups like amines and ethers diminishes interaction potential.

• Insufficient stereochemistry and chirality lead to lower specificity and activity.

• Overly simple molecular structures lack necessary complexity and interaction sites.

4. Avoidance of Suboptimal Properties
• Prioritize the inclusion of aromatic systems and heterocyclic compounds.

• Add diverse functional groups to create better binding and interaction profiles.

• Design molecules with defined stereochemistry to enhance specificity.

• Maintain a balance of molecular complexity to ensure both efficacy and manageable synthesis.

Following these insights can guide the design of new molecules with enhanced JNK3 values and overall
better performance. You can take advantage of these experiences to propose better molecules aligned
with the optimization objectives.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Final experience of JNK3

Integrated Experience for Molecular Optimization
High-Performing Molecule Characteristics

• Key Functional Groups: Sulfonamide, sulfonyl, N-substituents (amines, alcohols).

• Structural Features: Aromatic and heterocyclic rings with flexible or cyclic linkers.

• Hydrophobic/Hydrophilic Balance: Achieved through diverse functional groups.

• Electron-Withdrawing Groups: Nitrogen-based groups on aromatic or heterocyclic rings.

Design Strategies
1. Functional Groups: Incorporate sulfonamide or sulfonyl moieties to enhance binding affinity

and solubility.

2. N-Substituents: Employ functionalized side chains to improve molecular flexibility and
target specificity.

3. Electron-Withdrawing Groups: Optimize electron interactions to strengthen binding affin-
ity.

4. Structural Flexibility: Utilize cyclic and flexible linkers to promote favorable binding
dynamics.

Reasons for Poor Performance in Low-Scoring Molecules
• Lack of Key Groups: Absence of critical functional groups reduces binding capacity and

solubility.

• Steric Hindrance: Presence of bulky substituents hinders effective binding.

• Suboptimal Electron Density: Insufficient electron interactions weaken molecular efficacy.

• Poor Functionalization: Ineffective ring substitutions compromise performance.

Actionable Insights
• Incorporate diverse N-substituents and electron-withdrawing groups.

• Maintain an appropriate hydrophobic/hydrophilic balance.

• Avoid excessive steric hindrance in functional group placement.

• Design flexible or cyclic linkers to enhance dynamic binding interactions.

These insights can guide the development of improved molecules that better satisfy multi-objective
optimization criteria.

7.6 DIFFERENT NUMBER OF OBJECTIVES

1 Objective 2 Objectives 3 Objectives 4 Objectives 5 Objectives 6 Objectives

Metric ExLLM MOLLEO ExLLM MOLLEO ExLLM MOLLEO ExLLM MOLLEO ExLLM MOLLEO ExLLM MOLLEO

Top1 F 0.948 0.941 1.901 1.887 2.901 2.891 3.901 3.890 4.413 4.098 5.183 4.964
Top10 F 0.948 0.936 1.901 1.882 2.901 2.886 3.901 3.887 4.300 4.076 5.164 4.948

Uniqueness 0.929 0.150 0.666 0.231 0.778 0.273 0.807 0.387 0.872 0.575 0.957 0.591
Validity 0.796 0.159 0.962 0.552 0.946 0.803 0.946 0.783 0.908 0.938 0.890 0.926

Diversity 0.538 0.865 0.450 0.646 0.510 0.627 0.375 0.614 0.441 0.573 0.529 0.611

Table 10: Unconstrained molecular design results with 1 to 6 objectives. The sixth objective is BBBP.

7.7 EFFICIENCY COMPARISON

Apart from that, without early stopping, ExLLM only uses nearly 1
3 LLM calls compared to MOLLEO,

more than even 14x faster than MOLLEO in run time to achieve significantly better results, as shown
in Table 11. The running time is also competitive to other methods that are not based on LLMs.

7.8 HYPERPARAMETERS

To validate the effectiveness of the key components in ExLLM, we conduct a series of ablation studies.
In ExLLM, Pareto front selection and F-value selection are applied with equal probability in each

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Method ExLLM
(GPT-4o)

MOLLEO
(GPT-4o)

Graph
GA Gp-BO Genetic-

GFN MARS JT-VAE DyMol REINVENT

Running
time(hours) 0.52 7.32 1.04 0.68 0.45 0.69 3.08 0.28 0.52

LLM calls 2908 ± 133 8517 ± 375 - - - - - - -
LLM costs

(USD) 9.89 ± 1.13 44.78 ± 4.43 - - - - - - -

Table 11: Running time of MOLLEO and ExLLM

Method Top1 F Top10 F Uniqueness Validity Diversity

Without MO
Selection 3.830 3.791 0.999 0.816 0.842

With MO
Selection 4.187 4.152 0.961 0.915 0.556

Table 12: Experiments of using MO.

iteration. The importance of this design is demonstrated in Table 12, where performance significantly
deteriorates when multi-objective selection is removed. Furthermore, if an objective is included in
the prompt but is not explicitly considered in MO selection, the performance of ExLLM declines
substantially. This highlights the critical role of MO selection in ensuring effective optimization
across multiple objectives.

7.9 NUMBER OF OUTPUT MOLECULES

Method
(GPT-4o direct

propose) Top1 F Top10 F Uniqueness Validity Diversity

1 offspring 0.944 0.936 0.667 0.971 0.829
2 offsprings 0.947 0.935 0.762 0.975 0.826
3 offsprings 0.945 0.931 0.719 0.979 0.817
4 offsprings 0.947 0.937 0.740 0.978 0.834

Table 13: Experiments of different number of output molecules directly proposed by LLMs. The
objective is maximizing QED.

We begin by using an LLM to directly generate 1,500 molecules for the task of maximizing QED, as
shown in Table 14. As the number of offspring (i.e., output molecules per query) increases, the top
F-values, validity, and diversity remain relatively stable. However, uniqueness improves substantially
when more than one molecule is generated per query. This is attributed to the autoregressive nature
of LLMs, where later outputs are conditioned on earlier ones within the same generation, implicitly
encouraging exploration.

We further extend this experiment within the full ExLLM framework, as presented in Table ??, and
identify the optimal number of offspring per query to be two. Accordingly, our implementation
configures the LLM to generate two offspring per call for both crossover and mutation operations.
This design significantly reduces the number of required LLM queries while achieving superior
performance compared to generating one offspring per call (as used by MOLLEO) or three per call.
In addition, when compared with directly generating 5,000 molecules using GPT-4o, ExLLM delivers
a notable improvement in optimization quality, demonstrating the effectiveness of our framework.

7.10 VISUALIZATION OF MOLECULES

The number under each molecule is the F value of it.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Method Top10 F Top10 AUC Uniqueness Validity

ExLLM (Gemini)
1 offspring 0.422 ± 0.028 0.300 ± 0.004 0.569 ± 0.060 0.976 ± 0.006
2 offsprings 0.742 ± 0.007 0.585 ± 0.004 0.731 ± 0.048 0.961 ± 0.024
3 offsprings 0.587 ± 0.052 0.486 ± 0.027 0.649 ± 0.056 0.974 ± 0.006
4 offsprings 0.650 ± 0.099 0.508 ± 0.065 0.683 ± 0.026 0.982 ± 0.006
5 offsprings 0.604 ± 0.012 0.528 ± 0.015 0.586 ± 0.106 0.986 ± 0.009
6 offsprings 0.657 ± 0.094 0.492 ± 0.082 0.638 ± 0.031 0.972 ± 0.002

ExLLM (GPT-4o)
1 offsprings 0.861 ± 0.044 0.644 ± 0.025 0.895 ± 0.004 0.822 ± 0.035
2 offsprings 0.877 ± 0.043 0.698 ± 0.038 0.927 ± 0.018 0.835 ± 0.030

Table 14: Experiments of k-offspring per prompt. The objective is maximizing JNK3.

Figure 7: MOLLEO

Figure 8: ExLLM (ours)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: DyMol

Figure 10: Genetic-GFN

Figure 11: REINVENT

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 12: GB-GA

Figure 13: GB-BO

Figure 14: JT-VAE

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 15: MARS

28


	Introduction
	Related Work
	Molecular Design with Machine Learning
	Molecular Design with LLM
	LLM-as-Optimizer and Memory Mechanism

	Method
	Evolving Experience
	Utilize Autoregressive Exploration by k-Offspring
	Handling Complex Feeback and Generalization

	Experiment
	Five-Objective Experiment Results
	Results on PMO
	Extended Experiments

	Ablation Study
	Conclusion
	Appendix
	Reproducibility
	Related Work
	LLM-as-Optimizer and Memory Mechanism
	More applications
	Circle packing in a unit square
	Stellarator Design
	MOCPOP (Multi-Objective Combinatorial Path Optimization Problems)
	SACS (Structural Analysis Computer System)
	Peptide design for NK2R
	GCU operator design

	Experience examples
	Different number of objectives
	Efficiency comparison
	Hyperparameters
	Number of output molecules
	Visualization of molecules


