
Under review as a conference paper at ICLR 2024

DELTA-LORA: FINE-TUNING HIGH-RANK PARAME-
TERS WITH THE DELTA OF LOW-RANK MATRICES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present Delta-LoRA, which is a novel parameter-efficient ap-
proach to fine-tune large language models (LLMs). In contrast to LoRA and other
low-rank adaptation methods such as AdaLoRA, Delta-LoRA not only updates
the low-rank matrices A and B, but also propagate the learning to the pre-trained
weights W via updates utilizing the delta of the product of two low-rank matrices
(A(t+1)B(t+1) −A(t)B(t)). Such a strategy effectively addresses the limitation
that the incremental update of low-rank matrices is inadequate for learning rep-
resentations capable for downstream tasks. Moreover, as the update of W does
not need to compute the gradients of W and store their momentums, Delta-LoRA
shares comparable memory requirements and computational costs with LoRA.
Extensive experiments show that Delta-LoRA significantly outperforms existing
low-rank adaptation methods. We further support these results with comprehensive
analyses that underscore the effectiveness of Delta-LoRA.

1 INTRODUCTION

Large Language Models (LLMs) recently have attracted considerable attention due to their remarkable
performance across a broad spectrum of downstream tasks. Diverging from conventional Transformers
characterized by a scale of millions of parameters, modern LLMs typically scale up to billions
of parameters, endowing them with notable advantages such as emergent capabilities and robust
generalization as detailed in (Bubeck et al., 2023). Fine-tuning such highly capable LLMs on
downstream tasks (Raffel et al., 2020; Devlin et al., 2019; Radford et al., 2019; He et al., 2021;
Liu et al., 2019; Brown et al., 2020) has consequently become a mainstream paradigm to reduce
the training time required for individual tasks, yet with superior performance compared with other
methods (Lester et al., 2021; Li & Liang, 2021; Houlsby et al., 2019).

However, fine-tuning a LLM with all the learnable parameters (Full Fine-tuning) requires multiple
GPUs with high memory demand (Dettmers et al., 2023; Hu et al., 2022), which is unattainable
for many companies and research institutions. Full fine-tuning poses exceptional challenges to
researchers: with massive parameter size, LLMs already demand more storage space than regular
models; Further training exaggerates the GPU memory requirement because common optimizers
such as AdamW (Loshchilov & Hutter, 2019) often maintain several copies of the model parameters,
which is 2-3 times of memory overhead.

To this end, a series of methods have been proposed (Valipour et al., 2023; Zhang et al., 2022; Li &
Liang, 2021; Liu et al., 2022a; Lv et al., 2023; Dettmers et al., 2023; Liu et al., 2022b; Zaken et al.,
2021; Pfeiffer et al., 2021; Guo et al., 2021; Zhou et al., 2023; Zhang et al., 2023; Houlsby et al.,
2019; Wang et al., 2022) to reduce memory overhead at the training stage. Some even accelerate the
fine-tuning process with only less than 1% trainable parameters. Among these methods, LoRA (Hu
et al., 2022) is the most attractive for its stable performance on broad downstream tasks (Ding et al.,
2023), no observed overfitting, as well as no extra memory and computation cost at inference.

While LoRA and its successors (Zhang et al., 2022; Valipour et al., 2023) have indeed exhibited
superior performance in comparison to alternative approaches within the realm of Parameter Efficient
Fine-Tuning (PEFT), a substantial performance gap persists when compared to the full fine-tuning,
as highlighted in most scenarios (Ding et al., 2023). This discrepancy is attributed to the inherent
limitation of updating only a fraction of the model’s parameters, rendering it inadequate to fit the
intricacies presented in the training data.

1

Under review as a conference paper at ICLR 2024

B

Dropout

W

A

B

E
W

A

B

(a) LoRA/DyLoRA (b) AdaLoRA (c) Delta-LoRA

W
A

Dropout

Figure 1: An overview of the proposed Delta-LoRA structure, compared to LoRA, DyLoRA and
AdaLoRA. Note that DyLoRA and LoRA basically share the same architecture. W is the pre-trained
weight which is frozen (signified by blue) when performing efficient-parameter fine-tuning in (a) and
(b). Orange trapezoids A, B and E denote the trainable parameters. In our proposed Delta-LoRA,
the light orange rectangle means that pre-trained weights can be updated via the delta. Note that our
proposed Delta-LoRA removes the Dropout layer to ensure reasonable delta for pre-trained matrix.

To bridge this gap, a reasonable strategy is to introduce more parameters into the optimization
process. In this paper, we introduce Delta-LoRA as shown in Fig. 1, a novel PEFT approach that
simultaneously updates the pre-trained matrix and two low-rank matrices while maintaining the
same memory consumption as the original LoRA. Specifically, the pre-trained matrix W is updated
with the delta of the product of two low-rank matrices in two consecutive iterations (△AB =
A(t+1)B(t+1) − A(t)B(t)), while two low-rank matrices are updated by the AdamW optimizer
automatically. This is based on the mathematical property that ∂L

∂W = ∂L
∂AB and△AB is a surrogate

to direct the update of W (see Sec. 4 for details). Since we neither store the gradient of W nor use
the optimizer to update the pre-trained matrix, the proposed method thus does not yield any extra
memory overhead. This strategic integration effectively mitigates the sub-optimal representation
learning stemming from only updating the two low-rank matrices. Moreover, our approach aligns the
update direction of the pre-trained weights with that of the incremental update matrix. Furthermore,
we discard the Dropout layer in low-rank branches to obtain a more reasonable delta for W , in
order to ensure ∂L

∂W = ∂L
∂AB . The advantages of our proposed method are conspicuous: including

the pre-trained weights in the optimization process engenders a broader integration of parameters,
thereby enhancing the potential for learning intricate representations.

The main contributions of this paper can be summarized as:

• We introduce Delta-LoRA, a novel PEFT method that simultaneously updates the full weight matrix
and two low-rank matrices. Delta-LoRA leverages the delta of the product of A and B to update
the pre-trained weights and thus prevent storing the first and the second-order momentums in the
optimizer.

• We analyze the gradient flow of Delta-LoRA and show that the Dropout layer in the low-rank
branch makes ∂L

∂W ̸= ∂L
∂AB . Thus, we remove the Dropout layer in our proposed Delta-LoRA to

get reasonable delta for W .
• We conduct comprehensive experiments to show that Delta-LoRA has consistent gains on a broad

range of NLP tasks. Additionally, we provide thorough explanations to analyze its superiority and
the value contributed by each component.

2 PRELIMINARIES

Transformer-based Models. Transformer (Vaswani et al., 2017) adopts the self-attention mecha-
nism instead of recurrence and convolutions, achieving new state-of-the-art in machine translation.
Dosovitskiy et al. (2021) later proposed the Vision-Transformer (ViT) architecture which exhibits

2

Under review as a conference paper at ICLR 2024

versatility across various computer vision tasks. Nowadays, the Transformer-based models have
become the most popular choice in both NLP and Computer Vision (Li et al., 2021; Carion et al.,
2020; Zheng et al., 2021). Transformer typically consists of L stacked blocks, each containing
a multi-head attention (MHA) module and a feed-forward network (FFN) module. For an input
sequence X ∈ Rn×d, the MHA module yields the output MHA(X), given by:

headi = softmax(
XWQi(XWKi)

⊤
√
dk

)XWVi

MHA(X) = concat(head1, ..., headk)Wo,

(1)

where dk is the scaling factor and set to dk = d/k. WKi
WQi

, WVi
and Wo are weight matrices for

computation of key, query, value and the output of MHA, respectively. Besides the MHA module,
the FFN is also vital in the Transformer-based model. It stacks two fully connected (FC) layers with
an activation function in between. FFN is defined as:

FFN(x) = Wf2ReLU(Wf1x+ b1) + b2, (2)

where x ∈ Rd, Wf1 and Wf2 are two fully connected layers in FFN, b1 and b2 are bias terms.

Low Rank Adaptation. Given a pre-trained matrix W ∈ Rc×d, LoRA (Hu et al., 2022) learns
an incremental update △W and decomposes △W into a matrix multiplication between two low-
rank matrices A and B, where A ∈ Rc×r and B ∈ Rr×d, and △W = AB. Here, the rank
r ≪ min(d, c). For an input x and hidden state h, LoRA has the following forward process:

h = W ∗x = Wx+△Wx = Wx+
α

r
ABx (3)

At the beginning of the training stage, A is randomly initialized via Kaiming initialization (He et al.,
2015) and B is initialized to zero matrix to make sure that the incremental update AB = 0 at
initialization. Besides, LoRA uses hyper-parameters α and r to scale ABx.

3 RELATED WORKS

With the ever-growing parameter scale in current Transformer-based models, fine-tuning such a large
language model (LLM) requires considerable number of GPUs equipped with high memory capacity.
This is mainly due to the fact that common optimizers such as AdamW (Loshchilov & Hutter, 2019)
requires maintaining three times of extra parameter size (gradients, first-order and second-order
momentums). To bridge this gap, a series of Parameter-Efficient Fine-Tuning (PEFT) methods have
been proposed (Hu et al., 2022; Liu et al., 2022b; Shin et al., 2020; Houlsby et al., 2019). The
Adapter (Houlsby et al., 2019) introduces lightweight trainable parameters between pre-trained layers
while keeping the pre-trained weights fixed. Prompt-Tuning (Lester et al., 2021) aims to optimize the
prompt to achieve comparable performance with fine-tuning for specific task, while Prefix-Tuning
optimizes for trainable prefixes and prepends these trainable parameters to each hidden state (Li &
Liang, 2021). Despite the notable performance achievements, these methods inevitably introduce
extra overhead at the inference stage.

Hu et al. (2022) proposed LoRA to utilize the multiplication of two low-rank matrices to model the
incremental update of a full-rank matrix. LoRA merges the incremental updates to pre-trained weights
after training, thereby avoiding any extra computation overhead during inference. Furthermore, it
stands out as one of the most effective PEFT techniques according to Ding et al. (2023)’s evaluation.
Subsequent to its inception, a series of enhanced methods building upon LoRA was proposed. Notably,
G-LoRA (Chavan et al., 2023) leverages a generalized prompt module to fine-tune pre-trained weights
resulting in better representations for computer vision tasks. DyLoRA (Valipour et al., 2023) aims to
adjust the rank of two lightweight matrices after the training stage. Differing from the conventional
approach of maintaining a static rank during training, DyLoRA introduces rank variations to its
blocks. AdaLoRA (Zhang et al., 2022) emphasizes the disparate importance attributed to distinct
weight parameters. This technique intelligently allocates the parameter budget across weight matrices
based on their respective importance scores. Additionally, Q-LoRA (Dettmers et al., 2023) was
proposed to further reduce the average memory footprint by quantizing the pre-trained model with
4-bit NormalFloat. This quantization approach not only preserves the model’s efficacy but also
effectively alleviates the resource-intensive nature of LLM training and addresses a pertinent concern.

3

Under review as a conference paper at ICLR 2024

W

𝜆
𝛼

𝑟
∆𝐴𝐵

A

B

Forward pass

Update Parameters

Normalized 𝑔𝐴

Normalized 𝑔𝐵

W
A

B

Backward pass

(a) Forward and Backward Pass (b) Parameter Update

𝜂 ො𝑔𝐴

𝜂 ො𝑔𝐵
ො𝑔𝐴

ො𝑔𝐵

ℎ𝑖

ℎ𝑖+1

Figure 2: The framework of our proposed Delta-LoRA. The blue arrows represent forward pass while
yellow dashed arrows denote backward propagation. The black solid arrows in (b) represent the
process of updating the low-rank adaptation matrices A and B with normalized gradients ĝA and
ĝB multiplied by the learning rate η, as well as updating the pre-trained weights W with the delta
matrix△AB multiplied by the update ratio λ.

4 METHODOLOGY

This section introduces the novel fine-tuning approach termed as Delta-LoRA. Delta-LoRA en-
compasses two pivotal designs as shown in Figure 1 and Figure 2: (i) It simultaneously updates
the full weight matrix (W) alongside the two low-rank adaptation matrices (A and B), utilizing
the delta (A(t+1)B(t+1) −A(t)B(t)) resulting from incremental updates to refine the pre-trained
weights (W); (ii) The Dropout layer as originally integrated within the conventional LoRA module,
is excluded in Delta-LoRA. This omission stems from the realization that its presence violates the
required assumption ∂L

∂W = ∂L
∂AB .

4.1 UPDATE THE DELTA OF LOW-RANK MATRICES ON PRE-TRAINED WEIGHTS

For an input x and its corresponding hidden state h, LoRA optimizes two low-rank matrices A and
B to learn an incremental update AB for the pre-trained and fixed weight matrix W . Different from
previous methods, we argue that W also needs to be updated. In this way, we can introduce more
learnable parameters to the optimization process for higher learning capability. However, acquiring
the normalized gradients (i.e. the gradients after normalization in optimizer) to fine-tune the weight
matrix W is non-trivial, since the optimizer such as AdamW must maintain at least three extra copies
of the parameters (i.e. gradients as well as the first-order and the second-order moments of gradients)
in GPU memory. Intriguingly, we note that the gradients of the loss L with respect to matrices AB
and W are precisely identical, under the presumption that the LoRA module exclusively retains
matrices A and B, while disregarding the Dropout layer. This correspondence can be formally
represented as:

gW =
∂L

∂hi+1

·
∂hi+1

∂W

⊤
=

∂L
∂hi+1

· h⊤
i ,

gAB =
∂L

∂hi+1

·
∂hi+1

∂AB

⊤
=

∂L
∂hi+1

· h⊤
i ,

=⇒ gW = gAB,

(4)

where hi+1 = Whi +ABhi, hi and hi+1 are the outputs of the i-th layer and the i+1-th layer
respectively. AB is the matrix product of the adaptation matrices A and B, L is the loss function,
while gW+AB , gW and gAB denote the gradients of ∂L

∂(W+AB) , ∂L
∂W , and ∂L

∂AB respectively.

Equation 4 inspires us to use gAB to assimilate gW when learning the parameter updates for weight
matrix W . Unfortunately, we are only able to obtain the gradients gA and gB rather than gW during
the back-propagation process. Furthermore, the computation of the gradients for AB is as expensive

4

Under review as a conference paper at ICLR 2024

as for the matrix W , since both matrices share the same dimensions of d× k, consequently entailing
an equivalent GPU memory overhead.

Considering a typical optimization process, the model updates its parameters by applying the gradient
descent: W (t+1) = W (t) − ηgW , with the parameter update denoted as△W = −ηgW , using the
learning rate η. Similarly, we regard −△AB as the gradients for AB and utilize this matrix as a
substitute for gW according to Equation 4. Here, we can compute△AB as:

△AB = A(t+1)B(t+1) −A(t)B(t) = ηA(t)gB + ηgAB(t) − η2gAgB, (5)

where A(t), B(t) and W (t) are the weights of A, B and W at the t-th step respectively, A(t+1) =
A(t)−ηgA, B(t+1) = B(t)−ηgB and η is the learning rate. To be precise,−△AB does not equate
directly to gAB and gW as elaborated in Appendix A.4.2. Nonetheless, △AB has the capability
to symbolize the genuine directions of update for the matrix AB. Based on this assumption, it is
reasonable to employ −△AB as the gradient for directing the update of W .

Therefore, during the training phase we introduce the matrix△AB to update the pre-trained weights
W in the following manner:

W (t+1) = W (t) + λ · α
r
· △AB,where △AB = A(t+1)B(t+1) −A(t)B(t), (6)

where λ represents the hyper-parameter to trade off the update ratio of AB and the pre-trained
weights W . The parameter updates for W commence after K training iterations. The procedural
details of the algorithm are illustrated in Algorithm 1.

Discussion. The Delta-LoRA has some important modifications compared to LoRA. Here, we discuss
and compare the difference:

LoRA

(1) A(t+1) ← ∂L(x;W ,A(t),B(t))
∂A(t)

(2) B(t+1) ← ∂L(x;W ,A(t),B(t))
∂B(t)

Delta-LoRA

(1) A(t+1) ← ∂L(x;W (t),A(t),B(t))
∂A(t)

(2) B(t+1) ← ∂L(x;W (t),A(t),B(t))
∂B(t)

(3) W (t+1) ← A(t+1)B(t+1) −A(t)B(t)

It is obvious that LoRA only updates A and B, and keeps W frozen, while Delta-LoRA updates A
and B by the optimizer and W with the delta of the product of A and B.

4.2 THE STRUCTURE OF OUR DELTA-LORA

Both LoRA and its successor AdaLoRA put a Dropout layer before two low-rank matrices A and B.
However, this arrangement results in a disparity between the gradient matrices gW and gAB (or the
matrix gAEB in the context of AdaLoRA). The derivation of this disparity can be shown as:

gW =
∂L

∂hi+1

· h⊤
i ̸= gAB =

∂L
∂hi+1

· Drop(hi)
⊤, (7)

where Drop(·) denotes the Dropout layer which leads to gW ̸= gAB . A reasonable choice is to
remove the Dropout layer in the low-rank module and activate the Dropout layer between pre-trained
layers if overfitting problem occurs. This modification also brings additional benefits: (1) it can
alleviate under-fitting to some extent, thereby enhancing the learned representations of the networks.
The rationale behind this improvement lies in the fact that LoRA and its successors formulate low-rank
updates for pre-trained weights, involving less than 1% of the complete parameters. However, relying
solely on such a small fraction of parameters may not bestow an adequate representation capacity in
most cases; (2) This alteration also yields memory-saving benefits. By negating the requirement to
store intermediate features, the model curtails the memory consumption. Consequently, there is a
reduction in activation memory employed during the back-propagation process.

5 EXPERIMENTS

We evaluate our proposed model fine-tuning method Delta-LoRA with RoBERTa (Liu et al., 2019),
GPT-2 (Radford et al., 2019) and BART (Lewis et al., 2019) on a broad set of datasets. Specifically,

5

Under review as a conference paper at ICLR 2024

we train (1) RoBERTa on GLUE benchmark which consists of 8 NLP understanding tasks; (2) GPT-2
on E2E Challenge and WebNLG Challenge 2017 following the setting of Hu et al. (2022); and (3)
BART on XSum dataset by using the setting provided by Zhang et al. (2022). See Appendix A.7 for
more training details on the datasets. The setups and detailed introductions of baseline methods are
shown in Appendix A.1. We use PyTorch to implement our experiments and download the pre-trained
weights as well as configuration files from HuggingFace Wolf et al. (2019).

Table 1: The evaluation results of our proposed Delta-LoRA and other existing methods on E2E
NLG Challenge dataset. † indicates fine-tuning all layers except embedding layer. ‡ indicates only
fine-tuning weights for query and value. ¶ means we choose different settings with AdaLoRA: we
only tune WQ and WV instead of all layers. The best results of Fine-Tuning methods are underlined.
The best results of PEFT methods are boldfaced.

Method Trainable Extra Updatable BLEU NIST METEOR ROUGE-L CIDErParameters Parameters

Full Fine-Tuning 354.92M % 69.58 8.75 46.34 71.66 2.47
Fine-Tuning† 305.84M % 69.37 8.76 46.05 71.97 2.44
Fine-Tuning‡ 48M % 69.77 8.84 46.29 71.96 2.49

LoRA (repr.) 0.375M % 69.60 8.78 45.61 71.12 2.45
LoRA 0.35M % 70.4 8.85 46.8 71.8 2.53

DyLoRA 0.375M % 67.89 8.50 44.07 70.52 2.26
AdaLoRA¶ 0.375M % 68.16 8.58 44.10 70.66 2.35

Delta-LoRA (Ours) 0.375M ! 48M 70.84 8.91 46.47 72.24 2.53

Table 2: The evaluation results of our proposed Delta-LoRA and other existing methods on WebNLG
Challenge 2017 dataset. † indicates fine-tuning all layers except embedding layer. ‡ indicates only
fine-tuning weights for query and value. ¶ means we choose different settings with AdaLoRA: we
only tune WQ and WV instead of all layers. The best results of Fine-Tuning methods are underlined.
The best results of PEFT methods are boldfaced.

Method Trainable Extra Updatable BLEU↑ METEOR↑ TER↓
Parameters Parameters S U A S U A S U A

Full Fine-Tuning 354.92M % 61.38 45.11 54.48 0.44 0.38 0.41 0.36 0.53 0.44
Fine-Tuning† 305.84M % 63.53 46.66 55.92 0.45 0.39 0.42 0.34 0.49 0.41
Fine-Tuning‡ 48M % 64.55 48.06 57.08 0.46 0.39 0.43 0.33 0.47 0.40

LoRA (repr.) 0.375M % 62.08 46.60 55.05 0.44 0.38 0.41 0.35 0.49 0.42
LoRA 0.375M % 62.1 46.7 55.3 0.44 0.38 0.41 0.33 0.46 0.39

DyLoRA 0.375M % 58.39 46.02 52.77 0.42 0.37 0.40 0.38 0.49 0.43
AdaLoRA¶ 0.375M % 56.39 44.14 50.82 0.41 0.37 0.39 0.40 0.49 0.44

Delta-LoRA (Ours) 0.375M !48M 62.87 47.68 55.96 0.45 0.39 0.42 0.34 0.48 0.40

5.1 NATURAL LANGUAGE GENERATION

Models and Datasets. We use GPT2-Medium to verify the effectiveness of our Delta-LoRA on two
datasets for data-to-text tasks, including the E2E NLG Challenge (Puzikov & Gurevych, 2018) and
WebNLG Challenge 2017 (Gardent et al., 2017). The E2E NLG Challenge dataset comprises 42,000
samples for training, 4,600 for validation, and 4,600 for testing purposes. In contrast, the WebNLG
Challenge 2017 consists of 21,855 training samples across nine categories, expanding to a total of 14
categories in the test set. For the text summarization task, we employed BART-Large (Lewis et al.,
2019) to evaluate the efficacy of our method using the XSum dataset (Narayan et al., 2018). The
XSum dataset is composed of 204,045 training samples, 11,332 validation samples, and 11,332 test
samples. We also use LLaMA-7B(Touvron et al., 2023), a popular pre-trained large language model
with 7 Billion parameters,to fine-tune on Alpaca dataset (Taori et al., 2023).
Implementation Details. In order to compare with LoRA and its successors fairly, we adopt the
model setups from LoRA to implement our Delta-LoRA and three PEFT methods. We only learn

6

Under review as a conference paper at ICLR 2024

Table 3: The evaluation results of Delta-LoRA with LLaMA-7B on the Instruction-Tuning dataset
provided by Stanford Alpaca(Taori et al., 2023). We use GPT-4 to choose from a. LoRA, b. Delta-
LoRA or c. Both LoRA and Delta-LoRA to decide the text from which method is better.

Both LoRA Delta-LoRA Total

886 10 104 1,000

the low-rank incremental update for WQ and WV in MHA module. For data-to-text datasets, we
use the same training configurations as adopted by LoRA, including the number of training epochs,
batch size and etc. We use update ratio λ = 2 and set start steps K = 500 for Delta-LoRA. More
details about Delta-LoRA are listed in the Appendix A.7. For the text-summarization task, we use
the implementation of AdaLoRA and adopt the same training configurations. We set the update ratio
λ = 0.5 and the start steps K = 1000 for Delta-LoRA.

Experimental Results. Table 1 shows the results for E2E Challenge dataset on 5 evaluation metrics,
demonstrating that our method achieves state-of-the-art performance over 3 baselines and a set of
fine-tuning methods. For the BLEU and ROUGE-L metrics, our method obtains 1.24 and 1.13
performance gains compared with LoRA, with 0.13, 0.86 and 0.08 improvement on NIST, METEOR
and CIDEr respectively. Table 2 demonstrates that Delta-LoRA outperforms baselines on BLEU score
for WebNLG Challenge 2017 dataset, with 0.79, 1.08 and 0.91 improvement on Seen, Unseen and
All test data, respectively. Additionally, for the METEOR and TER evaluation metrics, Delta-LoRA
also achieves state-of-the-art performance, with 0.01 and 0.02 improvement over LoRA on all data.
For the text-summarization task, the test results are shown in Table 4, which demonstrates that our
method achieves state-of-the-art results across 3 parameter-efficient methods on 4 evaluation metrics.
To fairly evaluate our method, we utilized LLaMA-7B and compared it with LoRA. We employed
GPT-4 to generate 1,000 questions and presented these questions to the parameter-efficient fine-tuned
LLaMA-7B. Subsequently, we leveraged GPT-4 to compare the texts generated by LoRA-tuned
and Delta-LoRA-tuned LLMs. Additional details can be found in Appendix A.2. According to
the findings in Table 3, Delta-LoRA establishes state-of-the-art performance in the evaluation of
Language Models (LLMs). GPT-4 identified 104 samples generated by Delta-LoRA as superior to
LoRA, while only 10 samples generated by LoRA exhibited higher quality than Delta-LoRA. This
underscores Delta-LoRA’s effectiveness even when utilized within models containing billions of
parameters.

Table 4: The evaluation results of our proposed Delta-LoRA and other existing methods on XSum
dataset. † indicates fine-tuning all layers except the embedding layer. ‡ indicates only fine-tuning
weights for query and value. ¶ means we choose different settings with AdaLoRA: we only tune
WQ and WV instead of all layers. The best results of Fine-Tuning methods are underlined. The best
results of PEFT methods are boldfaced.

Method Trainable Extra Updatable Rouge-1 Rouge-2 Rouge-L Rouge-SumParameters Parameters

Full Fine-Tuning 387.5M % 45.36 22.16 37.23 37.24
Fine-Tuning† 338.4M % 45.04 22.05 36.92 36.94
Fine-Tuning‡ 72M % 44.95 21.43 36.35 36.37

LoRA 0.56M % 43.27 20.13 35.12 35.12
DyLoRA 0.56M % 41.84 18.76 33.56 33.57

AdaLoRA¶ 0.56M % 42.91 19.76 34.71 34.72
Delta-LoRA (Ours) 0.56M !72M 43.49 20.23 35.26 35.26

5.2 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. We use RoBERTa-baseLiu et al. (2019) to evaluate the performance of our
proposed method, prior works and three fine-tuning methods. We choose the GLUE benchmark
consisting of 8 datasets (Wang et al., 2019), including classification tasks, similarity and paraphrase
tasks and natural language inference tasks.

Implementation Details. We use RoBERTa-base with 118M parameters to conduct our experiments
and to compare our method with the baselines. We mostly adopt the same training configurations of

7

Under review as a conference paper at ICLR 2024

LoRA, more details can get from Appendix A.7. We set the rank to 8 and the target rank to 6 for
AdaLoRA and choose the rest of hyper-parameters according to the characteristics of different tasks.
For Delta-LoRA, we set the update ratio λ to 0.5 and choose different start steps K according to
warmup steps used in individual tasks.

Table 5: The evaluation results of our proposed Delta-LoRA and other existing methods on GLUE
benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. † indicates
fine-tuning all layers except the embedding layer. ‡ indicates only fine-tuning weights for query and
value. ¶ means we choose different settings with AdaLoRA: we only tune WQ and WV instead of
all layers. The best results of Fine-Tuning methods are underlined. The best results of PEFT methods
are boldfaced.

Method Trainable Extra Updatable MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVGParameters Parameters

Full Fine-Tuning 118.87M % 87.51 94.26 88.23 64.57 92.73 91.96 84.11 90.56 86.74
Fine-Tuning† 82.05M % 87.58 94.03 89.95 62.99 92.73 91.90 86.64 90.22 87.01
Fine-Tuning‡ 13.5M % 87.48 95.06 89.21 61.07 92.76 91.19 84.83 89.85 86.43

LoRA 0.28M % 87.40 94.61 89.95 63.17 93.02 90.67 86.64 91.54 87.12
DyLoRA 0.28M % 86.33 94.26 89.46 61.12 92.22 90.17 84.47 91.06 86.14

AdaLoRA¶ 0.28M % 87.34 94.49 90.19 61.64 93.08 90.14 85.19 91.16 86.65
Delta-LoRA (Ours) 0.28M !13.5M 87.50 95.06 90.19 63.82 93.09 90.87 87.00 91.57 87.38

Experimental Results. We compare our method with prior PEFT works. According to Table 5, our
method outperforms existing methods on all 8 tasks in GLUE benchmark. Among these tasks, our
method demonstrates significant improvement on SST-2, CoLA and RTE. This is mainly due to the
fact that these datasets contain less training data, which hinders the model’s capacity to effectively
acquire a robust representation when using prior fine-tuning methods. Delta-LoRA also achieves
decent performance on the rest of the datasets, including MNLI, MRPC, QNLI as well STS-B, which
proves that our method is stable and reliable across different settings.

5.3 COMPREHENSIVE UNDERSTANDING OF DELTA-LORA

Table 6: The ablation study of our proposed Delta-LoRA on E2E Challenge dataset demonstrates the
importance of each component. The best results are boldfaced.

Method Trainable Extra Updatable BLEU NIST METEOR ROUGE-L CIDErParameters Parameters

LoRA (repr.) 0.375M % 69.60 8.78 45.61 71.12 2.45
Delta-LoRA + LoRA Module 0.375M !48M 70.29 8.88 46.38 71.88 2.51

Delta-LoRA 0.375M !48M 70.84 8.91 46.47 72.24 2.53

Table 7: The ablation study of our proposed Delta-LoRA to eliminate the impact of hyper-parameter
λ on E2E Challenge dataset. The best results are boldfaced.

Method Learning
λ BLEU NIST METEOR ROUGE-L CIDErRate

LoRA (repr.) 2e-4 - 69.60 8.78 45.61 71.12 2.45
LoRA (repr.) 6e-4 - 69.63 8.79 45.70 71.55 2.39
Delta-LoRA 2e-4 2 70.84 8.91 46.47 72.24 2.53

The Extra Updatable Parameters. We introduce the concept of extra updatable parameters to
point out the superiority of Delta-LoRA. For most PEFT methods, they can only adjust the low-rank
adapters, such as AdapterHoulsby et al. (2019) and LoRAHu et al. (2022). Thus, they don’t have
any extra parameters to update, which means their extra updatable parameters are 0. However, our
Delta-LoRA can achieve the purpose of updating the W matrix without increasing the GPU memory
consumption, which means its extra updatable parameters are the parameter number of W .

Ablation study. To better understand the contribution of our modified LoRA module (i.e. Delta-
LoRA module) and the effectiveness of our update algorithm, we conduct studies on E2E Challenge

8

Under review as a conference paper at ICLR 2024

dataset with GPT2-medium. As shown in Table 6, only updating the pre-trained matrices with delta of
low-rank update can indeed achieve performance improvement, while further discarding the dropout
in Delta-LoRA module obtains the best performance. This observation confirms the indispensable
role played by each component within our proposed methodology. We have devised an experiment to
further differentiate whether the performance enhancement stems from the inherent characteristics of
our method rather than solely from the substantial update magnitude. According to our algorithm,
we update the parameters of both pre-trained and low-rank matrices, which can arose the doubt of
whether the improvement is caused by updating larger△AB on the weights instead of introducing
more parameters into the optimization process. To answer this question, we design an experiment
with results shown in Table 7 to prove the effectiveness of our method. We scale the learning rate
of LoRA from 2e-4 to 6e-4 making sure that W +AB can be updated with 3×△AB, which is
equivalent to Delta-LoRA when λ is set to 2. We find that even by updating with 3 × △AB on
AB, the performance is still not comparable with Delta-LoRA. This experiment further proves that
introducing more parameters into the optimization process can force to learn better representation.

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

layerC
o

si
n

e
 S

im
il

a
ri

ty

Fine-Tuning‡ LoRA Delta-LoRA

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

layerC
o

si
n

e
 S

im
il

a
ri

ty

(a) The Cosine Similarity between Fine-Tuned and Original 𝑾𝑸

(b) The Cosine Similarity between Fine-Tuned and Original 𝑾𝑽

Figure 3: The comparison of Fine-Tuning‡, LoRA as well as Delta-LoRA for the cosine similarity
between the fine-tuned parameters and the original pre-trained parameters in each transformer block.
Higher value means higher similarity.

The cosine similarity between fine-tuned and the pre-trained parameters to measure learning
effects. We conduct a comparative analysis of three methods including Fine-Tuning‡, LoRA and
Delta-LoRA, in order to elucidate the reasons behind Delta-LoRA’s superior performance. We
use the last checkpoint trained on E2E Challenge dataset to give understanding. As depicted in
Figure 3, it is evident that LoRA exhibits the highest similarity across the majority of transformer
blocks. This observation suggests that LoRA primarily modifies the matrix W ∗ = W +AB within
a limited range. Nevertheless, Delta-LoRA showcases the lowest cosine similarity, underscoring
that our approach induces the most significant modifications to the final matrix W ∗. Due to this
property, our approach can effectively stimulate the model to acquire better representations, leading
to state-of-the-art performance across all four PEFT methods. This observation further aligns with the
evaluation results in Table 1: Delta-LoRA achieves the best performance among the three methods,
whereas LoRA is slightly worse than Fine-Tuning‡.

6 CONCLUSION

In this paper, we have introduced Delta-LoRA, a novel method to simultaneously update the full
weight matrix and two low-rank matrices. Delta-LoRA leverages the delta (A(t+1)B(t+1)−A(t)B(t))
to update the pre-trained weights (W). In this way, we introduce more learnable parameters into the
optimization process such that the model can learn a better representation with comparable memory
cost as LoRA. Meanwhile, we identify the Dropout layer in the low-rank branch to be unnecessary
according to the gradient flow. We also provide thorough analysis of our method to understand its
effectiveness and robustness. Extensive experiments on a broad range of NLP tasks are conducted to
empirically verify the effectiveness of our Delta-LoRA.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all: Generalized
lora for parameter-efficient fine-tuning. arXiv preprint arXiv:2306.07967, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Zhiyuan Liu, Hai-Tao Zheng,
Jianfei Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong Sun. Parameter-efficient fine-tuning of
large-scale pre-trained language models. Nature Machine Intelligence, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The WebNLG
challenge: Generating text from RDF data. In Proceedings of the 10th International Conference
on Natural Language Generation, 2017.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
In ACL, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In ICML, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022.

Shaoyi Huang, Dongkuan Xu, Ian Yen, Yijue Wang, Sung-En Chang, Bingbing Li, Shiyang Chen,
Mimi Xie, Sanguthevar Rajasekaran, Hang Liu, and Caiwen Ding. Sparse progressive distillation:
Resolving overfitting under pretrain-and-finetune paradigm. In ACL, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, 2021.

10

Under review as a conference paper at ICLR 2024

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), ACL, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In NeurIPS, 2022a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In ACL, 2022b.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. Gpteval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. 2023.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. In EACL, 2021.

Yevgeniy Puzikov and Iryna Gurevych. E2E NLG challenge: Neural models vs. templates. In
Proceedings of the 11th International Conference on Natural Language Generation, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(140):1–67, 2020.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In EMNLP,
2020.

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on
deep transfer learning. In ICANN, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation. In EACL, 2023.

11

https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and
Jianfeng Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language models.
In EMNLP, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In ICLR, 2022.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers. In CVPR, 2021.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. arXiv preprint arXiv:2301.12132, 2023.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 BASELINES

We compare our proposed method Delta-LoRA with Fine-Tuning and prior works of LoRA,
AdaLoRA, and DyLoRA. For PEFT methods, we only train the incremental updates for WV

and WQ, following the setup as used in LoRA’s paper. For Fine-Tuning methods, we use two extra
training paradigms: (1) freeze the embedding and train all the other parameters as Fine-Tuning †; (2)
train WV and WQ only as Fine-Tuning‡.
Fine-Tuning. In the past few years, fine-tuning has become the mainstream paradigm for both NLP
and CV tasks. However, fine-tuning full parameters is subject to potential drawbacks including
overfitting and training instability (Huang et al., 2022). Therefore, freezing a subset of network
layers and fine-tuning the rest has become a popular choice (Tan et al., 2018). In our experiments,
we compare with full fine-tuning, fine-tuning with embedding layers frozen (Fine-tuning †) and
fine-tuning query and value matrices only (Fine-tuning ‡).
LoRA (Hu et al., 2022) uses multiplication of two low-rank matrices to learn the incremental updates
with reduced GPU memory cost. We follow their setups to reproduce experimental results for fair
comparison.

DyLoRA (Valipour et al., 2023) randomly chooses a rank r for LoRA modules during learning.

AdaLoRA (Zhang et al., 2022) focuses on the challenge of determining the optimal rank for in-
cremental updates. It employs an adaptive approach to singular value pruning, tailoring the rank
selection to the magnitude of each singular value. Consequently, distinct ranks are employed for
different layers.

A.2 THE COMPARISON BETWEEN LORA AND DELTA-LORA WITH LLAMA-7B

A.2.1 TRAINING AND INFERENCE ARGUMENTS USED IN OUR METHOD AND BASELINE

We choose LLaMA-7B to evaluate our method and LoRA. Here, we set the learning rate γ =1e-4,
batch size to 128, r = 8, α =16, and training epochs to 3 for both two methods. Following the
LoRA’s paper, we only tune WQ andWV . For Delta-LoRA, we choose start steps K = 100 and
λ = 0.25. When inference, we set the no_repeat_ngram_size = 10, temperature = 0 and beam size =
4 to get a certain answer.

A.2.2 THE EVALUATION FOR OUR METHOD AND BASELINES

Current LLMs obtain the training data from the Internet, which may unintentionally cause data
leakage. Therefore, using the mainstream NLP datasets to evaluate the effectiveness of Large
Language Model is not reasonable and wisdom. Inspired by evaluation approach proposed by Liu
et al. (2023), we decided to use GPT-4 to judge the text generated by which method is accurate.
First, we ask GPT-4 to generate 1,000 different questions. Second, we use the LLaMA-7B trained
by two methods to generate the texts. Finally, we ask GPT-4 to give decision to tell us which text is
accurate. It can choose from three options: a. Choice 1 (LoRA generates accurate text), b. Choice
2 (Delta-LoRA generates accurate text) and c. Both Choice 1 and 2 (Both LoRA and Delta-LoRA
generate accurate texts). The prompt we used for evaluation:
Help me to determine which text is accurate for the given instruction and question. The answer
can be chosen from a. Choice 1 is accurate, b. Choice 2 is accurate or c. both Choice 1 and 2 are
accurate. Give me a certain answer and this is a choice question. Please don’t give reasons and the
answer must be shorter than 20 words.
Question: ""
(Choice 1): ""
(Choice 2): ""

A.3 ALGORITHM OF DELTA-LORA

Our Delta-LoRA can be found in Algorithm 1. Compared to LoRA, we added a step to update the
pre-trained W without any extra GPU memory consumption.

13

Under review as a conference paper at ICLR 2024

Algorithm 1: Delta-LoRA
Input: Learning rate η; weight decay β; total training iterations T ; low rank r; scale factor α; start
steps K; update ratio λ.
A is initialized by Kaiming Initialization, B = 0 and W is initialized with pre-trained weights.
for t = 0, ..., T − 1 do

Sample a mini-batch and compute gradients for {A,B} in each Delta-LoRA module.
Update the first and second moments maintained by the optimizer with the computed gradients,

and get the normalized gradients ĝA and ĝB .
A(t+1) ← A(t) − ηĝA − ηβA(t)

B(t+1) ← B(t) − ηĝB − ηβB(t)

if t > K do
W (t+1) ←W (t) + λ · αr · (A

(t+1)B(t+1) −A(t)B(t))
end if

end for
Output: the fine-tuned parameters {W (T),A(T),B(T)}

A.4 A FURTHER UNDERSTANDING OF DELTA-LORA

A.4.1 THE DIFFERENCES BETWEEN LORA AND DELTA-LORA

There are some fundamental differences between LoRA and Delta-LoRA.

• Given W +AB, W is fixed in LoRA, but W will be updated in our Delta-LoRA. This is the
largest difference between LoRA and Delta-LoRA. This modification can yield more training
differences between LoRA and Delta-LoRA in the next few training steps.

• Rank(∆WDelta−LoRA) = Rank(W (T) −W (0) + AB) > Rank(∆WLoRA) = Rank(AB).
The rank of the learned incremental weight matrix in our Delta-LoRA is larger than that in the original
LoRA.

• The gradient flow is different between LoRA and Delta-LoRA. Suppose that we have W ∈ Rm×n,
A ∈ Rm×r and B ∈ Rr×n, where r ≤ min(m,n). For LoRA, it keeps W frozen, so that W ∗ =
W (0)+ α

r ·A
(t)B(t). For Delta-LoRA, it updates all matrices, and has W ∗ = W (t)+ α

r ·A
(t)B(t).

W
A

B

𝒉𝒊

𝒉𝒊+𝟏

𝒉𝒊+𝟐𝒉𝒊+𝟑

𝒉𝒊+𝟒

𝒉𝒊+𝟏 = 𝒉𝒊𝑨

𝒉𝒊+𝟐 = 𝒉𝒊+𝟏𝑩

𝒉𝒊+𝟑 = 𝒉𝒊𝑾

𝒉𝒊+𝟏 ∈ ℝ
𝒃×𝒓

𝒉𝒊+𝟐 ∈ ℝ
𝒃×𝒏

𝒉𝒊+𝟑 ∈ ℝ
𝒃×𝒏

Figure 4: The backward propagation of Delta-LoRA.

So, we have the following equation according to Figure 4:

∂L
∂W (t) = (∂hi+3

∂W (t))
⊤ ∂L

∂hi+4
= h⊤

i
∂L

∂hi+4

∂L
∂A(t) = (∂hi+1

∂A(t))
⊤ ∂L

∂hi+4
· ∂hi+4

∂hi+2
· ∂hi+2

∂hi+1
= h⊤

i
∂L

∂hi+4

∂hi+2

∂hi+1
= h⊤

i
∂L

∂hi+4
B(t)⊤ = ∂L

∂W (t) ·B(t)⊤

14

Under review as a conference paper at ICLR 2024

∂L
∂B(t) = (∂hi+1

∂B(t))
⊤ · ∂L

∂hi+4
· ∂hi+4

∂hi+2
= h⊤

i+2 · ∂L
∂hi+4

= (A(t))⊤ · h⊤
i · ∂L

∂hi+4
= (A(t))⊤ · ∂L

∂W (t)

Here, we provide the back-propagation process of LoRA:

∂L
∂A(t+1) = ∂L

∂W (t+1) · (B(t+1))⊤ = ∂L
∂(W (0)+(A(t)+∆A(t))(B(t)+∆B(t)))

· (B(t) +∆B(t))⊤

∂L
∂B(t+1) = (A(t+1))⊤ · ∂L

∂W (t+1) = (A(t) +∆A(t))⊤ · ∂L
∂(W (0)+(A(t)+∆A(t))(B(t)+∆B(t)))

This is the back-propagation process of Delta-LoRA:

∂L
∂A(t+1) = ∂L

∂W (t+1) · (B(t+1))⊤ = ∂L
∂((W (t)+λ∆A(t)B(t))+(A(t)+∆A(t))(B(t)+∆B(t))

· (B(t)+∆B(t))⊤

∂L
∂B(t+1) = (A(t+1))⊤ · ∂L

∂W (t+1) = (A(t)+∆A(t))⊤ · ∂L
∂((W (t)+λ∆A(t)B(t))+(A(t)+∆A(t))(B(t)+∆B(t)))

A.4.2 THE EXPANSION OF △ AB

In the real training process, we need to consider a variety of training arguments, such as optimizer
and the regularization for△AB. Suppose that we use the AdamW (Loshchilov & Hutter, 2019) and
L2 regularization, the△AB can be expanded in the following equation:

△AB = A(t+1)B(t+1) −A(t)B(t)

= (A(t) − ηĝA − ηβA(t)) · (B(t) − ηĝB − ηβB(t))−A(t)B(t)

= A(t)B(t) − ηA(t)ĝB − ηβA(t)B(t) − ηĝAB(t) + η2ĝAĝB + η2βĝAB(t)

− ηβA(t)B(t) + η2βA(t)ĝB + η2β2A(t)B(t) −A(t)B(t)

= −ηA(t)ĝB − ηβA(t)B(t) − ηĝAB(t) + η2ĝAĝB + η2βĝAB(t)

− ηβA(t)B(t) + η2βA(t)ĝB + η2β2A(t)B(t)

≈ −ηA(t)ĝB − ηĝAB(t)

(8)

where η is the learning rate, β is weight decay. What’s more, for pre-trained weight W , △W =
ηĝW + ηβW (t). As a consequence,△AB is not equal to△W in the training process.

A.5 CHANGE THE LEARNING RATE AND START STEPS TO SHOW BETTER PERFORMANCE.

We explored better hyper parameters of our Delta-LoRA by modifying the learning rate and trying
more start steps and update ratio to prove the effectiveness of Delta-LoRA.

Table 8: The evaluation results of our proposed Delta-LoRA by using better hyper-parameters on
GLUE benchmark.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG

LoRA 87.40 94.61 89.95 63.17 93.02 90.67 86.64 91.54 87.12
DyLoRA 86.33 94.26 89.46 61.12 92.22 90.17 84.47 91.06 86.14

AdaLoRA ¶ 87.34 94.49 90.19 61.64 93.08 90.14 85.19 91.16 86.65
Delta-LoRA 87.62±0.21 95.29±0.23 90.60±0.14 64.64±0.86 93.09±0.15 91.01±0.06 87.00±0.36 91.61±0.04 87.60

Table 9: The better training hyper-parameters that we obtained of our proposed Delta-LoRA on
GLUE benchmark.

Hyper-Parameter MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Learning Rate η 4e-4 5e-4 5e-4 6e-4 3e-4 6e-4 4e-4 4e-4
Start Steps K 2000 400 10 200 600 400 200 200

Update Ratio λ 0.5 0.5 0.5 1 1 0.5 0.5 0.5

15

Under review as a conference paper at ICLR 2024

A.6 THE PARAMETER SENSITIVITY STUDY

Table 10: The parameter sensitivity study of update ratio λ for our proposed Delta-LoRA on E2E
Challenge dataset. The best results are boldfaced.

λ BLEU NIST METEOR ROUGE-L CIDEr
0 68.94 8.73 45.27 70.81 2.41
1 69.77 8.81 45.99 71.58 2.46
2 70.84 8.91 46.47 72.24 2.53
3 70.14 8.84 46.39 71.45 2.45
4 70.03 8.83 46.21 71.56 2.47
5 70.13 8.85 46.35 71.72 2.48

Parameter Sensitivity. Here, we explore the hyper-parameter K in Algorithm 1 and λ in Equation 6.
For the hyper-parameter K, we select it from 0 to 1000 with the interval of 100. From Table 11, we
find that our Delta-LoRA could not bring in any improvement before K = 400, and it will keep a
relatively good performance when K is larger than 500. What is more, we choose different numbers
for λ, ranging from 0 to 5. According to Table 10, the 5 metrics rise rapidly after λ = 0 and reach
best at λ = 2, while the performance has small drops on 5 evaluation scores if λ is chosen from 3 to
5.

Table 11: The parameter sensitivity study of start steps K for our proposed Delta-LoRA on E2E
Challenge dataset. The best results are boldfaced.

K BLEU NIST METEOR ROUGE-L CIDEr
0 69.10 8.75 45.54 71.31 2.41

100 69.97 8.84 46.07 71.40 2.46
200 69.72 8.83 45.82 71.41 2.43
300 69.73 8.86 45.98 71.09 2.46
400 70.18 8.89 46.30 71.66 2.49
500 70.84 8.91 46.47 72.24 2.53
600 70.38 8.86 46.38 71.70 2.47
700 70.61 8.89 46.43 72.13 2.51
800 70.70 8.89 46.30 71.97 2.51
900 71.00 8.92 46.47 72.04 2.52
1000 70.87 8.89 46.31 72.06 2.50

A.7 HYPER-PARAMETER USED IN OUR EXPERIMENTS

We report the hyper-parameter that used in our experiments. Table 12 and Table 13 show the hyper-
parameter that we used for the training and evaluation on E2E Challenge and WebNLG Challenge
2017 dataset. The Table 14 and Table 15 are the training and evaluation hyper parameter for XSum
dataset, and the Table 16 consists of hyper-parameters for 8 datasets in GLUE benchmark.

16

Under review as a conference paper at ICLR 2024

Table 12: The training hyper-parameter used for E2E Challenge and WebNLG Challenge 2017
dataset.

Hyper-Parameter E2E Challenge WebNLG Challenge 2017
Learning Rate η 2e-4 2e-4

Batch Size 8 8
Number of Epochs 5 5

Weight Decay β 0.01 0.01
Resid_pdrop 0 0.09
Attn_pdrop 0 0.09

Embd_pdrop 0 0
Label Smooth 0 0
Start Steps K 500 500

Update Ratio λ 2 5
Rank r 4 4
Alpha α 32 32

Trainable Matrices WQ,WV WQ,WV

LR Scheduler Linear Linear
Warmup Steps 500 500

Table 13: The hyper-parameter for evaluation used for E2E Challenge and WebNLG Challenge 2017
dataset.

Hyper-Parameter E2E Challenge WebNLG Challenge 2017
Beam Size 10 5

Penalty 0.8 1.0
No Repeat Ngram Size 4 4

Table 14: The training hyper-parameter used for XSum dataset.

Hyper-Parameter Xsum
Learning Rate η 2e-4

Batch Size 64
Number of Epochs 25

Weight Decay β 0
Activation Dropout 0

Dropout 0
Classifier Dropout 0

Start Steps K 1000
Update Ratio λ 0.5

Rank r 4
Alpha α 32

Trainable Matrices WQ, WV

LR Scheduler Linear
Warmup Steps 3000

Table 15: The hyper-parameter for evaluation used for XSum dataset.

Hyper-Parameter Xsum
Beam Size 8

Penalty 1.0
No Repeat N-gram Size 4

17

Under review as a conference paper at ICLR 2024

Table 16: The training hyper-parameters of our proposed Delta-LoRA on GLUE benchmark. We
adopt the most of hyper-parameters in LoRA’s paper and implement our method based on the codes
given by LoRA’s repository.

Hyper-Parameter MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Learning Rate η 5e-4 5e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Batch Size 128 128 128 64 256 128 128 128

Number of Epochs 30 60 30 80 25 25 80 40
Weight Decay β 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Max Sequence Length 256 256 256 256 256 256 512 256
Start Steps K 2000 400 10 100 800 400 200 200

Update Ratio λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Rank r 8 8 8 8 8 8 8 8

Alpha α 16 16 16 16 16 16 16 16
LR Scheduler Linear Linear Linear Linear Linear Linear Linear Linear

Trainable Matrices WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV

Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Evaluation Metrics Accuracy Accuracy Accuracy Matthews Accuracy Accuracy Accuracy PearsonCorrelation

18

	Introduction
	Preliminaries
	Related Works
	Methodology
	Update the Delta of Low-rank Matrices on Pre-trained Weights
	The structure of our Delta-LoRA

	Experiments
	Natural Language Generation
	Natural Language Understanding
	Comprehensive Understanding of Delta-LoRA

	Conclusion
	Appendix
	Baselines
	The Comparison between LoRA and Delta-LoRA with LLaMA-7B
	Training and Inference Arguments Used in Our Method and Baseline
	The Evaluation for Our Method and Baselines

	Algorithm of Delta-LoRA
	A Further Understanding of Delta-LoRA
	The Differences between LoRA and Delta-LoRA
	The Expansion of AB

	Change the Learning Rate and Start steps to Show Better Performance.
	The Parameter Sensitivity Study
	Hyper-Parameter Used in Our Experiments

