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Abstract

Aligning parallel sentences in multilingual cor-001
pora is essential to curate data for downstream002
applications such as Machine Translation. In003
this work, we present OneAligner, an align-004
ment model specially designed for sentence005
retrieval tasks. This model is able to train006
on only one language pair and transfers, in007
a cross-lingual fashion, to low-resource lan-008
guage pairs with negligible degradation in per-009
formance. When trained with all language010
pairs of a large-scale parallel multilingual cor-011
pus (OPUS-100), this model achieves the state-012
of-the-art result on the Tateoba dataset, outper-013
forming an equally-sized previous model by014
8.0 points in accuracy while using less than015
0.6% of their parallel data. When finetuned016
on a single rich-resource language pair, be it017
English-centered or not, our model is able to018
match the performance of the ones finetuned019
on all language pairs under the same data bud-020
get with less than 2.0 points decrease in ac-021
curacy. Furthermore, with the same setup,022
scaling up the number of rich-resource lan-023
guage pairs monotonically improves the per-024
formance, reaching a minimum of 0.4 points025
discrepancy in accuracy, essentially obviating026
the need to collect any low-resource parallel027
data. Finally, we conclude through empiri-028
cal results and analyses that the performance029
on the retrieval tasks depends mostly on the030
monolingual and parallel data size, up to a cer-031
tain size threshold, rather than on what lan-032
guage pairs are used for training or evaluation.033

1 Introduction034

Cross-lingual sentence retrieval aims at aligning035

parallel sentence pairs that are translations of036

each other from unlabeled multilingual documents.037

Such mined data can then be used in multiple down-038

stream applications such as Machine Translation039

and cross-lingual Word Sense Disambiguation (Fan040

et al., 2020; Tran et al., 2020; Schwenk et al.,041

2021a,b). Even under a half-automated setting with042

human-in-the-loop, a faithful aligner can help nar- 043

row down the candidate pool so that humans do not 044

need to deal with an enormous search space such as 045

cross-lingual web-document pairs (El-Kishky et al., 046

2020) or the entire internet. A retrieval model has 047

also been used to filter existing parallel corpora to 048

improve their quality (Schwenk, 2018) or to per- 049

form Quality Estimation (Fomicheva et al., 2020) 050

for situations where the reference translations are 051

not available. 052

For sentence retrieval tasks, previous work is ei- 053

ther completely unsupervised (Hu et al., 2020; Tran 054

et al., 2020; Lewis et al., 2020) or leverages all par- 055

allel data available (Artetxe and Schwenk, 2019; 056

Ouyang et al., 2021), sometimes to the extent of 057

879 language pairs (Luo et al., 2021). The unsuper- 058

vised approach has the benefit of not collecting any 059

parallel data; yet it usually achieves relatively low 060

accuracies on standard benchmark datasets such 061

as Tatoeba (Artetxe and Schwenk, 2019), which 062

evaluates on 36 language pairs including multiple 063

low-resource ones. The supervised approach, on 064

the other hand, assumes data access to a plethora of 065

low-resource language pairs, which by definition is 066

difficult to acquire and to ensure their quality. This 067

all-or-nothing choice between the unsupervised and 068

supervised approaches leaves a significant gap on 069

whether zero-shot cross-lingual transfer works for 070

such tasks. Our work aims to shed light on a recipe 071

of how to distribute the efforts for cross-lingual 072

parallel data collection: (1) How much monolin- 073

gual data is enough for each language? (2) How 074

many finetuning language pairs are enough? (3) 075

Is it necessary to collect low-resource language 076

pairs? (4) To what extent does the amount of paral- 077

lel data matter? (5) Should these language pairs be 078

centered around English? 079

To have a strong enough model to perform anal- 080

yses that address the above questions, we propose 081

OneAligner,1 a classifier that is able to align cross- 082

1We will make our code publicly available.
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lingual sentences with just one language pair under083

a fixed 1M data budget. OneAligner is built on084

top of XLM-RoBERTa (XLM-R) (Conneau et al.,085

2020a) with its architecture tailored to the align-086

ment task: the model leverages a supervised ver-087

sion of BERT-score (Zhang et al., 2020) to com-088

pute semantic similarity and builds a normaliza-089

tion layer into its architecture to counteract the090

popular sentence effect, where some sentences in091

the source language tend to have a high similar-092

ity score with any sentence in the target language.093

Though not our main contribution, these additions094

lead to the state-of-the-art accuracy 94.92 on the095

Tatoeba dataset when trained on all language pairs096

from OPUS-100 (Tiedemann, 2012), outperform-097

ing models that are trained with 180 times more098

parallel examples (Luo et al., 2021) by 8.0 points.099

When trained on any single rich-resource language100

pair, this model is able to match the performance101

of a model (within a 2.0 gap in accuracy) trained102

on all language pairs under the same data budget.103

To further close the already-narrow gap between104

using one language pair and all pairs while adher-105

ing to the rich-resource-only constraint, we scale106

up the number of language pairs with the top-k107

rich-resource ones. This upgrade achieves a 94.0108

accuracy on Tatoeba, only 0.4 off as compared to109

training on all language pairs under the same data110

budget.111

We also explore either training or evaluating on112

language pairs that are not centered around En-113

glish. We find that whether to train on an English-114

centered language pair and whether the training115

pair overlaps with the evaluation pair do not influ-116

ence model performance – the model will perform117

similarly as long as two conditions are met: (1)118

the amount of parallel data size crosses a certain119

threshold; and (2) the pretraining monolingual data120

that corresponds to the evaluation languages also121

surpasses a size threshold.122

2 Model123

2.1 Base Model124

To align sentences in different languages, it is bene-125

ficial to start with a model that has already learned126

cross-lingual representations to some extent. Our127

OneAligner thus builds on top of XLM-R (Conneau128

et al., 2020a), a Transformer-based model (Vaswani129

et al., 2017) pre-trained on the monolingual CC-130

2Throughout the paper we will omit the “%” for accuracy.
Hence 94.9 means 94.9% in accuracy.

100 dataset (Wenzek et al., 2020) covering 100 131

languages. This model obtains state-of-the-art per- 132

formance on cross-lingual classification, sequence 133

labeling, and question answering. 134

2.2 Calculation of Sentence Similarity 135

The de facto way to calculate semantic similarity 136

adopts a Siamese architecture, which separately 137

encodes the source and target sentences with the 138

same encoder to obtain two outputs. These out- 139

puts go through a mean pooling layer along the 140

sequence length dimension, and the similarity is 141

obtained by computing the cosine distance between 142

the two pooled vectors (Reimers and Gurevych, 143

2019). This approach is fast and agnostic to the 144

order of source and target sentences but lacks 145

cross-attention between them which is crucial for 146

alignment tasks. On the other hand, encoding bi- 147

sequence with a [sep] token in-between implies 148

performing full cross-attention, which runs slow 149

due to the extra computation of attention. Such a 150

method is only suitable for filtering existing paral- 151

lel corpora for better data quality (Schwenk, 2018). 152

Besides, due to positional encoding, this method 153

is not agnostic to the order of the two sentences 154

such that during inference, one needs to pay special 155

attention to which sentence comes first. 156

Our similarity calculation marries the strengths 157

of both methods and builds on top of BERT- 158

score (Zhang et al., 2020), an unsupervised auto- 159

matic evaluation metric originally designed to com- 160

pute the sentence similarity between two sentences 161

of the same language. We re-purpose this metric 162

to compute cross-lingual semantic similarity. More 163

specifically, BERT-score computes the pairwise 164

token-level cosine distance between two sentences: 165

P =
1

|T |
∑

Ti∈S

max
Sj∈T

T
T
i Sj

R =
1

|S|
∑

Si∈S

max
Tj∈T

S
T
i Tj

F = 2
PR

P + R

166

We use F as the similarity. From the equations we 167

can see that BERT-score serves as a shallow cross- 168

attention layer while being much faster than full 169

cross-attention. The resulting model also remains 170

agnostic to the order of the input sentences. 171

Normalization Step In bitext alignment, we ob- 172

serve that some sentences in one language tend 173

to have a high similarity score with any sentence 174

in the other language. This phenomenon causes 175

2



the ranking of candidates in the target language176

to be inaccurate. To offset this bias, we sub-177

tract a scaled average of similarity scores between178

each sentence in one language and all sentences179

in the other language. In other words, let S =180

{S1, S2, ..., SM} and T = {T1, T2, ..., TN} in the181

source and target language, respectively. We com-182

pute the pairwise similarity between Si and Tj with183

Sij = f(Si, Tj)− α

 ∑
Tn∈T

f(Si, Tn) +
∑

Sm∈S

f(Sm, Tj)

184

where f stands for the function that computes se-185

mantic similarity and α is a hyperparameter that186

determines the normalization strength. We tuned187

this parameter on the OPUS-100 development set,188

and found that α = 0.75 on average gives the best189

results. Note that this normalization step is built190

into the model architecture rather than serving only191

as a post hoc manipulation during inference. In192

practice, the number of sentences M and N could193

be quite large during inference, significantly slow-194

ing down the normalization step, not to mention it195

is not guaranteed that the evaluation data is served196

in an offline fashion. Hence we instead perform197

in-batch normalization for each similarity score so198

thatM andN only depend on the batch size during199

inference.200

2.3 Justification of Model Design201

We perform an ablation study on how similarity202

is calculated and on whether to include a normal-203

ization step. We conduct the comparison in an204

unsupervised setting with three model variances,205

namely mBERT (Devlin et al., 2019), XLM-R-206

base, and XLM-R-large (Conneau et al., 2020a).207

Following Hu et al. (2020), who find that certain208

early layers of Transform perform better on cross-209

lingual tasks than the last layer,3 we use the 8th210

layer for mBERT and XLM-R-base, and 17th layer211

for XLM-R-large.4 Table 1 shows clearly that the212

combination of BERT-score and normalization step213

lead to consistently and significantly higher perfor-214

3Jawahar et al. (2019) and Zhang et al. (2020) find similar
phenomena for English.

4By investigating performance comparisons among differ-
ent layers in Jawahar et al. (2019); Zhang et al. (2020), we
provide a rule-of-thumb: usually the best layer is between
1 below and above 2/3 of the total number of layers. For
example, for a 12-layer Transformer, the fastest way is to try
layers 7, 8, and 9. Thanks to each new language model trying
to follow its previous work on hyperparameter settings, all
models with which we experiment have the number of layers
divisible by 3.

mance, indicating that these modifications build a 215

beneficial inductive bias into the model. 216

2.4 Classification with In-Batch Negatives 217

A challenge in training an aligner with only positive 218

parallel data is that there are no carefully-designed 219

negative examples. To address this challenge, our 220

aligner adopts a contrastive learning approach and 221

trains on a classification task with in-batch neg- 222

atives (Chen et al., 2020). More specifically, let 223

S = {S1, S2, ..., SN} and T = {T1, T2, ..., TN} 224

be a batch of sentences in the source and target 225

language, respectively, where Si is aligned with 226

Ti for each i. We compute the pairwise semantic 227

similarity between S and T to obtain N2 similarity 228

scores, including N scores for the positive align- 229

ments and N2 −N for the negative ones. During 230

training, we treat these scores as logits and pair 231

each logit of positive alignment with all logits of 232

negative examples. We use these logits to compute 233

the cross-entropy loss. 234

3 Experimental Setup 235

3.1 Training Data 236

We experiment with both English-centered and non- 237

English-centered training corpora. For English- 238

centered data we use OPUS-100, a multilingual cor- 239

pus covering 100 languages. This corpus was ran- 240

domly sampled from the OPUS collection (Tiede- 241

mann, 2012),5, which is comprised of diverse cor- 242

pora ranging from movie subtitles to GNOME doc- 243

umentation. OPUS-100 contains approximately 244

55M sentence pairs. Of the 99 language pairs, 44 245

have 1M sentence pairs of training data, 73 have 246

at least 100k, and 95 have at least 10k. For non- 247

English-centered data, we employ the v2021-08- 248

07 version of the Tatoeba Challenge (Tiedemann, 249

2020),6 which we refer to as the New-Tatoeba 250

(since its new). This is a challenge set that con- 251

tains 29G translation units in 3, 708 bitexts cover- 252

ing 557 languages. The package includes a release 253

of 631 test sets that cover 134 languages. Note 254

that for training purposes, we only keep language 255

pairs where both the source and the target language 256

are present in CC-100 (Wenzek et al., 2020),7 the 257

corpus used to pretrain XLM-R. This is because 258

the tokenization of XLM-R is accustomed to these 259

5https://opus.nlpl.eu/opus-100.php
6https://github.com/Helsinki-NLP/

Tatoeba-Challenge
7http://data.statmt.org/cc-100/
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mBERT XLM-R-base XLM-R-large
Avg. Pooling BERT-score Avg. Pooling BERT-score Avg. Pooling BERT-score

w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm.
Avg. Acc. 37.1 45.1 42.9 55.1 54.7 62.9 48.6 70.2 47.0 42.6 57.5 72.1

Table 1: Unsupervised performance on Tatoeba-36 with three different language models. “norm” stands for
normalization which addresses the popular sentence effect. The best average accuracy for each model is boldfaced.

languages by design.260

Following OPUS-100, all experiments are per-261

formed under a fixed 1M examples budget (unless262

otherwise specified), regardless of how many lan-263

guage pairs are used. This constant data size cap264

makes it easier to compare among different set-265

tings. In Section 4.1 we also provide justifications266

for such a budget choice. To remove noisy and267

uninformative data, we also aggressively remove268

any examples that contain less than 5 tokens in ei-269

ther the source or the target language. Note that270

this step is done after we sample the 1M examples,271

since when the number of language pairs piles up,272

it becomes too expensive to tokenize the entire cor-273

pus to count how many tokens there are in each274

sentence.8275

Evaluation Data We evaluate on three datasets.276

The first one is the Tatoeba dataset from the277

XTREME benchmark (Hu et al., 2020), which we278

refer to as Tatoeba-36 since it contains 36 lan-279

guage pairs. We keep this historical version of280

Tatoeba because multiple previous works have eval-281

uated on it, making it easier to compare with these282

works.283

The second dataset is the combination of devel-284

opment and test sets in New-Tatoeba. For evalu-285

ation purposes, we only keep language pairs that286

have more than or equal to 1K examples in the de-287

velopment and test sets combined. This is because288

the smaller the test set is, the easier it is to rank289

among candidates. When we have a collection of290

test sets that do not share roughly the same diffi-291

culty, averaging their accuracies makes less sense.292

Following Tatoeba-36, where most language pairs293

have 1K test examples, we randomly sample 1K for294

each language pair in the New-Tatoeba dataset.9295

The resulting evaluation set covers 223 language296

pairs, including 49 pairs that are English-centered297

and 174 pairs that are not.298

8Resorting to counting the number of spaces will not work
because quite a few languages do not have spaces between
words.

9We will release the test example indices with respect to
the original dataset along with the code.

Model VECO ERNIE-M
OneAligner

1M Budget No Budget
# Parameters 550M 550M 550M 550M
# Languages 50 96 100 100

Mono. Data Size 1.36TB 1.56TB 2.34TB 2.34TB
Parallel Data Size 1TB 68.8GB 145MB 4.9GB

Table 2: Comparison of model and data sizes between
OneAligner and previous models.

The third dataset is BUCC 2018 (Zweigenbaum 299

et al., 2018) in the XTREME benchmark (Hu 300

et al., 2020). This is a cross-lingual bitext mining 301

task. We include this task because the two Tatoeba 302

datasets are both ranking tasks, while BUCC re- 303

quires a universal similarity score to serve as a de- 304

cision boundary to either accept or reject an align- 305

ment of sentences. This is a more realistic task for 306

web mining because each sentence in the source 307

language does not necessarily have a translation 308

in the target language. Hence this dataset contains 309

has way more distraction sentences than the ones 310

that actually align with some other sentences in the 311

other language. That said, the drawback of BUCC 312

is that it only involves 4 language pairs, all of which 313

are highly rich-resource. Since our work focuses 314

more on low-resource languages, this dataset only 315

serves as a sanity check for our models. 316

Note that since both training corpora we employ 317

were created without Tatoeba-36 and BUCC evalu- 318

ation data in mind, we remove any examples from 319

the training set where either the source or the target 320

is in any of the test sets. This process gets rid of 321

less than 2.5k examples from each training set. 322

3.2 Hyperparameters 323

We perform all experiments with a single A100 324

GPU. The number of training epochs is 3, the train- 325

ing batch size is 64, and the evaluation batch size is 326

256. These are the largest number of examples we 327

can fit in a batch with A100. Not surprisingly, hav- 328

ing a smaller training batch size will lead to lower 329

performance not only because previous work has 330

found that large batch size benefit training due to its 331

more stable gradients (Devlin et al., 2019), but also 332

that a larger batch size allows more in-batch neg- 333
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Language af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
VECO 80.9 85.1 91.3 78.1 98.5 89.5 97.4 94.8 79.8 93.1 95.4 93.7 85.8 94.2 93.8 93.0 92.2 92.8 35.1

ERNIE-M 92.6 94.3 96.6 89.2 99.7 96.8 98.8 92.5 87.4 96.0 97.1 96.5 90.1 97.9 95.5 95.7 95.2 96.9 65.2
OneAligner 96.3 93.0 95.2 90.7 99.6 96.8 98.9 96.2 92.7 96.4 98.2 96.3 93.2 97.9 97.2 95.9 95.4 98.1 78.0

OneAligner (All) 97.4 94.7 95.3 92.2 99.6 97.3 99.0 98.6 95.7 96.9 98.2 96.5 94.1 98.3 98.1 96.7 96.6 98.5 78.5
ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Average

VECO 83.0 74.1 88.7 94.8 82.5 95.9 94.6 92.2 69.7 82.4 91.0 94.7 73.0 95.2 63.8 95.1 93.9 86.9
ERNIE-M 94.9 88.0 94.1 98.5 90.8 98.1 94.5 95.7 68.4 91.8 97.9 98.4 86.0 98.3 94.9 98.1 96.7 93.3

OneAligner 95.6 89.7 94.0 98.4 92.7 97.7 95.6 95.5 65.6 93.2 97.0 97.4 89.9 98.3 94.8 98.4 97.2 94.4
OneAligner (All) 95.6 91.3 95.3 98.8 93.6 98.3 96.0 95.8 63.6 93.2 96.6 97.8 88.3 98.9 95.6 98.5 97.3 94.9

Table 3: Comparison of Tatoeba-36 results (accuracy) between OneAligner and the strongest models so far, namely
VECO and ERNIE-M. “All” stands for unlimited data budget, which uses the entire OPUS-100 corpus. Best results
for each language and the average are boldfaced.

atives to pair with each positive example, helping334

the model to converge faster. We set the softmax335

temperature to 5.0 and the learning rate to 3e-6 for336

all experiments.10 The maximum sequence length337

for both source and target languages is set to 100.338

3.3 Dot product vs. Cosine Similarity339

When computing the semantic distance be-340

tween sentences, Sentence-BERT (Reimers and341

Gurevych, 2019) applies a Siamese encoding342

scheme to each sentence followed by mean pooling343

and computation of cosine distance between the344

two pooled vectors. However, during training they345

do not normalize the sentence vectors before tak-346

ing the dot product, while during evaluation they347

do. We also observed that this different handling348

of training and evaluation phase led to better per-349

formance. Hence when computing the BERT-score350

during training, we also do not pre-normalize the351

vectors before taking the dot product.352

3.4 Baseline Models353

We compare with VECO (Luo et al., 2021) and354

ERNIE-M (Ouyang et al., 2021), the strongest mod-355

els at the time of submission on the XTREME356

benchmark leaderboard (Hu et al., 2020) sentence357

retrieval tasks.11 Like OneAligner, ERNIE-M is358

built on top of XLM-R. It is trained with monolin-359

gual and parallel corpora involving 96 languages.360

The monolingual corpus is extracted from CC-361

100 (Wenzek et al., 2020), while the bilingual cor-362

pora include MultiUN (Ziemski et al., 2016), IIT363

10The temperature and the learning rate are tuned on the
OPUS-100 development set. Our early experiments showed
that having a larger learning rate, e.g., 3e-5, would make the
model converge faster (more data-efficient) but eventually
arrive at slightly lower performance.

11The leaderboard can be visited at https://sites.
research.google/xtreme. We ignore submissions
that do not link to any paper or source code.

Bombay (Kunchukuttan et al., 2018), OPUS (Tiede- 364

mann, 2012), and WikiMatrix (Schwenk et al., 365

2021a). VECO shares the same model size as 366

ours,12 and is trained with monolingual and parallel 367

corpora involving 50 languages (possibly to avoid 368

capacity dilution). The monolingual data is ex- 369

tracted from CC-100, while the bilingual data is col- 370

lected from the OPUS website.13 There are 6.4G 371

parallel examples covering 879 language pairs. We 372

summarize the basic stats of each model in Table 2. 373

4 Results and Analysis 374

4.1 All Language Pair Performance 375

To justify our model design and obtain a perfor- 376

mance upper bound with which single-pair models 377

can compare, we first train OneAligner on the en- 378

tire OPUS-100 dataset, either with or without the 379

1M budget. Table 3 shows that both models achieve 380

state-of-the-art results on the Tatoeba-36 dataset. 381

When we put Table 2 and 3 side-by-side, we can 382

also see that OneAligner is more data-efficient as 383

compared to the other two models. 384

4.2 Single Language Pair Performance 385

English-centered Language Pairs Table 4 386

shows Tatoeba-36 performance for models trained 387

on the OPUS-100 dataset for each language pair 388

in the intersection of OPUS-100 and CC-100 lan- 389

guages. We can see that the performance is quite 390

consistent across language pairs, which translates 391

to the suggestion that one can finetune OneAligner 392

with almost any language pair at hand and arrive 393

12There are two versions of VECO, namely VECOout and
VECOin. VECOout is of the same size as our model while
VECOin is 20% larger in size than our model. Hence through-
out the paper, whenever we mention VECO, we are referring
to the more comparable VECOout version. As a side note, our
best model is able to outperform VECOin on Tatoeba-36 by
3.8 points in accuracy.

13https://opus.nlpl.eu/
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Language af am ar as az be bg bn br bs ca cs cy da de el eo es et eu fa
Avg. Acc. 92.2 90.9 92.9 90.8 92.3 89.8 92.6 92.7 91.3 91.1 92.0 92.0 91.4 92.0 92.5 92.8 91.7 92.4 92.1 92.6 92.5

fi fr fy ga gd gl gu ha he hi hr hu hy id is it ja ka kk km kn
92.3 92.7 88.2 91.5 53.2 92.1 90.9 90.6 92.7 92.3 90.9 92.4 29.8 92.5 91.8 92.3 92.6 90.0 90.5 91.2 55.4
ko ku ky lt lv mg mk ml mn mr ms my ne nl no or pa pl ps pt ro

92.4 90.6 26.0 91.9 92.3 92.3 92.6 92.7 20.6 90.4 92.6 85.0 91.1 92.4 91.9 26.2 90.1 91.9 85.8 92.3 92.2
ru si sk sl sq sr sv ta te th tr ug uk ur uz vi xh yi zh

92.6 92.7 91.8 91.2 92.4 91.1 91.8 92.3 91.2 92.3 92.3 91.5 92.4 91.7 91.0 92.8 90.5 22.5 92.7

Table 4: Tatoeba-36 performance for models trained on the OPUS-100 dataset for each language pair (the intersec-
tion between OPUS-100 and CC-100 languages) centered around English.

Figure 1: Scatter plot of single-pair Tatoeba-36 per-
formance against English-centered single-pair parallel
data size (as measured in the number of training exam-
ples) for each language pair in the OPUS-100 dataset.

at a similarly performed model. Figure 1 presents394

a scatter plot of Table 4 against the data availabil-395

ity of each language pair. We observe that after396

reaching a certain data size threshold (somewhere397

between 10k and 20k), all language pairs perform398

similarly. This is partially expected because our399

model design does not introduce any new param-400

eters to XLM-R – obviating the need to train ran-401

domly initialized parameters.402

Language Pairs Not Centered around English403

English is with no doubt the most widely adopted404

language. However, in a real-world scenario, we405

cannot always assume that the parallel data con-406

tains English. Similar to Table 4, we present in Ta-407

ble 5 the accuracies of OneAligner trained on each408

of the Top-16 rich-resource non-English-centered409

pairs from the New-Tatoeba dataset. We can see410

that the performance is again consistent across lan-411

guage pairs, indicating that we can train on a non-412

English language pair and still obtain similar per-413

formance on an evaluation set centered around En-414

glish. This raises a natural follow-up question: is415

the reverse true? In other words, does a model416

trained on English-centered data perform just as417

Language fr-es pt-es de-fr fr-pt it-es fr-it de-es it-pt
Avg. Acc. 92.0 91.5 92.2 92.0 92.0 92.1 92.2 92.1

ca-es de-it de-pt de-nl nl-es pl-pt fr-nl ru-es
90.9 92.3 92.3 92.2 92.6 92.3 92.3 92.0

Table 5: Tatoeba-36 performance for models trained on
each of the New-Tatoeba top-16 rich-resource language
pairs (in descending order) that are not centered around
English.

Model Tatoeba-36
New Tatoeba
Eng ¬ Eng

Top1 (Eng) 92.4 91.6 89.3
Top1 (¬ Eng) 92.0 91.5 89.2

Table 6: English-centered and Non-English-centered
Top1 model accuracies under three evaluation settings
on the two Tatoeba datasets.

well on non-English evaluation data? 418

Table 6 addresses this question and we make two 419

observations from it. When comparing column- 420

wise, we can see that OneAligner performs sim- 421

ilarly regardless of whether it is trained on an 422

English-centered language pair or whether there is 423

an overlap between finetuning and evaluation lan- 424

guages. When comparing each model evaluated 425

on either English-centered or non-English-centered 426

language pairs, we can see that both models per- 427

form better on English-centered language pairs.14 428

We hypothesize that this is because English dom- 429

inates the training data during the pretraining of 430

XLM-R. 431

Before diving into an analysis that verifies this 432

hypothesis, we need to “expand our vocabulary”: 433

rather than dividing in a bipolar fashion between 434

“English-centered” and “non-English-centered”, 435

we describe the setting with a spectrum and ex- 436

plore X-centered, where X could be any language. 437

We define the accuracy for language X as the aver- 438

age of accuracies of all language pairs that involve 439

14Interested readers can refer to Table 9 in the Appendix
for a comprehensive list of accuracies for each language pair
in the New-Tatoeba test set.
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Figure 2: Scatter plot of Top1-Eng New-Tatoeba per-
formance against monolingual data size (as measured
in GB) for each language in the CC-100 dataset.

X. Figure 2 shows the scatter plot of Top-1-Eng440

New-Tatoeba performance against monolingual441

data size for each language in the CC-100 dataset.442

Similar to Figure 1, the New-Tatoeba performance443

is positively correlated with the monolingual data444

size up to a certain data threshold (somewhere be-445

low 10.0 GB).446

4.3 Scaling up the Number of Language Pairs447

The single-pair Tatoeba results are already satis-448

fying. However, what if we aim for even better449

performance without violating the rich-resource-450

only assumption? We find that adding other rich-451

resource pairs can help. Unfortunately, OPUS-100452

does not provide us with a ranking on which lan-453

guage pairs are the most rich-resource (recall that454

the size of each language pair is capped at 1M455

in this dataset, and the original paper did not in-456

clude the data statistics before sampling), so we457

resort to the New-Tatoeba dataset and rank based458

on the availability of each English-centered pair.15459

In Table 7 we present performance of combined460

top-1 through top-32 rich-resource language pairs461

on the Tatoeba dataset.16 In the table we can see462

that the performance monotonically increases as463

we add in more language pairs, until we reach an464

accuracy of 94.0 – only 0.4 point off of the best465

performance we achieve when training with all lan-466

15The training data size for each language pair is listed in
the table at https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/data.

16The top-32 languages are es, fr, de, pt, it, nl, ru, pl, cs, sv,
sh, el, ro, da, zh, no, ar, ms, hu, bg, tr, fi, sl, vi, he, ja, et, lt, lv,
fa, ko, uk, in the order of descending data availability. Read-
ers can refer to https://en.wikipedia.org/wiki/
List_of_ISO_639-1_codes for a comprehensive map-
ping between language names and ISO-639-1 language codes.

Language Top1 Top2 Top4 Top8 Top16 Top32 All
Avg. Acc. 92.4 92.5 92.9 93.2 93.4 94.0 94.4

Table 7: Tatoeba-36 performance when the model is
trained on Top-k rich-resource, English-centered lan-
guage pairs. “All” stands for all language pairs com-
bined. All results are under a fixed 1M data budget.

Model de fr ru zh Avg.
XLM-R-large 67.5 66.5 73.5 56.7 66.1

VECO 93.0 88.7 89.9 85.7 89.3
Top1 (Eng) 91.7 90.0 89.5 90.9 90.5

Top1 (¬ Eng) 93.0 89.8 88.7 90.6 90.5

Table 8: BUCC F1 Results. Best scores in each col-
umn are boldfaced. Below the dashed line are our
model results, where “¬ Eng” stands for “non-English-
centered”. Note that ERNIE-M did not evaluate on
BUCC, hence not included in this table.

guage pairs under the fixed 1M budget. Note that 467

the least rich-resource language uk in the top-32 list 468

is still in the “highest”-resource range as defined in 469

the Tateoba Challenge17 and contains around 34M 470

training examples, so we are still far from violat- 471

ing the rich-resource restrictions on the training 472

data. Hence at least for the sentence retrieval task, 473

the marginal cost of improving for that 0.4 point 474

in accuracy does not seem to justify the effort of 475

extensively collecting more low-resource parallel 476

data with more language pairs. 477

4.4 BUCC Results 478

As a sanity check, we also report BUCC F1 scores 479

of the two Top1 models as compared to previous 480

work in Table 8. We can see that both models 481

outperform VECO by 1.2 points. Recall that the 482

English-centered Top1 model is trained with en-es. 483

In other words, the model has not seen a single par- 484

allel example between en and each of the BUCC 485

target languages {de, fr, ru, zh}, while VECO is 486

trained extensively on each of the language pairs. 487

This result is consistent with the observation that 488

OneAligner is able to perform cross-lingual trans- 489

fer with performance on par with in-language mod- 490

els irrespective of whether the finetuning language 491

pair is English-centered. 492

17https://github.com/Helsinki-NLP/
Tatoeba-Challenge/blob/master/data/
subsets/highest.md
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5 Related work493

5.1 Multilingual Representation Learning494

There have been extensive effort in learning mas-495

sive cross-lingual representations. Such models496

are pretrained with a large amount of unlabeled497

data from multiple languages with the intention498

to benefit low-resource languages with the rich-499

resource languages through shared vocabulary, ge-500

netic relatedness (Nguyen and Chiang, 2017) or501

contact relatedness (Goyal et al., 2020). Some502

of the widely adopted models are mBERT (De-503

vlin et al., 2019), XLM (CONNEAU and Lample,504

2019), mBART (Liu et al., 2020), MARGE (Lewis505

et al., 2020), XLM-R (Conneau et al., 2020a), and506

mT5 (Xue et al., 2021). Other models also leverage507

cross-lingual signals (large-scale parallel data) with508

a translation language model objective, including509

LASER (Artetxe and Schwenk, 2019), VECO (Luo510

et al., 2021) and ERNIE-M (Ouyang et al., 2021).511

5.2 Parallel Corpus Mining512

A major downstream application of a massively513

multilingual model is parallel corpus mining. There514

have been efforts to mine parallel sentences from515

the entire web (Wenzek et al., 2020; Tran et al.,516

2020). Such approaches are inadvertently forced to517

handle an enormous search space. Consequently,518

these models unanimously adopt the mean pooling519

followed by the cosine distance approach and lever-520

age approximation algorithms like FAISS (Johnson521

et al., 2019) for faster computation of cosine dis-522

tance. There have also been efforts such as Wiki-523

Matrix (Schwenk et al., 2021a) and CCAligned (El-524

Kishky et al., 2019) that divide the mining process525

into two steps. The first step is to align text on526

the document level, which significantly reduces the527

search space, while the second step is to deploy a528

sentence retrieval model as usual.529

Apart from aligning text at the document and530

sentence level, there has also been models that fo-531

cus on a higher level of granularity and target word532

alignment (Dou and Neubig, 2021). Such work can533

be used for downstream tasks such as automatically534

building simplified bilingual dictionaries.535

5.3 Zero-Shot Cross-lingual Transfer536

The standard zero-shot cross-lingual transfer as-537

sumes no in-language data and consists of two538

steps: (1) finetune a multi-lingual pretrained model539

on task-specific data in the source language; and540

(2) evaluate it on test data in the target language.541

Another alternative to the implicit transfer re- 542

quires a Machine Translation system (Hu et al., 543

2020; Luo et al., 2021), which itself demands par- 544

allel data to train in the first place. There are two 545

settings: (1) translate-train: machine translate the 546

task-specific training data from the source to the 547

target language and train on that noisy data; and 548

(2) translate-test: train on task-specific data in the 549

source language and evaluate on data translated 550

from the target to the source language. 551

Several benchmark datasets have been released 552

to test cross-lingual transfer capability, including 553

XGLUE (Liang et al., 2020), XTREME (Hu et al., 554

2020), and XTREME-R (Ruder et al., 2021). They 555

include diverse classification and generation tasks 556

including Natural Language Inference, Relation Ex- 557

traction, Named Entity Recognition, Part of Speech 558

Tagging, Question Answering, and Sentence Re- 559

trieval. 560

There has been extensive work devoted to ana- 561

lyzing the mechanism behind cross-lingual trans- 562

fer (K et al., 2020; Muller et al., 2021). For exam- 563

ple, Pires et al. (2019) and Wu and Dredze (2020) 564

show that the amount of shared vocabulary between 565

the source and target language plays an important 566

role in the transfer. However, some other works 567

suggest the opposite. For instance, Conneau et al. 568

(2020b) show that the transfer happens even if there 569

is no shared vocabulary while the training and eval- 570

uation data can also come from distinct domains. 571

6 Conclusion 572

In this work we present OneAligner, an alignment 573

model tailored to sentence retrieval tasks. We 574

show that this model transfers well under a cross- 575

lingual setting even when trained on a single lan- 576

guage pair. Through experiments and analyses, 577

our work helps uncover what factors influence the 578

alignment performance, and identifies monolingual 579

data size, parallel data size, and the number of 580

rich-resource language pairs as the top priorities 581

to which one should distribute their data collec- 582

tion efforts. Though having covered a relatively 583

broad range of languages and settings, this work 584

still leaves many unexplored territories. For exam- 585

ple, (1) How to deal with evaluation languages that 586

are not present in the pretraining phase since the 587

vocabulary is not constructed based on them? (2) 588

Why is the cross-lingual transfer successful? What 589

has the model actually learned during finetuning? 590

We leave these as future work. 591
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A New-Tatoeba Results in Detail854

Table 9 shows the detailed performance on each855

language pair in the New-Tatoeba dataset.856
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Lang de-hu ar-es eo-vi fr-hu en-ga hu-pl de-el de-en be-ru en-it hu-ja en-uk de-pl nl-uk eo-lt fr-ja
Top-1 (Eng) 94.9 89.0 91.1 90.0 62.8 91.4 91.9 98.9 98.0 97.1 95.4 97.4 98.0 93.5 85.2 96.0

Top-1 (¬ Eng) 95.1 89.4 91.6 90.4 63.4 91.9 90.6 98.8 98.1 98.0 95.3 97.1 97.5 92.5 85.7 95.7
All (Eng) 98.1 91.8 96.9 94.0 78.6 95.2 93.8 99.2 98.2 99.3 97.2 98.3 98.6 95.9 96.1 97.2

ar-ja eo-yi en-ur ar-de en-lv en-sq cs-es de-no es-tr ca-es it-tr nl-pl fr-nl fi-no fr-zh de-it
80.2 64.5 82.8 89.2 92.8 85.9 91.7 94.7 95.3 96.6 69.2 93.3 93.8 63.7 95.7 96.2
79.3 65.8 81.2 89.5 91.7 85.8 91.4 94.4 95.4 98.1 68.4 93.2 94.8 62.0 95.2 96.9
81.8 71.4 83.9 91.9 96.1 93.6 93.1 95.4 99.0 98.8 78.1 96.2 95.8 66.4 96.4 98.0
da-fr az-en ar-he fi-sv pl-sv be-en fi-ru de-fa de-uk en-tr bg-it cs-eo en-mk en-sv cs-en el-ru
91.4 92.5 75.6 91.6 96.7 94.9 92.2 97.5 96.5 98.0 86.0 90.8 95.2 98.0 98.6 96.6
91.0 92.2 76.3 90.8 96.4 93.9 91.4 96.6 96.0 97.7 87.8 90.4 95.4 97.4 98.4 96.9
91.7 96.4 78.5 94.4 97.3 95.2 94.4 98.0 97.4 99.2 89.3 96.8 99.0 98.2 99.3 98.1
gl-es fr-tr ja-ru he-pl en-es en-vi lt-ru it-ro en-ro ro-es fr-es it-ru eo-ja es-uk fi-hu ru-sv
95.3 93.8 97.6 96.5 98.5 96.8 92.2 75.8 95.9 88.3 97.4 96.5 88.7 93.8 81.0 88.5
97.1 93.3 96.7 95.9 98.7 96.6 93.0 75.1 95.7 90.3 99.2 97.5 90.1 95.2 80.7 86.7
98.1 96.3 98.3 97.2 99.3 97.1 96.9 77.9 96.6 91.7 99.3 98.7 96.3 96.4 86.1 89.1
eo-fi en-nl en-no ar-ru en-hi eo-fa en-zh da-nl el-fr fr-it de-ko eo-ro fi-tr en-lt fr-vi af-nl
74.1 97.8 97.3 94.9 95.3 89.4 98.0 91.6 89.0 92.7 88.8 84.2 91.9 90.0 95.4 88.7
75.0 97.7 97.2 95.0 95.1 90.0 97.1 91.2 89.9 95.6 87.4 85.1 92.2 90.3 96.0 89.9
85.5 99.0 98.0 97.1 95.3 96.0 98.1 92.8 91.8 96.8 90.5 91.2 96.3 95.3 96.1 91.8
de-es el-tr en-ru nl-es pl-es de-fr eu-es sv-zh eo-sv nl-tr fr-sv en-eu nl-ru eo-it kk-ru pl-zh
98.0 88.6 99.3 97.1 94.6 98.6 72.2 80.9 79.9 88.8 94.8 78.9 94.7 84.9 91.0 93.6
99.1 88.2 99.2 97.8 95.7 98.9 73.2 79.7 80.2 88.8 95.2 78.8 94.0 87.4 91.8 93.0
99.2 93.1 99.0 98.3 95.9 99.3 93.6 81.0 88.3 95.2 95.9 95.2 95.7 94.9 94.6 94.9
da-en de-sv ug-zh fr-uk eo-he af-de bg-en hu-es he-es lt-tr ja-no da-de hu-ru cs-ru ar-fr en-fr
98.1 95.0 86.3 97.1 87.9 89.4 97.0 93.5 90.7 80.5 92.5 98.0 93.8 95.8 79.2 98.4
97.8 94.4 85.3 97.0 88.5 92.0 96.1 93.4 89.3 79.4 91.1 97.7 92.7 95.5 78.5 98.3
98.8 95.3 91.1 98.0 94.8 94.6 97.2 96.6 91.0 88.6 93.6 98.2 95.8 97.0 81.4 99.1
af-en eo-fr he-it eo-tr pl-ru he-tr de-he fi-fr de-lt en-sl ja-vi de-eo fr-he en-ka it-nl ja-nl
92.1 91.4 80.8 86.2 97.9 69.6 90.5 77.2 84.9 92.1 87.8 93.4 90.8 82.6 92.7 92.5
93.0 92.2 81.8 87.0 97.8 68.8 90.0 78.0 84.6 90.9 86.3 93.1 90.8 80.7 93.7 92.0
95.8 98.4 82.7 97.1 98.2 74.5 90.8 79.7 89.1 94.4 87.8 98.4 91.4 84.0 95.0 95.1
el-en en-ug bn-en en-fi en-yi eo-ru az-tr en-hy he-ru it-ja ca-en en-he uk-zh ar-en tr-uk eo-zh
95.4 83.6 84.1 94.6 75.1 88.9 86.0 59.0 92.6 94.1 87.8 98.1 85.3 94.4 90.4 85.7
95.6 81.2 82.4 94.2 76.9 91.3 86.4 57.9 92.4 93.1 90.4 96.5 83.9 93.1 89.4 87.3
95.7 87.6 86.9 98.1 81.7 97.6 90.7 62.1 93.5 94.7 92.2 98.5 86.4 96.0 94.5 95.6
de-yi bg-ru fi-es ru-zh da-fi tr-ug en-eo ja-zh da-ru fr-ru en-fa el-es fr-pl es-sv el-nl de-fi
63.1 90.0 93.7 93.7 67.0 91.0 92.3 94.5 94.3 98.2 95.9 85.7 96.0 87.9 90.1 91.7
64.4 89.2 94.5 92.7 66.7 91.4 91.9 93.8 93.3 98.0 95.5 87.3 96.1 88.6 90.3 91.4
65.3 91.2 96.4 94.2 69.8 93.7 99.3 95.1 93.5 98.8 96.3 89.9 96.5 89.8 90.6 93.4
da-sv en-ja de-zh hu-tr de-is ru-tr km-es eo-nl en-is br-fr pl-uk eo-uk eo-no cs-de da-no de-tr
94.0 97.7 95.1 81.1 81.5 93.5 66.2 88.7 93.6 22.7 95.9 88.3 90.3 95.8 95.6 94.9
93.6 97.8 94.8 79.5 81.8 93.3 65.9 89.0 93.2 22.2 95.4 87.6 91.3 95.9 95.5 94.8
94.2 98.4 95.8 86.7 85.5 96.4 69.8 98.1 96.2 48.3 96.6 95.2 96.4 96.4 95.9 97.3
eo-es it-uk eo-hu en-mr hu-nl ar-tr it-es be-uk en-hu da-eo en-th eo-pl bg-uk he-yi no-ru de-ro
92.6 91.3 88.6 96.1 86.3 88.9 97.1 94.9 94.2 88.7 91.0 89.1 81.2 55.9 93.0 88.6
94.4 91.6 88.7 96.7 84.9 87.8 97.8 94.8 94.3 90.6 90.5 90.2 80.7 57.6 92.0 88.6
98.9 94.1 97.4 97.9 90.2 92.9 98.2 95.3 98.1 96.6 91.9 96.3 83.3 59.9 92.5 90.1
ru-uk en-gl de-nl cs-it en-et fi-ja fr-ro es-zh tr-zh cs-uk sl-uk de-ru af-eo he-nl fi-it it-zh
99.3 84.6 97.1 90.5 82.7 87.1 88.2 95.1 81.4 90.4 70.8 98.3 74.4 97.2 79.9 83.7
99.2 85.7 96.7 90.6 82.2 85.1 88.5 94.8 80.7 89.2 70.3 98.3 75.3 96.8 81.1 83.8
99.4 86.9 98.3 92.2 94.5 91.0 91.0 95.7 86.8 91.7 75.6 99.2 84.5 98.5 84.5 86.8
nl-zh lt-pl it-pl ru-es en-pl da-es de-ja nl-ro ro-tr en-ko ja-es cs-hu ja-pl hu-it hu-sv Avg.
95.3 92.4 93.6 98.5 98.8 96.2 97.8 88.4 92.3 93.6 95.7 87.9 97.7 90.0 88.0 89.8
95.2 92.2 93.9 98.4 98.3 96.4 97.4 89.2 92.8 93.0 97.0 88.3 96.9 90.9 87.5 89.7
96.1 97.4 95.3 98.7 99.3 97.4 98.1 92.1 96.8 94.6 98.5 92.5 98.5 94.8 92.0 92.9

Table 9: Performance on all language pairs in the New-Tatoeba dataset whose devtest size is greater or equal than
1K (we randomly sample 1K examples for the “greater” case).
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