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Abstract: Recently, the robotics community has amassed ever larger and more
diverse datasets to train generalist robot policies. However, while these policies
achieve strong mean performance across a variety of tasks, they often underper-
form on individual, specialized tasks and require further tuning on newly acquired
task-specific data. Combining task-specific data with carefully curated subsets
of large prior datasets can produce better specialized policies, but selecting data
naively may actually harm downstream performance. To address this, we intro-
duce DataMIL, a data selection framework built on the datamodels paradigm that
reasons about data selection in an end-to-end manner, using the policy itself to
identify which data points will most improve performance. Unlike standard prac-
tices that filter data using human notions of quality (e.g., semantic or visual simi-
larity), DataMIL directly optimizes data selection for task success, allowing us to
select data that enhance the policy while dropping data that degrade it. To avoid
performing expensive rollouts in the environment during selection, we use a sur-
rogate loss function on task-specific data, allowing us to use DataMIL in the real
world without degrading performance. We validate our approach on a suite of 60+
simulation and real-world manipulation tasks—most notably showing successful
data selection from the Open X-Embodiment datasets. Our results underscore
the importance of end-to-end, performance-aware data selection for unlocking the
potential of large prior datasets in robotics. More information at our
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1 Introduction

Recently we have witnessed a revolution in robot learning: inspired by the successes of large-scale
language and vision models, the robotics community has begun training large foundation poli-
cies [1-10] by amassing large diverse robotic datasets comprising of a variety of tasks, scenes,
and robots [3, | 1-14]. The resulting generalist policies achieve a strong mean performance across
tasks and environments, but often underperform on individual tasks [5, 15], highlighting a gap be-
tween generalization and task-specific competence. To bridge this gap, researchers have explored
a post-training paradigm [6], where pre-trained foundation models are fine-tuned [5, 6, 15—17] for
specific tasks, though this process demands a considerable number of newly acquired task-specific
demonstrations. As datasets grow increasingly large and diverse, a natural question arises: how can
we identify and select data from within existing datasets to boost task performance?

Selecting data to train a high-performing model is a complex endeavor. Naively, it would require
testing each subset of the data by retraining and evaluating the performance of the trained model.
This is expensive for any sizable dataset, becoming infeasible in robotics, where evaluation involves
policy rollouts in the real world—a time-consuming and often dangerous procedure. Prior data se-
lection methods in robotics remove the dependency on policy rollouts by selecting data based on
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heuristics, i.e., assuming that the most useful data is the most similar in language description [ 18],
visually [19], in motion [20], or in state-action pairs [2 1] to a small number of task-specific demon-
strations. While intuitive (and effective in some cases), these heuristics often make several assump-
tions and fail to consider the real impact of a datapoint on policy performance (see Figure | (left)).

In other fields such as natural language processing (NLP) and computer vision (CV), researchers
have developed an efficient framework for data selection based on model performance: datamod-
els [22]. Training a datamodel is a meta-process in which the original learning algorithm and model
are viewed as a “black box” that consumes data, and the goal is to train an estimator of the black
box’s behavior as a function of the input data. By avoiding selecting based on heuristics, datamodels
stay close to the true optimization objective (trained model performance) while critically reducing
the amount of training and evaluation procedures necessary with the original learning algorithm and
model to an acceptable level for NLP and CV. However, these evaluations are still unfeasible for
policy learning due to the need for real-world rollouts, impeding their application to robotics.

In this work, we introduce DataMIL (Datamodels for Imitation Learning), a method that extends the
success of datamodels to robotics by addressing the unique challenges of data-driven data selection.
DataMIL trains a data-quality estimator using a tractable surrogate objective. We empirically show
that this objective retains sufficient correlations to the true objective (policy performance), allowing
us to train datamodels that predict data influence without requiring expensive real-world rollouts.
Moreover, thanks to a process that remains closer to the true objective, DataMIL selects and curates
datasets for hard cases (e.g., different embodiments, multi-task settings) where prior heuristic-based
methods degrade. Across 50 MetaWorld [23] tasks, we show a 10% performance boost compared
to state-of-the-art baselines. We then show how datamodels can be estimated efficiently for large
policies such as Octo [4] using improved datamodel estimators based on metagradients [24] and
show its efficacy in curating task-specific datasets in ten tasks from the LIBERO benchmark [25]
and four tasks in the real-world, leveraging OXE [3] even for new tasks and embodiments.

2 Related Work

Data curation for robot learning. Recent advances in robotics have leveraged ever-larger demon-
stration collections—both in simulation [26-28], and on real hardware [ 1-14, 29-34]—to train
generalist policies capable of tackling diverse tasks [1-7]. However, the sheer scale and hetero-
geneity of these datasets (varying robots, scenes, and objectives) has motivated a body of work on
data curation. For generalist training, methods like Re-Mix [35] use DoReMi [36] style optimiza-
tion to learn optimal mixtures of data domains for improving model training, while others identify
“high-quality” trajectories via mutual information criteria [37] or by scoring samples with policy
rollouts [38]. Beyond generalist policy training, many studies have focused on task-specific dataset
selection: given a handful of target demonstrations, one can sub-sample large datasets based on
visual similarity [19], motion cues [39], or state—action closeness [21]. While these approaches cap-
ture human notions of quality, they remain agnostic to each sample’s actual impact on downstream
policy performance. Concurrent to our work, CUPID [40] focuses on single task curation by us-
ing a policy-gradient influence measure estimated via online rollouts. In contrast, DataMIL—built
on the datamodels framework—demonstrates selection from large heterogeneous datasets, scoring
datapoints entirely in an offline manner. This allows us to estimate each datapoint’s contribution to
final task success and curate training sets in an end-to-end, performance-aware fashion.

Datamodels and data attribution. Our work draws from a line of work in machine learning on
data attribution [41—46] and, in particular, the datamodels framework [22, 44]. At a high level, this
framework seeks to predict the behavior of machine learning models as a function of the data they are
trained on. While we are not aware of work that has applied data attribution to robot learning, similar
ideas have been explored for improving language model pre-training [47] and instruction tuning
[48, 49, 24]; for increasing worst-group robustness [50]; and for removing outliers in supervised
learning settings [51]. Our work builds on this body of research, while—as we discuss in Sec. 4.2—
also tackling the unique challenges posed by the robot learning setting.
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Figure 1: Data selection with datamodels. (left) Similarity-based methods select close samples
(yellow), but these aren’t always beneficial for learning. DataMIL evaluates data based on its impact
on policy performance, selecting the samples that lead to policy improvement. (center) We estimate
datamodels that score each sample by its influence on policy performance and select the highest-
scoring samples for training. (right) DataMIL explores two datamodel estimation methods, adapted
to robotics: regression and metagradient-based estimation (see Sec. 4.1).

3 Preliminaries: Data Selection for Policies and Datamodels Formalism

In this section, we first provide some general background on the problem of data selection for robot
learning, and then describe the datamodels framework on which our method is based.

Policy learning. The focus of our work is on the imitation learning problem. Here, our goal is
to learn a policy 7 that maps states s to distributions over actions a using a collection of training
trajectories (or demonstrations) D = (11,73 - -+ T,) of state-action pairs. We will define a policy
learning algorithm A as a function that takes as input a dataset of demonstrations D and outputs
an optimized policy m. We measure the performance of the policy 7 using a metric M : 1 — R,
which is a function mapping policies to a scalar value. The most common choice of metric is success
rate—the fraction of times that sampling actions from the policy results in the policy completing a
given task—but our notation is general and can also capture other choices of metric M.

Data selection in robotics. In data selection for robotics, we are given (a) a prior dataset D of
demonstrations; (b) a fixed learning algorithm A (e.g., stochastic gradient descent on an imitation
learning objective); and (c) a target metric M that we will use to measure policy performance. Our
goal is to select a subset of the data D’ C D such that applying the algorithm .4 to the subset D’
yields a policy 7 that maximizes the target M. Formally, we aim to find

arg max M(A(D")). (1)

D'CD

Solving this optimization problem is challenging since the algorithm A itself is usually expensive
to compute (it involves, for example, training an imitation learning policy on D’). Thus, exhaustive
search over all subsets of D is infeasible.

Datamodels. In this work, we leverage data attribution [4 1, 42, 44, 52] (and specifically, the data-
models framework [22]) to tackle the data selection problem (). The key idea behind datamodels
is to directly approximate the target metric M(.A(D’)) as a function of the data D’, allowing us to
answer questions like “what would the performance of the policy be if we trained on this subset of
the data?” without actually training the policy. More precisely, a datamodel is a model f 2P 5 R
that takes as input a subset of the data D’ C D and outputs an estimate of M (A(D’)).

Informal Definition 1 (Datamodeling problem) Given a prior dataset D and a learning algo-
rithm A, the datamodeling problem is the problem of predicting the behavior of a model trained
on a subdataset D' C D without actually training a model.

If we had such an approximation in hand (assuming for now that we are able to compute one), we
would approach the data selection problem (1) by solving the following optimization problem:

arg max f(D'). )
D'CD



This problem is much more tractable than the original problem (1) because the datamodel f is
typically much cheaper to compute than the learning algorithm and target metric M (A(-)). For
example, in supervised learning, recent works have shown that even linear datamodels—functions
f that decompose additively in terms of their inputs D—can be accurate predictors of model per-
formance [22, 51, 44, 52, 45]. Intuitively, this means that we can assign a scalar value to each data
point in D that indicates how much it contributes to the performance of the learning algorithm A.

Since leveraging an accurate datamodel f for data selection is straightforward, the main challenge
in our work is constructing such a datamodel. That is, we need to find a way to build a function
f that can predict, with nontrivial accuracy, the performance of the learning algorithm .4 on any
given subset of the data D’ without actually training a policy on that subset. In the next section, we
describe our methods for constructing such a datamodel in the policy learning setting.

4 DataMIL: Datamodels for Robot Imitation Learning

An overview of our training and selection methodology is shown in Figure |. Below, we provide the
details of each component, beginning with the estimation of datamodels.

4.1 Estimating Datamodels

In our work, we consider two ways of estimating datamodels: the regression method [22] and the
metagradient method [24]. Both estimators approximate the outcome of model training linearly, in
the sense that, for any training subset D’ C D, the datamodel prediction f (D’) takes the form
F(D) =" 7(z).
z, €D’

Intuitively, 7(z;) captures the importance of the training example z; to the target metric M(.A(D’))
(more precisely, 7(z;) is the additive effect of z; on the target metric). Linear datamodels are conve-
nient in the context of data selection, since they allow us to solve (1) by simply selecting the training
examples with the highest scores 7(z;). Both estimators below take this form—the only difference
is in how they compute the 7(z;) terms.

Regression estimator. The regression estimator is a straightforward but expensive way to estimate
datamodels—it involves precomputing the scores 7(z;) for each training example z; in the broader
training set D. Concretely, we first sample [N random subsets of the prior dataset D; C D; for each
of these datasets, we train a policy A(D;), and evaluate the target metric M. (In our setting, eval-
uating M means rolling out the policy several times and computing the success rate.) We compute

the scores 7(z;) for all the training examples by solving the following minimization problem:

2
N

{7(21),...,7(2n)} := arg ‘Pé]iRI}L Z T — M(A(D;)) | - 3)
j=1 \j:z€D,

Above, observe that the sum 3. ., 7; is precisely the datamodel prediction of M(A(D;)) when

setting 7(z;) = 7;. Thus, (3) corresponds exactly to linearly regressing the target metric onto the

presence of each training point z;.

Metagradient-based estimator. While the approach above produces accurate datamodels f [22], it
requires us to train thousands of policies on subsets of the prior dataset D. This requirement makes
it difficult to scale the regression-based estimator to finetuning large visuomotor policies such as
Octo [4]. Fortunately, a line of work in computer vision and language modeling has devised far
more efficient datamodel estimators that still accurately predict model behavior [44, 52, 46]. We
adopt one such estimator for our purpose referred to as the metagradient-based estimator [24, 46],
which enables efficient linear datamodel estimation when the target function M is differentiable
with respect to the model parameters .4(D). By devising a new way to compute a classical statistical
quantity called the influence function [53, 41], metagradient-based estimator can almost perfectly
predict the behavior of a model as a function of the training dataset at the cost of only a few model
trainings on the prior dataset D [46]—we refer the reader to the Appendix or to [24] for more details.



4.2 DataMIL: Adapting Datamodels for Robotics

While datamodels have been applied to language modeling [44, 52] and computer vision [4 1, 22]
tasks, there are some unique challenges that we face when applying them to robotics. Below, we
describe how DataMIL extends the datamodel framework to handle robotic datasets efficiently.

Estimating datamodels without rollouts. In principle, the ideal target metric M is the policy’s true
success rate under environment rollouts. However, real-world rollouts are expensive, and using them
directly renders the objective non-differentiable, preventing the use of estimators like Metagradients
that exploit differentiability of the evaluation metric. To overcome these limitations, we introduce a
proxy metric M\ that (1) requires no additional rollouts and (2) is fully differentiable. Concretely,
given a small held-out demonstration set Dy,,.q¢ for the target task, we define:

— 1
M (ﬂ', Dtarget) =

= m ( —Lpc(n(s),a) €]

Sva)eptav'get

Where Lpc(7(s),a) defines the policy loss on a training example (s, a) (see App. C for the ex-
act objective for different policy classes). Hence, the true target metric M can be substituted by
the proxy metric M in our original optimization (Eq.!), resulting in a more tractable and end-end
differentiable objective for applying datamodels to robotic settings.

A natural question is whether M is a sufficiently good approxi- |

. . . s Target-On DataMIL-r¢
mation of the true target to enable data selection. We study this 100 o AlData | DatatiLmeta
mmm DM-rollouts

question using the pick-place-wall task from MetaWorld [23], I
where we consider three different datamodel estimation techniques:

1) DM-rollouts: using regression-based estimator to estimate a
datamodel for the “true” target M (success rate across rollouts);

Success rate

ii) DataMIL-rg: using regression-based estimator to estimate a
datamodel for proxy target M (loss on a heldout validation set); 1 I

iii) DataMIL-meta: using metagradient-based estimator to estimate o

a datamodel for proxy target. Figure 2: Comparing true

rollout success (M) vs. proxy
We use each of these datamodels to select the top 10% of samples metric ( M\)

(as ranked by their estimated coefficient 7(z;)) from a prior dataset

consisting of a mix of expert and suboptimal demonstrations (see Section 5 for details). We then
measure the true success rate of a policy trained on the selected samples, and visualize the results
in Fig. 2. Our results show that (a) selecting data for the proxy metric M incurs only a marginal
drop in final success; (b) applying the metagradient-based estimator only incurs another small drop
in success rate but are significantly faster to train. Moreover, all of the policies trained on selected
data vastly outperform baselines trained on (i) the entire dataset or (ii) D;qrger alone—achieving up
to 7x higher success than the all-data policy, while the target-only policy fails almost entirely.

These results demonstrate that (a) our proposed proxy objective can effectively stand in for expensive
rollouts, and (b) data curation is critical: naively using all data or only target examples yields weak
policies, whereas our curated datasets substantially boosts task success.

Clustering training examples. Datamodels estimate how each training sample—or training ex-
ample—influences policy performance. In robotics, where data is naturally sequential, training
examples may be individual state—action pairs or temporally extended sequences. Estimating influ-
ence at the single-sample level can be noisy, especially in large datasets where each sample is seen
infrequently during training. To mitigate this, we group data into temporal clusters and measure in-
fluence at the cluster level. In practice, the optimal granularity depends on dataset size and compute
budget: fine-grained clusters offer precise selection but suffer from higher estimation noise, while
coarse clusters yield more stable influence estimates at the cost of detail.



Reducing distribution shift. Distribution shift—especially common in robotics due to changes
in lighting, camera pose, or robot dynamics—poses a major challenge when selecting from large,
diverse datasets. Since datamodels rely on training policies to estimate influence on target per-
formance, a large mismatch between prior and target data can degrade the quality of datamodel
estimation. To mitigate this, we include half of the D;,4¢¢ dataset alongside the prior data during
datamodel estimation to better align the policy learning with the target domain, while using the other
half purely for proxy objective evaluation. We only apply this in real-world (i.e., OXE), where the
distribution gap is significant; in simulation, the prior and target data are typically well-aligned.

4.3 Data Selection and Policy Training

By applying the datamodel estimators described in Section 4.1 utilizing our proposed modifications
in Section we obtain a per-cluster influence score on policy performance. While these influence
scores can be used in a variety of different ways, in this work we use them to curate a training
subset: we select the top % of prior examples with the highest positive influence to form Dg;.
We then train the downstream policy 7 via behavior cloning on Dge; U Dygpger Using a co-training
recipe [20, 54, 13, 55]: at each training step, we sample from Dy,,.4c¢ With probability @ and from
Dy, with probability 1 — a. We found v = 0.5 to perform well across all our experiments.

In summary, DataMIL leverages datamodels [22] to estimate how individual training examples affect
a policy’s performance on a given task. We propose key modifications that make this estimation
tractable and robust in robotics settings—reducing noise, avoiding expensive rollouts, and scaling
to large models and datasets. Given a prior dataset D and target dataset Dyqrget, We (1) Cluster the
prior data D into trajectories or sub-trajectories, (2) Estimate influence scores using our proposed
proxy metric, with the regression or metagradient datamodel estimators, (3) Select the top ranked
clusters and create D,,;, and (4) Train a final policy co-trained on the target and selected data.

S Experiments

Datasets. We test DataMIL on two widely used multi-task simulation benchmarks: (1) Meta-
World [23], contains a suite of 50 distinct robot manipulation tasks, on a 7-DoF Sawyer robot arm,
and (2) LIBERO benchmark [25], consists of 100 tasks with diverse objects, layouts and scenes. In
the real world we test using the Open-X Embodiment (OXE) datasets [3] — an aggregation of many
diverse robotic datasets collected across various robots and labs around the world.

Training and Evaluation Details. We use the language-conditioned Octo [4] model in LIBERO and
OXE settings, initializing the model with a pretrained checkpoint provided by the authors to speed
up training. For MetaWorld, we use the environment state as policy input, and hence use a simpler
MLP based policy with a Gaussian action head from garage [56], and study both goal-conditioned
and no-conditioning settings. Results for the latter can be found in the App.

Baselines. We compare DataMIL to prior works that select data using similarity based heuristics:
BehaviorRetreival (BR) [21] trains a VAE on state-action pairs and uses similarity with the target
data in the latent space to retrieve single state-action pairs; FlowRetrieval (Flow) [20] uses a similar
approach but trains the VAE on the flow features of the images computed using GMFlow [39];
STRAP [19] uses features from a pretrained DinoV2 [57] model and uses dynamic time-warping
over sub-trajectories to retrieve similar segments. We also introduce a simple action retrieval (AR)
heuristic that computes similarity between action sequences of target and prior demonstrations and
retrieves the most similar samples. Finally, we also train policies only on the target data (Target-
Only), and co-trained with all data (All-Data) to measure the overall importance of data selection.

5.1 Results

How does data selected using DataMIL impact policy performance? Metaworld. MetaWorld’s
50 manipulation tasks offer a rigorous testbed for data selection. We construct our prior dataset
D by combining (1) expert demonstrations generated by scripted policies and (2) lower-quality



exploration trajectories sampled from the replay buffer of a multi-task SAC agent trained across
all tasks (see App. for details). For each task, we use 5 expert demos as D;qrget, and use the
regression-based datamodel estimator to select the top 10% of samples (Sec. 4)

This setup is challenging as the selection method must both identify rel-

evant tasks and filter noisy, suboptimal actions from the autonomous W Target-Only # BR
data. In Fig. 3a, we report policy performance averaged over all 50 tasks. i
Similarity-based baselines perform poorly: state-only retrieval (SR) fails AR - DatahiL

to reject poor actions, action-only retrieval (AR) selects irrelevant tasks

with similar action distributions, and state-action retrieval (BR) gives &
equal weight to both modalities, which may not be the appropriate recipe 3 =

100

for all tasks. In contrast, by directly estimating each sample’s influence
on downstream policy performance, DataMIL robustly identifies useful .
demonstrations and discards harmful samples. » .

Can we scale DataMIL to larger and more complex policy classes? (2) MetaWorld-50

LIBERO. We test DataMIL on 10 long-horizon tasks from the LIBERO-

10 setting, using LIBERO-90 (comprising 4500 human-teleoperated =
demonstrations) as the prior dataset and selecting 10% of the data. The I

Success rate

complex tasks and the high-dimensional RGB observations in LIBERO
demand a powerful policy; we use Octo [4], a transformer-based diffu-
sion policy. Training Octo is costly, making the “regression” datamodel

estimator (which requires retraining across many subsets) impractical,

and so we employ the metagradient datamodel estimator (Section 4.1). (b) LIBERO-10

Fig. compares success rates of policies trained on the data selected Figure 3: Avg. policy
by DataMIL with the baselines in each of the 10 target tasks. The performance trained on
relatively clean structure of LIBERO—single-view, consistent embod- selected datasets in sim.
iment—makes it favorable for baselines that select via visual similarity ~€nvironments.

(eg. STRAP, BR and Flow). However, we observe that their effectiveness varies significantly
across tasks, likely due to the task-dependent suitability of each heuristic. In contrast, DataMIL
consistently performs well across all tasks, achieving the highest average performance overall.

Can we select data from large heterogeneous datasets in the real world?

Open X-Embodiment Dataset (OXE). In the real world, we show data selection from the OXE [3]
datasets and evaluate on four tasks on two robot embodiments shown in Figure 4 (top). This setting
is particularly challenging: OXE is a heterogeneous aggregation of data from different labs, robots,
camera setups, lighting conditions, and object arrangements. Further, none of our test tasks appear in
OXE—we avoid matching the scene, camera pose, or objects. Instead, we aim to understand whether
seemingly unrelated prior data can still yield positive transfer when curated appropriately. Our base
setup uses 24 OXE datasets part of Octo’s original training [4]. For Franka-Ball and Franka-
Pouch, we subset this to 13 and 23 datasets, respectively (denoted as OXE-13 and OXE-23). Details
on size of Dyqrget, dataset partitions and evaluation methodology are provided in App.

Due to the scale of OXE, we replace the All-Data baseline with a Random baseline that samples the
same number of datapoints as DataMIL and other methods. In Figure 4, we observe that DataMIL
effectively selects relevant data even from highly heterogeneous sources. In the simpler Franka-Ball
task, visual similarity-based baselines perform competitively. However, as the dataset grows more
diverse—as in Franka-Pouch—these heuristics begin to break down, while DataMIL continues to
identify data that improves policy performance. In the Tiago-Sink task, we explore a harder setting,
selecting data for the Tiago [58] robot, an embodiment that never appears in the prior data. Despite
this, DataMIL is able to select cross-embodiment demonstrations that improve task success. We
discuss this further in Section 5.2. Finally, we move beyond single-task selection in the Droid-
Multitask setting, where the target comprises three tasks: bread in bowl, napkin in drawer, and
open drawer. This setting tests whether a single curated dataset can support multiple downstream
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Figure 4: Results for data selection on OXE. We test the performance of policies trained on data
selected from the Open X-Embodiment dataset using different selection strategies. Data selected
using DataMIL achieves the highest performance across all tasks, highlighting the need for end-end
policy-aware data selection techniques. (Droid-Multitask shows the average success rate across all
its tasks. Individual task success rates shown in App. F)

objectives simultaneously. DataMIL consistently outperforms baselines, selecting examples that
improve its performance on all target tasks and yielding stronger average overall.

These results highlight that DataMIL scales to real-world robotics, handles heterogeneous datasets,
and supports both single-task and multitask learning—even in settings with unseen embodiments.

5.2 What data is selected by DaMIL?

We briefly discuss the DataMIL-selected data; see appendix for visualizations and further insights.

Type of embodiments selected. DataMIL is able to select useful data for a completely new em-
bodiment in the Tiago-Sink experiment. In the appendix we show some snippets of the highest
frequency datasets selected by DataMIL. We observe that even though they are visually quite differ-
ent, sampled from datasets such as RT-1 [1], BC-Z [30] and Bridge [ |, 12], they still represent the
essence of the target tasks — robots operating on a table top from an ego-perspective.

Distribution of selected data. We also notice that data selected by DataMIL usually spans several
different datasets, whereas most baselines select a majority of their data from a single dataset (plots
shown in appendix). We hypothesize that since there is no data that exactly matches the target task,
the selected data must not only be relevant but general, so as to enable positive transfer in capabilities
and not make the policy overfit to a single type of domain.

Top and bottom influencers. Analyzing the highest and lowest ranked datapoints by DataMIL, we
find that they typically look similar (e.g., same embodiment or dataset). This actually makes sense:
similar states can have very different action distributions, and while some of these actions might
help reduce the policy loss on the target data, the others might lead to a large deviation, making
them harmful for final policy learning. This aligns with data attribution works in computer vision,
where harmful data looks very similar to helpful data but with a different label [22, 59].

6 Conclusion

We present DataMIL, a data-driven method for data selection for imitation learning. DataMIL builds
upon the framework of datamodels, which has been applied successfully to data selection in NLP and
CV, and extends it to real-world robotic applications. Extensive experiments in simulation and real-
world settings empirically support that DataMIL retrieves data to train higher-performing policies
than multiple existing state-of-the-art baselines, particularly in complex scenarios. Overall, we see
DataMIL as a step towards better-aligned data curation methods for robotics.
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A Qualitative Results: What data is selected by DataMIL?

(a) Composition of data selected via DataMIL (b) Composition of data selected via SR
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Figure 5: MetaWorld Qualitative Results. Percentage of data selected from each task and ex-
pert/suboptimal source for DataMIL, SR, AR and BR

A.1 MetaWorld

As described in Appendix E.1, our prior dataset for MetaWorld combines both expert and sub-
optimal demonstrations. In our experiments, we retrieve the top 10% of this data ranked by DataMIL
to train the policy. Here, we qualitatively examine the dataset selected by DataMIL for the pick-
place-wall task.

Figure 5 shows the percentage of data selected from each task and data source (expert or subopti-
mal). We observe that SR, while able to retrieve samples from relevant tasks, fails to differentiate
between expert and sub-optimal demonstrations—resulting in the inclusion of a large fraction of
low-quality data. In contrast, AR filters out sub-optimal samples more effectively by matching ac-
tions, but it lacks task awareness due to its disregard for state information, often pulling data from
irrelevant tasks. BR, which embeds both state and action features jointly, exhibits a blend of SR
and AR behaviors—capturing elements of both but also inheriting their limitations. In compari-
son, DataMIL consistently selects data from the correct task (green bar) while also avoiding noisy,
sub-optimal examples.

A2 OXE

Here we elaborate on our discussion of the qualitative analysis of the data selected by DataMIL in
Section

Distribution of Selected Data. In Figures 7 and 6, we show the distribution of datasets selected
by DataMIL and representative baselines for the Tiago-Sink and Franka-Pouch tasks, respectively.
As discussed in the main text, baseline methods often focus heavily on a single dataset. For ex-
ample, AR retrieves most of its data from R7-/ in the Tiago-Sink task (Figure 7b), while Flow
disproportionately selects samples from BC-Z for Franka-Pouch (Figure 6b). In contrast, DataMIL
consistently selects data across a broader range of datasets (Figure 7a and 6a). We hypothesize that
this diversity is beneficial when no single prior dataset closely matches the target task—encouraging
generalization rather than overfitting to a particular domain.
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(a) Franka-Ball (b) Franka-Pouch

Figure 8: Top and bottom ranked samples by DataMIL for each of the real-world tasks

Type of embodiments selected. In the Tiago-Sink task (Figure 7a), DataMIL successfully selects
data for a novel embodiment (Tiago), which does not appear in prior data. The selected samples
span datasets such as RT-1, BC-Z, and Bridge, all of which involve tabletop manipulation from
an egocentric viewpoint—capturing task-relevant structure even without embodiment match. For
baselines, we observe that even when the target embodiment is present in the prior dataset (e.g.,
Franka), the selected data often comes from unrelated domains. For instance, in Franka-Pouch
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(Fig. 6), Flow selects data from BC-Z (Google Robot), and BR retrieves from Bridge (WidowX). In
contrast, the top five most frequently selected datasets by DataMIL are all sourced from Franka.

Top and bottom influences. Figure 8 visualizes the highest and lowest ranked datapoints identi-
fied by DataMIL for real-world tasks. Interestingly, these examples often appear visually similar,
aligning with findings in computer vision [22, 59] where data points that look alike but carry dif-
ferent labels can mislead the model. In robotics, this may occur when visually similar observations
correspond to different actions, thereby confusing the policy. This could also be an artifact caused
by the sensitivity of validation loss used in DataMIL’s proxy metric and understanding how and
why these fine-grained differences affect data selection, and ultimately, the policy performance, is
an interesting direction for future work.

B Estimating Datamodels

In this section, we describe the datamodeling framework in more detail. In particular, we first pro-
vide the formal version of Informal Definition |, then describe the estimators that we use to construct
datamodels in this work, namely the regression estimator and the metagradient-based estimator.

B.1 Formalizing Datamodeling

The goal of datamodeling is to construct a function f that can predict the performance of a learning
algorithm A on any given subset of the data D’ C D without actually training a policy on that subset.
Let D be a prior dataset of imitation-learning data, and let us represent any subset of D as a binary
vector z € {0,1}Y where 2; = 1 if the i-th training sample is in the subset and z; = 0 otherwise.
Let a learning algorithm .4 be a function that takes as input a dataset (represented as a binary vector
z) and outputs a policy .A(z). The datamodeling problem is to construct a function f that can predict
the performance of .4(z) when trained on any given subset of the data without actually training a
policy on that subset. More formally, we aim to find a function f minimizing the following loss:

—— RN B

where M is the target metric and z ~ Bernoulli( is a random binary vector of length V.

1\N
2)
Recall from the main text that we are particularly interested in datamodels f that are additive in the
training dataset—in terms of our formalization, we are interested in functions f of the form

f(z)=2"8. (©)
for some vector 3 € RY. An estimation method for datamodels is thus just a method for finding a

good estimate of the vector 5. We refer the reader to Ilyas et al. [22] for a more detailed discussion
of datamodeling.

B.2 Regression Estimator

The regression estimator is a simple yet effective method for estimating the vector ( that treats
datamodeling as a supervised learning problem. In particular, the regression estimator first samples
a set of m binary vectors zi, ..., Z,, ~ Bernoulli(%)N ; for each of these binary vectors, it trains a
policy A(z;) on the subset of the data indexed by z;, and evaluates its performance using the target
metric M. It then fits a linear model to the performance of these policies on the sampled binary

vectors, i.e., it solves
m

. 2
min — Z (M(A(z)) — 2] B)", @)
i=1
and uses the resulting vector f as the parameters of the datamodel f (z) = z' 3. The cost of building
this estimator is high, since it requires training a policy for each of the m binary vectors, but Ilyas
et al. [22] shows that the estimator can be very accurate, and indeed identifies highly influential
subsets of the prior dataset.
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B.3 Metagradient-based Estimator

The metagradient-based estimator is a more sophisticated method for estimating the vector /3 that
avoids the high cost of training a policy for each binary vector. Instead, the metagradient-based esti-
mator operates by leveraging a classical statistical tool called the influence function [53]. Intuitively,
the metagradient-based estimator proceeds as follows:

1. First, instead of thinking of training datasets as binary vectors z € {0,1}", we think
of them as real-valued vectors z € [0,1]", where each coordinate z; corresponds to the
importance weight placed on the ¢-th training sample in the dataset. Concretely, if z; = 0,
then the i-th training sample is not used in the training set, and if z; = 1, then the ¢-th
training sample is used in the training set with full weight; if 0 < z; < 1, then the ¢-th
training sample is used in the training set but its loss is scaled by z;. Observe that this
parameterization is equivalent to the binary parameterization for z; € {0, 1}, but gives us a
continuous way to represent the training set.

2. Once we have this continuous parameterization, we can write the first-order approximation

to M(A(z)) as
M(A(z)) = M(A(20)) + VM(A(20)) ' (z — 20), (8)

where zg is the vector of all ones. The gradient VM (A(zg)) is known as the influence
function, and gives us a linear approximation to the loss in Equation 5. That is, if we could
compute the influence function exactly, we could use it as a datamodel directly, i.e.,

f(z) = M(A(z0)) + VM(A(z0)) " (z — 20). ©9)

3. Traditionally, the influence function is notoriously hard to compute, and so prior work on
data attribution has focused on approximating it [41, 44, 52]. However, recent work has
shown how to compute it exactly and efficiently [24] and how to use this exact influence
function as a datamodel estimator [46].

Observe that in order for the metagradient-based estimator to be valid, the function M (A(z)) must
be differentiable with respect to z. For this to be satisfied, it is sufficient for (a) the target metric
M to be differentiable with respect to the policy .A(z), and (b) the policy .A(z) to be trained via
an iterative algorithm composed of elementary differentiable operations (which is almost all of the
popular off-the-shelf learning algorithms).

C Proxy Metric Details

Recall from Eq. 4 that our general proxy metric is

—~ 1
M (ﬂ', Dturget) =

= — —Lpc(m(s),a
|Dtarget| ( BC( ( ) )

Sva)EDt(w'yet

where Lp¢ is the behavior-cloning loss appropriate to the policy class. Here we provide how the
equation looks like for specific policy classes that we used in our experiments.

MetaWorld. We parametarize the policy in MetaWorld as,
mo(a | s) = Na; pe, (s), diag(og,(s)?))
and consider two forms of Lp¢:
1. Negative Log-Likelihood (NLL):
LxiL(s,a) = —logmy(a | 5)

= % (a — ugl(s))TE(s)71 (a — po, (8)) + % log det(27r Z(s)) (10)
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2. 1y loss:
£él(8,a) = Ha - N91<S)H1 (11)

Empirically, the /1 loss works better for the regression estimator, while metagradient-based estima-
tor performs well with the NLL loss.

LIBERO and OXE. In the LIBERO and OXE settings, we use Octo as the learning model which
is a transformer-based policy with a diffusion action head. It’s behavior-cloning loss is the standard

denoising score-matching objective:
Lait (8,a) = Ei Uniform[1,T], e~A(0,1)

2
6769(\/0_7,5114”\/1*5[156, s, t)H

where oy € (0,1) is the forward-process noise schedule, & = H§=1 «;, and eg(ay, s,t) is the
network’s noise prediction.

Substituting Lz = Lg;g into the proxy metric gives,

—~ 1
M (7T7 Dtarget) = T~ Z Et,e

[ Drarget
‘ aree | (S7a)€Dtarget

2
e—eo(Vaa+Vi—aie s t)| a2

C.1 Up-weighting Relevant States

In robotics, more often than not we have some information about what states and actions are of
higher importance than others, for example states closer to object interactions may be more relevant
than moving around in free space. Our proxy metric provides a seamless way to incorporate prior
knowledge by re-weighting important states in the behavioral cloning loss. Concretely, we introduce
a state-action-dependent weight w(s, a) into the objective:

—~ 1

M (777 Dtarget) =

= m —w(s,a)Lpc(n(s),a)

(S:a)epta'rget

By default, we set w(s, a) = 1 and use the unweighted proxy. In the LIBERO experiments, however,
we found that doubling the weight for states immediately preceding a grasp significantly improves
data selection. Thus, for those “pre-grasp” states we use w(s,a) = 2, while all other states retain
w(s,a) = 1.

D Baseline Implementation

Implementation details of the baselines are provided below.

¢ FlowRetrieval [20] and BehaviorRetrieval [21]: FlowRetrieval (Flow) and Behavior Re-
trieval (BR) baselines compute similarity on the image flows and state-action pairs re-
spectively. Since these features typically include high-dimensional image observations,
Flow and BR train VAEs to encode the features into a more manageable latent space,
which they can use to compute similarities between prior and target data. We used
the implementation provided by the authors of FlowRetrieval [20] for training the VAEs
and computing the similarity for both, Flow and BR, in the LIBERO and OXE set-
tings ( ).
For both Flow and BR (and other heuristics such as Action Retrieval (AR) and State Re-
trieval (SR)), once each state in the prior data is assigned a score based on the similarity
measure, we select the top 2% of the data most similar to the target where x is the selection

budget.
* STRAP [19]: In the LIBERO experiments, we use the authors’ STRAP implementa-
tion ( ) to embed sub-trajectories with Di-

noV2 [57] and compute similarity via dynamic time warping. STRAP expects HDF5-
formatted inputs, but our OXE pipeline relies on TFDS. We therefore adapted the STRAP
code to accept TFDS datasets without altering its core logic.
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While STRAP’s original recommendation is to retrieve the top 100 sub-trajectories
in LIBERO, we found that training Octo on these segments underperforms. Instead,
we retrieve the most similar sub-trajectories until they constitute 10% of the prior
data—matching the budget used by DataMIL and our other baselines. In LIBERO, this
modification boosts success from 24.72% (with 100 segments) to 34.96% averaged over
LIBERO-10 tasks. We apply the same retrieval strategy on OXE, sampling sub-trajectories
until we match the selection size of our method and baselines.

For MetaWorld, we found it more effective to compute similarity over temporal windows rather
than individual state—action pairs. Specifically, for each baseline (BR, SR, AR), we slide a fixed-
length horizon H over both prior and target data, concatenate each segment’s states (and actions)
into a single high-dimensional vector, and then measure similarity between these flattened vectors.
This horizon-based approach captures temporal context, enabling the baselines to reject noisy or
suboptimal samples—ultimately improving retrieval quality and downstream policy performance.
We used H = 50 for all tasks since our initial experiments found it to perform best.

E Training and Evaluation Details

E.1 MetaWorld

Dataset. The MetaWorld dataset is constructed from two sources: scripted expert policies and
reinforcement learning (RL) exploration. MetaWorld provides scripted policies for each of its 50
tasks, which we use to generate 4,000 episodes totaling 350K environment steps. For the RL data,
we train a multi-task SAC agent on all 50 tasks for 12 million transitions, reaching an average
success rate of 21%. To create a representative prior dataset, we uniformly subsample from the SAC
replay buffer across all tasks, yielding 1 million environment steps—approximately 3x larger than
the scripted data. For each target task, we generate 5 expert demonstrations using the scripted policy
as Dta'r‘get~

Datamodel estimation using DataMIL. We cluster the prior dataset at the trajectory level and use
5 demonstrations from D;qrge¢ to compute the proxy objective. We then compute the datamodels
using the regression-based datamodel estimator. The top 10% of prior trajectories, ranked by the
datamodels, are selected to form D,,;.

Policy Training and Evaluation.We train a behavior cloning policy with an MLP backbone and
a tanh-squashed Gaussian output distribution on Dg;. In preliminary experiments, we found that
co-training with Dy, yielded negligible improvements, so we exclude it in this setting. Each
policy is trained and evaluated over 3 random seeds.

E.2 LIBERO

Dataset. Our prior dataset consists of 4,500 human teleoperated demonstrations from LIBERO-90,
with 50 demonstrations per task. The 10 tasks from LIBERO-10 serve as our target tasks. For each,
we randomly sample 5 demonstrations to form the target dataset Dy get-

Datamodel estimation using DataMIL. Prior to running DataMIL, we segment the prior demon-
strations into sub-trajectories of horizon length 15, which we found to provide a good balance be-
tween granularity and noise-robustness. We then estimate influence scores using the metagradient-
based estimator with the weighted proxy metric described in Appendix . The top 10% of sub-
trajectories, based on datamodel influence, are selected to form the selected dataset Dye;.

Policy Training and Evaluation. We fine-tune a language-conditioned Octo policy, starting from
the publicly released Octo-small checkpoint, by co-training on Dygrget and Dy, using a co-training
ratio « = 0.5 for 10k steps. We evaluate each policy on the corresponding target task using 50
rollouts and report results averaged over 5 random seeds.
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Table 1: Datasets utilized across the OXE subsets in our experimental setup

Dataset OXE13 OXE23 OXE24 | Dataset OXE13 OXE23 OXE24
RTI v v v' | cMUIAM Lab v v v
Viola \/ \/ \/ Roboturk X \/ \/
Austin Buds \/ \/ \/ BC-Z X \/ \/
Austin Mutex \/ \/ \/ CMU Stretch X \/ \/
Austin Sailor v v v | DLREdan x v v
Austin Sirius v v V' | Berkeley Autolab URS X v v
Taco Play \/ \/ \/ Berkeley Fanuc X \/ \/
Jaco Play \/ \/ \/ Berkeley Cable X \/ \/
Stanford Hydra \/ \/ \/ Bridge X \/ \/
NYU Franka \/ \/ \/ NYU Door Opening X \/ \/
Furniture Bench \/ \/ \/ Toto X \/ \/
UCSD Kitchen v v V' | Kuka x x v
E.3 OXE

Table 2: Task-wise experimental setup for selecting data and, training and evaluating policies

Embodiment Prior Prior Selection No. of No. of
Dataset Ratio Target Demos  Evaluations

Franka-Pick Franka-Panda OXEI13 1% 10 14
Franka-Pouch Franka-Panda OXE23 0.75% 30 17
Tiago-Sink Tiago OXE24 0.5% 20 39
Droid-Multitask ~ Franka-Panda OXE24 1% 40 (total) 32 (total)

Drawer - - - 10 10

Bread - - - 15 12

Napkin - - - 15 10

Dataset. We use subsets of the Open X-Embodiment (OXE) dataset [3] as our prior data. Specif-
ically, we define three subsets—OXE13, OXE23, and OXE24—with their respective constituent
datasets listed in Table |. The mapping between tasks and dataset subsets is shown in Table
For each task, we collect a separate target dataset via teleoperation [60], varying the number of
demonstrations per task based on difficulty (see Table 2).

Datamodel estimation using DataMIL. Following the DataMIL recipe, we cluster the prior data at
the trajectory level and estimate influence using the metagradient-based estimator with our proposed
proxy objective. To reduce distribution shift during datamodel training, we split D;gpget into two
halves: one half is used to compute the proxy metric, while the other is included in the training
mix. After training, we select the top % of prior trajectories based on influence scores, where x is
specified per task in Table

Policy Training and Evaluation. We fine-tune a language-conditioned Octo-small checkpoint us-
ing co-training on Dy,rge¢ and the selected dataset D, with a co-training ratio o« = 0.5 for 50k
steps. Final policy is evaluated on the corresponding target tasks using a fixed number of real-world
rollouts (Table 2). To ensure fair comparisons, we fix the spatial configurations of relevant objects
across all methods. For instance, in the Franka-Pouch task, we use 17 predefined object poses
(position and orientation) for evaluation. In the more challenging Droid-Multitask setting, we re-
port both full and partial successes as part of the final success rate (e.g., a partially closed drawer
or grasping the bread/napkin), with partial completions weighted as 0.5. All real-world evaluations
were conducted using a single random seed.

F Additional Results
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Tasks Target-Only All-Data AR BR Flow STRAP DataMIL (ours)
LIBERO Evaluations
Soup-Sauce 13.2+7.6 20.0 £15.6 32.8+9.3 38 +15.3 50 + 14.4 33.2+£15.10.7 39.2+11.9
Cream-Butter 27.6 £ 6.5 35.24+13.2 39.6+10.7 41.2+14.6 47.2+10.8 20.0 £9.7 50.4 £+ 8.6
Stove-Moka 274473 24.0 £9.8 31.2+8.1 30.4 +£10.0 33.2+6.7 43.6 £5.5 40.4+8.5
Bowl-Cabinet 48.8 £6.4 65.6 £ 8.3 62.8 £3.3 73.6 £8.5 69.2 £12.2 77.2+£10.3 72.4+£5.2
Mug-Mug 0.4+£0.9 2.0 £2.44 4.8+2.3 2.0+2.8 6.4+£6.5 52+5.2 0.8+1.1
Book-Caddy 51.2 £ 8.3 58.4 £10.7 65.24+13.1 76.8 £ 7.6 69.2 +13.2 83.2+ 7.8 82.4+1.7
Mug-Pudding 2.0+2.0 24+1.7 5.6+5.9 84+22 5.8+ 3.5 10.8 +£ 6.9 4.8+3.3
Soup-Cheese 11.2+3.3 22.0£6.5 29.3 £10.4 35.2£5.2 26.8 £ 4.8 35.2+3.9 36.0 £ 6.0
Moka-Moka 5.6 +£4.3 12+8.2 4.8+2.3 152+ 4.1 7.6 5.5 6.8+1.8 12.0 £ 5.5
Mug-Microwave 27.6 £13.5 35.6+10.4 29.2+10.6 43.2+9.9 38.8+5.2 34.4 +£8.3 39.2 +£12.7
Libero-Average 21.5 27.72 30.52 36.4 35.42 34.96 37.76
OXE Evaluations
Franka-Ball 21.4 35.7 28.6 50.0 28.6 57.1 50.0
Franka-Pouch 17.6 17.6 11.8 41.2 35.3 29.4 70.6
Tiago-Sink 33.3 43.6 35.9 46.2 46.2 38.5 64.1
Droid (Drawer) 0.0 0.0 0.0 20.0 70.0 55.0 75.0
Droid (Bread) 4.2 33.3 20.8 0.0 41.7 16.7 41.7
Droid (Napkin) 25.0 45.0 40.0 45.0 40.0 35.0 65.0
Droid-Multitask 9.4 26.6 20.3 20.3 50.0 34.4 59.4
Real-Average 20.4 30.9 24.1 39.4 40.0 39.8 61.0

Table 3: Numerical results for LIBERO and OXE evaluations

MetaWorld. In Figure 3 of the main paper, we presented results on
MetaWorld with goal conditioning, where policies receive explicit goal
information provided by the simulator. Goal-conditioning is often essen-
tial in settings like LIBERO and OXE, where the target task has limited
demonstrations and generalization from other tasks is required. How-
ever, in MetaWorld, the prior dataset already includes expert demonstra-
tions for the target tasks. Therefore, an effective data selection method
should be capable of retrieving relevant examples—even in the absence
of goal information.

To test this, we repeat the MetaWorld experiments described in Ap-
pendix E. 1, but mask out goal states during both data selection and policy
training. Results averaged over all 50 tasks are shown in Figure 9. Even
without goal-conditioning, DataMIL continues to outperform the best
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Figure 9: Avg. success
on MetaWorld with no-
goal conditioning.

baseline by 10% in average success rate. However, overall performance across all methods declines
compared to the goal-conditioned setting (Figure 32), highlighting that, without goal information,
selected data from other tasks can introduce harmful interference during training.

LIBERO. Task-wise numerical success rates for the LIBERO and real-world settings are reported

in Table

Our results on LIBERO differ from those reported in the original STRAP paper on a similar setting,

and we attribute these differences to two key factors:

1. Evaluation Protocol. We suspect that the main contributing factor is likely a difference
in the evaluation protocol. In the original STRAP implementation, the authors evaluate
multiple training checkpoints and report results from the best-performing model. This can
lead to higher reported success rates. In contrast, our evaluation protocol follows a stricter
setup: we evaluate the policy only once, at the final checkpoint after training completes,

without any checkpoint selection.

2. Policy Architecture. While we use the original STRAP data retrieval code, we differ in the
policy architecture used for imitation learning. Specifically, we train with Octo [4], a large
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transformer-based diffusion policy, whereas STRAP uses a transformer-based policy from
Robomimic [26] with a Gaussian mixture head. These two models have different inductive
biases, which can lead to variation in performance across tasks. For example, when trained
solely on the five target demonstrations from the moka-moka task, Octo achieves a 6% suc-
cess rate, while Robomimic achieves 0%. However, in the mug-mug task, the Robomimic
policy reaches 38% success, while Octo performs close to 0%.

We believe that both protocol differences and model architecture contribute to the gap in reported
numbers, and since our goal is to study data selection, our results reflect a fair and consistent evalu-
ation under a unified training and assessment setup across all baselines.

G Limitations

Computational efficiency. Even with the efficient metagradient-based datamodel estimator, the
cost of estimating datamodels is several times the cost of training a model on all of the data, which
can be prohibitively expensive in many applications. A promising avenue for future work would be
to study the extent to which we can accelerate datamodel training, for example by using a scaled-
down version of the model of interest or prior dataset.

Hyperparameters. Another limitation of DataMIL (and data selection techniques for robot learn-
ing more broadly) is the existence of hyperparameters. In particular, we lack intuition around how to
make many design choices (e.g., the target dataset size, clustering hyperparameters, etc.) that affect
final performance of DataMIL. On the other hand, such intuition is typically a natural byproduct of
methods maturing and being integrated into practice, and so we expect future iterations of DataMIL
to get progressively easier to use.

Target task scale. Finally, while we showed data selection from large prior datasets, our target
datasets mostly comprised of single tasks. While these tasks show that DataMIL is a promising
method for curating training data in the robot learning setting, they may not be the large-scale set-
tings where one expects data curation to be most important. Even though the Droid-Multitask set-
ting attempts to simulate this goal, an important direction for future work is to evaluate how DataMIL
and other approaches perform on larger-scale target tasks and more expansive prior datasets.
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