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Abstract

Deductive reasoning over complex natural lan-
guage poses significant challenges, necessitating
the integration of large language models (LLMs).
Benchmarks like ProofWriter and FOLIO high-
light these challenges and demonstrate the need
for advanced reasoning methods. Current ap-
proaches range from direct reasoning methods
like zero-shot, few-shot, and chain-of-thought
learning to hybrid models integrating LLMs with
symbolic solvers. However, these methods of-
ten rely on static examples, limiting their adapt-
ability. This paper introduces RAG-Logic, a dy-
namic example-based framework using Retrieval-
Augmented Generation (RAG), which enhances
LLMs’ logical reasoning capabilities by provid-
ing contextually relevant examples. This ap-
proach conserves resources by avoiding extensive
fine-tuning and reduces the propensity for halluci-
nations in traditional models. Our results across
the Proof Writer and FOLIO datasets demonstrate
the effectiveness of our framework, marking an
advancement in logical reasoning tasks.

1 Introduction

Deductive reasoning over complex natural language
presents significant challenges for artificial intelli-
gence. Although symbolic solvers are good at han-
dling formal logic, their applications are limited be-
cause many problems are typically represented in
natural language. This necessitates the integration of
large language models (LLMs) to serve as interme-
diaries in translating natural language into symbolic
expressions.

Benchmarks such as ProofWriter (Tafjord et al.,
2021) and FOLIO (Han et al., 2022) have under-
scored the challenges associated with logical reason-
ing in natural language contexts. FOLIO, in partic-
ular, highlights the substantial hurdles posed by its

natural language diversity, making it an apt setting
for evaluating advanced reasoning approaches.

Current reasoning methodologies range from di-
rect approaches like zero-shot (Wei et al., 2022a),
few-shot learning (Brown et al., 2020) and chain-of-
thought (CoT) (Wei et al., 2022b), to hybrid strate-
gies integrating LLMs with symbolic solvers, such
as Logic-LM (Pan et al., 2023) and LINC (Olausson
et al., 2023). These hybrid models, while innova-
tive, often rely on fixed examples to guide reasoning,
which can limit their effectiveness across varied con-
texts. More sophisticated systems like Symbolic
Chain-of-Thought (SymbCoT) (Xu et al., 2024) and
LeanReasoner (Jiang et al., 2024) utilize complex
methodologies to advance logical reasoning tasks.

In this paper, we present a method for obtain-
ing dynamic examples using Retrieval Augmented
Generation (RAG), thus addressing the limitations
of traditional prompt methods for fixed examples.
RAG-Logic enhances the logical translation capa-
bilities of LLM by dynamically providing contex-
tually relevant examples to improve the accuracy
of reasoning problems. This approach conserves
computational resources by avoiding extensive fine-
tuning and reduces the propensity of LLMs to gener-
ate hallucinations. Our experimental results across
the ProofWriter and FOLIO datasets substantiate the
efficacy of our framework, marking an advancement
in logical reasoning tasks.

2 Related Work

Due to natural language’s fuzziness, ambiguity, and
frequent implicit information (such as emotions), ac-
curately translating natural language sentences into
first-order logic (FOL) poses a challenge for LLMs.
Nguyen et al. (2022) proposed a method combining



manually translated rules or automatically logical
fact formulas with deep learning to enhance trans-
lation quality. Yang et al. (2023) introduced LOGI-
CLLAMA, which improves accuracy through super-
vised fine-tuning of the CoT step and reinforcement
learning with human feedback. Chen et al. (2023)
developed an instructive framework focused on tem-
poral logic, employing large LL.Ms to facilitate bidi-
rectional translation between natural language (NL)
and signal temporal logic (STL) formats, utilizing
intermediate languages such as Lifted NL and Lifted
STL in this process. This approach enabled them to
generate accurate NL-STL pairs. Our research also
deals with translation from NL to FOL, emphasiz-
ing the consistency of information in the translation
work.

Neuro-symbolic methods for logical reasoning
have gained attention recently. Pan et al. (2023) em-
ployed Logic-LM, a framework based on the neuro-
symbolic method, introducing a self-refiner module
to address unfaithful reasoning in LLMs. Olaus-
son et al. (2023) introduced LINC, a system that
integrates neural and symbolic methods to enhance
logical reasoning. This integration employs a Logic
Theorem Prover and incorporates a majority voting
mechanism to refine the effectiveness of logical rea-
soning. Jiang et al. (2024) proposed LeanReasoner
with a tactic generator and proof search to reduce
problem complexity. Xu et al. (2024) proposed Sym-
bCoT for converting natural language to logic (al-
though SymbCoT solved the problem using the CoT
method instead of a symbolic solver.). RAG-Logic
also follows the “LLM translation + external solver"
structure, but it incorporates the RAG method to en-
hance translation quality. Lewis et al. (2020) first
proposed the idea of RAG. They studied a RAG
model retrieving documents from a library to inform
output generation, yielding more precise and factual
results by leveraging external knowledge sources.
Ding et al. (2024) highlighted RAG’s integration
of external data to reduce model hallucinations and
augment the generation quality. Additionally, Jiang
et al. (2023) introduced FLARE, enabling efficient
retrieval of necessary information by language mod-
els during generation. Our research focuses on the
RAG method’s role in NL-FOL translation, demon-
strating its capability to enhance logical reasoning in
RAG-Logic frameworks.

3 RAG-Logic

In this section, we describe the framework of RAG-
Logic as depicted in Figure 1. The primary idea of
the framework is to enhance logical reasoning capa-
bilities by integrating RAG with symbolic solvers.
The framework is divided into four main modules:
the RAG Knowledge Base Search Module, the Trans-
lation Module, the Fix Module, and the Solver Mod-
ule. The prompts for each part are in Appendix A.1.

RAG Knowledge Base Search Module: This
module performs a search in a pre-built knowledge
base using the natural language premise in the exam-
ple. It selects the examples in the knowledge base
that are most similar to the current input sentence
for use in subsequent modules. The basis for the
knowledge base query is vector similarity, utilizing
the text-embedding-3-small embedding model'. The
similarity function used is cosine similarity, calcu-
lated as follows:

. o A-B
Cosine Similarity TA[B]’
where A and B are the vector representations of the
sentences.

The knowledge base consists of two types: queries
on all premises and queries on a single premise. The
result returned by the knowledge base is the FOL
formula for similar sentences. For example, if the
input is: "All squares have four sides.” we might get:
"All tables are round. Vx(Table(x) — Round(x))
..... " Whereas, if the input is another sentence like:
"If George likes music, he wants to compose." we
might get: "If Sam has high ambitions and future
career goals, then Sam is a big fan of pop bands and
singers. Ambitious(sam) — Fans(sam) ....."

Translation Module: This module uses a specific
prompt for LLMs to translate natural language sen-
tences into logical formulas. The prompt includes
examples from RAG, definitions of logical opera-
tors, instructions for avoiding certain symbols, and
guidelines for building FOL rules using appropri-
ate quantifiers and variables. Detailed prompts are
provided in Appendix A.1 for reference.

Fix Module: This module ensures the syntac-
tical correctness of the translated FOL formulas

"https://openai.com/index/new-embedding-models-and-api-
updates/



If George likes music, he wants to
compose.
If George will not compose, George can not
compose.

V x (Likes(george, music) — Wants(george,

Compose(george))) | .

Vv x ("Will(george, .(Sc-;mpose(george)) —

~Can(george, Compose(george)))
>

LikesMusic(george) — WantsToCompose(george)

“WillCompose(george) — “CanCompose(george)

Everyone who works in person is a commuter.
People either work in person or work from home.
Vv x (InPerson(x) — Commuter(x))

Vx (InPerson(x) @ FromHome(x))

Unknown

Figure 1: The framework of proposed RAG-Logic.

by detecting and correcting syntax errors, provid-
ing contextually relevant examples from the RAG
search to guide corrections. For example, the in-
put: Vz(Tall(x, Strong(x))) contains a predicate
stacking error. The corrected formula would be:
Vz(Tall(x) — Strong(z)). For FOLIO, it also in-
cludes domain correction to address predicate and
domain repetition issues. If a predicate only appears
in the antecedent of an implication and signifies that
x belongs to a certain category, then the predicate
will be removed, provided that the domain of dis-
course in the entire context includes this category.
For example, within a domain where the context en-
compasses only humans if there are 2 premises, “A
person is either a man or a woman. All men are tall.”
then in Va (Person(z) — (Man(z) V Woman(x)));
Vz (Man(z) — Tall(x), the predicate "Person" can
be omitted.

Solver Module: This module evaluates the logical
consistency of the translated formulas using the Z3
solver 2. It inputs the translated FOL premises and
a conclusion into the solver and determines whether
the conclusion is implied by the premises, labeling
the conclusion as True, False, or Unknown based on
the solver’s output.

*https://github.com/Z3Prover/z3

4 Experiments

4.1 Comparative Methods

We employ four models for comparison: gpt-3.5-
turbo-0125 (GPT-3.5)3, claude-3-haiku-20240307
(Claude3)?, deepseek-chat (Deepseek) (DeepSeek-
Al et al., 2024) and gpt-40-2024-05-13 (GPT-40)°.
Each model is evaluated using the following meth-
ods: CoT, Few-shot prompting translation with a
symbolic solver (FS), Few-shot prompting transla-
tion with the fix module and symbolic solver (FSg;),
RAG with symbolic solver (RAG-L), RAG with the
fix module and symbolic solver (RAG-Lp;,).

4.2 Setting

For the few-shot configuration, the prompt contains
three fixed examples. For the RAG configurations,
the prompt includes the three most similar examples
retrieved from the knowledge base. The RAG and
Fix configuration additionally queries five examples
of single error sentences for repair guidance.

4.3 Datasets

ProofWriter: For ProofWriter, we randomly se-
lected 180 examples with balanced label distribution
from the 2-depth and 3-depth test subsets to form
the test set. Additionally, 1200 examples from the
2-depth and 3-depth train subsets were used for the

*https://openai.com/index/new-embedding-models-and-api-
updates/

“https://www.anthropic.com/news/claude-3-haiku

Shttps://openai.com/index/hello-gpt-4o/



RAG training set. We use Deepseek to convert train-
ing examples into FOL formulas. After verifying
consistency with the labeled answers using a solver,
we select the correct parts to add to the knowledge
database.

To ensure the extracted results are not overly sim-
plistic, we avoid instances where the problem state-
ment is identical to or merely negates the premises.
Since the examples in FOLIO have 3-9 premises,
we only choose examples with 3-9 premises in
ProofWriter.

FOLIO: For FOLIO, following the methodology
from LINC, problematic examples were removed,
leaving 181 examples for the test set. The entire
training set was used as the knowledge base.

4.4 Results

Table 1: Results of Models on ProofWriter.

Model |CoT | FS |FSgi|RAG-L|RAG-Lp;y
GPT-3.5 |57.22|88.33(94.41| 95.00 96.67
Claude3 [61.67(92.82|95.58| 96.69 96.69
Deepseek |88.89(96.11|96.67| 97.22 97.22
GPT-40 |92.22|94.44|97.22| 97.22 97.78

Table 2: Results of Models on FOLIO.

Model | CoT | FS FSFix RAG-L RAG-LFix
GPT-3.5 |50.55|46.70|55.68| 53.30 56.82
Claude3 |53.85|54.95|68.16| 58.10 71.35
Deepseek |63.74(55.49|68.89| 60.34 74.72
GPT-40 |64.84|62.64|72.38| 67.06 75.14

Table 1 presents the results of various methods
on ProofWriter, demonstrating the effectiveness of
our framework and signifying the incremental ad-
vancement contributed by our fix module. RAG-L
consistently achieves higher accuracy than both FS
and CoT (RAG-L has an average of 97% accuracy),
regardless of the model, likely due to its ability to
search for suitable examples to aid in formula transla-
tion. The impact of the fix module is less pronounced,
possibly because the language used in ProofWriter
is relatively simple, allowing various methods to
achieve high accuracy (Especially FS and RAG-L,
which are basically above 90%) and leaving limited
room for improvement.

Table 2 presents the experimental results on FO-
LIO, reaffirming the effectiveness of the RAG-Logic
framework and underscoring the role of the fix mod-
ule. The RAG-Lp;, shows improvement compared to
both FS and CoT, achieving the highest score of ap-
proximately 75% (GPT-4o0 and Deepseek), although
not as high as on ProofWriter. Notably, CoT per-
forms better than unfixed FS or RAG-L on some
models, likely because FOLIO’s language is closer
to natural language, making it more suitable for di-
rect processing by LLMs. However, our fix module
effectively addresses this, resulting in more than an
8% improvement across various models (except for
GPT-3.5 under RAG-L). This indicates that while
LLM translation results are “almost” correct, they
may contain minor errors due to natural language
complexity, which the fix module successfully miti-
gates.

5 Conclusion

In this paper, we presented a novel framework,
RAG-Logic, designed to enhance neuro-symbolic
approaches for logical reasoning with RAG. Our
framework addresses the inherent challenges of trans-
lating NL into FOL by leveraging the contextual rich-
ness and relevance provided by RAG. Through com-
prehensive experiments on ProofWriter and FOLIO
datasets, we demonstrated that our method improves
the accuracy and reliability of logical translations,
outperforming traditional CoT prompting and few-
shot prompting translation with a symbolic solver.

Future work should focus on enhancing the rel-
evance of knowledge base searches, potentially by
combining embeddings with syntactical analysis to
ensure the retrieval of the most pertinent examples.
Additionally, constructing a more comprehensive
and high-quality RAG knowledge base is crucial for
further improving the performance of logical transla-
tions. By refining these aspects, we aim to push the
boundaries of what can be achieved in logical reason-
ing tasks, making Al systems more reliable, accurate,
and capable of complex cognitive processes.



Limitations

The RAG-Logic framework introduced in this paper,
while showing enhancements in logical reasoning
capabilities, presents certain limitations:

1. Opacity of Vector Similarity: The RAG-Logic
framework relies on vector similarity for retrieving
relevant examples from a knowledge base, inherently
characterized by a “black-box” nature. Vector simi-
larity may not capture the full logical and semantic
complexity of sentences, sometimes leading to the
retrieval of examples that are less relevant to the
current problem. Despite the use of advanced text
embedding models, the decision processes and fea-
ture capturing of these models remain insufficiently
transparent.

2. Impact of the Number of Knowledge Base
Examples: In RAG-Logic, the number of examples
chosen from the knowledge base to aid logical rea-
soning directly impacts the accuracy and efficiency
of the reasoning process. Too few examples can lead
to insufficient information, and failing to provide
effective logical support; conversely, too many ex-
amples might increase processing complexity and
computational cost without necessarily leading to a
linear improvement in performance. Determining
the optimal number of examples generally requires
adjustment based on experience, lacking a systematic
method to predict the best solution.

3. Dependence on the Quality and Coverage
of External Knowledge Bases: The effectiveness
of RAG-Logic heavily depends on the quality and
coverage of external knowledge bases. If the data
in the knowledge base is of low quality or covers a
narrow range, it might lead to the retrieval of inaccu-
rate or incomplete information, thereby affecting the
correctness of the reasoning results.
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A Appendix

A.1 Prompts
1. CoT

This task requires an analysis of the logical connec-
tions between a series of premises and a specified
conclusion to determine the validity of the conclu-
sion. The analysis is grounded in first-order logic.
The objective is to evaluate if the conclusion is log-
ically supported by the premises provided. Please
use <label></label> tags to categorize the final as-
sessment of the conclusion as *True’, *False’, or *Un-
known’, facilitating streamlined processing.
Task Description
Input:
* Premises: A set of statements presented in first-
order logic.
* Conclusion: A statement that needs to be evalu-
ated against the premises.
Instructions:
1. Read and Understand the Premises and Conclu-
sion:
* <premises> {premises} </premises>
» <conclusion> {conclusion} </conclusion>
2. Analyze the Logical Relationship:
* Determine if the logical flow supports the
conclusion based on the premises.
3. Evaluation and Labeling:
* Based on the analysis, decide if the con-
clusion is:

— True: The conclusion logically follows
from the premises.

— False: The conclusion does not logi-
cally follow from the premises.

— Unknown: It is unclear or there is in-
sufficient information to determine the
relationship.

4. Final Output:
* Clearly state your final assessment of the
conclusion. Encapsulate your decision
(’True’, *False’, or "Unknown’) within <la-
bel></label> tags for clarity.
* Example: ‘<label>True</label>*
Remember, your final decision must be enclosed
within <label></label> tags to enhance the model’s
result processing capability.
Let’s think step by step.

2. Translator Module

Role: Logic Translator

For FOL rule generation

1. You SHOULD USE the following logical op-
erators: & (either or), V (disjunction), A (con-
junction), — (implication), V (universal), 3 (ex-
istential), — (negation), <+ (equivalence)

2. You SHOULD NEVER USE the following sym-
bols for FOL: "","#", "%", "="

3. The literals in FOL SHOULD ALWAYS have
predicate and entities, e.g., "Rounded(x, y)" or
"City(guilin)"; expressions such as 'y=a Vy=
b" or "a A b A c" are NOT ALLOWED

4. The FOL rule SHOULD ACCURATELY reflect
the meaning of the NL statement

5. You SHOULD ALWAYS put quantifiers and
variables at the beginning of the FOL

6. You SHOULD generate FOL rules with either:

(a) no variables;

(b) one variable "x";

(c) two variables "x", "y";

(d) three variables "x", "y" and "z"

Example to learn

Current task:

Convert the following length lines natural lan-
guage sentences into length first-order logical for-
mulas.

* <NL> </NL>

Output format

Use <FOL> and </FOL> to wrap the FOL formu-
las.

The formulas you output in the <FOL> tag should
correspond line by line with the content in the <NL>
tag.

Each line in the tag should be a single FOL for-
mula.

You can analyze task during your output. But
don’t use natural language in the final <FOL> tag.

Let’s think step by step.

3. Fix Module 1

Role: Logic Corrector
* Goals
— Enhance the compatibility of first-order
logic (FOL) formulas with formal verifica-
tion tools by ensuring syntactical correct-
ness and adherence to formal logic syntax.



— Automatically identify and suggest correc-
tions for common syntax errors in FOL
formulas to facilitate their processing by
logic verifiers.

For FOL rule generation

1. You SHOULD USE the following logical op-
erators: & (either or), V (disjunction), A (con-
junction), — (implication), V (universal), 3 (ex-
istential), — (negation), <+ (equivalence)

2. You SHOULD NEVER USE the following sym-
bols for FOL: "","#£", "%", "="

3. The literals in FOL SHOULD ALWAYS have
predicate and entities, e.g., "Rounded(x, y)" or
"City(guilin)"; expressions such as "y =a Vy =
b" or "a A b A ¢" are NOT ALLOWED

4. The FOL rule SHOULD ACCURATELY reflect
the meaning of the NL statement

5. You SHOULD ALWAYS put quantifiers and
variables at the beginning of the FOL

6. You SHOULD generate FOL rules with either:

(a) no variables;

(b) one variable "x";

(c) two variables "x", "y";

(d) three variables "x", "y" and "z"

Output format

Use <FOL> and </FOL> to wrap the FOL formu-
las.

Each line in the tag should be a single FOL for-
mula.

You can analyze task during your output. But
don’t use natural language in the final <FOL> tag.

Only signal <FOL> can be in your reply.

Example to learn

Current task:

* <NL> </NL>

e {err_msg}

Firstly, follow the rules above and reply your idea
about the error message.

Secondly, write length FOL formulas after fixed
in the following tag <FOL> which like ‘<FOL>Your
answer</FOL>*.

Let’s think step by step.

4. Fix Module 2

Role: Logic Corrector
For FOL rule generation
1. You SHOULD USE the following logical op-
erators: @ (either or), V (disjunction), A (con-

junction), — (implication), V (universal), 3 (ex-

istential), — (negation), <+ (equivalence)

2. You SHOULD NEVER USE the following sym-
bols for FOL: "","#", "%", "="

3. The literals in FOL SHOULD ALWAYS have
predicate and entities, e.g., "Rounded(x, y)" or
"City(guilin)"; expressions such as 'y=a Vy=
b" or "a A b A c¢" are NOT ALLOWED

4. The FOL rule SHOULD ACCURATELY reflect
the meaning of the NL statement

5. You SHOULD ALWAYS put quantifiers and
variables at the beginning of the FOL

6. You SHOULD generate FOL rules with either:

(a) no variables;
(b) one variable "x";
(c) two variables "x", "y";
(d) three variables "x", "y" and "z"

Output format

Use <FOL> and </FOL> to wrap the FOL formu-
las.

Each line in the tag should be a single FOL for-
mula. You can analyze task during your output.But
don’t use natural language in the final <FOL> tag.

Example to learn

Background Information

* <NL> </NL>

The formulas below may contain errors.

* <FOL> </FOL>

Current task:

Firstly,follow the rules above and reply your idea
about the error message.

Secondly,write only one FOL formula for one line
in the following tag <FOL> which like <FOL>Your
answer</FOL>. Let’s think step by step.



A.2 The results of Models

The data in the charts are the same as Table 1 and
Table 2. A single chart is more intuitive to compare
the differences between different methods under the
same model.
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