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ABSTRACT

Many popular learning-rate schedules for deep neural networks combine a decay-
ing trend with local perturbations that attempt to escape saddle points and bad
local minima. We derive convergence guarantees for bandwidth-based step-sizes, a
general class of learning-rates that are allowed to vary in a banded region. This
framework includes many popular cyclic and non-monotonic step-sizes for which
no theoretical guarantees were previously known. We provide worst-case guaran-
tees for SGD on smooth non-convex problems under several bandwidth-based step
sizes, including stagewise 1/

√
t and the popular step-decay (“constant and then

drop by a constant”), which is also shown to be optimal. Moreover, we show that its
momentum variant converges as fast as SGD with the bandwidth-based step-decay
step-size. Finally, we propose novel step-size schemes in the bandwidth-based
family and verify their efficiency on several deep neural network training tasks.

1 INTRODUCTION

Stochastic gradient methods including stochastic gradient descent (SGD) (Robbins and Monro, 1951)
and its accelerated variants (e.g., SGD with momentum (Polyak, 1964; Sutskever et al., 2013)) have
become the algorithmic workhorse in much of machine learning. The step-size (learning rate) is the
most important hyper-parameter for controlling the speed at which gradient-based methods converge
to stationarity. For problems with multiple local minima, the step-size also affects which local
optimum the optimization process converges to. It therefore needs to be both well-designed and
well-tuned to make SGD and its variants effective in practice.

In the deep learning literature, cyclical step-sizes (Loshchilov and Hutter, 2017; Smith, 2017) and
non-monotonic schedules (Keskar and Saon, 2015; An et al., 2017; Seong et al., 2018; Loizou et al.,
2021) have attracted strong recent interest, with significant benefits for non-convex problems with
poor local minima or saddle points (Seong et al., 2018). Popular cyclical schedules include the cosine
step-size (cosine with restart) (Loshchilov and Hutter, 2017) and the triangular policy (Smith, 2017),
which have become the default choices in some deep learning libraries, e.g., PyTorch and TensorFlow
(cf. lr scheduler.CyclicLR and CosineAnnealingLR). However, non-monotonic policies are much
more complex to analyze than decaying ones, and theoretical results for these non-monotonic policies
are scarce. This motivates us to focus on a bandwidth step-size framework, in which

mδ(t) ≤ ηt ≤Mδ(t) (1)

for some boundary function δ(t) and positive constants m and M . This framework allows for non-
monotonic step-sizes and covers most of the situations discussed above. In particular, it includes the
cosine (Loshchilov and Hutter, 2017), triangular (Smith, 2017), sine wave (An et al., 2017) step-sizes
as special cases. The framework provides a uniform convergence rate guarantee for all step-size
policies which remain in the band (1). This gives a lot of freedom to design novel step-sizes schedules
with improved practical performance without loosing track of their theoretical convergence guarantee.

The generic bandwidth framework has recently been proposed by Wang and Yuan (2021), but they
only analyzed strongly convex problems. We believe that more significant potential lies in the
non-convex regime. For non-convex problems, non-monotonic step-sizes have distinct advantages,
helping iterates to escape local minima and producing final iterates of high quality. In the paper, we
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demonstrate this point on both a simple toy example and on large-scale neural network training tasks.
Our main contribution is a sequence of non-asymptotic convergence results for the bandwidth step-
size on non-convex optimization problems, based on the popular “constant and then drop” step-size
schedules (Krizhevsky et al., 2012; He et al., 2016; Hazan and Kale, 2014; Ge et al., 2019; Wang
et al., 2021). This allows non-monotonic variations both within each (inner) stage and between stages.

1.1 CONTRIBUTIONS

Inspired by the strong potential of non-monotonic step-size schedules demonstrated above, we extend
the bandwidth-based step-size framework to “constant and then drop” (multi-stage) profiles, where
the bands stay constant throughout each stage and drops between stages. We provide convergence
guarantees for both SGD and its momentum variant (SGDM) on non-convex problems. Specifically,

• We establish worst-case theoretical guarantees for SGD with bandwidth step-size on smooth
nonconvex problems. We (i) derive an optimal rate for SGD under a bandwidth step-size
with δ(t) = 1/

√
t; (ii) and achieve optimal and near-optimal rates for step-decay (constant

and then drop by a constant), improving the results by Wang et al. (2021).

• We provide worst-case theoretical guarantees for SGDM with bandwidth-based step-decay
step-size in the smooth non-convex setting. To the best of our knowledge, these are the
first results that provide optimal (Theorem 4.3) and near-optimal (Theorem 4.2) results
for momentum with step-decay step-sizes. Moreover, our results significantly improve the
convergence results from Liu et al. (2020) (see Remark 4.4).

• Our analysis results also provide state-of-the-art theoretical guarantees for co-
sine (Loshchilov and Hutter, 2017) and triangular (Smith, 2017) step-sizes if their boundary
functions are within our bands. Especially, we improve the result of Li et al. (2021) for
cosine step-size and achieve a state-of-art rate (see Remark 3.4). Moreover, our results first
provide the convergence guarantees for triangular step-size (Smith, 2017).

• We propose novel, possibly non-monotonic, step-size schedules (e.g., step-decay with linear-
mode and cosine-mode) based on the bandwidth-based framework and demonstrate their
efficacy on several large-scale neural network training tasks.

1.2 RELATED WORK

This subsection reviews the theoretical development of the SGD algorithm and its momentum variant
in the smooth non-convex setting, with a special focus on different step-size policies.

SGD for nonconvex problems The first non-asymptotic convergence of SGD to a stationary point
of a general smooth non-convex function was established in Ghadimi and Lan (2013). The authors
proved that a constant step-size O(1/

√
T ) attains a convergence rate of O(1/

√
T ), where T is the

iteration budget. To the best of our knowledge, this rate is not improvable and was proven to be
tight up to a constant without additional assumptions (Drori and Shamir, 2020). For the 1/

√
t decay

step-size, an O(lnT/
√
T ) rate can be easily obtained from (Ghadimi and Lan, 2013). This rate can

be improved to the optimal by selecting a random iterate using weights proportional to the inverse of
the step-size (Wang et al., 2021). The sampling rule in (Wang et al., 2021) depends on the step-size
and is easily applicable to different step-size policies. Thus, in this paper, we choose a similar
sampling rule as (Wang et al., 2021) to favor the later iterates when selecting the output for SGD and
its momentum variant.

Step-decay step-sizes Recently, the theoretical performance of step-decay or stagewise strategies
has attracted an increasing attention due to their excellent practical performance (Yuan et al., 2019;
Ge et al., 2019; Chen et al., 2019; Li et al., 2021; Wang et al., 2021). For a class of least-squares
problems, Ge et al. (2019) established a near-optimalO(lnT/T ) rate for the step-decay step-size (cut
by 2 every T/ log2(T ) iterates) and showed that step-decay can perform better than the polynomial
decay step-size. Stochastic optimization methods with stagewise step-sizes decaying as 1/t were
analyzed in Chen et al. (2019). A near-optimal rate for the continuous version of step-decay, called
exp-decay, as well as for cosine decay step-sizes under the Polyak-Lójasiewicz (PL) condition and
a general smooth assumption were established in Li et al. (2021). However, in the smooth case, to
achieve such results for exponential and cosine decay step-sizes, the initial step-size is required to
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be bounded by O(1/
√
T ). This is obviously impractical when the number of iterations T is large.

Near-optimal rates (up to lnT ) of SGD with step-decay step-size in several general settings including
strongly convex, convex and smooth (non-convex) problems were proved in Wang et al. (2021).
They also removed the restriction on the initial step-size for exponential decay step-sizes. Empirical
evidences have been given in (Wang and Yuan, 2021) that bandwidth-based strategies can improve
the performance of the step-decay step-size on some large scale neural network tasks. However, no
theoretical guarantees for non-convex problems were given.

SGD with momentum on nonconvex problems The momentum variant of SGD (SGDM) has been
widely used in deep neural networks (Krizhevsky et al., 2012; Sutskever et al., 2013; He et al., 2016;
Zagoruyko and Komodakis, 2016). Due to its practical success on neural networks, its theoretical
performance is now attracting a lot of interest, especially for nonconvex problems (Yan et al., 2018;
Gadat et al., 2018; Chen et al., 2019; Gitman et al., 2019; Mai and Johansson, 2020; Liu et al., 2020;
Defazio, 2020). Under the assumption of bounded gradients, Yan et al. (2018) proposed a unified
analysis framework for stochastic momentum methods and proved an optimal O(1/

√
T ) rate under

constant step-sizes. A similar result for the Nesterov-accelerated variant was established in Ghadimi
and Lan (2016). However, studies related to the multi-stage performance of SGD with momentum is
lacking and far from being complete. Reference Chen et al. (2019) considers a momentum method
with a stagewise step-size, but the method is a proximal point algorithm with extra averaging between
stages, and not the widely used momentum SGD considered here. More recently, Liu et al. (2020)
established the convergence for multi-stage SGDM and provided empirical evidence to show that
multi-stage SGDM is faster. However, their results require an inverse relationship between stage
length and step-size which limits the initial stage length or step-size. A detailed comparison with
(Liu et al., 2020) will be given in Section 4 (see Remark 4.4).

Organization: The rest of this paper is organized as follows. Notations and basic definitions are
introduced in Section 2. Our novel theoretical results for SGD and its momentum variant (SGDM)
under bandwidth-based step-sizes are introduced in Sections 3 and 4, respectively. Numerical
experiments are presented and reported in Section 5. Finally, Section 6 concludes the paper.

2 PROBLEM SET-UP

We study the following, possibly non-convex, stochastic optimization problem

min
x∈Rd

f(x) = Eξ∼Ξ[f(x; ξ)] (2)

where ξ is a random variable drawn from some (unknown) probability distribution Ξ and f(x; ξ) is
the instantaneous loss function over the variable x ∈ Rd. We consider stochastic gradient methods
that generate iterates xt according to

xt+1 = xt − ηtdt (3)

where ηt is the step-size and dt the search direction (e.g., dt = ∇f(xt; ξ) for SGD). We assume that
there are constants m > 0 and M ≥ m, and two functions n(t) and δ(t): R→ R such that such that

ηt = n(t)δ(t), ∀ t ≥ 1,

where n(t) ∈ [m,M ] and δ(t) is monotonically decreasing function satisfying δ(1) = 1. Note
that even though the boundary function δ(t) is monotonic, the step-size itself is not restricted to be.
Throughout the paper, we make the following assumptions:
Assumption 1. The loss function f satisfies ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖ for every x, y ∈ dom (f).
Assumption 2. For any input vector x, the stochastic gradient oracle O returns a vector g such that
(a) E[‖g −∇f(x)‖2] ≤ ρ ‖∇f(x)‖2 + σ where ρ ≥ 0 and σ ≥ 0; (b) E[‖g‖2] ≤ G2.

3 NON-ASYMPTOTIC CONVERGENCE OF SGD WITH BANDWIDTH-BASED
STEP-SIZE

In this section, we provide the first non-asymptotic convergence guarantees for SGD with bandwidth-
based step-sizes on smooth non-convex problems. The results consider a general family of bandwidth-
based step-sizes which includes the classical multi-stage SGD as a special case.
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Algorithm 1 SGD with Bandwidth-based Step-Size

1: Input: initial point x1
1, # iterations T , # stages N , stage length {St}Nt=1 such that

∑N
t=1 St = T ,

the sequences {δ(t)}Nt=1 and
{
{n(t, i)}St

i=1

}N
t=1
∈ [m,M ] with 0 < m ≤M

2: for t = 1 : N do
3: for i = 1 : St do
4: Query a stochastic gradient oracleO at xti to get a vector gti such that E[gti | F ti ] = ∇f(xti)

1

5: Update step-size ηti = n(t, i)δ(t)
6: xti+1 = xti − ηtigti
7: end for
8: xt+1

1 = xtSt+1
9: end for

10: Return: x̂T is uniformly chosen from
{
xt

∗

1 , x
t∗

2 , · · · , xt
∗

St∗

}
, where the integer t∗ is chosen from

{1, 2, · · · , N} with probability Pt = δ−1(t)/(
∑N
l=1 δ

−1(l))

Algorithm 1 details our bandwidth-based version of the popular “constant and then drop” policy for
SGD. Here, the boundary function δ(t) is adjusted in an outer stage, and the length of each stage St is
allowed to vary. Similar to Wang et al. (2021), the output distribution depends on the inverse of δ(t),
hence puts more weight on the final iterates. By considering specific combinations of δ(t) and St,
this framework allows us to analyze several important multi-stage SGD algorithms, including those
with constant, polynomial-decay and step-decay step-sizes. For example, we consider the step-decay
step-size by letting n(t, i) = m and δ(t) = 1/αt−1 where m denotes its initial step-size and α > 1.
Many interesting results on polynomial-decay step-size (e.g., δ(t) = 1/

√
t, we called it 1/

√
t-band)

are given in Appendix A.

3.1 CONVERGENCE UNDER BANDWIDTH STEP-DECAY STEP-SIZE

Another important step-size is Step-Decay (“constant and then drop by a constant”), which is popular
and widely used in practice, e.g. for neural network training (Krizhevsky et al., 2012; He et al., 2016).
In this subsection, we analyze bandwidth step-sizes that include step-decay as a special case.

For Step-Decay, the stage length St is typically a hyper-parameter selected by experience. We first
analyze a bandwidth version of the algorithm analyzed in [Theorem 3.2](Wang et al., 2021), namely
Algorithm 1 with N = b(logα T )/2c outer loops where α > 1, each with a constant length of
St = d2T/ logα T e. The logarithmic dependence of N on T leads to a small number of stages in
practice, and was demonstrated to perform well in deep neural network tasks (Wang et al., 2021).
Theorem 3.1. Under Assumptions 1 and 2(a), and assume that there exists a constant ∆0 > 0 such
that E[f(xt1)− f∗] ≤ ∆0 for each t ≥ 1 where f∗ = min f(x), if we run Algorithm 1 with T > α2,
ηti ≤ 1/((ρ + 1)L), N = b(logα T )/2c, St = d2T/ logα T e, and δ(t) = 1/αt−1 for 1 ≤ t ≤ N ,
where α > 1 then

E[‖∇f(x̂T )‖2] ≤
(

∆0

2αm
+
αM2Lσ

2m

)
(α− 1)

lnα
· lnT√

T − α
.

Theorem 3.1 establishes a near-optimal (up to lnT ) rate for the step-decay bandwidth scheme which
matches the result achieved at its boundaries i.e., ηti = mδ(t) or ηti = Mδ(t) (Wang et al., 2021). As
the next theorem shows, this guarantee can be improved by appropriate tuning of the stage length St.
Remark 3.2. (Justification of uniformly bounds on the function values) In Theorem 3.1, we
require that the expectation of the function value at each outer iterate E[f(xt1)] is uniformly upper
bounded. As shown by Shi et al. (2020), the function values at the iterates of SGD can be controlled
(bounded) by the initial state provided the step-size is bounded by 1/L. So the assumption is fair if
the initial state is settled. Nevertheless, this assumption (or its stronger version that the objective
function is bounded) is commonly used or implied in optimization (Hazan et al., 2015; Xu et al.,
2019b; 2020; 2019a) and statistic machine learning (Vapnik, 1998; Cortes et al., 2019) , and it has
never been violated in our numerical experiments.

1We use F t
i to denote σ-algebra formed by all the random information before current iterate xti and xti ∈ F t

i .
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Theorem 3.3. Under Assumptions 1 and 2(a), and assume that there exists a constant ∆0 > 0 such
that E[f(xt1)− f∗] ≤ ∆0 for each t ≥ 1, if we run Algorithm 1 with T > α2, ηti ≤ 1/((ρ+ 1)L),
S0 =

√
T , St = dS0α

(t−1)e and δ(t) = 1/αt−1 where α > 1, then

E[‖∇f(x̂T )‖2] ≤ α+ 1

α− 1

(
2∆0

m
+
M2Lσ

m

)
1√
T

+O
(

1

T

)
.

Optimal rate for step-decay step-size The theorem shows that if the stage length St increases
exponentially, and the length of the first stage is set appropriately, then we can achieve an optimal
O(1/

√
T ) rate for the bandwidth step-decay step-size in the non-convex case. If M = m, which

means that the bandwidth scheme degenerates to the step-decay type step-size, Theorem 3.3 removes
the logarithmic term present in the results of Wang et al. (2021). To the best of our knowledge, this is
the first result that demonstrates that vanilla SGD with step-decay step-sizes can achieve the optimal
rate for general non-convex problems. The numerical performance of the two step-size schedules in
Theorems 3.1 and 3.3 are reported in Figure 4.

Benefits of Theorems 3.5 vs the references of Hazan and Kale (2014); Yuan et al. (2019) Another
commonly used step-decay scheme in theory which halves the step-size after each stage and then
doubles the length of each stage (e.g., (Hazan and Kale, 2014; Yuan et al., 2019)). In Hazan and
Kale (2014), which considers strongly convex problem, the initial stage is very short, S1 = 4, while
the analysis in Yuan et al. (2019) for PL functions use an inverse relation between stage length and
step-size, which means that a longer initial stage length requires a smaller stepsize. In contrast to
these references, Theorem 3.3 considers a step-decay with a long first stage, S1 = d

√
T e, which

allows us to benefit from a large constant step-size for more iterations.

Remark 3.4. (Guarantees for cyclical step-sizes) In (Loshchilov and Hutter, 2017), the authors
decay the step-size with cosine annealing and use ηtmin < ηtmax to control the range of the step-size.
If mδ(t) ≤ ηtmin, η

t
max ≤Mδ(t), then our results provide convergence guarantees for their step-size.

To achieve a near-optimal rate, Li et al. (2021, Theorem 4) need to use an initial step-size that is
smaller than O(1/

√
T ) which is obviously impractical. In contrast, we allow the cosine step-size to

start from a relatively large step-size and then gradually decay (see Theorem 3.1) and also improve
the convergence rate to be optimal (Theorem 3.3).

A triangular cyclical step-size is proposed by Smith (2017) which is varied around the two boundaries
that drop by a constant after a few iterations. Our analysis first provides theoretical guarantees (e.g.,
Theorems 3.1 and 3.3) also for this step-size. The details are shown in Appendix D.2.
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Figure 1: Cosine step-size (left) and triangular step-size (right)

The bandwidth step-sizes we consider above are independent on the random information. In recent
years, some non-monotonic step-sizes have been proposed that are dependent on the current random
information, e.g., the trust-region-ish algorithm (Curtis et al., 2019) and stochastic Polayk step-
size (Loizou et al., 2021). We provide some interesting results for these step-sizes (see Lemma B.2 in
Appendix B).

4 NON-ASYMPTOTIC CONVERGENCE OF SGDM UNDER BANDWIDTH-BASED
STEP-SIZE

In this section, we establish the first non-asymptotic convergence properties of SGD with momentum
(SGDM) under the bandwidth-based step-size on smooth nonconvex problems.
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In this scheme, the inner iterations in Step 6 of Algorithm 1 are essentially replaced by

vti+1 = βvti + (1− β)gti (4)

xti+1 = xti − ηtivti+1 (5)

for β ∈ (0, 1). We refer to Algorithm 2 in Appendix C for a more detailed description.

As in many studies of momentum-methods (e.g. Ghadimi et al. (2015); Yan et al. (2018); Liu et al.
(2020); Mai and Johansson (2020)), we establish an iterate relationship of the form E[W t+1] ≤
E[W t] − c0ηE[et] + c1η

2, where W t is a Lyapunov function, et is a performance measure (here,
et = ‖∇f(·)‖2), η is the step-size and c0 and c1 are constants. However, due to the time-dependent
and possibly non-monotonic bandwidth-based step-size, we cannot use the Lyapunov functions
suggested in Yan et al. (2018); Liu et al. (2020) but rely on the following non-trivial construction:
Lemma 4.1. Suppose that Assumption 1 and Assumption 2(b) hold. Let zti = (1−β)−1(xti−βxti−1)
and assume that there exists a constant ∆0 such that E[f(xti) − f∗] ≤ ∆0 for t, i ≥ 1 and the
step-size in each stage is monotonically decreasing. Define the function W t

i+1

W t
i+1 =

f(zti+1)− f∗

ηti
+
r
∥∥xti+1 − xti

∥∥2

ηti
+ 2r[f(xti+1)− f∗],

where r = βL
2(1−β2)(1−β)2 . Then, if ηti ≤ 1/L, for any t and i ≥ 2, we have

E[W t
i+1 | F ti ] ≤W t

i +A1

(
1

ηti
− 1

ηti−1

)
−
∥∥∇f(xti)

∥∥2
+ ηti ·B1G

2. (6)

where A1 = β∆0

1−β + ∆z + rG2

L2 , B1 = r(1− β)(2− β) + L
2(1−β)2 , and ∆z = ∆0

1−β + βG2

2(1−β)2L .

Note that even though the step-size is assumed to be monotonically decreasing in each stage, it may
be increased between stages, leading to a globally non-monotonic step-size. The proposed bandwidth-
based step-sizes (e.g., step-decay with linear or cosine modes) in the numerical experiments and the
cosine annealing policy proposed in (Loshchilov and Hutter, 2017) all satisfy this condition. Note
that, unlike (Mai and Johansson, 2020; Liu et al., 2020), the momentum parameter β does not rely on
the step-size, but can be chosen freely in the interval (0, 1). In particular, our analysis supports the
common choice of β = 0.9 used as default in many deep learning libraries (Krizhevsky et al., 2012;
He et al., 2016). Similar to Remark 3.2, the function value of the iterates for momentum can also be
controlled (bounded) by the initial state given ηti ≤ 1/L; see (Shi, 2021). Therefore, we believe our
assumptions are reasonable.

If we restrict the analysis to a single stage, N = 1, the lemma allows to recover the optimal rate for
SGDM under the step-size ηti = η0/

√
T (Yan et al., 2018; Mai and Johansson, 2020; Liu et al., 2020;

Defazio, 2020) and to prove, for the first time, an optimal O(1/
√
T ) rate for SGDM under the 1/

√
i

stepsize. These results are formalized in Appendix D.1.

4.1 CONVERGENCE OF SGDM FOR BANDWIDTH STEP-DECAY STEP-SIZE

We now show the convergence complexity of SGDM with the bandwidth step-decay step-size. Here
step-decay means that the bandwidth limits are divided by a constant after some iterations.

We first consider the total number of iterations T to be given, the stage length St to be constant, and
the number of stages N as a hyper-parameter.
Theorem 4.2. Assume the same setting as Lemma 4.1. If given the total number of iterations T ≥ 1,
N ≥ 1, St = S = dT/Ne, δ(t) = 1/αt−1 for each 1 ≤ t ≤ N and α > 1, then

E[‖∇f(x̂T )‖2] ≤ W 1
1 ·N

TαN−1
+ (αC0 + C2) · N

T
+

(∆z + C1)

m
· Nα

N

T
+MB1G

2 · N

αN−1
(7)

where C0 = r(G
2

L + 2∆0), C1 = A1 + ∆z + ∆0

1−β , and C2 = C0 + A2G
2, A2 = 1 + β

2(1−β)2 ,
and W 1

1 , A1, B1, ∆z , and r are defined in Lemma 4.1. Furthermore, if N = b(logα T )/2c and
St = d2T/ logα T e for each 1 ≤ t ≤ N where α > 1, we have

E[‖∇f(x̂T )‖2] ≤ α2W 1
1

2 lnα

lnT

T 3/2
+

(αC0 + C2)

2 lnα

lnT

T
+

(∆z + C1)

2m lnα

lnT√
T

+
α2MB1G

2

2 lnα

lnT√
T
. (8)
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When N = 1, m ≤ ηti ≤ M and the bound (7) reduces to E[‖∇f(x̂T )‖2] ≤ O( 1
T + 1

mT + M).
If, in particular, m and M are of order O(1/

√
T ), then we can derive the optimal convergence for

constant bandwidth step-sizes, comparable to the literature for constant step-sizes (Yan et al., 2018;
Liu et al., 2020; Mai and Johansson, 2020; Defazio, 2020).

It is not easy to explicitly minimize the right-hand-side of (7) with respect to N . However, N =
b(logα T )/2c attempts to balance the last two terms and appears to be a good choice in practice. The
theorem (see (8) establishes an O(lnT/

√
T ) rate under step-decay bandwidth step-size. If M = m,

which means that the step-size follows the boundary functions, we get a near-optimal (up to lnT )
rate for stochastic momentum with a step-decay step-size on non-convex problems. We believe that
this is the first near-optimal rate for stochastic momentum with step-decay step-size. The next result
shows how an exponentially increasing stage-length allow to sharpen this guarantee even further.
Theorem 4.3. Suppose the same setting as Lemma 4.1. Consider Algorithm 2, if the functions
δ(t) = 1/αt−1 with α > 1, St = dS0α

t−1e with S0 =
√
T , we have

E[‖∇f(x̂T )‖2] ≤ O
(
W 1

1

T 3/2
+
C0

T
+

∆z

m
√
T

+
C1

m
√
T

+
MB1G

2

√
T

)
.

The stage length St in Theorem 4.3 increases exponentially from S1 = d
√
T e over N = blogα((α−

1)
√
T + 1)c stages, resulting in an O(1/

√
T ) optimal rate for SGDM under the bandwidth-based

step-decay scheme. This removes the lnT term of Theorem 8. To the best of our knowledge, this
work is the first that is able to achieve an optimal rate for stochastic momentum with step-decay
step-size in a general non-convex setting.
Remark 4.4. (Better convergence than Liu et al. (2020)) We notice that reference Liu et al. (2020)
analyzes multi-stage momentum and obtains the bound

E[‖∇f(x̃)‖2] ≤ O

(
f(x1)− f∗

N
+
σL
∑N
t=1 η

t

N

)
. (9)

Here, x̃ is a uniformly sampled iterate (unlike our results, which favour later iterates) and N is the
number of stages. The result uses a time-varying momentum parameter, whose value is determined
by the step-size ηt, and also assumes an inverse relationship between the step-size and stage-length,
i.e. that ηtSt is constant. Hence, N is of O(logα T ) and the convergence guarantee in (9) is of
O(1/ logα T ), which is far worse than the rate of Theorem 4.2 and the optimal rate of Theorem 4.3.

5 NUMERICAL EXPERIMENTS

In this section, we design and evaluate several specific step-size policies that belong to the bandwidth-
based family. We consider SGD with and without momentum, and compare their performances on
neural network training tasks on the CIFAR10 and CIFAR100 datasets.

5.1 BASELINES AND PARAMETER SELECTION FOR THE BANDWIDTH STEP-SIZES

The bandwidth framework allows for a unified and streamlined (worst-case) analysis of all step-size
policies that lie in the corresponding band. Within this family, the band gives a lot of freedom
in crating innovative step-size policies with additional advantages. In particular, we will design a
number of step-size policies that add periodic perturbations to a baseline step-size, attempting to both
escape bad local minima and to improve the local convergence properties.

The step-decay bandwidth step-sizes divide the total number of iterations into a small number of
stages, in which the boundary functions are constant. The width of the band are determined by the
constants m and M . We will explore step-sizes that add a decreasing perturbation within each stage,
starting at the upper band at the beginning of the stage, ending at the lower bound at the end of the
stage, and decaying as 1/i, 1/

√
i, linearly or according to a cosine function. As baseline, we consider

the step-decay step-size that follows the lower boundary function mδ(t). To use the same maximum
value for the bandwidth step-sizes, we do not add any perturbation in the first stage; cf. Figure 5.

For the 1/
√
t-band, on the other hand, stages correspond to epochs and perturbing the step-size

within a stage would be too frequent and lead to bias. Rather, we choose to add similar perturbations

7
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Figure 2: The scatter plots (left); function value distribution
around global minima (middle)

Table 1: The percentage (%) of the final
iterates (10000 runs) close to each local
minima

constant step-decay
small� large� baseline� linear�

1 29.61 0.12 0.40 0.14
2 24.66 3.45 6.89 2.95
3 25.13 3.28 7.55 2.99
4 20.60 93.15 85.16 93.92

as for the step-decay band, but adjust the perturbation between stages. In our experiments, the two
step-size policies perform roughly the same number of periods of perturbations over the training set.
As baseline, we consider the step-size ηti = m/

√
t. In all experiments, the hyper-parameters (e.g., m

and M ) have been determined using grid search, see Section E.2 for details.

5.2 NON-MONOTONIC SCHEDULE HELPS TO ESCAPE LOCAL MINIMA

To demonstrate the potential benefits of bandwidth-based non-monotonic step-size schedules, we
consider the toy example (see Section E.3 for details and further results) from (Shi et al., 2020),
which is non-convex and has four local minima2; see Figure 2. We then compare the final iterates of
SGD with constant step-sizes (both large and small), step-decay, and a bandwidth-based step-decay
step size which we call linear-mode (illustrated in Figure 5). As shown in Figure 2, a large constant
step-size more easily escapes the bad local minima to approach the global minimum at (0.7,−0.7)
than a small constant step-size. However, with a large constant step-size, the final iterates are scattered
and end up far from the global minimum, which also has been observed in Figure 5 of (Shi et al.,
2020). Therefore, we have to reduce the step-size at some points to reduce the error. This is exactly
the intuition of step-decay step-size. As shown in Figure 2, the scatter plots of SGD with step-decay
(red) and step-decay with linear-mode (green) are more concentrated around the global minimum
than the constant step-sizes.

To quantify the ability of different step-sizes to escape the local minima, Table 1 reports the percentage
of the final iterates under the different step-size policies that are close to each minima. We can see
that the ability of the step-decay policy (named baseline) to escape the local minima is slightly worse
than the large constant step-size, but Figure 2 shows that the variance of the near-optimal iterates is
reduced significantly. In a similar way, we can see that linear-mode not only improves the ability to
escape the local minima, but also produces final iterates that are more concentrated around the global
optimum. Hence, it appears (at least in this example) that non-monotonic step-size schedules allow
SGD to escape local minima and produce final iterates of high quality.

5.3 NUMERICAL RESULTS ON CIFAR10 AND CIFAR100

To illustrate the practical performance of the bandwidth-based step-sizes, we choose the well-
known CIFAR10 and CIFAR100 (Krizhevsky, 2009) image classification datasets. We consider the
benchmark experiments of CIFAR10 on ResNet-18 (He et al., 2016) and CIFAR100 on a 28×10 wide
residual network (WRN-28-10) (Zagoruyko and Komodakis, 2016), respectively. All the experiments
are repeated 5 times to eliminate the influence of randomness.

We begin by evaluating our step-sizes for SGD. The left column of Figure 3 present the results
of the 1/

√
t-band step-sizes on the two datasets. As shown in Figure 5, these stepsizes are all

non-monotonic. The sudden increase in the step-size leads to a corresponding cliff-like reduction
in accuracy followed by a recovery phase that consistently ends up at a better performance than in
the previous stage. The three 1/

√
t-band step-sizes achieve significant improvements compared to

their baseline (ηti = m/
√
t), in terms of both test loss and test accuracy. Moreover, the linear-mode

performs the best compared to other polynomial decaying modes. Then, the results of SGD with
step-decay band (described in Section 5.1 or see Figure 5 in Appendix) on CIFAR10 and CIFAR100

2Notation: 1 − 3 denote the local minima at top left, top right and bottom left, respectively; and 4 denotes
the global minimum at bottom right.
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Figure 3: The test accuracy of 1/
√
t-band (left column), Step-decay-band for SGD (middle column), step-decay

band for SGDM (right column)

are given in Figure 3 (middle column), respectively. At the final stage, the bandwidth step-sizes
improve both test loss (see Figures 6 and 7 in Appendix) and test accuracy compared to the baseline.
In particular, the cosine-mode performs the best on this problem. In the second stage, baseline
methods have a sharp boost. Our guess is that the noise accumulates quickly under a relatively large
constant step-size. But this phenomenon is only temporary. When we drop the step-size in the third
stage, the performance improves.

Next, we evaluate the performance of step-decay bandwidth step-sizes on SGDM. The results are
reported in Figure 3 (right column). The first observation from Figure 3 (right column) is that the
step-decay bandwidth step-sizes also work well for SGDM, and that again, the cosine-mode performs
better than the others. Another interesting observation is that the performance of vanilla SGD with
cosine-mode (red) in Figure 3 is comparable to (even better than) SGDM with the baseline step-decay
step-size (black) in Figure 3. A similar conclusion can also be made on CIFAR100.

6 CONCLUSION

We have studied a general family of bandwidth step-sizes for non-convex optimization. The family
specifies a globally decaying band in which the actual step-size is allowed to vary, and includes
both stage-wise and continuously decaying step-size policies as special cases. We have derived
convergence rate guarantees for SGD and SGDM under all step-size policies in two important classes
of bandwidth step-sizes (1/

√
t and step-decay), some of which are optimal. Our results provide

theoretical guarantees for several popular “cyclical” step-sizes (Loshchilov and Hutter, 2017; Smith,
2017), as long as they are tuned to lie within our bands. We have also designed a number of novel
step-sizes that add periodic perturbations to the global trend in order to escape bad local minima and
to improve the local convergence properties. These step-sizes were shown to have superior practical
performance in neural network training tasks on the CIFAR data set.

In the analysis of SGDM, we assume that the stochastic gradient is bounded (see Assumption 2(b)).
It is interesting to see how to relax this assumption in some special cases, for example, when the
step-size is constant throughout each stage. It would also be interesting to see if the bandwidth
framework could be specialized to a more narrow class of step-sizes, for which we can provide even
stronger convergence rates.
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A CONVERGENCE FOR BANDWIDTH POLYNOMIAL-DECAY STEP-SIZES

Our first more specific result considers the 1/
√
t bandwidth step-size with fixed stage length.

Theorem A.1. Under Assumptions 1 and 2(a), and assume that there exists a constant ∆0 > 0
such that E[f(xt1)− f∗] ≤ ∆0 for each t ≥ 1. If the step-size ηti ≤ 1/((ρ+ 1)L), the stage length
St = S ≥ 1, and the boundary function δ(t) = 1/

√
t for each 1 ≤ t ≤ N , we have

E[‖∇f(x̂T )‖2] ≤ 3∆0

m
· 1√

ST
+

3M2Lσ

2m
·
√
S

T
. (10)

Theorem A.1 shows how multi-stage SGD with polynomial-decay bandwidth step-sizes converges to
a stationary point. In the extreme case that S = 1, the step-size reduces to m/

√
t ≤ ηt1 ≤M/

√
t and

our result is comparable to the non-asymptotic optimal rate derived for m = M = η0 in (Wang et al.,
2021, Theorem 3.5).

Multi-stage vs traditional 1/
√
t step-size (S = 1) In general, during the initial iterations when the

first term of (10) dominates the error bound, the multi-stage technique can accelerate the convergence
by a larger step-size and longer inner-loop S. However, a large S will make the error bound worse
when the noise term begins to dominate the bound. The next theorem analyzes an algorithm with a
decreasing stage length.

Theorem A.2. Under Assumptions 1 and 2(a),and assume that there exists a constant ∆0 > 0
such that E[f(xt1)− f∗] ≤ ∆0 for each t ≥ 1. If the step-size ηti ≤ 1/((ρ+ 1)L), the stage length
St = dS0/

√
te with S0 =

√
T , and δ(t) = 1/

√
t for each 1 ≤ t ≤ N , we have

E[‖∇f(x̂T )‖2] ≤
(

2∆0 +
M2Lσ

3− 2
√

2

)
· 1

m
√
T
.

Schedule of Theorem A.2 vs Chen et al. (2019) The theorem establishes an optimal rate for multi-
stage SGD with 1/

√
t bandwidth step-size. Note that Chen et al. (2019) also analyzes a stagewise

algorithm with varying stage length, but their step-size decays as 1/t and stage length increases with
t. An important novelty with our result is that it uses a long initial stage, S1 =

√
T while a large

stage length in Chen et al. (2019) requires a small initial step-size (of O(1/
√
T )). Figure 4 illustrates

the performance of different step-size policies: 1) 1/
√
t with St = 1; 2) 1/

√
t with St = dn/be

where n is total sample size and b is the batch size; 3) 1/
√
t with time-decreasing St = dS0/

√
te and

S0 =
√
T ; 4) and 1/t step-size with St = S0t and S0 = 12 from Chen et al. (2019). We can see that

the step-size policies proposed in Theorem A.2 are more stable and perform the best.

For completeness, we also compare the performance of step-size schedules proposed by Theorems
3.1 and 3.3 in Figure 4 (right). Although step-decay with time-increasing stage length has a superior
theoretical convergence guarantee, constant stage length performs better in this particular example.
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B PROOFS OF LEMMA AND THEOREMS IN SECTION 3

Lemma B.1. Suppose that Assumption 1 and Assumption 2(a) hold. If we run the Algorithm 1 with
T > 1 and ηti ≤ 1/((ρ+ 1)L), we have

E[‖∇f(x̂T )‖2] ≤ 1
N∑
t=1

Stδ
−1(t)

(
N∑
t=1

2(E[f(xt1)]− E[f(xt+1
1 )])

mδ(t)2
+
M2Lσ

m
T

)
. (11)

Proof. (of Lemma B.1) The L-smoothness of f (see Assumption 1), i.e., ‖∇f(x)−∇f(y)‖ ≤
L ‖x− y‖ for all x, y ∈ dom(f) implies that

f(x) + 〈∇f(x), y − x〉 − L

2
‖x− y‖2 ≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+

L

2
‖x− y‖2 . (12)

Applying the L-smoothness property of f and recalling Algorithm 1 at current iterate xti, we have

f(xti+1) ≤ f(xti) +
〈
∇f(xti), x

t
i+1 − xti

〉
+
L

2

∥∥xti+1 − xti
∥∥2

≤ f(xti)− ηti
〈
∇f(xti), g

t
i

〉
+

(ηti)
2L

2

∥∥gti∥∥2
.

Taking conditional expectation of F ti on the above inequality and due to the unbiased estimator gti
such that E[gti | F ti ] = ∇f(xti), we obtain that

E[f(xti+1)|F ti ] ≤ f(xti)− ηti
∥∥∇f(xti)

∥∥2
+

(ηti)
2L

2
E[
∥∥gti∥∥2 |F ti ]. (13)

By Assumption 2(a) that E[‖gti −∇f(xti)‖
2 | F ti ] ≤ ρ ‖∇f(xti)‖

2
+ σ, we have

E[
∥∥gti∥∥2 | F ti ] = E[

∥∥gti −∇f(xti) +∇f(xti)
∥∥2

]

= E[
∥∥gti −∇f(xti)

∥∥2
] + E[

∥∥∇f(xti)
∥∥2

] ≤ (ρ+ 1)
∥∥∇f(xti)

∥∥2
+ σ. (14)

Then incorporating the above inequality into (13) gives

E[f(xti+1)|F ti ] ≤ f(xti) +

(
−ηti +

(ηti)
2L(ρ+ 1)

2

)∥∥∇f(xti)
∥∥2

+
(ηti)

2Lσ

2
. (15)

If step-size ηti ≤ 1/((ρ+ 1)L), we have −ηti +
(ηti)2L(ρ+1)

2 ≤ −ηti/2. For any t ≥ 1, the inequality
(15) can be estimated as:

ηti
2

∥∥∇f(xti)
∥∥2 ≤ f(xti)− E[f(xti+1)|F ti ] +

(ηti)
2Lσ

2
. (16)

Applying the assumption of step-size that ηti = n(t, i)δ(t) with m ≤ n(t, i) ≤ M for all t ∈
{1, 2, · · · , N} to (16) gives

mδ(t)

2

∥∥∇f(xti)
∥∥2 ≤ f(xti)− E[f(xti+1)|F ti ] +

M2Lσ

2
δ(t)2, (17)

and dividing mδ(t)2/2 into the both sides, we have

δ−1(t)
∥∥∇f(xti)

∥∥2 ≤
2
(
f(xti)− E[f(xti+1)|F ti ]

)
mδ(t)2

+
M2Lσ

m
. (18)

Recalling the output x̂T of Algorithm 1 and then taking expectation, we have

E[‖∇f(x̂T )‖2] =
1∑N

t=1 Stδ
−1(t)

N∑
t=1

δ−1(t) ·
St∑
i=1

E
[∥∥∇f(xti)

∥∥2
]
. (19)
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Applying (18) recursively from i = 1 to St and using the fact that xt+1
1 = xtSt+1, the sum of (19) for

t ≥ 1 can be estimated as

N∑
t=1

δ−1(t)

St∑
i=1

E
[∥∥∇f(xti)

∥∥2
]
≤

N∑
t=1

2(E[f(xt1)]− E[f(xt+1
1 )])

mδ(t)2
+
M2Lσ

m
T. (20)

Then plugging (20) into (19), we get

E[‖∇f(x̂T )‖2] ≤ 1∑N
t=1 Stδ

−1(t)

(
N∑
t=1

2(E[f(xt1)]− E[f(xt+1
1 )])

mδ(t)2
+
M2Lσ

m
T

)
as desired.

Proof. (of Theorem A.1) In this case, the step size ηti satisfies that m/
√
t ≤ ηti ≤ M/

√
t, where

δ(t) = 1/
√
t. By the definition of δ(t), we have

N∑
t=1

1

δ(t)
≥
∫ N

t=0

1

δ(t)
dt =

2N
3
2

3
. (21)

Applying the assumption that E[f(xt1)− f∗] ≤ ∆0 where f∗ = minx f(x) and the definition of δ(t),
we have

N∑
t=1

2(E[f(xt1)]− E[f(xtS+1)])

mδ(t)2
≤ 2

m

N∑
t=1

t(E[f(xt1)− f∗]− E[f(xt+1
1 )− f∗])

≤ 2

m

(
∆0 +

N∑
t=2

E[f(xt1)− f∗]

)
≤ 2N∆0

m
. (22)

Under Assumptions 1 and 2(a) and ηti < 1/((ρ+ 1)L), thus Lemma B.1 holds. Incorporating these
inequalities into Lemma B.1 gives

E[‖∇f(x̂T )‖2] ≤ 1

S
∑N
t=1 δ

−1(t)

[
N∑
t=1

2(E[f(xt1)]− E[f(xt+1
1 )])

mδ(t)2
+
SM2Lσ

m
T

]

≤ 3

2SN3/2

[
2N∆0

m
+
M2Lσ

m
T

]
≤ 3∆0

m
· 1√

ST
+

3M2Lσ

2m
·
√
S

T
.

Then the proof is finished.

Proof. (of Theorem A.2) In this theorem, we consider SGD with the 1/
√
t bandwidth step-size,

i.e., m√
t
≤ ηti ≤ M√

t
for 1 ≤ t ≤ N , where the stage length St = dS0/

√
te with S0 =

√
T , and the

boundary function δ(t) = 1/
√
t. By the relationship that

∑N
t=1 St = T and x ≤ dxe ≤ x+ 1 for all

x, we get that

(3− 2
√

2)T ≤ N ≤ (

√
T

2
+ 1)2. (23)

Under Assumptions 1 and 2(a) and ηti < 1/((ρ+ 1)L), thus Lemma B.1 holds. Following the same
process as Theorem A.1, the inequality (22) also holds, that is

N∑
t=1

2(E[f(xt1)]− E[f(xtS+1)])

mδ(t)2
≤ 2N∆0

m
. (24)
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Then incorporating the above inequalities to Lemma B.1, we have

E[‖∇f(x̂T )‖2] ≤ 1∑N
t=1 Stδ

−1(t)

[
2N∆0

m
+
M2Lσ

m
T

]
≤ 1∑N

t=1dS0/
√
te ·
√
t

[
2N∆0

m
+
M2Lσ

m
· T
]

≤ 1

S0N

[
2N∆0

m
+
M2Lσ

m
· T
]

≤ 2∆0

mS0
+

M2Lσ

(3− 2
√

2)mS0

=
1

m

(
2∆0 +

M2Lσ

3− 2
√

2

)
· 1√

T
,

which concludes the proof.

Proof. (of Theorem 3.1) In this case, the step-size ηti exponentially decays every S iterations. By
the definition of ηti , we have δ(t) = 1/αt−1 for all 1 ≤ t ≤ N . The sum of 1/δ(t) can be estimated
as

N∑
t=1

1

δ(t)
=

N∑
t=1

αt−1 =
αN − 1

α− 1
.

Recalling the assumption that E[f(xt1)− f∗] ≤ ∆0 for all t ≥ 1, we have

N∑
t=1

2(E[f(xt1)]− E[f(xt+1
1 )])

mδ(t)2
≤ 2

m

N∑
t=1

α2(t−1)(E[f(xt1)− f∗]− E[f(xt+1
1 )− f∗])

≤ 2

m

(
(α2 − 1)

N∑
t=2

α2(t−2)E[f(xt1)− f∗] + ∆0

)

≤ 2α2(N−1)∆0

m
.

Under Assumptions 1 and 2(a) and ηti < 1/((ρ+ 1)L), thus Lemma B.1 holds. Then applying the
result of Lemma B.1 and incorporating the above inequalities into Lemma B.1 gives

E[‖∇f(x̂T )‖2] ≤ 1

S
∑N
t=1 δ

−1
1 (t)

(
N∑
t=1

2(E[f(xt1)]− E[f(xtS+1)])

mδ(t)2
+
SM2Lσ

m
·
N∑
t=1

δ2(t)2

δ(t)2

)

≤ α− 1

S(αN − 1)

(
2α2(N−1)∆0

m
+
M2Lσ

m
SN

)
.

Substituting the specific values of N = b(logα T )/2c, S = d2T/ logα T e into the above inequality,
we have

E[‖∇f(x̂T )‖2] ≤ (α− 1)

S(αN − 1)

(
∆0α

2(N−1)

m
+
M2Lσ

m
SN

)
≤
(

∆0

2αm
+
αM2Lσ

2m

)
(α− 1) logα T√

T − α
.

then transform the base logα to the natural logarithm ln, we can get the desired result.

Proof. (of Theorem 3.3) If S0 =
√
T and St = dS0α

t−1e, by
∑N
t=1 St = T , the stage length N is

blogα((α− 1)
√
T + 1)c. In this case, we have δ(t) = 1/αt−1 for each t ∈ [N ]. Under Assumptions

1 and 2(a) and ηti < 1/((ρ + 1)L), thus Lemma B.1 holds. Before applying the result of Lemma
B.1, we first give the following estimations:

N∑
t=1

Stδ
−1(t) ≥

N∑
t=1

S0α
t−1 · αt−1 =

√
T · 1− α2N

1− α2
=

(α− 1)T
3
2 + 2T

α+ 1
(25)
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and also

N∑
t=1

2(E[f(xt1)]− E[f(xt+1
1 )])

mδ(t)2
≤ 2

m

(
(α2 − 1)

N∑
t=2

α2(t−2)E[f(xt1)− f∗] + ∆0

)

≤ 2α2(N−1)∆0

m
=

2((α− 1)
√
T + 1)2∆0

α2m
.

Applying these results into Lemma B.1, we have

E[‖∇f(x̂T )‖2] ≤ α+ 1

(α− 1)T
3
2 + 2T

(
2((α− 1)

√
T + 1)2∆0

α2m
+
M2Lσ

m
· T

)

≤ α+ 1

α− 1

(
2∆0

m
+
M2Lσ

m

)
1√
T

+O
(

1

T

)
.

Thus the proof is complete.

In Lemma B.1, we provide a unified analysis framework for bandwidth step-sizes which are indepen-
dent on the current random information. Recently, there are some interesting non-monotonic step-
sizes, e.g., the trust-region-ish algorithm (Curtis et al., 2019) and stochastic Polyak step-sizes (Loizou
et al., 2021), which can also be regarded to be in a band, but those are related to the current stochastic
information. We provide a unified framework for these kind of step-sizes below.

Lemma B.2. Under the same conditions as in Lemma B.1, we assume that the step-size ηti satisfies
mδ(t) ≤ ηti ≤ Mδ(t) and is dependent on the current random information. If m ≤ 4

L(ρ+1) and

m ≤M ≤ M̃ :=
−ρ+
√
ρ2+2(ρ+1)(2+ρ)mL

L(ρ+1) , we have

E[‖∇f(x̃T )‖2] ≤ 1

ψ0ΣT

(
∆0

δ(N)2
+ (M −m)σΣT +

LM2σ

2
T

)
(26)

where ΣT =
∑N
t=1

∑St

i=1 δ(t)
−1 and ψ0 = (2 + ρ)m− ρM − LM2

2 (ρ+ 1).

Proof. We consider the step-size ηti is depended on the current random information and mδ(t) ≤
ηti ≤Mδ(t). By the L-smoothness of f , that is ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖, implies that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2 (27)

Let x = xti and y = xti+1, then

f(xti+1) ≤ f(xti)−
〈
∇f(xti), η

t
ig
t
i

〉
+
L

2

∥∥ηtigti∥∥2
(28)

Next we turn to estimate the product term −〈∇f(xti), η
t
ig
t
i〉.

−
〈
∇f(xti), η

t
ig
t
i

〉
= ηti

(∥∥gti −∇f(xti)
∥∥2 −

∥∥gti∥∥2 −
∥∥∇f(xti)

∥∥2
)

≤Mδ(t)
∥∥gti −∇f(xti)

∥∥2 −mδ(t)
∥∥gti∥∥2 −mδ(t)

∥∥∇f(xti)
∥∥2
. (29)
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Then taking conditional expectation on F ti to (28) and applying Assumption 2(a) and (14), we have

E[f(xti+1) | F ti ] ≤ f(xti)−mδ(t)
∥∥∇f(xti)

∥∥2 −mδ(t)E[
∥∥gti∥∥2 | F ti ] +Mδ(t)E[

∥∥gti −∇f(xti)
∥∥2 | F ti ]

+
LM2δ(t)2

2
E[
∥∥gti∥∥2 | F ti ]

≤ f(xti)−mδ(t)
∥∥∇f(xti)

∥∥2 −mδ(t)
(
E[
∥∥gti −∇f(xti)

∥∥2
] +
∥∥∇f(xti)

∥∥2
)

+Mδ(t)E[
∥∥gti −∇f(xti)

∥∥2 | F ti ] +
LM2δ(t)2

2

(
E[
∥∥gti −∇f(xti)

∥∥2
] +
∥∥∇f(xti)

∥∥2
)

≤ f(xti)−
(

2mδ(t)− LM2δ(t)2

2

)∥∥∇f(xti)
∥∥2

+

(
Mδ(t)−mδ(t) +

LM2δ(t)2

2

)
E[
∥∥gti −∇f(xti)

∥∥2
]

≤ f(xti)−
(

2m− LM2δ(t)

2
− ρ

(
M −m+

LM2δ(t)

2

))
δ(t)

∥∥∇f(xti)
∥∥2

+

(
M −m+

LM2δ(t)

2

)
δ(t)σ

where by M ≥ m we have Mδ(t) − mδ(t) + LM2δ(t)2

2 > 0. Let ψ := 2m − LM2δ(t)
2 −

ρ
(
M −m+ LM2δ(t)

2

)
. We know that δ(t) ≤ 1, then

ψ ≥ (2 + ρ)m− ρM − LM2

2
(ρ+ 1). (30)

Let ψ0 = (2 + ρ)m− ρM − LM2

2 (ρ+ 1). By solving the quadratic expression of M in ψ0, if

m ≤M < M̃ :=
−ρ+

√
ρ2 + 2(ρ+ 1)(2 + ρ)mL

L(ρ+ 1)
(31)

then we have ψ ≥ ψ0 > 0. To guarantee that m ≤M , we require that ψ0(m) > 0, then m ≤ 4
L(ρ+1) .

Recalling the output x̃ which is selected from {xti} for all i ∈ [St] and t ∈ [N ] with probability
Pt ∝ 1/δ(t), we have

E[‖∇f(x̃)‖2] =
1∑N

t=1 Stδ(t)
−1

N∑
t=1

δ(t)−1
St∑
i=1

E[
∥∥∇f(xti)

∥∥2
]

≤ 1

ψ0ΣT

(∑N
t=1

(
E[f(xt1)]− E[f(xtSt+1)]

)
δ(t)2

+ (M −m)σ

N∑
t=1

St∑
i=1

δ(t)−1 +
LM2σ

2
T

)
(a)

≤ 1

ψ0ΣT

(
∆0

δ(N)2
+ (M −m)σΣT +

LM2σ

2
T

)
(32)

where ΣT =
∑N
t=1 Stδ(t)

−1 and (a) follows from the assumption that E[f(xt1)− f∗] ≤ ∆0 where
f∗ = minx f(x) and xt+1

1 = xtSt+1.

The above lemma immediately results in the following convergence results for bandwidth step-sizes
which depend on the current random information.

• If N = 1 and St = T , that is m ≤ ηti ≤ M and ηti is related to the current random
information, we have

E[‖∇f(x̃)‖2] ≤ ∆0

ψ0T
+

(M −m) + LM2/2

ψ0
σ (33)

In this case, the boundary function δ(t) = 1, so the assumption on function value can be
replaced by f(x1

0)− f∗ is bounded. We can achieve an O(1/T ) convergence rate to reach
a neighborhood of the stationary point. This error bound is comparable to the results of
(Loizou et al., 2021, Theorem 3.8) and (Curtis et al., 2019, Theorem 3.5).
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Algorithm 2 SGDM with Bandwidth-based Step-Size

1: Input: initial point x1
1 ∈ Rd, v1

1 = 0, # iterations T , # stages N , stage length {St}Nt=1

such that
∑N
t=1 St = T , momentum parameter β ∈ (0, 1), the sequences {δ(t)}Nt=1 and{

{n(t, i)}St

i=1

}N
t=1
∈ [m,M ] with 0 < m ≤M

2: for t = 1 : N do
3: for i = 1 : St do
4: Query a stochastic gradient oracle O at xti to get a vector gti such that E[gti | F ti ] = ∇f(xti)
5: Update step-size ηti = n(t, i)δ(t), which belongs to the interval [mδ(t),Mδ(t)]
6: vti+1 = βvti + (1− β)gti
7: xti+1 = xti − ηtivti+1
8: end for
9: vt+1

1 = vtSt+1 and xt+1
1 = xtSt+1

10: end for
11: Return: x̂T is uniformly chosen from

{
xt

∗

1 , x
t∗

2 , · · · , xt
∗

St∗

}
, where the integer t∗ is randomly

chosen from {1, 2, · · · , N} with probability Pt = δ−1(t)/(
∑N
l=1 δ

−1(l))

• If N > 1, St = S and δ(t) = 1/αt−1, we have

E[‖∇f(x̃)‖2] ≤ α− 1

ψ0S(αN − 1)

(
∆0α

2(N−1) +
LM2σ

2
T

)
+

(M −m)σ

ψ0

=
1

ψ0

(
NαN−1

T
+
LM2σ

2

(α− 1)N

(αN − 1)

)
+

(M −m)σ

ψ0
(34)

Compared to the case that N = 1, we observe that increasing N > 1 can improve the error
term LM2/2

ψ0
σ of (33). If M −m ≤ LM2

2 , i.e., m ≥M − LM2

2 , then LM2/2
ψ0

σ turns out to
dominate the error bound of (33). If we increase N appropriately, then the error term of (33)
can be improved.

C PROOFS OF LEMMA AND THEOREMS IN SECTION 4

We recall the momentum scheme of Algorithm 2 below

vti+1 = βvti + (1− β)gti (35)

xti+1 = xti − ηtivti+1 (36)

where β ∈ (0, 1). Before giving the proofs, we introduce an extra variable zti =
xt
i

1−β −
β

1−βx
t
i−1,

then

zti − xti =
β

1− β
(xti − xti−1), (37)

zti+1 − xti =
1

1− β
(xti+1 − xti). (38)

However, the bandwidth-based step-size ηti in our analysis is time dependent and also possibly
non-monotonic, so the commonly used equalities xti+1 = xti − ηgti + β(xti − xti−1) (Yan et al., 2018)
or zti+1 = zti − ηtgti (see lemma 3 of Liu et al. (2020)) do not hold in our analysis. This significantly
increases the level of difficulty of the analysis. The results of Lemma 4.1 is based on a sequence of
lemmas introduced below.
Lemma C.1. Suppose that the objective function f satisfies Assumption 1. At each stage t, the
step-size ηti is monotonically decreasing. Then, for i ≥ 2, we have

E[f(zti+1) | F ti ]− f(zti) +
β

1− β

(
1− ηti

ηti−1

)(
f(xti)− f(xti−1)

)
≤ −ηti

∥∥∇f(xti)
∥∥2

+
βL

2(1− β)2

∥∥xti − xti−1

∥∥2
+

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ].
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Proof. Using the L-smoothness of f (Assumption 1) and taking conditional expectation gives

E[f(zti+1) | F ti ]− f(xti)

≤ E[
〈
∇f(xti), z

t
i+1 − xti

〉
| F ti ] +

L

2
E[
∥∥zti+1 − xti

∥∥2 | F ti ]

≤ 1

1− β
E[
〈
∇f(xti), x

t
i+1 − xti

〉
| F ti ] +

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ]

≤ 1

1− β
E
〈
∇f(xti),−ηti((1− β)gti + βvti)

〉
| F ti ] +

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ]

≤ −ηti
∥∥∇f(xti)

∥∥2 − ηtiβ

1− β
〈
∇f(xti), v

t
i

〉
+

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ]

= −ηti
∥∥∇f(xti)

∥∥2 − βηti
(1− β)ηti−1

〈
∇f(xti), x

t
i−1 − xti

〉
+

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ].

Re-using the L-smoothness property of f at zti and xti gives

f(zti) ≥ f(xti) +
〈
∇f(xti), z

t
i − xti

〉
− L

2

∥∥zti − xti∥∥2

= f(xti) +
β

1− β
〈
∇f(xti), x

t
i − xti−1

〉
− Lβ2

2(1− β)2

∥∥xti − xti−1

∥∥2
. (39)

Then, combining the two inequalities above, we have

E[f(zti+1) | F ti ] ≤ f(zti)− ηti
∥∥∇f(xti)

∥∥2
+

β

1− β

(
1− ηti

ηti−1

)〈
∇f(xti), x

t
i−1 − xti

〉
+

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ] +
Lβ2

2(1− β)2

∥∥xti − xti−1

∥∥2
. (40)

The step-size ηti for each stage is monotonically decreasing, i.e. ηti ≤ ηti−1 for i ≥ 2, so(
1− ηti

ηti−1

)
≥ 0. By the L-smoothness of f , the inner product of (40) can be estimated as〈

∇f(xti), x
t
i−1 − xti

〉
≤ f(xti−1)− f(xti) +

L

2

∥∥xti − xti−1

∥∥2
. (41)

Applying (41) into (40), we find

E[f(zti+1) | F ti ]

≤ f(zti)− ηti
∥∥∇f(xti)

∥∥2
+

β

1− β

(
1− ηti

ηti−1

)(
f(xti−1)− f(xti) +

L

2

∥∥xti − xti−1

∥∥2
)

+
L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ] +
Lβ2

2(1− β)2

∥∥xti − xti−1

∥∥2
. (42)

Finally, we re-write the above inequality as

E[f(zti+1) | F ti ]− f(zti) +
β

1− β

(
1− ηti

ηti−1

)(
f(xti)− f(xti−1)

)
≤ −ηti

∥∥∇f(xti)
∥∥2

+

(
β2L

2(1− β)2
+

βL

2(1− β)

)∥∥xti − xti−1

∥∥2
+

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ]

≤ −ηti
∥∥∇f(xti)

∥∥2
+

βL

2(1− β)2

∥∥xti − xti−1

∥∥2
+

L

2(1− β)2
E[
∥∥xti+1 − xti

∥∥2 | F ti ].

The proof is complete.

Lemma C.2. Suppose that the objective function satisfies Assumption 1 and the step-size ηti is
monotonically decreasing with ηti ≤ 1

L at each stage, then

E
[∥∥xti+1 − xti

∥∥2 | F ti
]
− β2

∥∥xti − xti−1

∥∥2
+ 2(1− β)ηti

(
E[f(xti+1) | F ti ]− f(xti)

)
≤ −2(ηti)

2(1− β)2
∥∥∇f(xti)

∥∥2
+ 2(ηti)

2(1− β)2E
[∥∥gti∥∥2 | F ti

]
+ (ηti)

3β(1− β)L
∥∥vti∥∥2

.
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Proof. First, due to the L-smoothness of the objective function f , we have

f(xti+1) ≤ f(xti) +
〈
∇f(xti), x

t
i+1 − xti

〉
+
L

2

∥∥xti+1 − xti
∥∥2

≤ f(xti) +
〈
∇f(xti),−ηti((1− β)gti + βvti)

〉
+

(ηti)
2L

2

∥∥(1− β)gti + βvti
∥∥2

(a)

≤ f(xti)− (1− β)ηti
〈
∇f(xti), g

t
i

〉
− βηti

〈
∇f(xti), v

t
i

〉
+

(ηti)
2L

2

(
(1− β)

∥∥gti∥∥2
+ β

∥∥vti∥∥2
)

where inequality (a) follows the Cauchy-Schwarz inequality that ‖(1− β)gti + βvti‖
2 ≤ (1 −

β) ‖gti‖
2

+ β ‖vti‖
2
. Then taking conditional expectation on both sides and due to that gti is an

unbiased estimator of∇f(xti), i.e., E[gti | F ti ] = ∇f(xti), we have

E[f(xti+1) | F ti ] ≤ f(xti)− ηti(1− β)
∥∥∇f(xti)

∥∥2 − βηti
〈
∇f(xti), v

t
i

〉
+

(ηti)
2(1− β)L

2
E[
∥∥gti∥∥2 | F ti ] +

(ηti)
2βL

2

∥∥vti∥∥2
. (43)

We recall the definition of vti+1 and incorporate (35) into (36), then

E[
∥∥xti+1 − xti

∥∥2 | F ti ]

= E[
∥∥ηti(βvti + (1− β)gti)

∥∥2 | F ti ] = (ηti)
2E[
∥∥βvti + (1− β)gti

∥∥2 | F ti ]
(a)
= (ηti)

2
(
β2
∥∥vti∥∥2

+ (1− β)2E[
∥∥gti∥∥2 | F ti ] + 2β(1− β)

〈
vti ,∇f(xti)

〉)
(b)
=

(
ηti
ηti−1

)2

β2
∥∥xti − xti−1

∥∥2
+ (ηti)

2(1− β)
(

(1− β)E[
∥∥gti∥∥2

] + 2β
〈
vti ,∇f(xti)

〉)
(44)

(c)

≤ β2
∥∥xti − xti−1

∥∥2
+ (ηti)

2(1− β)
(

(1− β)E[
∥∥gti∥∥2

] + 2β
〈
vti ,∇f(xti)

〉)
, (45)

where (a) uses the fact that E[gti | F ti ] = ∇f(xti); (b) follows the procedure that xti = xti−1−ηti−1v
t
i ;

(c) applies the fact that the step-size per stage is monotonically decreasing, i.e., ηti ≤ ηti−1 for i ≥ 2.
Then multiplying 2ηti(1− β) into (43) and combining (45), we get that

E
[∥∥xti+1 − xti

∥∥2 | F ti
]
− β2

∥∥xti − xti−1

∥∥2
+ 2ηti(1− β)

(
E[f(xti+1) | F ti ]− f(xti)

)
≤ −2(ηti)

2(1− β)2
∥∥∇f(xti)

∥∥2

+ (ηti)
2(1− β)2(Lηti + 1)E

[∥∥gti∥∥2 | F ti
]

+ (ηti)
3β(1− β)L

∥∥vti∥∥2

≤ −2(ηti)
2(1− β)2

∥∥∇f(xti)
∥∥2

+ 2(ηti)
2(1− β)2E

[∥∥gti∥∥2 | F ti
]

+ (ηti)
3β(1− β)L

∥∥vti∥∥2

where the last inequality follows from the fact that ηti ≤ 1/L.

Proof. (of Lemma 4.1) First we apply the result of Lemma C.1 and divided by ηti to the both side,
we have

E[f(zti+1) | F ti ]− f(zti)

ηti
+

β

1− β

(
f(xti)− f(xti−1)

)
ηti

− β

1− β

(
f(xti)− f(xti−1)

)
ηti−1

≤ −
∥∥∇f(xti)

∥∥2
+

(
βL

2(1− β)2ηti

)∥∥xti − xti−1

∥∥2
+

ηtiL

2(1− β)2
E[
∥∥vti+1

∥∥2 | F ti ]. (46)

Then we recall the result of Lemma C.2

E[
∥∥xti+1 − xti

∥∥2 | F ti ]−
∥∥xti − xti−1

∥∥2
+ 2ηti

(
E[f(xti+1)]− f(xti)

)
≤ −(1− β2)

∥∥xti − xti−1

∥∥2 − 2(ηti)
2(1− β)2

∥∥∇f(xti)
∥∥2

+ 2(ηti)
2(1− β)2E

[∥∥gti∥∥2 | F ti
]

+ (ηti)
3β(1− β)L

∥∥vti∥∥2
,
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multiplying a constant r = βL
2(1−β2)(1−β)2 > 0 and dividing ηti to the both side, and then incorporating

it into (46), we have

E[f(zti+1) | F ti ]− f(zti)

ηti
+

β

1− β

(
f(xti)− f(xti−1)

)
ηti

− β

1− β

(
f(xti)− f(xti−1)

)
ηti−1

+
r

ηti

(
E[
∥∥xti+1 − xti

∥∥2 | F ti ]−
∥∥xti − xti−1

∥∥2
)

+ 2r
(
E[f(xti+1) | F ti ]− f(xti)

)
≤ −

∥∥∇f(xti)
∥∥2

+ 2r(ηti)(1− β)2E[
∥∥gti∥∥2 | F ti ] + r(ηti)

2β(1− β)L
∥∥vti∥∥2

+
ηtiL

2(1− β)2
E[
∥∥vti+1

∥∥2 | F ti ]. (47)

We define a function W t
i+1 as follows:

W t
i+1 =

f(zti+1)− f∗

ηti
+
r
∥∥xti+1 − xti

∥∥2

ηti
+ 2r[f(xti+1)− f∗].

Because of ηti ≤ ηti−1 at each stage, we have −1/ηti ≤ −1/ηti−1 (i ≥ 2), then

W t
i+1 ≤

f(zti+1)− f∗

ηti
+

β

1− β
(f(xti)− f∗)

ηti
− β

1− β
(f(xti)− f∗)

ηti−1

+
r

ηti

∥∥xti+1 − xti
∥∥2

+ 2r
(
f(xti+1)− f∗

)
. (48)

Taking conditional expectation on W t
i+1 and applying (47) to the above inequality, we have

E[W t
i+1 | F ti ] ≤W t

i + (f(zti)− f∗)
(

1

ηti
− 1

ηti−1

)
+
β
(
f(xti−1)− f∗

)
1− β

(
1

ηti
− 1

ηti−1

)
+ r

∥∥xti − xti−1

∥∥2
(

1

ηti
− 1

ηti−1

)
−
∥∥∇f(xti)

∥∥2
+ 2r(ηti)(1− β)2E[

∥∥gti∥∥2 | F ti ]

+ r(ηti)
2β(1− β)L

∥∥vti∥∥2
+

ηtiL

2(1− β)2
E[
∥∥vti+1

∥∥2 | F ti ]. (49)

We recall that v1
1 = 0, due to the assumption that E[‖gti‖

2
] ≤ G2, and vti+1 is a convex combination

of gti and vti , then by induction if E[‖vti‖
2
] ≤ G2, then

E[
∥∥vti+1

∥∥2
] = E

∥∥βvti + (1− β)gti
∥∥2 ≤ β

∥∥vti∥∥2
+ (1− β)E[

∥∥gti∥∥2
] ≤ G2. (50)

Therefore, we have E[‖vti‖
2
] is bounded by G2. Then we apply E[‖gti‖

2
] ≤ G2, E[‖vti‖

2
] ≤ G2 and

ηti ≤ 1/L into (49)

E[W t
i+1 | F ti ]−W t

i ≤ (f(zti)− f∗)
(

1

ηti
− 1

ηti−1

)
+
β
(
f(xti−1)− f∗

)
1− β

(
1

ηti
− 1

ηti−1

)
+ r

∥∥xti − xti−1

∥∥2
(

1

ηti
− 1

ηti−1

)
−
∥∥∇f(xti)

∥∥2

+ ηtiG
2

(
r(1− β)(2− β) +

L

2(1− β)2

)
. (51)

The step-size is decreasing at each stage, then ηti ≤ ηti−1 (i ≥ 2), thus 1
ηti
− 1

ηti−1
≥ 0. Due to the

fact that vti is bounded (see (50)), i.e., E[‖vti‖
2
] ≤ G2, we have

E[
∥∥xti − xti−1

∥∥2
= (ηti−1)2E[

∥∥vti∥∥2
]] ≤ (ηti−1)2G2 ≤ G2

L2
. (52)

21



Under review as a conference paper at ICLR 2022

Recalling the definition of zti , and applying the assumption that E[f(xti)− f∗] ≤ ∆0 for each t, i ≥ 1
and f is L-smooth on its domain, and ηti ≤ 1/L gives

f(zti) ≤ f(xti) +
〈
∇f(xti), z

t
i − xti

〉
+
L

2

∥∥zti − xti∥∥2

≤ f(xti) +
β

1− β
〈
∇f(xti), x

t
i − xti−1

〉
+

Lβ2

2(1− β)2

∥∥xti − xti−1

∥∥2

(a)

≤ f(xti) +
β

1− β

(
f(xti)− f(xti−1) +

L

2

∥∥xti − xti−1

∥∥2
)

+
Lβ2

2(1− β)2

∥∥xti − xti−1

∥∥2

≤ f(xti) +
β

1− β
(
f(xti)− f(xti−1)

)
+

Lβ

2(1− β)2

∥∥xti − xti−1

∥∥2

≤ 1

1− β
f(xti)−

β

1− β
f(xti−1) +

Lβ

2(1− β)2

∥∥xti − xti−1

∥∥2
(53)

where the inequality (a) dues to the fact that f(xti−1) ≤ f(xti) +
〈
∇f(xti), x

t
i−1 − xti

〉
+

L
2

∥∥xti−1 − xti
∥∥2

. Then we have

E[f(zti)− f∗] ≤
1

1− β
∆0 +

Lβ

2(1− β)2
(ηti−1)2G2 ≤ ∆0

1− β
+

βG2

2(1− β)2L
. (54)

Let ∆z = ∆0

1−β+ βG2

2(1−β)2L . Finally, applying (52) and (54), the bounded assumption on E[f(xti)−f∗],
and ηti ≤ 1/L, we have

E[W t
i+1 | F ti ] ≤W t

i +

(
β∆0

1− β
+ ∆z +

rG2

L2

)(
1

ηti
− 1

ηti−1

)
−
∥∥∇f(xti)

∥∥2

+ ηti

(
r(1− β)(2− β) +

L

2(1− β)2

)
G2

= W t
i +A1

(
1

ηti
− 1

ηti−1

)
−
∥∥∇f(xti)

∥∥2
+ ηtiB1G

2 (55)

where A1 = β∆0

1−β + ∆z + rG2

L2 , B1 = r(1− β)(2− β) + L
2(1−β)2 and ∆z = ∆0

1−β + βG2

2(1−β)2L .

The bandwidth step-size highly rises the difficulty of the analysis for momentum, especially when the
step-size has an increase between the stages, i.e. ηt−1

St−1
:= ηt0 < ηt1. Before giving the results, we

consider two situations:

• ηt0 > ηt1. We can apply Lemma 4.1 from i = 1 to St. Recalling the definition of W t
i+1, we

have W t+1
1 = W t

St+1, then

St∑
i=1

E[
∥∥∇f(xti)

∥∥2
] ≤

(
E[W t

1 ]− E[W t+1
1 ]

)
+A1

(
1

ηtSt

− 1

ηt0

)
+B1G

2
St∑
i=1

ηti . (56)

• Otherwise if ηt0 ≤ ηt1, the results of Lemma 4.1 only hold from i = 2 to St. Then

St∑
i=1

E[
∥∥∇f(xti)

∥∥2
] ≤

(
E[W t

2 ]− E[W t
1 ] + E[W t

1 ]− E[W t+1
1 ]

)
+ E[

∥∥∇f(xt1)
∥∥2

]

+A1

(
1

ηtSt

− 1

ηt1

)
+B1G

2
St∑
i=2

ηti . (57)

For the bandwidth step-size, the initial step-size of stage t, ηt1, is possibly larger than the
ending step-size of the previous stage, ηt0. Thus, we can not use the simpler condition (56),
but have to rely on (57) in our derivations below.
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Lemma C.3. Suppose the same setting as Lemma 4.1, we have

E[‖∇f(x̂T )‖2] ≤ 1∑
δ

(
W 1

1 +
C0

δ(N + 1)
+

∆z

mδ(N)δ(N + 1)
+
C1

m

N∑
t=1

1

δ(t)2
+ C2

N∑
t=1

1

δ(t)
+B1G

2MT

)
where

∑
δ =

∑N
t=1 Stδ(t)

−1, C0 = r(G
2

L + 2∆0), C1 = A1 + ∆z + ∆0

1−β , C2 = C0 +A2G
2, and

A1, B1, r, and ∆z are defined in Lemma 4.1.

Proof. Applying the result of Lemma 4.1 from i = 2 to St, the step-size ηti ∈ [mδ(t),Mδ(t)], and
W t+1

1 = W t
St+1, we have

St∑
i=1

E[
∥∥∇f(xti)

∥∥2
] ≤

(
E[W t

2 ]− E[W t
1 ] + E[W t

1 ]− E[W t+1
1 ]

)
+ E[

∥∥∇f(xt1)
∥∥2

]

+A1

(
1

ηtSt

− 1

ηt1

)
+B1G

2M(St − 1)δ(t). (58)

Recalling the output of Algorithm 2, we have

E[‖∇f(x̂T )‖2] =
1∑N

t=1 Stδ(t)
−1

N∑
t=1

δ(t)−1
St∑
i=1

E[
∥∥∇f(xti)

∥∥2
]. (59)

Then we divide δ(t) into the both side of (58), apply (58) from t = 1 to N and let
∑
δ =∑N

t=1 Stδ(t)
−1

E[‖∇f(x̂T )‖2] ≤ 1∑
δ

(
N∑
t=1

E[W t
2 ]− E[W t

1 ] + E[W t
1 ]− E[W t+1

1 ]

δ(t)
+A1

N∑
t=1

1

δ(t)

(
1

ηtSt

− 1

ηt0

))

+
1∑
δ

(
N∑
t=1

E[‖∇f(xt1)‖2]

δ(t)
+B1G

2MT

)
. (60)

First, we estimate
∑N
t=1

E[‖∇f(xt
1)‖2]

δ(t) . From Lemma C.2, let i = 1, then incorporating the inequalities
(43) and (44), we have

2(ηt1)2(1− β)2E[
∥∥∇f(xt1)

∥∥2
] ≤

(
ηt1β

ηt0

)2 ∥∥xt1 − xt0∥∥2 − E[
∥∥xt2 − xt1∥∥2

] + 2(ηt1(1− β))2E[
∥∥gt1∥∥2

]

+ (ηt1)3β(1− β)L
∥∥vt1∥∥2 − 2ηt1(1− β)

(
f(xt1)− E[f(xt2)]]

)
.

Then dividing 2(ηt1)2(1− β)2 to the both side and applying the fact that ‖xt1 − xt0‖ = (ηt0)2 ‖vt1‖
2,

E[‖gti‖
2
] ≤ G2 and E[‖vti‖

2
] ≤ G2 for any i, t, f(xt2)− f∗ ≤ ∆0 and ηt1 ≥ mδ(t), we have

E[
∥∥∇f(xt1)

∥∥2
] ≤ G2

(
1 +

β

2(1− β)2

)
+

∆0

(1− β)ηt1
≤ A2G

2 +
∆0

(1− β)mδ(t)
(61)

where A2 =
(

1 + β
2(1−β)2

)
. Then

N∑
t=1

E[‖∇f(xt1)‖2]

δ(t)
≤

N∑
t=1

A2G
2

δ(t)
+

∆0

(1− β)m

N∑
t=1

1

δ2(t)
. (62)

Next we turn to estimate
∑N
t=1

E[W t
2−W

t
1 ]

δ(t) . Recalling the definition of W t
i+1, we have W t

i ≥ 0.
Applying the inequalities (52), (54) and the assumption that f(xti)− f∗ ≤ ∆0 for any i, t, we have

E[W t
2 ]− E[W t

1 ] ≤ E[W t
2 ] :=

E[f(zt2)− f∗]
ηt1

+
rE[‖xt2 − xt1‖

2
]

ηt1
+ 2rE[f(xt2)− f∗]

≤ ∆z

mδ(t)
+ r

(
G2

L
+ 2∆0

)
, (63)

23



Under review as a conference paper at ICLR 2022

dividing δ(t) and applying (63) from t = 1 to N , we have

N∑
t=1

E[W t
2 ]− E[W t

1 ]

δ(t)
≤ ∆z

m

N∑
t=1

1

δ(t)2
+ r

(
G2

L
+ 2∆0

) N∑
t=1

1

δ(t)
. (64)

Then we consider

N∑
t=1

E[W t
1 ]− E[W t+1

1 ]

δ(t)
=

N∑
t=1

(
E[W t

1 ]

δ(t)
− E[W t+1

1 ]

δ1(t+ 1)

)
+

N∑
t=1

(
1

δ1(t+ 1)
− 1

δ(t)

)
E[W t+1

1 ]

≤ W 1
1

δ1(1)
+

N∑
t=1

(
1

δ1(t+ 1)
− 1

δ(t)

)
E[W t+1

1 ]. (65)

Recalling the definition of E[W t+1
1 ],

E[W t+1
1 ] =

E[f(zt+1
1 )− f∗]
ηtSt

+
rE[
∥∥xt+1

1 − xt+1
0

∥∥2
]

ηtSt

+ 2rE[f(xt+1
1 )− f∗],

and applying the assumption that E[f(xti)− f∗] ≤ ∆0 and E[f(zti)− f∗] ≤ ∆z , and ηt+1
0 = ηtSt

,

E[
∥∥xt+1

1 − xt+1
0

∥∥2
] = (ηtSt

)2E[
∥∥vt+1

1

∥∥2
] ≤ (ηtSt

)2G2, we have

E[W t+1
1 ] ≤ ∆z

ηtSt

+ rηtSt
G2 + 2r∆0

(a)

≤ ∆z

mδ(t)
+ r

(
G2

L
+ 2∆0

)
(66)

where (a) follows from ηtSt
≥ mδ(t) and ηtSt

≤ 1/L. Applying (66) into (65), we have

N∑
t=1

E[W t
1 ]− E[W t+1

1 ]

δ(t)
≤ W 1

1

δ(1)
+
r
(
G2

L + 2∆0

)
δ(N + 1)

+
∆z

m

N∑
t=1

(
1

δ(t+ 1)δ(t)
− 1

δ(t)2

)

≤ W 1
1

δ(1)
+
r
(
G2

L + 2∆0

)
δ(N + 1)

+
∆z

m

N∑
t=1

(
1

δ(t+ 1)δ(t)
− 1

δ(t)δ(t− 1)

)

≤ W 1
1

δ(1)
+
r
(
G2

L + 2∆0

)
δ(N + 1)

+
∆z

mδ(N)δ(N + 1)
, (67)

where the second inequality follows that δ(t) is decreasing, so δ(t) ≤ δ(t − 1), then −1/δ(t) ≤
−1/δ(t− 1). Finally, due to that ηtSt

∈ [mδ(t),Mδ(t)], we have

N∑
t=1

1

δ(t)

(
1

ηtSt

− 1

ηt0

)
≤

N∑
t=1

1

mδ(t)2
. (68)

Incorporate the inequalities (62), (64), (67) and (68) into (60), we have

E[‖∇f(x̂T )‖2] ≤ 1∑
δ

W 1
1

δ(1)
+
r
(
G2

L + 2∆0

)
δ(N + 1)

+
∆z

mδ(N)δ(N + 1)
+A1

N∑
t=1

1

mδ(t)2


+

1∑
δ

(
∆z

m

N∑
t=1

1

δ(t)2
+ r

(
G2

L
+ 2∆0

) N∑
t=1

1

δ(t)
+B1G

2MT

)

+
1∑
δ

(
N∑
t=1

A2G
2

δ(t)
+

∆0

(1− β)m

N∑
t=1

1

δ2
1(t)

)
. (69)
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The above result can be re-written as (recall δ(1) = 1)

E[‖∇f(x̂T )‖2]

≤ 1∑
δ

W 1
1 +

r
(
G2

L + 2∆0

)
δ(N + 1)

+
∆z

mδ(N)δ(N + 1)
+

(A1 + ∆z + ∆0

1−β )

m

N∑
t=1

1

δ(t)2


+

1∑
δ

((
r

(
G2

L
+ 2∆0

)
+A2G

2

) N∑
t=1

1

δ(t)
+B1G

2MT

)

≤ 1∑
δ

(
W 1

1 +
C0

δ(N + 1)
+ +

∆z

mδ(N)δ(N + 1)
+
C1

m

N∑
t=1

1

δ(t)2
+ C2

N∑
t=1

1

δ(t)
+B1G

2MT

)
where C0 = r(G

2

L + 2∆0), C1 = A1 + ∆z + ∆0

1−β , and C2 = C0 +A2G
2.

Proof. (of Theorem 4.2) In this case, given the total number iteration T ≥ 1, the number of stages
N ≥ 1, St = S = dT/Ne, δ(t) = 1/αt−1 for each 1 ≤ t ≤ N , then the boundary function at the
final stage δ(N) = 1/αN−1 and δ(N + 1) = 1/αN . Applying the specific value of δ(t) and N gives

N∑
t=1

1

δ(t)
=
αN − 1

α− 1
(70)

N∑
t=1

1

δ(t)2
=
α2N − 1

α2 − 1
. (71)

Then by St = dT/Ne and (70), we easily get∑
δ

=

N∑
t=1

St/δ(t) ≥
T (αN − 1)

N(α− 1)
. (72)

We then plug the above results into Lemma C.3,

E[‖∇f(x̂T )‖2]

≤ N(α− 1)

T (αN − 1)

(
W 1

1 + C0α
N +

∆zα
2N−1

m
+
C1(α2N − 1)

m(α2 − 1)
+
C2(αN − 1)

α− 1
+MB1G

2T

)
≤W 1

1

N

TαN−1
+ (αC0 + C2)

N

T
+

(∆z + C1)

m

NαN

T
+MB1G

2 N

αN−1
. (73)

where C0 = r(G
2

L + 2∆0), C1 = A1 + ∆z + ∆0

1−β , and C2 = C0 +A2G
2, A2 = 1 + β

2(1−β)2 , and
W 1

1 , A1, B1, ∆z , and r are defined in Lemma 4.1.

Especially, we consider the number of outer-stage N = b(logα T )/2c, the stage length St =
d2T/ logα T e, and the boundary functions δ(t) = 1/αt−1 for all t ∈ {1, 2, · · · , N}. Let N =
b(logα T )/2c, we have

E[‖∇f(x̂T )‖2] ≤ α2W 1
1

2 lnα

lnT

T 3/2
+

(αC0 + C2)

2 lnα

lnT

T
+

(∆z + C1)

2m lnα

lnT√
T

+
α2MB1G

2

2 lnα

lnT√
T
.

(74)
Therefore, we complete the proof.

Proof. (of Theorem 4.3) In this theorem, we consider the boundary functions δ(t) = 1/αt−1,
and the stage length St = dS0α

t−1e with S0 =
√
T , then we have the number of stages N =

blogα((α − 1)
√
T + 1)c and δ(N) = αN−1. Next we estimate

∑
δ =

∑N
t=1 Stδ

−1(t) ≥ (α −
1)2T 3/2 + 2(α− 1)T . Then applying these results into Lemma C.3, we have

E[‖∇f(x̂T )‖2] ≤ O
(
W 1

1

T 3/2
+
C0

T
+

∆z

m
√
T

+
C1

m
√
T

+
MB1G

2

√
T

)
. (75)
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D SUPPLEMENTARY CONVERGENCE RESULTS

D.1 CONVERGENCE OF SGDM WITH CONSTANT AND 1/
√
t BANDWIDTH DECAYING

STEP-SIZE

We focus on a single stage that N = 1. In this case, we first consider the constant step-size
ηti = η0/

√
T . Recalling the result of Lemma 4.1 and letting ηti = η0/

√
T for each i ≥ 1, we have

1

T

T∑
i=1

E[
∥∥∇f(x1

i )
∥∥2

] ≤
(
W 1

1

T
+
B1G

2η0√
T

)
where B1 = r(1− β)(2− β) + L

2(1−β)2 and r = βL
2(1−β2)(1−β)2 .

Next we turn to analyze the 1/
√
t bandwidth step-size η1

i ∈ [m/
√
i,M/

√
i] (which is also monotonic

decreasing). Recalling the result of Lemma 4.1

E[W t
i+1 | F ti ] ≤W t

i +A1

(
1

ηti
− 1

ηti−1

)
−
∥∥∇f(xti)

∥∥2
+ ηtiB1G

2 (76)

and applying the result from i = 1 to T , we have

1

T

T∑
i=1

E[
∥∥∇f(x1

i )
∥∥2

] ≤ 1

T

((
W 1

1 − E[W 1
T+1]

)
+A1

(
1

η1
T

− 1

η1
0

)
+B1G

2
T∑
i=1

η1
i

)
.

Then applying the step-size η1
i ∈ [m/

√
i,M/

√
i] gives

1

T

T∑
i=1

E[
∥∥∇f(x1

i )
∥∥2

] ≤
(
W 1

1

T
+

A1

m
√
T

+
2MB1G

2

√
T

)
. (77)

Thus, we can achieve an O(1/
√
T ) optimal rate for SGDM with 1/

√
t bandwidth step-size on

nonconvex problems. When M = m, then the step-size reduces to η1
i = m/

√
i, we also provide the

convergence guarantee for the commonly used 1/
√
i decaying step-size.

D.2 CONVERGENCE GUARANTEES FOR CYCLICAL STEP-SIZES

In Loshchilov and Hutter (2017), the authors proposed a cosine annealing step-size

ηt = ηtmin +
1

2

(
ηtmax − ηtmin

)
(1 + cos(Tcur · π/Tt)). (78)

where ηtmin and ηtmax are ranges of the step-size, and Tcur accounts for how many epochs since the
beginning of the current stage and Tt accounts for the current stage length (epoch). At each stage t,
the step-size is monotonically decaying within the range ηtmin and ηtmax. In this paper, we propose a
general bandwidth framework for step-size which can cover this situation as long as mδ(t) ≤ ηtmin

and ηtmax ≤Mδ(t). If the ranges {ηtmin, η
t
max} and the stage length are chosen as for example 1/

√
t

in Theorems A.1 and A.2 or step-decay in Theorems 3.1 and 3.3, the theoretical convergence of
SGD under the cosine annealing step-size is guaranteed by our analysis in Section 3. Moreover,
because the cosine annealing is monotonic at each stage, so the convergence of SGD with momentum
under the cosine annealing policy is also guaranteed by the analysis of Section 4 as long as the
ranges ηtmin, η

t
max are within our bands. To the best of our knowledge, Li et al. (2021) provides a

convergence guarantee for cosine step-size. However, to achieve a near-optimal rate for the general
smooth (non-convex) problems, the initial step-size is required to be bounded by O(1/

√
T ) which is

obviously impractical when the total number of iteration T is large (also discussed in related work).
In our framework, the cosine step-size is allowed to start from a larger step-size and gradually decay.
Besides, our results (e.g., Theorems 3.3 and 4.3) provide state-of-the-art convergence guarantees for
cosine step-size which remove the log T term of Li et al. (2021).

Another interesting example is triangular cyclical step-size proposed by Smith (2017), which sets
minimum ηtmin and maximum ηtmax boundaries and the learning rate cyclically varies (linearly
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increasing then linearly decreasing) in these bounds. In each stage, the step-size is non-monotonic. In
their paper, the author also consider a variant which cuts ηtmin and ηtmax in half after each stage. This is
exactly the step-decay boundary we discussed. Our analysis in Section 3 can provide the convergence
guarantees for such kinds of step-sizes. However, such cyclical step-size is not monotonic in each
stage, so our analysis for SGDM in Section 4 is not suitable for this situation.

E ADDITIONAL DETAILS OF THE EXPERIMENTS ON BANDWIDTH STEP-SIZES

In this section, we provide additional details about the numerical experiments in Section 5.

E.1 HOW TO DESIGN THE BANDWIDTH STEP-SIZES AND SELECT PARAMETERS

To better understand the bandwidth step-sizes tested in the numerical experiments, we visualize the
step-size ηti (y-axis is log(ηti)) vs the number of epochs in Figure 5. We first consider the popular
“step-decay” policy as the baseline. During the first stage, the bandwidth step-size follows the lower
bound. From the second stage and on, we let the initial step-size in each stage to be equal to the
upper bound and the last step-size in the stage to reach the lower bound. Our numerical experience
has shown that the best performance is obtained when the initial step-size of each stage is larger
than the final step-size of the previous stage, which means that the step-size experiences a sudden
increase before it decreases again. For the step-decay band, we consider four decay modes: 1/i,
1/
√
i, linearly, and according to a cosine function (Loshchilov and Hutter, 2017) and update the step

size each epoch. If the training size is n and sample size per iteration is b, then one epoch is n/b
iterations.

We also adopt the polynomial 1/
√
t step-size as the boundary function, named 1/

√
t-band, and

update the step-size every epoch. We add similar perturbation as for the step-decay band, but we do
not apply the perturbation per stage. Otherwise, the perturbation is too frequent and just increases
the variance of the iterates. We tune the frequency of the perturbations (denoted as N0) to undergo a
similar number of cycles as the step-decay perturbations. In the first cycle, the bandwidth step-sizes
agree with their lower bound, just as for step-decay. From the second cycle, we begin to add the
decreasing perturbations, e.g., 1/

√
i, 1/i and linearly. As discussed above, these perturbations are

only adjusted between stages. Several different 1/
√
t bandwidth step-sizes are shown in Figure 5.
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Figure 5: Bandwidth step-sizes: 1/
√
t-band (left); step-decay-band (right)

We perform a grid search for the initial step-size η0 ∈ {0.01, 0.05, 0.1, 0.5, 1, 5} of the baseline step-
sizes. For step-decay step-size (baseline), we select the decay factor α from {1.5, 2, 3, 4, · · · , 12}
and set the number of stages N = blogα T/2c according to Theorems 3.1 and 4.2. We choose the
lower bound parameter m = η0 to agree with the baseline. The bandwidth s = M/m = αθ where
θ ∈ {0.5, 0.8, 1, 1.2, 1.3, 1.5, 1.8}. If θ > 1, it means that the starting step-size at the current stage is
larger than the ending step-size from the previous stage. For the 1/

√
t-band step-sizes, we choose

ηti = η0/(1 + a
√
t) as the baseline , and select the best a > 0 to make the final step-size reach

the interval {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. Moreover, we select the lower bound parameter
m = η0 to make sure that the lower bound agrees with the baseline. For the upper bound parameter
M , we do a grid search for s = M/m ∈ {2, 3, 4, 5, 6}. The number of perturbation cycles N0 for
the 1/

√
t-band step-sizes is chosen from {1, 2, 3, 4}. All the hyper-parameters are selected to work

best according to their performance on the test dataset.
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Figure 6: The training loss and test loss of 1/
√
t-band (left column), step-decay band for SGD (middle column),

and step-decay band for SGDM (right column) on CIFAR10

E.2 EXPERIMENTS DETAILS ON CIFAR10 AND CIFAR100 DATASETS

In this subsection, we will give the implementation details for the experiments on CIFAR10 and
CIFAR100. The benchmark datasets CIFAR10 and CIFAR100 (Krizhevsky, 2009) both consist of
60000 colour images (50000 training images and the rest 10000 images for testing). The maximum
epochs called for the two datasets is 180 and the batch size is 128. All the experiments on CIFAR
datasets are implemented in Python 3.7.4 and run on 2 x Nvidia Tesla V100 SXM2 GPUs with
32GB RAM. All experiments are repeated 5 times to eliminate the effect of the randomness. The
performance of different algorithms is evaluated in terms of their loss function value and classification
accuracy on the training and test datasets. All the results for training loss, test loss, and test accuracy
are reported in Figures 6, 7, and 3.

For CIFAR 10, we train an 18-layer Resident Network model (He et al., 2016) called ResNet-18. We
first test the vanlia SGD with a weight decay of 0.0005. The initial step-size η0 = 1 and a = 1.41618
for 1/

√
t step-size (baseline). For 1/

√
t-band step-sizes, we set: s = 2 and N0 = 3 for 1/

√
i mode;

s = 3 and N0 = 3 for 1/i mode; and s = 4 and N0 = 3 for linear mode. For the step-decay step-size
(baseline) and also the bandwidth step-sizes, the initial step-size η0 = 0.5 and decay factor α = 6.
For step-decay band step-sizes, the parameter θ is 1.3 for the 1/

√
i, 1/i and linear modes, and is

1.2 for cosine mode. We also implement the SGD with momentum (SGDM) algorithm, with the
momentum parameter of 0.9 and a weight decay of 0.0005. For the step-decay step-size, the initial
step-size η0 is 0.05 and the decay factor α is 6. We choose the same initial step-size and decay factor
for the step-decay bandwidth step-sizes. The best θ is 1.3 for the four decay modes.

In a similar way, we also detail our parameter selection for the experiments on CIFAR100. On this
data set, we train a 28× 10 wide residual network (WRN-28-10) (Zagoruyko and Komodakis, 2016).
We first implement vanilla SGD with a weight decay of 0.0005. For the baseline of the 1/

√
t band,

we set η0 = 0.5 and a = 3.65224. For the 1/
√
t-band step-sizes we use: s = 2 and N0 = 3 for

1/
√
i-mode; s = 4 and N0 = 3 for 1/i-mode; s = 4 and N0 = 2 for linear-mode. For the step-decay

band, we choose η0 = 0.5 and α = 6. The parameter θ is set to 1.3 for 1/i mode and 1.2 for the other
modes. Then we also apply the step-decay band step-sizes on the SGD with momentum (SGDM)
algorithm, where the momentum parameter is 0.9 and the weight decay parameter is 0.0005. We
set the initial step-size η0 = 0.1 and α = 6 for the baseline and other step-decay band step-sizes;
θ = 1.2 for 1/

√
i and linear modes; and θ = 1.3 for 1/i and cosine modes.
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Figure 7: The training loss and test loss of 1/
√
t-band (left column), step-decay band for SGD (middle column),

and step-decay band for SGDM (right column) on CIFAR100

E.3 EXPERIMENTS RESULTS OF THE TOY EXAMPLE ON BANDWIDTH STEP-SIZE

In this subsection, we describe the toy example and also report additional results using other bandwidth
step-sizes.

The loss-function is the two-dimensional (x, y ∈ R are the variables) non-convex function:

f(x, y) =
(
(x+ 0.7)2 + 0.1

)
(x− 0.7)2 + (y + 0.7)2

(
(y − 0.7)2 + 0.1

)
which has four local minima (denoted by 1 to 4 3), one of which is global ( 4 ). We execute 10000
algorithm runs with an initial point (−0.9, 0.9). The total number of iterations is set to T = 3000.
The gradient noise is drawn from the standard normal distribution. The setting of the experiments
follows (Shi et al., 2020). The step-sizes we tested in this part are similar to Section E.1. The
difference is that here we update the step-size per iterate instead of per epoch, as we did on the CIFAR
datasets. We report the percentage (%) of the final iterate close to each local minima in Table 2. Note
that the results for constant (large and small) step-size, step-decay (baseline), and step-decay with
linear have already been presented in the introduction of the main document. The large constant
step-size is 0.1 and the small constant step-size is 0.05. As we can see, 1/

√
t-band with 1/

√
i, 1/i

and linear modes more likely to escape the bad local minima and find the global solution than their
baseline. Except the result of step-decay with linear (shown in Figure 2 and Table 1), we also find
that other bandwidth step-sizes achieve good performance and work better than the baseline.

In the toy experiment, we also test the performance of step-decay (baseline) and step-decay with linear
on different initial points. We evenly select 100 initial points x0 from the region [−1, 1]× [−1, 1]. At
each initial point, we repeat the same process as previous initial point (−0.9, 0.9) and do 10000 runs.
We record the percentage of final iterate close to global minima 4 at each initial point in Figure 8.
The x-axis denotes the distance of the initial point x0 and the global minima x∗. We can see that
compared to its baseline, step-decay with linear is less sensitive to the selection of the initial point
and a relatively large θ > 1 works better if the initial point is far from the global minima.

3Notation: 1 denotes the local minima at (−0.7, 0.7); 2 denotes the local minima at (0.7, 0.7) ; 3 denotes
the local minima at (−0.7,−0.7); 4 denotes the global minima at (0.7,−0.7).
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Table 2: The percentage (%) of the final iterate close to each local minima

step-size type 1 2 3 4

const
small 29.61 24.66 25.13 20.60
large 0.12 3.45 3.28 93.15

1/
√
t-band

baseline 54.93 18.65 19.48 6.94
1/
√
i-mode 10.92 22.25 23.51 42.96

1/i-mode 6.92 21.57 22.63 45.74
linear-mode 3.75 15.86 16.37 63.97

step-decay-band

baseline 0.40 6.89 7.55 85.16
1/
√
i-mode 0.09 3.73 4.16 92.02

1/i-mode 0.09 3.55 3.85 92.51
linear-mode 0.14 2.95 2.99 93.92
cosine-mode 0.18 3.36 3.48 92.98
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Figure 8: The toy example with different initial points for step-decay (baseline) and step-decay with linear
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