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Abstract

Different advertising messages work for different people. Machine learning can
be an effective way to personalise climate communications. In this paper we use
machine learning to reanalyse findings from a recent study, showing that online
advertisements increased climate change belief in some people while resulting in
decreased belief in others. In particular, we show that the effect of the advertise-
ments could change depending on a person’s age and ethnicity. Our findings have
broad methodological and practical applications.

Social and behavioral sciences are increasingly making use of advertising campaigns to help change
beliefs about topics such as climate change and vaccine hesitancy [7, 15]. However, advertisement
campaigns do not always have the same effect on each viewer and, if not carefully understood, can
backfire [22, 15]. For example, campaigns designed to decrease vaccine hesitancy have inadvertently
made some segments of the population less likely to get vaccinated [15]. These backfire effects are
well understood in domains such as personalized advertisement, and recent machine learning research
has focused on measuring heterogeneous treatment effects (HTEs). This class of analyses aims to
distinguish people for whom a campaign might work from those for whom it might backfire [2, 24,
11, 20, 2, 24, 12, 9, 1, 26, 27, 10, 19].

Despite their recent popularity in machine learning, HTE analysis methods have been slow to
permeate social and behavioral sciences [3]. This slow trend has been recently been flagged as a
considerable barrier for behavioral science, as the methods traditionally used to evaluate large scale
interventions largely ignore treatment heterogeneity across different population segments [3]. As
a consequence, the insights gleaned from these interventions are likely limited in their utility and
generalizability.

In this article we provide an example of how HTEs can provide deeper insights into the varied
effects of behavioral interventions of different population segments. We reanalyse the results of a
field experiment conducted in the US that used personalised ad campaigns to change beliefs about
climate change [7]. The ad campaign was specifically designed to influence beliefs in Republicans, a
political group that has historically expressed skepticism in climate change. To target Republicans,
the ads centered around topics generally deemed important by Republicans (e.g. faith, security
and immigration). Because the campaign was specifically targeted to individuals identifying as
Republican, the authors analyzed the effect of their intervention on people from different political
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affiliations. They found that their intervention successfully increased Republican beliefs in climate
change by 7%, whereas beliefs from respondents with other political affiliations remained unaffected.
Although encouraging, by focusing solely on political affiliation, the authors failed to examine the
extent to which their intervention affected other population segments.

Here we use machine learning based HTE analyses to show that while the ads did reliably increase
beliefs in climate change for some segments, they also reliably reduced beliefs in climate change in
others, in some cases by as much as 45%. Our analysis highlights the importance of proper HTE
analyses in the interpretation and recommendations made from interventions both to understand
for whom an intervention might be effective, but also importantly for whom the intervention might
backfire.

Methods

We use a causal machine learning approach to reanalyze the treatment effect of the intervention
conducted in [7]. We focus on the difference in the belief that climate change is happening between
individuals in the treatment group (who were targeted with ads) and individuals in the control group
(who were not targeted). This analysis identifies both “positive” and “negative” treatment effects,
corresponding to increases and decreases, respectively, in beliefs in climate change. Here we use
machine learning to predict how this treatment effect changes for different groups of individuals. As
predictors, we use all 11 demographic variables collected by [7] (Figure 2).

The outcome variable in our analysis is people’s answer to the question “Do you think that global
warming is happening?” The possible answers to this question were “Yes”, “Don’t know" and “No”.
Following the original analysis in [7], we binarise the outcome such that “Yes” is recoded into “1”
and the other two possible answers are recoded into “0”. The demographic characteristics that we use
to predict treatment effects are shown in Figure 2. Because the variables we use for prediction can
be considered categorical, we use the one-hot encoding approach in which each value of a variable
(except for one) are represented as separate binary variables. We use these binary variables rather
than the original features as our predictors.

Let Y be the outcome of interest and W the treatment group assignment, such that both Y and W
have possible values in 0, 1. We can define the average treatment effect (ATE) as

E[Y = 1 | do(W = 1)]− E[Y = 1 | do(W = 0)] (1)

where do(W = w) denotes setting as opposed to observing the value of the treatment condition
[16, 17]. As we have argued above, a positive ATE does not guarantee that the treatment did not
backfire for some populations. To find populations with different treatment effects, we consider the
conditional average treatment effect (CATE), which is defined as

τ =E[Y = 1 | do(W = 1), X = x]−
E[Y = 1 | do(W = 0), X = x]

(2)

whereX represents some vector of covariates, such as the demographic characteristics of a participant
in a study. Figure 4 shows CATEs for different ethnic and age groups.

To estimate the CATEs, in our main results we use the T-learner approach [11]. This learner estimates
two separate response functions: one for the outcome under the control condition and one for the
outcome under the treatment condition. Formally, the response under control is defined as

µ0 = E[Y = 1 | do(W = 0), X = x] (3)

and the response under treatment is defined as

µ1 = E[Y = 1 | do(W = 1), X = x] (4)

The T-learner estimates µ0 by predicting Y as a function of X using the control observations only;
and it estimates µ1 by predicting Y as a function of X using the treatment observations only. The
difference between these estimates is then taken as the estimated CATE:

τ̂ = µ̂1 − µ̂0 (5)

The model we use to estimate the response functions is the gradient boosted tree algorithm in the
scikit-learn machine learning library. [6, 18] We use default hyperparameters in all of our models.
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Figure 1: Observed treatment effects in testing samples sorted according to predicted treatment
effects. For each quantile, the distribution of observed treatment effects is obtained by making
predictions using 1000 bootstrapped datasets. The figure shows a clear correlation between predicted
and observed treatment effects, indicating that our machine learning model is able to distinguish
those individuals who are likely to respond to the advertisement campaign negatively from those who
are likely to respond positively.

We evaluate the T-learner using a bootstrapping approach [5]. We first form 1000 new populations
of size N = 1600 sampled (with replacement) from the original population and then divide each
population into training and testing sets using a 80%/20% split. For each population, we train the
T-learner on the training set and make predictions τ̂ on the testing set. The testing set is then divided
into 10 quantiles according to the predicted τ̂ . We use 10 quantiles to ensure a sufficient number of
treatment and control observations within each group. We calculate the observed difference between
those in the treatment group and those in the control group within each quantile and collect these
observed differences across all 1000 bootstrap samples. We then calculate the treatment effects and
empirical 95% confidence intervals for all 10 quantiles (shown in Figure 1). To calculate feature
importances, we model τ̂ as a function of X in each of the 1000 bootstrap samples using a separate
gradient boosting regressor. We then calculate the Gini feature importances [13] for each of these
1000 gradient boosting regressors and average the importance scores. Additionally, because the
features are one-hot encoded, we average the importance scores across the different categories of
each feature.

Finally, to ensure the robustness of our results, we repeat the entire analysis by using a different CATE
learning method [14, 4]. We also conduct a follow up study to examine the relationship between
climate beliefs and relevant demographic characteristics using ordinary least squares regression. The
outcomes of these supplemental analyses, which are in line with the main results presented in the
next section, are shown in the Appendix.

Results

The results of our analysis show clear population segments for whom the advertisements worked
exceptionally well but also others where the ads clearly backfired (Figure 1). Indeed, the 10% of
individuals with the highest predicted treatment effects increased their belief in climate change by an
average of 64% whereas the 10% of individuals with the most negative treatment effects reduced
their belief in climate change by 45%. This result shows that the exact same campaign can have
either highly positive or highly negative effects depending on who you target.
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Figure 2: Feature importance scores for each of the 11 variables that we use to predict conditional
average treatment effects. Party affiliation, ethnicity and age are the three variables most predictive of
treatment effect heterogeneity.

We next examine the extent to which each of the 11 demographic characteristics predict differences
in treatment effects by using using the variable importance based approach described above.This
analysis shows that a number of characteristics predict the treatment effects in addition to party
affiliation, including ethnicity, age, political ideology and sex (Figure 2).

Importance scores do not in and of themselves tell us how features are related with treatment effects.
However, we can examine differences in characteristics between subgroups with the most positive
and most negative predicted treatment effects. As reported by [7], our analysis finds clear differences
in party affiliation, such that Republicans are more likely to respond positively to the ads than those
with other party affiliations. However, when we look at the next two important characteristics, namely
ethnicity and age, we find that younger, non-white populations responded more positively to the ads,
whereas the ads were more likely to backfire in middle-aged and white populations.

The demographic differences that we observe by comparing the groups with the most negative and
most positive predicted treatment effects are not always visible when we observe the entire population.
This is because the differences tend to get diluted when we include the rest of the sample in our
comparison. However, given the very pronounced differences in demographic characteristics that
we find in our machine learning based analysis, we conduct a follow up investigation to examine
the relationship between the treatment condition, ethnicity and age in the experimental population
as a whole. For this analysis, we use a standard multiple regression approach. As proposed by our
machine learning analysis, the population-level multiple regression model also indicates that age and
ethnicity interact with the treatment effect. Figure 4 shows the difference between the treatment and
control condition for different age groups and ethnicities. These results show that the differences
observed by examining those with the most positive and most negative predicted responses are so
strong that they are also visible at the population level. For details on the multiple regression results,
see the Appendix.

Discussion

Behavioral scientists have long suggested that the effectiveness of climate change interventions should
be evaluated with respect to specific demographic groups [25]. However, the methods researchers
have traditionally used, such as examining main effects or conducting ad hoc moderation tests, often
provide an incomplete view of the influence an intervention can have on different population segments.
At the same time, causal machine learning methods have progressed rapidly and found promising
applications in the tech industry [23] and personalized medicine [21]. Here, we show that causal
machine learning can play a role in the mitigation of climate change, by improving the way in which
communications about the subject are targeted. Specifically, our analysis shows that personalized
ads referring to traditional Republican values worked well for non-white younger populations but
backfired for white, middle-aged populations.
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Figure 3: Ethnicity and age characteristics by predicted response to the advertising campaign. The
comparison is between the 10% of the sample with the most negative predicted response and the 10%
of the sample with the most positive predicted response. The proportions represent the averages in
1000 bootstrapped samples. The figure shows that those with the most negative predicted response
tend to be white and middle-aged whereas those with the most positive predicted response tend to be
non-white and younger.
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Figure 4: The relationship between the treatment effect and two demographic characteristics, ethnicity
and age. The figures show that the relationships suggested by our machine learning model also hold
if we examine the experimental population as a whole.

For policymakers, our results suggest a strategy where ads are first piloted in randomized experiments
at a smaller scale. A targeting model can then be trained on the treatment effects observed in the
pilot experiments, so that in the full campaign the advertiser can selectively target populations who
are predicted to have the desired change in belief, and can avoid targeting populations for whom the
campaign is predicted to backfire [1]. The analysis we present in this article generally agrees with [7]
that personalized online advertising can play an important role in shifting views about climate change.
However, our analysis also demonstrates that more modern methods, such as the causal machine
learning approach we use in our analysis, are needed to have a more comprehensive understanding of
the full influence of an intervention, and increase the likelihood that a intervention will succeed while
reducing the chances that it will backfire.
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A Appendix

The tables below show the ordinary least squares regression [8] results on the relationships between
the treatment condition, age and ethnicity. Given the large differences in age and ethnicity between
those with the most positive and most negative treatment effects, we conducted OLS regression as a
follow-up study to see if the differences would be visible at the level of the population as a whole.
The results how that the differences were indeed visible when looking at the sample as a whole.

coef std err t P> |t|
Intercept 0.6397 0.019 32.810 0.000
Ethnicity[Hispanic] 0.0853 0.078 1.098 0.272
Ethnicity[Black] -0.0595 0.056 -1.057 0.291
Ethnicity[Other] -0.1456 0.055 -2.642 0.008
Condition -0.0083 0.027 -0.303 0.762
Condition:Ethnicity[Hispanic] 0.0889 0.113 0.790 0.430
Condition:Ethnicity[Black] 0.2305 0.080 2.898 0.004
Condition:Ethnicity[Other] 0.2706 0.079 3.408 0.001

R-squared: 0.018 F-statistic: 4.152
Df Residuals: 1592

Table 1: OLS regression results for the relationship between ethnicity and the treatment condition.
The dependent variable is belief in climate change. The contrast category for Ethnicity is is “White”.
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coef std err t P> |t|
Intercept 0.5811 0.055 10.592 0.000
Age[25-34] 0.0163 0.077 0.212 0.832
Age[35-44] 0.1332 0.071 1.884 0.060
Age[45-54] 0.1035 0.067 1.542 0.123
Age[55-64] 0.0762 0.065 1.168 0.243
Age[65+] -0.0573 0.064 -0.898 0.369
Condition 0.2307 0.075 3.074 0.002
Condition:Age[25-34] -0.0340 0.103 -0.328 0.743
Condition:Age[35-44] -0.1571 0.099 -1.581 0.114
Condition:Age[45-54] -0.2884 0.094 -3.076 0.002
Condition:Age[55-64] -0.3138 0.091 -3.441 0.001
Condition:Age[65+] -0.1589 0.088 -1.814 0.070

R-squared: 0.034 F-statistic: 5.054
Df Residuals: 1588

Table 2: OLS regression results for the interaction between age and the treatment condition. The
dependent variable is belief in climate change. The contrast category for Age is “18-24”.

Figure 5 shows the results of following the same analysis procedure as described in the Methods
section, except for the CATE learning algorithm, which is here the R-learner [14]. This is to
ensure that the results remain robust irrespective of the specific way in which we learn treatment
effect heterogeneity. As the base-learners in the R-learner, we used the same gradient boosting
implementation and parameters as we did in the T-learner reported in the main results. Additionally,
because the R-learner requires the propensity score P (W = 1 | X = x) as an input, we used
L2-penalised logistic regression with 4-fold crossvalidation to learn that paramater. As can be seen,
the results of this analysis resemble very closely those obtained using the T-learner.
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Figure 5: Ethnicity and age characteristics by predicted response to the advertising campaign, using
the R-learner. Apart from the CATE learning algorithm, the analysis steps were identical to those
used to obtain the main results. As can be seen by comparing the demographic distributions shown
here to those shown in Figure 3, the results obtained using the R-learner are very similar to those
obained using the T-learner.
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