
Under review as a conference paper at ICLR 2024

HOW WELL DOES PERSISTENT HOMOLOGY
GENERALIZE ON GRAPHS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Persistent Homology (PH) is one of the pillars of topological data analysis that
leverages multiscale topological descriptors to extract meaningful features from
data. More recently, the combination of PH and neural networks has been suc-
cessfully used to tackle predictive tasks on graphs. However, the generalization
capabilities of PH on graphs remain largely unexplored. To bridge this gap, we
provide a lower bound on the VC dimension of PH on graphs. Further, we derive a
PAC-Bayesian analysis for a popular PH-based classifier, namely PersLay, provid-
ing the first data-dependent generalization guarantee for PersLay. Notably, Per-
sLay consists of a general framework that subsumes various vectorization methods
of persistence diagrams in the literature. We substantiate our theoretical analysis
with experimental studies and provide insights about the generalization of PH on
real-world graph classification benchmarks.

1 INTRODUCTION

Topological Data Analysis (TDA) harnesses tools from algebraic topology to unveil the underly-
ing shape and structure of data, and has recently gained significant traction within machine learn-
ing. One of its flagship methodologies is Persistent Homology (PH) (Edelsbrunner & Harer, 2008),
which endeavors to characterize topological properties like connected components and loops within
data. Remarkably, PH has found success across diverse scientific domains, spanning from computer
vision (Hu et al., 2019) and drug design (Kovacev-Nikolic et al., 2016) to fluid dynamics (Kramár
et al., 2016) and material science (Lee et al., 2017).

PH has also emerged as a promising tool (Chen et al., 2021; Zhao et al., 2020; Rieck et al., 2019) to
augment the representational capabilities of Graph Neural Networks (GNNs). GNNs are employed
to encode graph-structured data, and have achieved state-of-the-art performance in various applica-
tions (Scarselli et al., 2009; Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018;
Xia et al., 2021). Many popular GNNs implement local message-passing schemes that are known
to have limited expressivity (Garg et al., 2020); in particular, these GNNs are bounded in power
by the Weisfeiler-Leman (WL) test for isomorphism (Xu et al., 2019; Morris et al., 2019; Maron
et al., 2019; Joshi et al., 2023). PH has been employed to furnish global structural signatures that go
beyond what can be captured by message-passing schemes, so PH has been integrated into GNNs to
enhance their expressivity (Carrière et al., 2020; Hofer et al., 2017; Zhao & Wang, 2019).

Expressivity of machine learning models is certainly important (Sato, 2020); however, it does not
guarantee that powerful models that do well on training data would generalize, i.e., predict well on
unseen data as well. In fact, expressivity and generalization can be at odds with each other, and
finding a good tradeoff holds the key to success of machine learning models (Garg et al., 2020). The
importance of generalization bounds cannot be overstated, as they play a pivotal role in ensuring the
reliability and applicability of machine learning models (Nia et al., 2023). In this context, there are
two fundamental approaches to proving these bounds: data-independent and data-dependent (Se-
fidgaran & Zaidi, 2023), each offering unique insights into the generalization problem.

Recently, several works have analyzed the generalization ability of GNNs in the context of various
prediction tasks for graphs (Scarselli et al., 2018; Verma & Zhang, 2019; Garg et al., 2020; Liao
et al., 2020; Maskey et al., 2022; Esser et al., 2021; Zhou et al., 2022; Ju et al., 2023). In contrast,
theoretical underpinnings underlying the success of TDA methods are underexplored; in particular,
generalization capabilities of PH methods remain largely uncharted territory.

1

Under review as a conference paper at ICLR 2024

1.1 OUR CONTRIBUTIONS

We fill the gap concerning the generalization behavior of PH from both data-dependent and data-
independent perspectives. Specifically, we first lower-bound the VC dimension of PH for graph-
structured data. VC dimension is a classic measure for model complexity, often used to guide model
selection in machine learning settings, and is intimately related to the framework of PAC (probably
approximately correct) learning theory (Vapnik & Chervonenkis, 1971).

We then establish the first data-dependent PAC-Bayesian generalization bounds (McAllester, 1999;
2003; Dziugaite & Roy, 2017) for PH, focusing on a versatile method PersLay that leverages ex-
tended persistence to effectively represent detailed topological features (Carrière et al., 2020). Our
PAC-Bayes bound considers persistence diagrams obtained from fixed filtration functions, and there-
fore applies more generally to topological objects other than graphs. Our analysis hinges on some
key technical insights and arguments, beyond a typical PAC-Bayes analysis, to overcome challenges
arising from the inherent heterogeneity of the PersLay model.

We provide strong empirical evidence on five standard real-world datasets to substantiate the merits
of our analysis. First, our experiments confirm strong correlation between observed generalization
performance and the expected behavior as a function of different parameters in our bounds. Then,
we use our bounds to propose a regularized version of PersLay with demonstrable empirical benefits.

1.2 RELATED WORKS

Expressivity and generalization of GNNs. Xu et al. (2019); Maron et al. (2019) analyzed the repre-
sentational power of GNNs in terms of the 1-WL test, revealing theoretical limits on their expressiv-
ity (Garg et al., 2020). This has motivated a surge of works aiming to go beyond 1-WL with GNNs
(e.g., Li et al., 2020). Regarding generalization, Scarselli et al. (2018) first provided upper bounds
on the order of growth of VC-dimension for GNNs. Garg et al. (2020) presented data-dependent
generalization bounds via Rademacher complexity. Recently, Morris et al. (2023) employed the WL
test alongside VC-dimension to gain insights about the generalization performance of GNNs. For
details about the expressivity and learning of GNNs, we refer to Jegelka (2022).

Expressivity of PH. Rieck (2023) discussed the expressivity of PH on graphs, showing that PH is at
least as powerful as the k-FWL (Folklore WL) test (Cai et al., 1992). Immonen et al. (2023) charac-
terized the class of graphs that can be recognized by methods that rely on color-based filtrations, and
proposed a more expressive method that combines vertex- and edge-level filtrations. However, to
the best of our knowledge, there are no works concerning the generalization of PH-based methods.

Learning theory and PH. Birdal et al. (2021); Dupuis et al. (2023) explored a connection between
learning theory and TDA and analyzed generalization error in terms of the so-called ‘persistent
homology dimension’. Chen et al. (2018) used the topological complexity of a model as a regular-
ization term in order to simplify the model’s topological complexity without sacrificing its flexibility.

PAC-Bayes. The PAC-Bayes framework (McAllester, 1999; 2003) allows us to leverage knowledge
about learning algorithms and distributions over the hypothesis set for achieving tighter generaliza-
tion bounds. Remarkably, Neyshabur et al. (2018) presented a generalization bound for feedforward
networks in terms of the product of the spectral norm of weights using a PAC-Bayes analysis. For
GNNs, Liao et al. (2020) exploited PAC-Bayes to improve over the generalization bound by Garg
et al. (2020). Dziugaite & Roy (2017) optimized the PAC-Bayes bound directly and obtained non-
vacuous generalization bounds for deep stochastic neural network classifiers.

2 PRELIMINARIES

This section overviews PH on graphs (Edelsbrunner & Harer, 2008; Cohen-Steiner et al., 2009;
Rieck, 2023), PersLay (Carrière et al., 2020), hinge loss, and PAC-Bayes (McAllester, 2003). Also,
we provide in Table 3 (Appendix A) a summary of the notation adopted throughout the paper.

Persistence Theory & Graphs. We consider arbitrary graphs denoted as G = (V,E), with vertex
set V = {1, 2, ..., n}, and edge set E ✓ V ⇥ V . The set of all graphs we consider is denoted as G.

2

Under review as a conference paper at ICLR 2024

Obsevations
(i.g. Graphs)

AGG MLP

Persistence
Diagrams

Figure 1: PersLay Classifier. Each graph is encoded as a persistence diagram, which is then embed-
ded in some vector space using two functions !,' that are optimized during training. The resulting
vectors are combined using a fixed permutation-invariant operator (i.e., AGG) and fed into an MLP.

Since graphs can be represented as topological spaces, Persistence Homology analysis can be ap-
plied to them. We call a finite nested sequence of subgraphs of G, i.e., G1 ✓ G2 ✓ ... ✓ G as a
filtrtaion of a graph G. While various types of filtrations can be constructed (Hofer et al., 2017), a
common choice involves utilizing a vertex filtration function f : V 7! R that allows us to obtain
a permutation ⇡ of the n vertices such that f(⇡(1)) f(⇡(2)) ... f(⇡(n)). Subsequently,
a filtration induced by f is an indexed collection {Gf(⇡(i))}

n
i=1, where each Gf(⇡(i)) ✓ G is the

subgraph with vertices V = {v 2 V | f(v) f(⇡(i))}. In the context of graphs, Persistence Ho-
mology typically tracks either the number of connected components or independent cycles (which
correspond to 0- and 1-dimensional topological features) using efficient computational techniques.
If a topological feature first appears in Gf(⇡(i)) and disappears in Gf(⇡(j)), then we encode its per-
sistence as a pair (f(⇡(i)), f(⇡(j))); if a feature does not disappear in Gf(⇡(n)) = G, then its
persistence is (·,1). The collection of all pairs forms a multiset that we call persistence diagrams.
We denote the persistence diagram for a graph G as D(G) and use card(D(G)) to represent its
cardinality, i.e., the number of (birth time, death time) pairs in D(G).

PersLay. Carrière et al. (2020) introduced a general way to vectorize persistence diagrams. In
particular, given a persistence diagram D(G) for a graph G, PERSLAY computes

PERSLAY(D(G)) = AGG ({{!(p)'(p) | p 2 D(G)}}) , (1)

where AGG is any permutation invariant operation (e.g., minimum, maximum, sum, or kth largest
value), ! : R2

7! R is a weight function for the persistence diagram points, and ' : R2
7! Rq

is the so-called point transformation. More specifically, given a persistence pair p 2 R2, PersLay
introduces the triangle point transformation (⇤):

'⇤(p) = [⇤p(t1), ...,⇤p(tq)]
T , where ⇤p(t) = max{0, p[2] � |t � p[1]|}, t 2 R; (2)

the Gaussian point transformation (�):

'�(p) = [�p(t1), ...,�p(tq)]
T , where �p(t) = exp

✓
�

|t � p|22
2⌧2

◆
, t 2 R2; (3)

and the line point transformation ():

' (p) = [p(t1), ..., p(tq)]
T , where p(t) = t[1]p[1] + t[2]p[2] + t[3], t 2 R3, (4)

where t1, . . . , tq are learnable parameters.

The architectural design of PERSLAY is quite versatile and accommodate a wide range of traditional
persistence diagram vectorizations, including persistence landscapes (Bubenik, 2015), persistence
silhouette (Chazal et al., 2014), persistence images (Adams et al., 2016), and other Gaussian-based
kernel approaches (Kusano et al., 2016; Le & Yamada, 2018; Jan Reininghaus et al., 2015).

PersLay Classifier (PC). For classification tasks, Carrière et al. (2020) combine PersLay with a
feedforward network — multilayer perceptrons (MLPs) with 1-Lipschitz activations. We denote
the overall model as PC : G 7! RK , where K denotes the number of classes. In particular,
the PersLay classifier first computes a persistence diagram using an arbitrary fixed vertex-based

3

Under review as a conference paper at ICLR 2024

filtration function and then applies PERSLAY. After that, it employs l times a nonlinear activa-
tion function followed by a linear layer. Figure 1 shows the architecture of the PersLay Classi-
fier. We denote the activation function before layer i by i and the weights of the linear layers as
W1 2 Rh1⇥h2 , ...,Wl 2 Rhl⇥hl+1 where h1 = q (PERSLAY output’s width) and hl+1 = K.

Henceforth, we use W' = vec{t1, ..., tq} and W! to represent the parameters (collected as vectors)
of the point transformations and weight functions, respectively. Similarly, the parameters of the
PC model are denoted by w = vec{W1, ...,Wl,W',W!

}.

Margin-based loss. Following Neyshabur et al. (2018); Liao et al. (2020), we consider the multi-
class �-margin loss. Let (G, y) 2 G ⇥{1, 2, . . . ,K} denote a labeled graph (i.e., a pair graph-label),
and S denote a collection of m labeled graphs sampled i.i.d. from some unknown distribution D.
Then, the empirical error of a hypothesis gw : G ! {1, 2, . . . ,K} with parameters w is defined as

LS,�(gw) =
1

m

X

(G,y)2S

1

✓
gw(G)[y] � +max

j 6=y
gw(G)[j]

◆
, (5)

where � � 0. Accordingly, we can define the generalization error as

LD,�(gw) = P
(G,y)⇠D

✓
gw(G)[y] � +max

j 6=y
gw(G)[j]

◆
. (6)

Note LS,0 and LD,0 are the empirical and the expected classification errors (0-1 loss), respectively.

PAC-Bayesian analysis adopts a Bayesian approach to the PAC learning framework (Valiant,
1984; McAllester, 1999; 2003; Langford & Shawe-Taylor, 2002). The idea consists of placing a
prior distribution P over our hypothesis class and then use the training data to obtain a posterior
Q, i.e., the learning process induces a posterior distribution over the hypothesis class. In this set-
ting, we define the empirical and generalization errors of Q as LS,�(Q) = Ew⇠Q [LS,�(gw)] and
LD,�(Q) = Ew⇠Q [LD,�(gw)], respectively. Importantly, we can leverage the Kullback-Leibler
(KL) divergence between Q and P to bound the difference between the generalization and empirical
errors (McAllester, 2003).

To compute PAC-Bayes bounds for models like neural networks, we can i) choose a prior, ii) apply a
learning algorithm; and iii) add random perturbations (from some known distribution) to the learned
parameters such that we ensure tractability of the KL divergence. Following this recipe, Neyshabur
et al. (2018) introduced the important result in Lemma 1.
Lemma 1 (Neyshabur et al. (2018)). Let gw(x) : X ! Rk be any model with parameters w,
and let P be any distribution on the parameters that are independent of the training data. For
any w, we construct a posterior Q(w + u) by adding any random perturbation u to w, s.t.,
P (maxx2X |gw+u(x) � gw(x)|1 < �

4) > 1
2 . Then, for any �, � > 0, with probability at least

1 � � over an i.i.d. size-m training set S according to D, for any w, we have:

LD,0(gw) LS,�(gw) + 4

s
DKL(Q(w + u)||P) + log 6m

�

m � 1

Lemma 1 tells us that if we have prior and posterior distributions and guarantees that the change of
the model’s output due to perturbations over the learned parameters is small with high probability,
we can obtain a generalization bound. Leveraging this, Neyshabur et al. (2018) and Liao et al.
(2020) worked out generalization upper bounds for feedforward networks and GNNs, respectively.
This Lemma is also key for our further analysis.

3 GENERALIZATION BOUNDS

In this section, we build upon results on the expressivity of GNNs and PH (i.e., a model that sepa-
rates two graphs based on their persistence diagrams obtained from arbitrary filtration functions) to
introduce a lower bound on the VC dimension of PH. Albeit important, this bound does not take into
account the underlying data distribution. Thus, we also develop a data-dependent PAC-Bayes upper
bound on the generalization of the PersLay Classifier. Finally, we discuss our PAC-Bayes bound in
light of other bounds obtained for GNNs and MLPs, and show how to leverage it as a regularizer.
The overall dependence structure of our theoretical results is summarized in Figure 2.

4

Under review as a conference paper at ICLR 2024

Proposition 2
(about VC-dim lower-bound of

Persistence Homology)

Lemma 2
(Rieck (2023))

(about two k-FWL colorings)

Lemma 3
(generalization of Lemma 2)

(a)

Lemma 4
(about PersLay max norm)

Lemma 6
(about PC perturbation)

Lemma 5
(about PersLay perturbation)

Lemma 1
(Neyshabur et al. (2018))

(about Generalization Gap)

Theorem 1
(about PAC-Bayesian Generalization

upper bound of PC)

(b)

Figure 2: a) Connection between lemmas for VC-dimension analysis. b) Connection between lem-
mas for PAC-Bayesian analysis. Our contribution is colored in purple and previous work in yellow.

3.1 VC-DIMENSION

We now consider a lower bound result regarding the generalization ability of persistence homol-
ogy. To do so, we provide an analogous proposition to a recent result by Morris et al. (2023)
which connects the Weisfeiler-Leman algorithm (Weisfeiler & Leman, 1968) to the VC-dimension
of message-passing neural networks (MPNNs, Xu et al., 2019), or simply GNNs.
Proposition 1 (Proposition 2 in (Morris et al., 2023)). Let mn,d,L be the maximal number of graphs
with d-dimensional boolean features and at most n vertices distinguishable after L iterations of
1-WL. Then, VC-DIM(GNN(L)) � mn,d,L, where GNN(L) is an L-layer GNN model.

We provide an analogous proposition for persistence homology, denoted by a model called PH that
distinguishes graphs by comparing their persistence diagrams obtained from arbitrary filtration func-
tions. Importantly, our result in Proposition 2 illustrates the inherent tension between generalization
and expressivity of any PH method on graphs (both can be lower bounded in terms of the WL hi-
erarchy). In particular, enhancing expressivity leads to an increase in the VC-dimension, thereby
worsening the ability to generalize.
Proposition 2. Let m0 be the maximal number of distinguishable graphs (with at most n nodes) by
k-FWL, then VC-DIM(PH) � m0.

To prove this statement, we first generalize Lemma 5 by Rieck (2023) (details in the Appendix).
Lemma 2 (Lemma 5 in Rieck (2023)). Given k-FWL colorings of two graphs G and G0 that are
different, there exists a filtration of G and G0 such that the corresponding persistence diagrams in
dimension k � 1 or dimension k are different.
Lemma 3 (Generalization of Lemma 5 in (Rieck, 2023)). Given k-FWL colorings of graphs
G1, ..., Gn that are distinct, there exists a filtration such that persistence diagrams computed us-
ing this filtration function of G1, ...Gn are distinct in dimension k � 1 or dimension k.

Now, using this generalization, we are able to prove Proposition 2.

Proof. If we can distinguish m0 graphs using k-FWL, it means that the obtained colorings are dis-
tinct for these m0 graphs. Hence, by Lemma 3, there exists filtration such that persistence diagrams
are distinct in the dimension k � 1 or k for these m0 graphs; so, we can shatter them using PH.

3.2 PAC-BAYES BOUNDS FOR CLASSIFICATION WITH PERSLAY

We now introduce a PAC-Bayes upper bound for the PersLay Classifier (PC). Proofs can be found
in the Appendix. Here, we make the following assumptions (also common in the literature):

1. Data, i.e., tuples (G, y), are i.i.d samples drawn from some unknown distribution D;
2. The maximum hidden dimension across all layers is h;
3. 81 i l Lip(i) 1, i(x) |x|. Thus our analysis subsumes any combination of

most commonly used non-linear activation functions (e.g., ReLU, Leaky ReLU, SoftPlus,
Tanh, and Sigmoid) in the MLP;

4. The norm of the elements of persistence diagram are contained in a `2-ball with a radius b;

5

Under review as a conference paper at ICLR 2024

5. All of the considered point transformations and weight functions are Lipschitz continuous
with respect to the parameters.

6. 8! : R2
7! R 8p 2 D |!(p)| < 1. We can achieve this by output normalization;

7. We consider only parameter-independent filtration functions. They might use vertex fea-
tures or hyperparameters but no learnable parameters (e.g., as in (Hofer et al., 2020)).

We begin by introducing results concerning perturbation bounds of PERSLAY. In particular, Lemma
4 estimates the maximum output norm of PERSLAY layers.
Lemma 4. Let W' be the parameters of the point transformation in PERSLAY. Then, we have that

8G 2 G |PERSLAYw(D(G))|2 B1 |W'
|2 + C1 M1(|W

'
|2 + 1)

where

A1 =

(
max
G2G

card(D(G)) if AGG = sum
1 if AGG = mean or k-max

, (B1, C1) =

8
<

:

(
p
2,

p
8q b) if ' = ⇤

(0,
p
q) if ' = �

(
p
3(b+ 1), 0) if ' =

and M1 = A1 max{B1, C1}.

The next result (Lemma 5) helps us to upper bound the difference in the outputs of PERSLAY under a
slight perturbation of its weights. We note that the analyses in Lemmas 4 and 5 preserve the inherent
flexibility of PERSLAY and ensure the generality of our results.
Lemma 5. Let w = vec{W',W!

} and u = vec{U', U!
}, where U' and U! denote small

perturbations on the parameters of the point transformations and weight functions of PERSLAY,
respectively. Then:

|PERSLAYw(D(G)) � PERSLAYw+u(D(G))|2 M2(|W
'
|2 + 1)(|U'

|2 + |U!
|2)

where

A2 =

(
max
G2G

card(D(G)) if AGG = sum
3 if AGG = mean or k-max

, B2 =

8
<

:

1 if ' = ⇤
1

⌧e1/2
if ' = �

p
3(b+ 1) if ' =

,

M2 = A2 max{B2,M1Lip(!)}, and Lip(!) is a Lipschitz constant of !.

Finally, the following Lemma encompasses the previous Lemmas and composes them with linear
layers bounds introduced by Neyshabur et al. (2018).
Lemma 6. Let w = vec{W1, ...,Wl,W',W!

} and u = vec{U1, ..., Ul, U', U!
}, where Ui

is the perturbation of ith linear layer of PC, U' is the perturbation of the point transformation
part, and U! is the perturbation of the weight part of PERSLAY. Also, let T �

max{||W1||2, ..., ||Wl||2, |W'
|2 + 1} and 8i : ||Ui||2

1
l T , then we can derive the following

upper bound:

|PCw(x) � PCw+u(x)|2 eM T l+1

|U'

|2 + |U!
|2 +

lX

i=1

||Ui||2

!

where M = max{M1,M2} from Lemmas 4 and 5 and e is the Euler’s constant.

Proof sketch. We prove this lemma using induction by the number of linear layers as in (Neyshabur
et al., 2018). The main difference is the l = 0 case: we use Lemma 4 and Lemma 5 to prove the
statement. For the transition l ! l+ 1 we simply use the definition of the linear layer: Linear(x) =
W ((x)). Another difference between this proof and one from (Neyshabur et al., 2018) is that
weights of the PERSLAY during the derivation appear in the brackets with perturbation weights. So,
we need the variable T to upper bound all the weights simultaneously to get a nice-looking overall
expression. Otherwise, we will not be able to use Lemma 1 as smoothly as they used it.

Theorem 1 provides the bound on the generalization gap of the PersLay Classifer.

6

Under review as a conference paper at ICLR 2024

Table 1: The dependence of the PAC-Bayesian bounds on width and spectral norm of weights for
different models. Here, h is the maximum width across layers; Wi are the weights of i-th linear
layer; and l is the depth (number of layers). The 1st row follows from our bound (Theorem 1), with
w denoting the parameters of the PersLay classifier and q the dimension of PersLay embeddings.
The 2nd row shows the result by Neyshabur et al. (2018), where || · ||F denotes the Frobenius norm.
The 3rd row shows the result by Liao et al. (2020), where d is the maximum degree across graphs.

Classifier
(Reference) Width, h Weights spectral norm, Wi

PERSLAY Classifier
(this work) O

�p
qh lnh+ ln q

�
O

⇣p
l2 ln (l)|w|22�

2(l+1)
⌘

Feedforward networks
(Neyshabur et al., 2018) O(

p
h lnh) O

 s

l2 ln (l)
lQ

i=1
||Wi||

2
2

lP
i=1

||Wi||2F
||Wi||22

!

Message-passing GNNs
(Liao et al., 2020) O(

p
h lnh) O

 s

dl�1l2 ln (l)
lQ

i=1
||Wi||

2
2

lP
i=1

||Wi||2F
||Wi||22

!

Theorem 1. Let w = vec{W1, ...,Wl,W',W!
} and M = max{M1,M2} from Lemmas 4 and 5.

Then for any �, � > 0 with probability at least 1� � over i.i.d size-m training set S according to D,
for any W1, ...,Wl,W',W! , we have:

LD,0(PCw) LS,�(PCw) + O

0

@
s

l2M2h ln (lh)|w|22�
2(l+1) + ln lMm

�

�2m

1

A

where � = max{||W1||2, ..., ||Wl||2, |W'
|2 + 1}

Proof sketch. At first, we construct a function of weights, � = max{||W1||2, ..., ||Wl||2, |W'
|2 +

1}. Then we fix arbitrary �̂ and consider w such that |� � �̂|
1
l � and choose � which depends on

�̂, so that we can apply Lemma 6 and 1. Finally, we apply the union-bound argument to cover all
possible � and w, respectively.

3.3 DISCUSSION

Heterogeneity of PC. It is essential to underscore the fact that the described PC model is not a
homogeneous entity. This model is a composition of PERSLAY layer and linear layers, and this
very heterogeneity inherently prevents us from the application of elegant constructions that involve
normalized weights (Neyshabur et al., 2018). This feature, in turn, introduces many challenges when
analyzing its generalization behavior using the PAC-Bayesian framework. Namely, there are several
conditions to satisfy when choosing �: it should be such that we can upper bound all appearances
of model weights in the PC’s perturbation and be able to apply Lemma 6, i.e., be able to satisfy
||Ui||2

1
l T . It turns out to be non-trivial to satisfy both these conditions in the general case.

Generality of PC. Another important facet of this research is its all-encompassing analysis, delving
into many scenarios that encompass the selection of weight and point transformation functions.
This allows for a more profound comprehension of the PC method’s performance across diverse
settings. We believe it is important, especially considering that the freedom to choose the weight
and point transformation functions was a pivotal decision-making point in the work presented in
(Carrière et al., 2020). These challenges and their subsequent exploration lay at the very heart of our
research, shedding light on the intricate interplay between the various components of the PC model.

Influence of PersLay components. Our analysis shows that when AGG = sum, it is hard to obtain
reasonable generalization guarantees since M depends on the cardinality of the persistence diagram,
which can be large. Also, we can conclude that the generalization performance of PC using the line
point transformation has a weaker dependence on q (M1,M2 does not depend on q in this case) than
other point transformations. This is particularly relevant if one chooses a large value for q.

7

Under review as a conference paper at ICLR 2024

1 1000 2000 3000
Epoch

�0.5

0.0

0.5

1.0

G
en

er
al

iz
at

io
n

�: 0.78±0.08

DHFR
Generalization gap
Spectral norm

1 1000 2000 3000
Epoch

�0.5

0.0

0.5

1.0

�: 0.95±0.02

MUTAG

1 1000 2000 3000
Epoch

�0.5

0.0

0.5

1.0

1.5

�: 0.89±0.06

PROTEINS

1 1000 2000 3000
Epoch

�0.5

0.0

0.5

1.0

�: 0.94±0.07

NCI1

1 1000 2000 3000
Epoch

�0.5

0.0

0.5

1.0

1.5

�: 0.79±0.04

IMDB-BINARY

Figure 3: Spectral norm vs. generalization gap. Overall, our bound on the spectral norm of the
weights is highly correlated with the generalization gap.

26 28

Width, h

0.0

0.5

1.0

G
en

er
al

iz
at

io
n

ga
p

�: 0.91±0.07

DHFR

Empirical gap
Our bound

26 28

Width, h

0.00

0.25

0.50

0.75

1.00 �: 0.77±0.12

MUTAG

26 28

Width, h

0.0

0.5

1.0 �: 0.95±0.03

PROTEINS

26 28

Width, h

0.0

0.5

1.0 �: 0.98±0.02

NCI1

26 28

Width, h

0.0

0.5

1.0 �: 0.95±0.04

IMDB-BINARY

Figure 4: Width vs. generalization gap. The dependence of the empirical gap on the model width
is captured by our bound. We obtain high average correlation for all datasets.

Comparison to other bounds. By contrasting our result (in Theorem 1) with PAC-Bayes bounds
for feedforward neural networks (Neyshabur et al., 2018) and GNNs (Liao et al., 2020), one notable
observation is the resemblance of the dependence on �, m and b. Table 1 compares our bounds to
previous ones with respect to their dependence on model weights and width. We note that the main
sources of difference between our result and previous ones stem from the choice of the persistence
diagram vectorization (Lemmas 4 and 5) and from the combination of perturbations in vectorization
and linear layers (Lemma 6). Importantly, by analyzing the dependence on the width, we conclude
that our upper bound increases from O(

p
h lnh) to O(h

p
lnh) when q = ⇥(h). So, to produce a

tighter generalization bound, we recommend choosing q = o(h).

3.4 REGULARIZING PERSLAY

Notably, we can leverage our bound to introduce a spectral norm regularizer for the PersLay Classi-
fier. In particular, we can train PC using a regularized loss

LS,� + �
q
l2 ln (l)|w|22�

2(l+1),

where � is a hyper-parameter that balances the influence of the two terms. This is similar to a
weight-decay regularization approach, with the spectral norm of weights appearing in �.

4 EXPERIMENTS

To demonstrate the practical relevance of our analysis, we now consider the generalization of Per-
sLay on real-world datasets, and report results for regularized models based on our bounds. In
particular, we conduct two main experiments. The first one aims to analyze how well our bounds
capture generalization gaps as a function of model variables. The second assesses to which extent
a structural risk minimization algorithm that uses our bound on the weights spectral norm improve
generalization compared to empirical risk minimizers. We implemented all experiments using Py-
Torch (Paszke et al., 2017), and implementation details are given in the Appendix B.

Datasets and evaluation setup. We use five popular benchmarks for graph classification: DHFR,
MUTAG, PROTEINS, NCI1, IMDB-BINARY, which are available as part of TUDatasets (Kersting
et al., 2016). We use a 70/10/20% (train/val/test) split for all datasets when we perform model
selection. In this case, after selecting the optimal hyper-parameters, we retrain the model using
train+val data. Here, we consider PersLay models with constant weight functions and Gaussian point
transformations. Also, we remove graph-level features originally employed by PersLay. Regarding
filtration functions, we closely follow Carrière et al. (2020) and use Heat kernel signatures with
parameter values equal to 0.1 or 10, depending on the dataset. We train the models for 3000 epochs
using the Adam optimizer (Kingma & Ba, 2015). We run five independent runs with different seeds.

8

Under review as a conference paper at ICLR 2024

gaussian line triangle

0

0.5

1
DHFR

Gap
Bound

gaussian line triangle
0

0.5

1
MUTAG

gaussian line triangle
0

0.5

1
PROTEINS

gaussian line triangle

0

0.5

1
NCI1

gaussian line triangle
0

0.5

1
IMDB-BINARY

Figure 5: Illustration of the empirical vs theoretical gap for different point transformations.

Dependence on model components. Figure 3 shows the generalization gap (measured as LD,0 �

LS,�=1) and the bound on the weights spectral norm (see Table 1) over the training epochs. To
evaluate how well our bound captures the trend observed in the empirical gap, we compute Pearson
correlation coefficients between the two sequences across different seeds and report their mean and
standard deviation for each dataset. As we can see, the average coefficient is greater than 0.78 for
all benchmarks, indicating a good correlation.

Figure 4 shows the empirical gap and our estimated bound as a function of the model’s width. Again,
we compute correlation coefficients between the two curves and find they are highly correlated (with
an average correlation above 0.91 on 4 out of 5 datasets). These results validate that our theoretical
bounds can capture the trend observed in the empirical generalization gap.

Point transformations. We also compare the theoretical bound with the empirical gap for different
choices of point transformations. Figure 5 reports the results. We apply the same constant accross
transformations such that the highest bound value equals one. Overall, the Triangle function pro-
duces higher bounds whereas that Line seems to be associated with smaller constant factors. For
three datasets, the higher the observed gap, the higher the bound.

Regularized PC. We compare variants of the PersLay Classifier trained via ERM (empirical risk
minimization) and its regularized version. Here, we consider models with l = 1 or 2, selected via
hold-out validation. Table 2 reports accuracy results (mean and standard deviations) computed over
five runs. Overall, the regularized approach significantly outperforms the ERM variant despite the
use of small-sized networks. On 4/5 datasets, PC with spectral norm regularization is the best model.

Table 2: Comparison of PersLay with and without spectral norm regularization. We report accuracy
numbers (mean and standard deviation) computed over five independent runs.

Method DRFH MUTAG PROTEINS IMDB-B NCI1
PersLay (ERM) 0.71 ± 0.04 0.88 ± 0.02 0.65 ± 0.03 0.65 ± 0.01 0.68 ± 0.01
PersLay (w/ Spectral Reg.) 0.72 ± 0.02 0.94 ± 0.01 0.72 ± 0.01 0.70 ± 0.01 0.68 ± 0.01

5 CONCLUSION, BROADER IMPACT AND LIMITATIONS

We derive the first PAC-Bayesian generalization bound for neural networks based on persistent ho-
mology for graph learning. Notably, the framework analyzed (PersLay) offers a flexible and general
way to extract vector representations from persistence diagrams. Due to this generality, our analysis
covers several methods available in the literature. Our constructions involve a perturbation analysis
of PersLay’s parameters and linear layers, which imposes specific challenges as the resulting model
is inherently heterogeneous. In addition, we discuss a VC-dim lower bound for PH in terms of the
WL hierarchy for isomorphism tests on graphs. We also validate our analysis using real-world data,
and show that the proposed bound can be used in the framework of structural risk minimization.

Despite the significance and novelty of our theoretical analyses, we would like to acknowledge a lim-
itation in our study, specifically concerning the absence of parameterization for filtration functions.
While we provide valuable insights and methodologies, we should underscore the need for future
investigations to delve into more general analyses encompassing parametrized filtration functions.

By shedding new light on the generalization of machine learning models based on persistent homol-
ogy, we hope to contribute to the community by providing key insights about the limits and power
of these methods, paving the path to further theoretical developments on PH-based neural networks
for graph representation learning.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

All experiments in this work are reproducible. Upon acceptance, we will make our code, configura-
tions, seeds, and trained models available under the MIT License on GitHub.

REFERENCES

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence Images: A
Stable Vector Representation of Persistent Homology. Journal of Machine Learning Research,
18(8):1–35, 2016.

Tolga Birdal, Aaron Lou, Leonidas Guibas, and Umut Şimşekli. Intrinsic Dimension, Persistent Ho-
mology and Generalization in Neural Networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

P. Bubenik. Statistical topological data analysis using persistence landscapes. Journal of Machine
Learning Research, 16:77–102, 2015.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, December 1992. ISSN 1439-6912. doi:
10.1007/BF01305232.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signa-
tures. In Artificial Intelligence and Statistics (AISTATS), 2020.

Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman.
Stochastic Convergence of Persistence Landscapes and Silhouettes. In Proceedings of the Thirti-
eth Annual Symposium on Computational Geometry, 2014.

Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A Topological Regularizer for Classifiers via
Persistent Homology, October 2018.

Yuzhou Chen, Baris Coskunuzer, and Yulia Gel. Topological Relational Learning on Graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending Persistence Using Poincaré
and Lefschetz Duality. Foundations of Computational Mathematics, 9:79–103, 2009.

Benjamin Dupuis, George Deligiannidis, and Umut Şimşekli. Generalization Bounds with Data-
dependent Fractal Dimensions. arXiv e-prints, 2023.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In Conference
on Uncertainty in Artificial Intelligence (UAI), 2017.

Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In Jacob E. Goodman,
János Pach, and Richard Pollack (eds.), Contemporary Mathematics, volume 453, pp. 257–282.
American Mathematical Society, 2008.

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2021.

Vikas K. Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and Representational Limits
of Graph Neural Networks. In International Conference on Machine Learning (ICML), 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Conference on Neural Information Processing Systems (NeurIPS), 2017.

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep Learning with Topolog-
ical Signatures. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

10

Under review as a conference paper at ICLR 2024

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In International Conference on Machine Learning (ICML), 2020.

Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-Preserving Deep Image Seg-
mentation. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Johanna Immonen, Amauri H. Souza, and Vikas Garg. Going beyond persistent homology using
persistent homology, November 2023.

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for
topological machine learning. 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning. ArXiv,
abs/2204.07697, 2022.

Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the ex-
pressive power of geometric graph neural networks. In International Conference on Machine
Learning (ICML), 2023.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R. Zhang. Generalization in graph neural
networks: Improved pac-bayesian bounds on graph diffusion. In International Conference on
Artificial Intelligence and Statistics, 2023.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, and Giseon Heo. Using persistent homol-
ogy and dynamical distances to analyze protein binding. Statistical Applications in Genetics and
Molecular Biology, 15(1), January 2016.

Miroslav Kramár, Rachel Levanger, Jeffrey Tithof, Balachandra Suri, Mu Xu, Mark Paul, Michael F.
Schatz, and Konstantin Mischaikow. Analysis of Kolmogorov flow and Rayleigh-Bénard con-
vection using persistent homology. Physica D Nonlinear Phenomena, 334:82–98, 2016. ISSN
0167-2789.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted Gaussian kernel for
topological data analysis. In International Conference on Machine Learning (ICML), pp. 2004–
2013, 2016.

John Langford and John Shawe-Taylor. PAC-Bayes & Margins. In Advances in Neural Information
Processing Systems (NeurIPS), volume 15. MIT Press, 2002.

Tam Le and Makoto Yamada. Persistence Fisher Kernel: A Riemannian Manifold Kernel for Per-
sistence Diagrams. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Yongjin Lee, Senja D. Barthel, Paweł Dłotko, S. Mohamad Moosavi, Kathryn Hess, and Berend
Smit. Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications,
8:15396, 2017. ISSN 2041-1723.

P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design provably more powerful
neural networks for graph representation learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-Bayesian Approach to Generalization
Bounds for Graph Neural Networks. In International Conference on Learning Representations
(ICLR), 2020.

11

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

Under review as a conference paper at ICLR 2024

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
passing neural networks on large random graphs. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

David McAllester. Simplified PAC-Bayesian Margin Bounds. In Bernhard Schölkopf and Man-
fred K. Warmuth (eds.), Learning Theory and Kernel Machines, Lecture Notes in Computer Sci-
ence, pp. 203–215, Berlin, Heidelberg, 2003. Springer.

David A. McAllester. PAC-Bayesian model averaging. In Proceedings of the Twelfth Annual Con-
ference on Computational Learning Theory, COLT ’99, pp. 164–170. Association for Computing
Machinery, July 1999.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and leman go neural: Higher-order graph neural networks. In AAAI Conference on Artificial
Intelligence (AAAI), 2019.

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. arXiv e-prints,
2023.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian Approach to
Spectrally-Normalized Margin Bounds for Neural Networks. In International Conference on
Representation Learning (ICLR), 2018.

Vahid Partovi Nia, Guojun Zhang, Ivan Kobyzev, Michael R. Metel, Xinlin Li, Ke Sun, Sobhan
Hemati, Masoud Asgharian, Linglong Kong, Wulong Liu, and Boxing Chen. Mathematical Chal-
lenges in Deep Learning, March 2023.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. In Advances in Neural Information Processing
Systems (NeurIPS - Workshop), 2017.

Bastian Rieck. On the Expressivity of Persistent Homology in Graph Learning. arXiv e-prints,
(arXiv:2302.09826), 2023.

Bastian Rieck, Christian Bock, and Karsten Borgwardt. A Persistent Weisfeiler-Lehman Procedure
for Graph Classification. In International Conference on Machine Learning (ICML), 2019.

Ryoma Sato. A Survey on The Expressive Power of Graph Neural Networks. arXiv e-print, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Milad Sefidgaran and Abdellatif Zaidi. Data-dependent Generalization Bounds via Variable-Size
Compressibility. arXiv e-prints, 2023.

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Com-
putational Mathematics, 12(4):389–434, August 2012. ISSN 1615-3375, 1615-3383. doi:
10.1007/s10208-011-9099-z.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, November
1984. ISSN 0001-0782. doi: 10.1145/1968.1972.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

12

Under review as a conference paper at ICLR 2024

S. Verma and Z.-L. Zhang. Stability and generalization of graph convolutional neural networks. In
International Conference on Knowledge Discovery & Data Mining (KDD), 2019.

B. Yu. Weisfeiler and A. A. Leman. Thr Redcution of a Graph to Canonical Form and the Algebra
which appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph Learning:
A Survey. IEEE Transactions on Artificial Intelligence, 2(2):109–127, April 2021. ISSN 2691-
4581. doi: 10.1109/TAI.2021.3076021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications for
graph classification. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence Enhanced Graph Neural Network. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. OOD link prediction generalization capabilities
of message-passing GNNs in larger test graphs. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

13

	Introduction
	Our contributions
	Related works

	Preliminaries
	Generalization Bounds
	VC-dimension
	blue PAC-Bayes bounds for classification with PersLay
	Discussion
	Regularizing PersLay

	Experiments
	Conclusion, Broader Impact and Limitations
	Notation
	Section 3 omitted materials
	Implementation details
	Datasets
	Models

	Additional visualizations

