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Abstract

Data valuation aims to quantify the usefulness of individual data sources in training
machine learning (ML) models, and is a critical aspect of data-centric ML research.
However, data valuation faces significant yet frequently overlooked privacy chal-
lenges despite its importance. This paper studies these challenges with a focus
on KNN-Shapley, one of the most practical data valuation methods nowadays.
We first emphasize the inherent privacy risks of KNN-Shapley, and demonstrate
the significant technical difficulties in adapting KNN-Shapley to accommodate
differential privacy (DP). To overcome these challenges, we introduce TKNN-
Shapley, a refined variant of KNN-Shapley that is privacy-friendly, allowing for
straightforward modifications to incorporate DP guarantee (DP-TKNN-Shapley).
We show that DP-TKNN-Shapley has several advantages and offers a superior
privacy-utility tradeoff compared to naively privatized KNN-Shapley in discerning
data quality. Moreover, even non-private TKNN-Shapley achieves comparable
performance as KNN-Shapley. Overall, our findings suggest that TKNN-Shapley
is a promising alternative to KNN-Shapley, particularly for real-world applications
involving sensitive data.

1 Introduction

Data valuation is an emerging research area that seeks to measure the contribution of individual data
sources to the training of machine learning (ML) models. Data valuation is essential in data market-
places for ensuring equitable compensation for data owners, and in explainable ML for identifying
influential training data. The importance of data valuation is underscored by the DASHBOARD
Act introduced in the U.S. Senate in 2019 [66], which mandates companies to provide users with an
assessment of their data’s economic value. Moreover, OpenAI’s Future Plan explicitly highlights “the
fair distribution of AI-generated benefits” as a key question moving forward [51].

Data Shapley. Inspired by cooperative game theory, [23, 30] initiated the study of using the Shapley
value as a principled approach for data valuation. The Shapley value [56] is a famous solution concept
from game theory for fairly assigning the total revenue to each player. In a typical scenario of data
valuation, training data points are collected from different sources, and the data owner of each training
data point can be regarded as “player” in a cooperative game. “Data Shapley” refers to the method of
using the Shapley value as the contribution measure for each data owner. Since its introduction, many
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different variants of Data Shapley have been proposed [29, 22, 63, 6, 39, 44, 69, 33, 60], reflecting
its effectiveness in quantifying data point contributions to ML model training.

KNN-Shapley. While being a principled approach for data valuation, the exact calculation of
the Shapley value is computationally prohibitive [30]. Various approximation algorithms for Data
Shapley have been proposed [30, 28, 50, 64, 7, 48, 44, 62], but these approaches still require
substantial computational resources due to model retraining. Fortunately, a breakthrough by [29]
showed that computing the exact Data Shapley for K-Nearest Neighbors (KNN), one of the oldest yet
still popular ML algorithms, is surprisingly easy and efficient. KNN-Shapley quantifies data value
based on KNN’s Data Shapley score; it can be applied to large, high-dimensional CV/NLP datasets
by calculating the value scores on the last-layer neural network embeddings. Owing to its superior
efficiency and effectiveness in discerning data quality, KNN-Shapley is recognized as one of the
most practical data valuation techniques nowadays [52]. It has been applied to various ML domains
including active learning [24], continual learning [57], NLP [43, 42], and semi-supervised learning
[9].

Motivation: privacy risks in data valuation. In this work, we study a critical, yet often overlooked
concern in the deployment of data valuation: privacy leakage associated with data value scores
released to data holders. The value of a single data point is always relative to other data points in the
training set. This, however, can potentially reveal sensitive information about the rest of data holders
in the dataset. This problem becomes even more complex when considering a strong threat model
where multiple data holders collude, sharing their received data values to determine the membership
of a particular individual. As data valuation techniques such as KNN-Shapley become increasingly
popular and relevant in various applications, understanding and addressing the privacy challenges of
data valuation methods is of utmost importance. In this work, we study this critical issue through the
lens of differential privacy (DP) [15], a de-facto standard for privacy-preserving applications.

Our technical contributions are listed as follows.
Privacy Risks & Challenges of Privatization for KNN-Shapley (Section 3). We demonstrate that
data value scores (specifically KNN-Shapley) indeed serve as a new channel for private information
leakage, potentially exposing sensitive information about individuals in the dataset. In particular,
we explicitly design a privacy attack (in Appendix B.2.2) where an adversary could infer the pres-
ence/absence of certain data points based on the variations in the KNN-Shapley scores, analogous to
the classic membership inference attack on ML model [58]. Additionally, we highlight the technical
challenges in incorporating the current KNN-Shapley technique with differential privacy, such as its
large global sensitivity. All these results emphasize the need for a new, privacy-friendly approach to
data valuation.
TKNN-Shapley: an efficient, privacy-friendly data valuation technique (Section 4.2). To address
the privacy concerns, we derive a novel variant of KNN-Shapley. This new method considers the Data
Shapley of an alternative form of KNN classifier called Threshold-KNN (TKNN) [5], which takes into
account all neighbors within a pre-specified threshold of a test example, rather than the exact K nearest
neighbors. We derive the closed-form formula of Data Shapley for TKNN (i.e., TKNN-Shapley). We
show that it can be computed exactly with exact linear-time computational efficiency over the original
KNN-Shapley. DP-TKNN-Shapley (Section 5). Importantly, we recognize that TKNN-Shapley only
depends on three simple counting queries. Hence, TKNN-Shapley can be conveniently transformed
into a differentially private version by DP’s post-processing property. Moreover, we prove that such a
DP variant satisfies several favorable properties, including (1) the high computational efficiency, (2)
the capability to withstand collusion among data holders without compromising the privacy guarantee,
and (3) the ease of integrating subsampling for privacy amplification.
Numerical experiments (Section 6). We evaluate the performance of TKNN-Shapley across 11
commonly used benchmark datasets and 2 NLP datasets. Key observations include: (1) TKNN-
Shapley surpasses KNN-Shapley in terms of computational efficiency; (2) DP-TKNN-Shapley
significantly outperforms the naively privatized KNN-Shapley in terms of privacy-utility tradeoff in
discerning data quality; (3) even non-private TKNN-Shapley achieves comparable performance as
KNN-Shapley.
Overall, our work suggests that TKNN-Shapley, being a privacy-friendly, yet more efficient and
effective alternative to the original KNN-Shapley, signifies a milestone toward practical data valuation.

2



2 Background of Data Valuation
In this section, we formalize the data valuation problem for ML, and review the method of Data
Shapley and KNN-Shapley.
Setup & Goal. Consider a dataset D := {zi}Ni=1 consisting of N data points where each data point
zi := (xi, yi) is collected from a data owner i. The objective of data valuation is to attribute a score
to each training data point zi, reflecting its importance or quality in ML model training. Formally, we
aim to determine a score vector (ϕzi)

N
i=1, wherein ϕzi represents the value of data point zi. For any

reasonable data valuation method, the value of a data point is always relative to other data points in
the dataset. For instance, if a data point has many duplicates in the dataset, its value will likely be
lower. Hence, ϕzi is a function of the leave-one-out dataset D−zi := D \ {zi}. We write ϕzi(D−zi)
when we want to stress the dependency of a data value score with the rest of the data points.

Utility Function. Most of the existing data valuation techniques are centered on the concept of
utility function, which maps an input dataset to a score indicating the usefulness of the training set.
A common choice for utility function is the validation accuracy of a model trained on the input
training set. Formally, for a training set S, a utility function v(S) := acc(A(S)), where A is a
learning algorithm that takes a dataset S as input and returns a model; acc(·) is a metric function that
evaluates the performance of a given model, e.g., the classification accuracy on a hold-out validation
set.

2.1 The Shapley Value

The Shapley value (SV) [56] is a classic concept from game theory to attribute the total gains generated
by the coalition of all players. At a high level, it appraises each point based on the (weighted) average
utility change caused by adding the point into different subsets of the training set. Formally, given a
utility function v(·) and a training set D, the Shapley value of a data point z ∈ D is defined as

ϕz (D−z; v) :=
1

N

N∑
k=1

(
N − 1

k − 1

)−1 ∑
S⊆D−z,|S|=k−1

[v(S ∪ {z})− v(S)] (1)

For notation simplicity, when the context is clear, we omit the utility function and/or leave-one-out
dataset, and write ϕz(D−z), ϕz(v) or ϕz depending on the specific dependency we want to stress.

The popularity of the Shapley value is attributable to the fact that it is the unique data value notion
satisfying four axioms: Dummy player, Symmetry, Linearity, and Efficiency. We refer the readers to
[23], [30] and the references therein for a detailed discussion about the interpretation and necessity of
the four axioms in the ML context. Here, we introduce the linearity axiom which will be used later.
Theorem 1 (Linearity of the Shapley value [56]). For any of two utility functions v1, v2 and any
α1, α2 ∈ R, we have ϕz (α1v1 + α2v2) = α1ϕz (v1)+ α2ϕz (v2).

2.2 KNN-Shapley

Formula (1) suggests that the exact Shapley value can be computationally prohibitive in general, as
it requires evaluating v(S) for all possible subsets S ⊆ D. Surprisingly, [29, 61] showed that for
K-Nearest Neighbor (KNN), the computation of the exact Data Shapley score is highly efficient.
Following its introduction, KNN-Shapley has rapidly gained attention and follow-up works across
diverse areas of machine learning [24, 43, 42, 9]. In particular, it has been recognized by recent
studies as “the most practical data valuation technique capable of handling large-scale data effectively”
[52, 33].

Specifically, the performance of an unweighted KNN classifier is typically evaluated by its validation
accuracy. For a given validation set D(val) = {z(val)i }Nval

i=1 , we can define KNN’s utility function
vKNN
D(val) on a non-empty training set S as vKNN

D(val)(S) :=
∑

z(val)∈D(val) vKNNz(val)(S), where

vKNNz(val)(S) :=
1

min(K, |S|)

min(K,|S|)∑
j=1

1[yπ(S)(j;x(val)) = y(val)] (2)

is the probability of a (soft-label) KNN classifier in predicting the correct label for a validation point
z(val) = (x(val), y(val)) ∈ D(val). In (2), π(S)(i;x(val)) is the index of the ith closest data point in
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Figure 1: The potential privacy risks in data valuation arise from the dependency of the data value
score ϕzi on the rest of the dataset D−zi . Our goal is to privatize ϕzi(D−zi) such that it provides
strong differential privacy guarantee for the rest of the dataset D−zi .

S to x(val). When |S| = 0, vKNN
z(val)(S) is set to the accuracy by random guessing. The distance is

measured through suitable metrics such as ℓ2 distance. Here is the main result in [29, 61]:
Theorem 2 (KNN-Shapley [30, 61] (simplified version)). Consider the utility function in (2). Given
a validation data point z(val) = (x(val), y(val)) and a distance metric d(·, ·), if we sort the training
set D = {zi = (xi, yi)}Ni=1 according to d(xi, x

(val)) in ascending order, then the Shapley value of
each data point ϕKNN

zi corresponding to utility function vKNN
z(val) can be computed recursively as follows:

ϕKNN
zN := fN (D), and ϕKNN

zi := ϕKNN
zi+1

+ fi(D) for i = 1, . . . , N − 1

where the exact form of functions fi(D) can be found in Appendix B.1.

Runtime: the computation of all Shapley values (ϕKNN
z1 , . . . , ϕKNN

zN ) can be achieved in O(N logN)
runtime in total (dominated by the sorting data points in D).

The Shapley value corresponding to full validation set: for a validation set D(val), recall that
vKNN
D(val)(S) :=

∑
z(val)∈D(val) vKNNz(val)(S). One can compute the Shapley value corresponding to vKNN

D(val)

by summing each ϕKNN
zi

(
vKNN
z(val)

)
, i.e., ϕKNN

zi

(
vKNN
D(val)

)
=

∑
z(val)∈D(val) ϕKNN

zi

(
vKNN
z(val)

)
.

Theorem 2 tells that for any validation data point z(val), we can compute the exact Shapley value
ϕKNN
zi

(
D−zi ; v

KNN
z(val)

)
for all zi ∈ D by using a recursive formula within a total runtime of O(N logN).

After computing the Shapley value ϕKNN
zi

(
vKNN
z(val)

)
for each z(val) ∈ D(val), one can compute the

Shapley value corresponding to the full validation set by simply taking the sum of each ϕKNN
zi

(
vKNN
z(val)

)
,

due to the linearity property (Theorem 1) of the Shapley value.
Remark 1 (Criteria of Computational Efficiency). As prior data valuation literature [23], we
focus on the total runtime required to release all data value scores (ϕKNN

z1 , . . . , ϕKNN
zN ). This is because,

in a practical data valuation scenario (e.g., profit allocation), we rarely want to compute the data
value score for only a single data point; instead, a typical objective is to compute the data value
scores for all data points within the training set.

3 Privacy Risks & Challenges of Privatization for KNN-Shapley
Scenario. Figure 1 illustrates the data valuation scenario and potential privacy leakages considered in
our paper. Specifically, a centralized, trusted server collects data point zi from data owner i for each
i ∈ [N ]. The central server’s role is to provide each data owner i with an assessment of the value
of their data zi, e.g., the KNN-Shapley value ϕKNN

zi . A real life example: Mayo Clinic has created a
massive digital health patient data marketplace platform [68], where the patients submit part of their
medical records onto the platform, and life science companies/labs pay a certain amount of money to
purchase patients’ data. The platform’s responsibility is to gauge the worth of the data of each patient
(i.e., the data owner) to facilitate fair compensation.
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The privacy risks associated with KNN-Shapley (as well as other data valuation techniques) arise
from the fact that ϕKNN

zi (D−zi) depends on other data owners’ data D−zi . Consequently, the data
value score ϕKNN

zi may inadvertently reveal private information (e.g., membership) about the rest of
the dataset. The dependency of a data value score on the rest of the dataset is an unavoidable aspect
of data valuation, as the value of a data point is inherently a relative quantity determined by its role
within the complete dataset.
Remark 2 (Other privacy risks in data valuation). It is important to note that in this work, we
do not consider the privacy risks of revealing individuals’ data to the central server. This is a
different type of privacy risk that needs to be addressed using secure multi-party computation (MPC)
technique [70], and it should be used together with differential privacy in practice. In addition, to
use KNN-Shapley or many other data valuation techniques, the central server needs to maintain a
clean, representative validation set, the privacy of which is not considered by this paper.

K = 1 K = 3 K = 5 K = 7 K = 9 K = 11 K = 13 K = 15

2DPlanes 0.56 0.595 0.518 0.52 0.57 0.55 0.515 0.6
Phoneme 0.692 0.54 0.513 0.505 0.505 0.588 0.512 0.502

CPU 0.765 0.548 0.52 0.572 0.588 0.512 0.612 0.615
Fraud 0.625 0.645 0.6 0.592 0.622 0.532 0.538 0.558

Creditcard 0.542 0.643 0.628 0.665 0.503 0.67 0.602 0.66
Apsfail 0.532 0.595 0.625 0.6 0.53 0.645 0.532 0.52
Click 0.61 0.525 0.588 0.538 0.588 0.582 0.622 0.618
Wind 0.595 0.51 0.518 0.528 0.558 0.562 0.505 0.577

Pol 0.725 0.695 0.7 0.62 0.57 0.522 0.535 0.532

Table 1: Results of the AUROC of the MI attack
proposed in Appendix B.2.2 on KNN-Shapley. The
higher the AUROC score is, the larger the pri-
vacy leakage is. The detailed algorithm description
and experiment settings can be found in Appendix
B.2.2.

A Simple Membership Inference (MI) Attack
on KNN-Shapley (detailed in Appendix B.2.2).
We further illustrate the privacy risks of reveal-
ing data value scores with a concrete example.
Analogous to the classic membership inference
attack on ML model [58], in Appendix B.2.2
we show an example of privacy attack where an
adversary could infer the presence/absence of
certain data points in the dataset based on the
variations in the KNN-Shapley scores. The de-
sign is analogous to the membership inference
attack against ML models via the likelihood ra-
tio test [8]. The AUROC score of the attack
results is shown in Table 1. As we can see, our
MIA attack can achieve a detection performance that is better than the random guess (0.5) for most
of the settings. On some datasets, the attack performance can achieve > 0.7 AUROC. This demon-
strates that privacy leakage in data value scores can indeed lead to non-trivial privacy attacks, and
underscores the need for privacy safeguards in data valuation.1

3.1 Privatizing KNN-Shapley is Difficult

The growing popularity of data valuation techniques, particularly KNN-Shapley, underscores the
critical need to mitigate the inherent privacy risks. In the quest for privacy protection, differential
privacy (DP) [15] has emerged as the leading framework. DP has gained considerable recognition for
providing robust, quantifiable privacy guarantees, thereby becoming the de-facto choice in privacy
protection. In this section, we introduce the background of DP and highlight the technical difficulties
in constructing a differentially private variant for the current version of KNN-Shapley.

Background of Differential Privacy. We use D,D′ ∈ NX to denote two datasets with an unspecified
size over space X . We call two datasets D and D′ adjacent (denoted as D ∼ D′) if we can construct
one by adding/removing one data point from the other, e.g., D = D′ ∪ {z} for some z ∈ X .
Definition 3 (Differential Privacy [15]). For ε, δ ≥ 0, a randomized algorithmM : NX → Y is
(ε, δ)-differentially private if for every pair of adjacent datasets D ∼ D′ and for every subset of
possible outputs E ⊆ Y , we have PrM[M(D) ∈ E] ≤ eε PrM[M(D′) ∈ E] + δ.

That is, (ε, δ)-DP requires that for all adjacent datasets D,D′, the output distributionM(D) and
M(D′) are close, where the closeness is measured by the parameters ε and δ. In our scenario, we
would like to modify data valuation function ϕzi(D−zi) to satisfy (ε, δ)-DP in order to protect the
privacy of the rest of the dataset D−zi . Gaussian mechanism [14] is a common way for privatizing
a function; it introduces Gaussian noise aligned with the function’s global sensitivity, which is the
maximum output change when a single data point is added/removed from any given dataset.
Definition 4 (Gaussian Mechanism [14]). Define the global sensitivity of a function f : NX → Rd

as ∆2(f) := supD∼D′ ∥f(D)− f(D′)∥2. The Gaussian mechanismM with noise level σ is then
given byM(D) := f(D) +N

(
0, σ2

1d

)
whereM is (ε, δ)-DP with σ = ∆2(f)

√
log(1.25/δ)/ε.

1We stress that the goal here is to demonstrate that the data value scores can indeed serve as another channel
of privacy leakage. We do not claim any optimality of the attack we construct here. Improving MI attacks for
data valuation is an interesting future work.
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Challenges in making KNN-Shapley being differentially private (overview). Here, we give an
overview of the inherent difficulties in making the KNN-Shapley ϕKNN

zi (D−zi) (Theorem 2) to be
differentially private, and we provide a more detailed discussion in Appendix B.3. (1) Large global
sensitivity: In Appendix B.3, we show that the global sensitivity of ϕKNN

zi (D−zi) can significantly
exceed the magnitude of ϕKNN

zi . Moreover, we prove that the global sensitivity bound cannot be further
improved by constructing a specific pair of neighboring datasets that matches the bound. Hence, if
we introduce random noise proportional to the global sensitivity bound, the resulting privatized data
value score could substantially deviate from its non-private counterpart, thereby compromising the
utility of the privatized data value scores. (2) Computational challenges in incorporating privacy
amplification by subsampling: “Privacy amplification by subsampling” [4] is a technique where
the subsampling of a dataset amplifies the privacy guarantees due to the reduced probability of an
individual’s data being included. Being able to incorporate such a technique is often important for
achieving a decent privacy-utility tradeoff. However, in Appendix B.3 we show that the recursive
nature of KNN-Shapley computation causes a significant increase in computational demand compared
to non-private KNN-Shapley.

These challenges underscore the pressing need for new data valuation techniques that retain the
efficacy and computational efficiency of KNN-Shapley, while being amenable to privatization.

4 The Shapley Value for Threshold-based Nearest Neighbor
Considering the privacy concerns and privatization challenges associated with the original KNN-
Shapley method, we introduce TKNN-Shapley, a privacy-friendly alternative of KNN-Shapley which
also achieves improved computational efficiency. At the core of this novel method is Threshold-KNN
(TKNN) classifier, a simple variant of the KNN classifier. We will discuss how to incorporate DP for
TKNN-Shapley in Section 5.

4.1 Threshold-based Nearest Neighbor Classifier (TKNN)

Threshold-KNN (TKNN) [5, 72] is a variant of KNN classifier that considers neighbors within a
pre-specified threshold of the query example, rather than exclusively focusing on the exact K nearest
neighbors. Formally, for a training set S and a validation data point z(val) = (x(val), y(val)), we
denote NBx(val),τ (S) := {(x, y)|(x, y) ∈ S, d(x, x(val)) ≤ τ} the set of neighbors of x(val) in S
within a pre-specified threshold τ . Similar to the utility function for KNN, we define the utility
function for TKNN classifier when using a validation set D(val) as the aggregated prediction accuracy
vTKNN
D(val)(S) :=

∑
z(val)∈D(val) vTKNNz(val)(S) where

vTKNNz(val)(S) :=

{
Constant |NBx(val),τ (S)| = 0

1
|NB

x(val),τ
(S)|

∑
(x,y)∈NB

x(val),τ
(S) 1[y = y(val)] |NBx(val),τ (S)| > 0 (3)

where Constant can be the trivial accuracy of random guess.

Comparison with standard KNN. (1) Robustness to outliers. Compared with KNN, TKNN is
better equipped to deal with prediction phase outliers [5]. When predicting an outlier that is far
from the entire training set, TKNN prevents the influence of distant, potentially irrelevant neighbors,
leading to a more reliable prediction score for outliers. (2) Inference Efficiency. TKNN has slightly
better computational efficiency compared to KNN, as it has O(N) instead of O(N logN) inference
time. This improvement is achieved because TKNN only requires the computation of neighbors
within the threshold τ , rather than searching for the exact K nearest neighbors. (3) TKNN is also a
consistent estimator. The consistency of standard KNN is a well-known theoretical result [26]. That
is, for any target function that satisfies certain regularity conditions, KNN binary classifier/regressor
is guaranteed to converge to the target function as the size of the training set grows to infinite. In
Appendix C.1, we derived a similar consistency result for TKNN binary classifier/regressor.

Remark 3 (Intuition: Why we consider TKNN?). The ‘recursive form’ of KNN-Shapley is due to
the sorting operation in the prediction of the standard KNN. The recursive form of the formula causes
difficulties in incorporating KNN-Shapley with differential privacy. In contrast, TKNN avoids the
recursive formula for its Data Shapley value; the intuition is that for TKNN, the selection of neighbors
for prediction solely depends on the queried example and the validation data, and is independent of
the other training data points.
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4.2 Data Shapley for TKNN (TKNN-Shapley)

With the introduction of TKNN classifier and its utility function, we now present our main result, the
closed-form, efficiently computable Data Shapley formula for the TKNN classifier.
Theorem 5 (TKNN-Shapley (simplified version)). Consider the utility function vTKNN

z(val) in (3). Given
a validation data point z(val) = (x(val), y(val)) and a distance metric d(·, ·), the Shapley value ϕTKNN

zi

of each training point zi = (xi, yi) ∈ D corresponding to utility function vTKNN
z(val) can be calculated as

ϕTKNN
zi = f (Cz(val)(D−zi)) (4)

where Cz(val) := (c, cx(val),τ , c
(+)

z(val),τ
) is a 3-dimensional function/vector s.t.

c = c(D−zi) := |D−zi | (size of D−zi)

cx(val),τ = cx(val),τ (D−zi) := 1 +
∣∣NBx(val),τ (D−zi)

∣∣ (1 + # neighbors of x(val) in D−zi)

c
(+)

z(val),τ
= c

(+)

z(val),τ
(D−zi) :=

∑
(x,y)∈NB

x(val),τ
(D−zi

)

1[y = y(val)] (# same-label neighbors in D−zi)

and f(·) is a function whose exact form can be found in Appendix C.2.

Runtime: the computation of all (ϕTKNN
z1 , . . . , ϕTKNN

zN ) can be achieved in O(N) runtime (see Appendix
C.2.1).

The Shapley value when using full validation set: The Shapley value corresponding to the utility
function vTKNN

D(val) can be calculated as ϕTKNN
zi

(
vTKNN
D(val)

)
=

∑
z(val)∈D(val) ϕTKNN

zi

(
vTKNN
z(val)

)
.

The main technical challenges of proving Theorem 5 lies in showing Cz(val) = (c, cx(val),τ , c
(+)

z(val),τ
),

three simple counting queries on D−zi , are the key quantities for computing ϕTKNN
zi . In later part of the

paper, we will often view ϕTKNN
zi as a function of Cz(val) and denote ϕTKNN

zi [Cz(val) ] := f(Cz(val)) when
we want to stress this dependency. The full version and the proof for TKNN-Shapley can be found in
Appendix C.2.1. Here, we briefly discuss why TKNN-Shapley can achieve O(N) runtime in total.
Efficient Computation of TKNN-Shapley. As we can see, all of the quantities in Cz(val) are simply
counting queries on D−zi , and hence Cz(val)(D−zi) can be computed in O(N) runtime for any
zi ∈ D. A more efficient way to compute Cz(val)(D−zi) for all zi ∈ D, however, is to first compute
Cz(val)(D) on the full dataset D, and we can easily show that each of Cz(val)(D−zi) can be computed
from that in O(1) runtime (see Appendix C.2.2 for details). Hence, we can compute TKNN-Shapley
ϕTKNN
zi (vTKNN

z(val)) for all zi ∈ D within an overall computational cost of O(N).
Comparison with KNN-Shapley. TKNN-Shapley offers several advantages over the original KNN-
Shapley. (1) Non-recursive: In contrast to the KNN-Shapley formula (Theorem 2), which is recursive,
TKNN-Shapley has an explicit formula for computing the Shapley value of every point zi. This
non-recursive nature not only simplifies the implementation, but also makes it straightforward to
incorporate techniques like subsampling. (2) Computational efficiency: TKNN-Shapley has O(N)
runtime in total, which is better than the O(N logN) runtime for KNN-Shapley.

5 Differentially Private TKNN-Shapley
Having established TKNN-Shapley as an alternative to KNN-Shapley which shares many advantages,
our next step is to develop a new version of TKNN-Shapley that incorporates differential privacy. In
this section, we introduce our proposed Differentially Private TKNN-Shapley (DP-TKNN-Shapley).

5.1 Differentially private release of ϕTKNN
zi (vTKNN

z(val))

As Cz(val) = (c, cx(val),τ , c
(+)

z(val),τ
) are the only quantities that depend on the dataset D−zi in (4),

privatizing these quantities is sufficient for overall privacy preservation, as DP guarantee is pre-
served under any post-processing [16]. Since all of c, cx(val),τ and c

(+)

z(val),τ
are just counting queries,

the function of Cz(val)(·) has global sensitivity
√
3 in ℓ2-norm. This allows us to apply the com-

monly used Gaussian mechanism (Theorem 4) to release Cz(val) in a differentially private way, i.e.,
Ĉz(val)(D−zi) := round

(
Cz(val)(D−zi) +N

(
0, σ2

13

))
where Ĉz(val) is the privatized version of

Cz(val) , and the function round rounds each entry of noisy value to the nearest integer. The differen-
tially private version of TKNN-Shapley value ϕ̂TKNN

zi (D−zi) is simply the value score computed by
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(4) but use the privatized quantities Ĉz(val) . The privacy guarantee of releasing DP-TKNN-Shapley
ϕ̂TKNN
zi (D−zi) follows from the guarantee of Gaussian mechanism (see Appendix D.1 for proof).

Theorem 6. For any z(val) ∈ D(val), releasing ϕ̂TKNN
zi (vTKNN

z(val)) := ϕTKNN
zi

[
Ĉz(val)(D−zi)

]
to data

owner i is (ε, δ)-DP with σ =
√
3 ·

√
log(1.25/δ)/ε.

While our approach may seem simple, we stress that simplicity is appreciated in DP as complex
mechanisms pose challenges for correct implementation and auditing [47, 21].

5.2 Advantages of DP-TKNN-Shapley (Overview)

We give an overview (detailed in Appendix D.2) of several advantages of DP-KNN-Shapley here,
including the efficiency, collusion resistance, and simplicity in incorporating subsampling.

By reusing privatized statistics, ϕ̂TKNN
zi can be efficiently computed for all zi ∈ D. Recall that in

practical data valuation scenarios, it is often desirable to compute the data value scores for all of
zi ∈ D. As we detailed in Section 4.2, for TKNN-Shapley, such a computation only requires O(N)
runtime in total if we first compute Cz(val)(D) and subsequently Cz(val)(D−zi) for each zi ∈ D. In
a similar vein, we can efficiently compute the DP variant ϕ̂TKNN

zi for all zi ∈ D. To do so, we first
calculate Ĉz(val)(D) and then, for each zi ∈ D, we compute Ĉz(val)(D−zi). It is important to note
that when releasing ϕ̂TKNN

zi to individual i, the data point they hold, zi, is not private to the individual
themselves. Therefore, as long as Ĉz(val)(D) is privatized, Ĉz(val)(D−zi) and hence ϕ̂TKNN

zi also satisfy
the same privacy guarantee due to DP’s post-processing property.

By reusing privatized statistics, DP-TKNN-Shapley is collusion resistance. In Section 5.1, we
consider the single Shapley value ϕTKNN

zi (D−zi) as the function to privatize. However, when we
consider the release of all Shapley values (ϕ̂TKNN

z1 , . . . , ϕ̂TKNN
zN ) as a unified mechanism, one can show

that such a mechanism satisfies joint differential privacy (JDP) [34] if we reuse the privatized statistic
Ĉz(val)(D) for the release of all ϕ̂TKNN

zi . The consequence of satisfying JDP is that our mechanism is
resilient against collusion among groups of individuals without any privacy degradation. That is, even
if an arbitrary group of individuals in [N ] \ i colludes (i.e., shares their respective ϕ̂TKNN

zj values within
the group), the privacy of individual i remains uncompromised. Our method also stands resilient in
scenarios where a powerful adversary sends multiple data points and receives multiple value scores.

Incorporating Privacy Amplification by Subsampling. In contrast to KNN-Shapley, the non-
recursive nature of DP-TKNN-Shapley allows for the straightforward incorporation of subsampling.
Besides the privacy guarantee, subsampling also significantly boosts the computational efficiency of
DP-TKNN-Shapley.

5.3 Differentially private release of ϕTKNN
zi (vTKNN

D(val))

Recall that the TKNN-Shapley corresponding to the full validation set D(val) is ϕTKNN
zi

(
vTKNN
D(val)

)
=∑

z(val)∈D(val) ϕTKNN
zi (D−zi ; z

(val)). We can compute privatized ϕTKNN
zi

(
vTKNN
D(val)

)
by simply releasing

ϕTKNN
zi (D−zi ; z

(val)) for all z(val) ∈ D(val). To better keep track of the privacy cost, we use the current
state-of-the-art privacy accounting technique based on the notion of the Privacy Loss Random Variable
(PRV) [17]. We provide more details about the background of privacy accounting in Appendix D.3.
We note that PRV-based privacy accountant computes the privacy loss numerically, and hence the
final privacy loss has no closed-form expressions.

6 Numerical Experiments
In this section, we systematically evaluate the practical effectiveness of our proposed TKNN-Shapley
method. Our evaluation aims to demonstrate the following points: (1) TKNN-Shapley offers im-
proved runtime efficiency compared with KNN-Shapley. (2) The differentially private version of
TKNN-Shapley (DP-TKNN-Shapley) achieves significantly better privacy-utility tradeoff compared
to naively privatized KNN-Shapley in discerning data quality. (3) Non-private TKNN-Shapley
maintains a comparable performance to the original KNN-Shapley. These observations highlight
TKNN-Shapley’s potential for data valuation in real-life applications. Detailed settings for our
experiments are provided in Appendix E.
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Remark 4. Given that differential privacy offers a provable guarantee against any potential adver-
saries, our experiments prioritize evaluating the utility of DP-TKNN-Shapley rather than its privacy
properties. However, for readers interested in understanding the efficacy of DP in safeguarding
training data, we have included an evaluation of the proposed MI attack on DP-TKNN-Shapley in
Appendix B.2.2, where it shows a significant drop in attack performance compared to non-DP version.

6.1 Computational Efficiency

Figure 2: Runtime comparison of
TKNN-Shapley and KNN-Shapley
across various training data sizes N .
The plot shows the average runtime
based on 5 independent runs. Experi-
ments were conducted with an AMD
64-Core CPU Processor.

We evaluate the runtime efficiency of TKNN-Shapley in
comparison to KNN-Shapley (see Appendix E.2 for de-
tails as well as more experiments). We choose a range
of training data sizes N , and compare the runtime of
both methods at each N . As demonstrated in Figure 2,
TKNN-Shapley achieves better computational efficiency
than KNN-Shapley across all training data sizes. In par-
ticular, TKNN-Shapley is around 30% faster than KNN-
Shapley for large N . This shows the computational advan-
tage of TKNN-Shapley mentioned in Section 4.2.

6.2 Discerning Data Quality

In this section, we evaluate the performance of both DP
and non-DP version of TKNN-Shapley in discerning data
quality. Tasks: We evaluate the performance of TKNN-
Shapley on two standard tasks: mislabeled data detection
and noisy data detection, which are tasks that are often
used for evaluating the performance of data valuation tech-
niques in prior works [39, 60]. Since mislabeled/noisy data often negatively affect the model
performance, it is desirable to assign low values to these data points. In the experiment of misla-
beled (or noisy) data detection, we randomly choose 10% of the data points and flip their labels (or
add strong noise to their features). Datasets: We conduct our experiments on a diverse set of 13
datasets, where 11 of them have been used in previous data valuation studies [39, 60]. Additionally,
we experiment on 2 NLP datasets (AG News [65] and DBPedia [2]) that have been rarely used in
the past due to their high-dimensional nature and the significant computational resources required.
Settings & Hyperparameters of TKNN-/KNN-Shapley: for both TKNN/KNN-Shapley, we use
the popular cosine distance as the distance measure [53], which is always bounded in [−1,+1].
Throughout all experiments, we use τ = −0.5 and K = 5 for TKNN-/KNN-Shapley, respectively, as
we found the two choices consistently work well across all datasets. We conduct ablation studies on
the choice of hyperparameters in Appendix E.

6.2.1 Experiment for Private Setting
Baselines: (1) DP-KNN-Shapley without subsampling. Recall from Section 3.1, the original
KNN-Shapley has a large global sensitivity. Nevertheless, we can still use Gaussian mechanism to
privatize it based on its global sensitivity bound. We call this approach as DP-KNN-Shapley. (2)
DP-KNN-Shapley with subsampling. Recall from Section 3.1, it is computationally expensive
to incorporate subsampling techniques for DP-KNN-Shapley (detailed in Appendix B.3.2). For
instance, subsampled DP-KNN-Shapley with subsampling rate q = 0.01 generally takes 30×longer
time compared with non-subsampled counterpart. Nevertheless, we still compare with subsampled
DP-KNN-Shapley for completeness. These two baselines are detailed in Appendix B.4. We also
note that an unpublished manuscript [67] proposed a DP version of Data Shapley. However, their DP
guarantee requires a hard-to-verify assumption of uniform stability (see Appendix A). Hence, we do
not compare with [67].
Results: We evaluate the privacy-utility tradeoff of DP-TKNN-Shapley. Specifically, for a fixed δ,
we examine the AUROC of mislabeled/noisy data detection tasks at different values of ε, where ε is
adjusted by changing the magnitude of Gaussian noise. In the experiment, we set the subsampling
rate q = 0.01 for TKNN-Shapley and subsampled KNN-Shapley. Table 2 shows the results on 3
datasets, and we defer the results for the rest of 10 datasets to Appendix E.3.2. As we can see,
DP-TKNN-Shapley shows a substantially better privacy-utility tradeoff compared to both
DP-KNN-Shapley with/without subsampling. In particular, DP-TKNN-Shapley maintains a high
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Mislabeled Data Detection Noisy Data Detection

Dataset ε
DP-TKNN-Shapley

(ours)
DP-KNN-Shapley
(no subsampling)

DP-KNN-Shapley
(with subsampling)

DP-TKNN-Shapley
(ours)

DP-KNN-Shapley
(no subsampling)

DP-KNN-Shapley
(with subsampling)

2dPlanes
0.1 0.883 (0.017) 0.49 (0.024) 0.733 (0.011) 0.692 (0.014) 0.494 (0.023) 0.615 (0.01)
0.5 0.912 (0.009) 0.488 (0.022) 0.815 (0.006) 0.706 (0.004) 0.494 (0.012) 0.66 (0.004)
1 0.913 (0.009) 0.504 (0.019) 0.821 (0.005) 0.705 (0.007) 0.495 (0.011) 0.665 (0.004)

Phoneme
0.1 0.816 (0.011) 0.5 (0.014) 0.692 (0.011) 0.648 (0.028) 0.475 (0.042) 0.566 (0.01)
0.5 0.826 (0.007) 0.497 (0.011) 0.738 (0.003) 0.683 (0.014) 0.536 (0.033) 0.588 (0.004)
1 0.826 (0.005) 0.486 (0.01) 0.741 (0.002) 0.685 (0.016) 0.494 (0.071) 0.59 (0.005)

CPU
0.1 0.932 (0.007) 0.49 (0.028) 0.881 (0.005) 0.805 (0.037) 0.42 (0.074) 0.709 (0.011)
0.5 0.946 (0.004) 0.507 (0.029) 0.928 (0.002) 0.838 (0.007) 0.472 (0.092) 0.746 (0.003)
1 0.948 (0.002) 0.512 (0.008) 0.931 (0.002) 0.839 (0.003) 0.455 (0.079) 0.748 (0.002)

Table 2: Privacy-utility tradeoff of DP-TKNN-Shapley and DP-KNN-Shapley for mislabeled/noisy
data detection task on 3 datasets we use (see Appendix E.3.2 for the results on the rest of 10 datasets).
We set δ = 10−4 and show the AUROC at different privacy budgets ε; the higher the AUROC is, the
better the method is. We show the standard deviation of AUROC across 5 independent runs in ().

AUROC even when ε ≈ 0.1. The poor performance of DP-KNN-Shapley is due to its relatively high
global sensitivity.

6.2.2 Experiment for Non-private Setting
Baselines: Our main baseline for comparison is KNN-Shapley. For completeness, we also compare
with other classic, yet much less efficient data valuation techniques, such as Data Shapley [23], Data
Banzhaf [60], and leave-one-out error (LOO) [35]. Due to space constraints, we only show the results
for the famous Data Shapley here and defer other methods’ results to Appendix E.3.3.

Dataset TKNN-Shapley KNN-Shapley Data Shapley
2dPlanes 0.919 (+0.006) 0.913 0.552
Phoneme 0.826 (-0.047) 0.873 0.525

CPU 0.946 (+0.014) 0.932 0.489
Fraud 0.96 (-0.007) 0.967 0.488

Creditcard 0.662 (+0.016) 0.646 0.517
Apsfail 0.958 (+0.01) 0.948 0.496
Click 0.572 (+0.004) 0.568 0.474
Wind 0.889 (-0.007) 0.896 0.469

Pol 0.871 (-0.057) 0.928 0.512
MNIST 0.962 (-0.012) 0.974 -

CIFAR10 0.957 (-0.034) 0.991 -
AG News 0.956 (-0.015) 0.971 -
DBPedia 0.981 (-0.01) 0.991 -

Table 3: AUROC scores of TKNN/KNN-Shapley
and Data Shapley for mislabeled data detection
tasks on various datasets. The higher the AUROC
score is, the better the method is. In the column
for TKNN-Shapley, we highlight its performance
difference with KNN-Shapley in (). The results for
Data Shapley on the last 4 datasets are omitted due
to computational constraints.

Results: We use AUROC as the performance
metric on mislabeled/noisy data detection tasks.
Due to space constraints, we defer the results
for the task of noisy data detection to Appendix
E. Table 3 shows the results for the task of mis-
labeled data detection across all 13 datasets we
use. As we can see, TKNN-Shapley shows
a comparable performance as KNN-Shapley
across almost all datasets, demonstrating that
TKNN-Shapley matches the effectiveness of
KNN-Shapley in discerning data quality. More-
over, KNN-Shapley (and TKNN-Shapley) has
a significantly better performance compared to
Data Shapley, which is consistent with the obser-
vations in many existing studies [31, 52]. The
poor performance of Data Shapley is attributable
to the sample inefficiency and stochasticity dur-
ing retraining [60].

7 Conclusion
In this work, we uncover the inherent privacy risks associated with data value scores and introduce
TKNN-Shapley, a privacy-friendly alternative to the widely-used KNN-Shapley. We demonstrate that
TKNN-Shapley outperforms KNN-Shapley in terms of computational efficiency, and is as good as
discerning data quality. Moreover, the privatized version of TKNN-Shapley significantly surpasses
the naively privatized KNN-Shapley on tasks such as mislabeled data detection.

Future Work. (1) Privacy risks of data revelation to central server: in this work, we assume
the existence of a trusted central server, and we do not consider the privacy risks associated with
revealing individuals’ data to the central server. Future work should consider integrating secure
multi-party computation (MPC) techniques to mitigate this risk [59]. MPC can allow the computation
of KNN-Shapley without revealing individual data to the central server, thereby preserving privacy.
We envision an end-to-end privacy-preserving data valuation framework that combines both DP
and MPC. (2) Impact of Randomization on Payment Fairness: the incorporation of differential
privacy necessarily adds a degree of randomness to the data value scores. This randomization could
potentially impact the fairness of payments to data providers [3]. The influence of this randomness,
and its potential implications for payment fairness, remain areas for further investigation.
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A Extended Related Work

KNN-Shapley & Its Applications. The Shapley value is known for being computationally ex-
pensive. Fortunately, [29] found that computing the Data Shapley for K-Nearest Neighbors (KNN),
one of the most classic yet still popular ML algorithms, is surprisingly easy and efficient. To the
best of our knowledge, unweighted KNN is the only commonly-used ML model for which the exact
Data Shapley can be efficiently computed, referred to as ‘KNN-Shapley’. Owing to its superior
computational efficiency and effectiveness in distinguishing data quality, KNN-Shapley has become
one of the most popular and practical data valuation techniques. In the realm of ML research, for
instance, [24] extends KNN-Shapley to active learning, [57] employs it in a continual learning setting,
[43, 42] utilize KNN-Shapley for removing confusing samples in NLP applications, and [9] adopts
KNN-Shapley for data valuation in semi-supervised learning. Furthermore, KNN-Shapley has also
proven to be highly practical in real-life applications: [52] demonstrates that KNN-Shapley is the
only practical data valuation technique for valuing large amounts of healthcare data, and [33] builds
the first data debugging system for end-to-end ML pipelines based on KNN-Shapley.
Remark 5 (KNN-Shapley vs General Data Shapley). In comparison to the work of general Data
Shapley [23] (including Beta Shapley [39] as well as Data Banzhaf [60]), KNN-Shapley may have
the following differences: (1) KNN-Shapley focuses on KNN classifiers. As a result, the applicability
of KNN-Shapley scores as a proxy of data points’ value with respect to other ML models may not
be straightforward. However, it is noteworthy that KNN is asymptotically Bayes optimal, implying
that KNN-Shapley scores can be justified as a proxy for the data’s value relative to the best possible
model, i.e., the Bayes classifier, under certain asymptotic conditions. (2) For high-dimensional
data, such as images, KNN-Shapley requires a public model to first map the original data into data
embeddings, and evaluates the value of these embeddings rather than the original data. While this is
indeed a constraint in certain scenario, it is important to recognize that utilizing a publicly available
foundation model to convert original data into embeddings, followed by the fine-tuning of the model’s
last layer, has become a common practice. Therefore, in many situations, it might be more desirable
to evaluate the value of data embeddings instead of the original data.

Privacy and Data Valuation. Few studies in the literature consider the privacy risks of data
valuation. [59] explores a scenario where a trusted server does not exist, and different data holders
collaboratively compute each other’s Shapley values without actually examining the data holder’s
data points, utilizing Multi-party Computation (MPC) techniques. The privacy risks addressed
in [59] are orthogonal to those in our paper, and we can combine both techniques for end-to-end
privacy protection. Another orthogonal line of works [45, 20, 10, 32] studies the scenario of a central
platform collecting private data from privacy-aware agents and offering a differentially private statistic
computed from the submitted data as a service in return. Agents consider the privacy costs and
benefits of obtaining the statistic when deciding whether to participate and reveal their data truthfully.
[46] proposes a privacy attack on the Shapley value for feature attribution, while in this work we
study the privacy risks when using the Shapley value for data valuation.

The unpublished manuscript by [67] is the work most closely related to ours. [67] explores how to
make the Shapley values of a data point to be differentially private against the rest of the dataset.
However, instead of focusing on KNN-Shapley, they study the privatization of the less practical,
retrain-based Data Shapley [23, 30]. Furthermore, their algorithm is highly restrictive in that the
differential privacy guarantee relies on the "uniform stability" assumption, which is not verifiable
for modern learning algorithms such as neural networks. Moreover, while [67] argues the "uniform
stability" assumption holds for Logistic regression on bounded data domain, it is unclear whether the
uniform stability assumption still holds when the Logistic regression is trained by SGD (which may in-
volve training stochasticity and early stopping). In addition, [67] does not release the implementation.
Hence, in our experiment, we do not compare with it.
Remark 6 (Brief background for the privacy risks in releasing aggregated statistics). Since 1998,
researchers have observed that a lot of seemingly benevolent aggregate statistics of a dataset can be
used to reveal sensitive information about individuals [55]. A classic example is Netflix Prize fiasco,
where the researchers show that an anonymized dataset can leak many sensitive information about
individuals [49]. Dinur and Nissim [12] proved that “revealing too many statistics too accurately
leads to data privacy breach”. A great amount of discussion and practical realization of these privacy
attacks on aggregated statistics can be found in [19]. In 2020, the US Census Bureau used these
privacy attacks to justify its use of differential privacy.
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KNN-Shapley score for an individual is one kind of aggregated statistic that depends on the rest of
the dataset. Hence, KNN-Shapley score intrinsically reveals private information about the rest of the
dataset (where we use membership inference attack as a concrete example in our paper). In addition,
when users collude, their KNN-shapley values can be combined to make joint inferences about the
rest of the dataset.
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B Details about KNN-Shapley, its Privacy Risks & Challenges of Privatization

B.1 Full version of KNN-Shapley

KNN-Shapley was originally proposed in [29] and was later refined in [61]. Specifically, [61]
considers the KNN’s utility function formula (2) we present in the main text. Here is the main result
of [61]:
Theorem 7 (KNN-Shapley [61]). Consider the utility function in (2). Given a validation data
point z(val) = (x(val), y(val)) and a distance metric d(·, ·), if we sort the training set D = {zi =
(xi, yi)}Ni=1 according to d(xi, x

(val)) in ascending order, then the Shapley value of each data point
ϕKNN
zi corresponding to utility function vKNN

z(val) can be computed recursively as follows:

ϕKNN
zN =

1[N ≥ 2]

N

(
1[yN = y(val)]−

∑N−1
i=1 1[yi = y(val)]

N − 1

)min(K,N)−1∑
j=1

1

j + 1

+
1

N

(
1[yN = y(val)]− 1

C

)

ϕKNN
zi = ϕKNN

zi+1
+
1[yi = y(val)]− 1[yi+1 = y(val)]

N − 1

min(K,N)∑
j=1

1

j
+
1[N ≥ K]

K

(
min(i,K) · (N − 1)

i
−K

)
where C denotes the number of classes for the classification task.

B.1.1 Older version of KNN-Shapley from [29]

Prior to the current formulation of KNN-Shapley introduced by [61], [29] proposed an older version
of the algorithm. There is only a small distinction between the updated version by [61] and the older
version from [29]. Specifically, the difference between the versions proposed by [61] and [29] lies in
the utility function considered when computing the Shapley value. [61] use the utility function (2) as
presented in the main text, while the utility function used in [29] is slightly less interpretable:

vKNN-OLDz(val) (S) :=
1

K

min(K,|S|)∑
j=1

1[yπ(S)(j;x(val)) = y(val)] (5)

That is, (2) in the maintext divides the number of correct predictions by min(K, |S|), which can be
interpreted as the likelihood of the soft-label KNN classifier predicting the correct label y(val) for
x(val). On the other hand, the function above (5) divides the number of correct predictions by K,
which is less interpretable when |S| < K.

Nevertheless, the main result in [29] shows the following:

Theorem 8 (Older Version of KNN-Shapley from [29]2). Consider the utility function in (5). Given
a validation data point z(val) = (x(val), y(val)) and a distance metric d(·, ·), if we sort the training set
D = {zi = (xi, yi)}Ni=1 according to d(xi, x

(val)) in ascending order, then the Shapley value of each
data point ϕKNN-OLD

zi corresponding to utility function vKNN-OLD
z(val) can be computed recursively as follows:

ϕKNN-OLD
zN =

1[yN = yval]

max(K,N)

ϕKNN-OLD
zi = ϕKNN-OLD

zi+1
+
1[yi = yval]− 1[yi+1 = yval]

K

min(K, i)

i

As we can see, both versions of KNN-Shapley have recursive forms. Since the utility functions they
consider are very similar to each other except for the normalization term for small subsets, the two
versions of KNN-Shapley have very close value scores in practice and as shown in the experiments
of [61], the two versions of KNN-Shapley perform very similarly.

Remark 7 (The use of older version of KNN-Shapley for DP-related experiments). In the
experiments, we use the more advanced version of the KNN-Shapley from [61] except for the DP-
related experiments. This is because the global sensitivity of KNN-Shapley is difficult to derive, and
we can only derive the global sensitivity of the older version of KNN-Shapley from [29] (as we will

2We state a more generalized version which does not require N ≥ K.
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show in Appendix B.3). Hence, we can only use the older version of KNN-Shapley from [29] as
the baseline in DP-related experiments. It is important to note that for non-DP experiments, the
performance of KNN-Shapley and its older variant is very close to each other, and which version of
the KNN-Shapley we use for non-DP experiments does not affect the final conclusion.

B.2 Settings & Additional Experiments for Privacy Risks for KNN-Shapley

B.2.1 Experiment for the changes of data value after eliminating nearby points

We first investigate the impact of removing a data point on the KNN-Shapley score of another data
point that is close to the removed one. Specifically, we calculate the KNN-Shapley score for a chosen
data point in the dataset, and then repeat the process after eliminating one of its nearby points from
the dataset.

Settings. We use commonly used datasets in the past literature, and the details for data preprocessing
can be found in Appendix E.1. We calculate the KNN-Shapley score for a randomly selected data
point in the dataset, and then repeat the computation of the KNN-Shapley score after we eliminate its
nearest neighbor from the dataset.

Results. The results for a variety of other datasets are shown in Figure 3. We can see a significant
difference in the KNN-Shapley score of the investigated data point depending on whether the nearest
data point has been removed. We remark that how the data value change (increases or decreases)
when the nearest data point is excluded depends on the label of the nearest data point as well as the
validation data being used.

Figure 3: Curves of KNN-Shapley of a fixed data point as a function of K (the hyperparameter for
KNN), with and without a particular nearby data point in the training set.

For completeness, we also plot the same figures but for the older version of KNN-Shapley from [29],
which shows similar results.
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Figure 4: Curves of KNN-Shapley (old version from [29]) of a fixed data point as a function of K
(the hyperparameter for KNN), with and without a particular nearby data point in the training set.

B.2.2 An Instantiation of Membership Inference Attack via Data Value Scores

The observation in Appendix B.2.1, demonstrates the potential for KNN-Shapley scores to leak
membership information of other data points in the dataset. To further demonstrate such privacy
risk, in this section we show an example of a privacy attack where an adversary could infer the
presence/absence of certain data points in the dataset based on the variations in the KNN-Shapley
scores, analogous to the classic membership inference attack on ML model [58]. The attack result
further highlights the need for privacy protection when applying data valuation techniques.

Remark 8 (Motivation of Membership Inference Attack). Membership inference attack, i.e., con-
firming one’s membership in a database, could pose significant privacy risks. For example, if a
medical database is known to contain data from patients with specific conditions, this could disclose
members’ health status. We choose MI attack as our main example of the privacy risk as it has long
been recognized as a fundamental privacy challenge across various domains, and such attacks have
been extended well into the field of machine learning.

Remark 9. We stress that our goal here is the proof-of-concept, where we demonstrate that the data
value scores can indeed serve as another channel of privacy leakage, and can indeed lead to the
design of membership inference attacks. We do not claim any optimality of the attack we construct
here. Designing the best membership inference attack on data value scores can be the topic of a
single paper on its own, and is an interesting future work.

Membership Inference Attack via KNN-Shapley Scores (Algorithm 1). Our membership infer-
ence attack technique leverages KNN-Shapley scores to detect the presence or absence of specific
data points in a dataset. The design is analogous to the membership inference attack against ML
models via the likelihood ratio test [8]. Threat model: The threat model we consider here is that the
attacker can compute the value of any data point among any datasets (analogue to the setting of MIA
against ML models where the attacker can train models on any datasets he/she constructs). Moreover,
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Algorithm 1 - Membership Inference Attack via KNN-Shapley Scores. We collect data value
scores of a copy of the target example on datasets with and without the target example, estimate mean
and variance of the loss distributions, and compute a likelihood ratio test.
Require: dataset D, query example z := (x, y), data distribution D.

1: KNNSVin = {}
2: KNNSVout = {}
3: for T times do
4: Dshadow ←$ D // Sample a shadow dataset
5: KNNSVin ← KNNSVin ∪ {ϕz(Dshadow ∪ z)} // collect IN data value
6: KNNSVin ← KNNSVin ∪ {ϕz(Dshadow} // collect OUT data value
7: end for
8: µin ← mean(KNNSVin)
9: µout ← mean(KNNSVout)

10: σ2
in ← var(KNNSVin)

11: σ2
out ← var(KNNSVout)

12: ϕobs ← ϕz(D) // query target data value

13: Return Λ =
p(ϕobs | N (µin, σ

2
in))

p(ϕobs | N (µout, σ2
out))

the attacker can craft the data point it owns, send it to the server and obtain the data value score of its
own data point.

The attack goes as follows: firstly, we create a shadow dataset Dshadow by randomly sampling from the
data distribution D. Dshadow serves as the function of D−z in the maintext. We repeat this sampling
process T times, where T is a predefined number of iterations. For each iteration, we calculate the
KNN-Shapley scores of a query example z = (x, y) both when it is included in the shadow dataset
(IN) and when it is excluded (OUT). We thus collect sets of IN and OUT scores for the query example.
Upon collecting all these scores, we calculate their respective mean and variance. Finally, we query
the server about KNN-Shapley score of the query example z on the actual dataset D−z , which we
refer to as the target data value (i.e., the server takes a copy the target data point as the data it holds,
and send to the central server). We perform a likelihood ratio test using the distributions of the IN and
OUT scores. This test involves comparing the probability of the observed target data value given the
Normal distribution of the IN scores with the probability of the same given the Normal distribution of
the OUT scores.

Intuition of the attack. The intuition of the attack is as follows: if the target data point is in the
dataset, then if the attacker makes a copy of the target data point and send it to the server, the server
effectively has two exactly the same data point, which will result in a lower value of each data point.
On the other hand, if the target data point is a non-member, then the data value queried by the attacker
will be higher.

Experiment Settings For each dataset we experiment on, we select 200 data points (members)
as the private dataset held by the central server. We pick another 200 data points which serve as
non-members. Moreover, we leverage another 400 data points where we can subsample “shadow
dataset” in Algorithm 1. We set the number of shadow datasets we sample as 32.

Results on KNN-Shapley and TKNN-Shapley. Table 1 in the main paper shows the AUROC score
of the attack results on KNN-Shapley. For completeness, we additionally conducted the experiment
of the proposed MIA against (non-private) TKNN-Shapley and the results are shown in Table 4. As
we can see, our MIA attack can achieve a detection performance that is better than the random guess
(0.5) for most of the settings. On some datasets, the attack performance can achieve > 0.7 AUROC.
This demonstrates that privacy leakage in data value scores can indeed lead to non-trivial privacy
attacks.

Results on DP-TKNN-Shapley. To directly demonstrate how DP-TKNN-Shapley can mitigate
the privacy risk, we additionally conducted the experiment of evaluating the proposed MI attack on
DP-TKNN-Shapley (see Table 5 and 6). Compared with the result on non-private TKNN-Shapley, we
can see that the overall attack performance drops to around 0.5 (the performance of random guess).
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The result shows that DP-TKNN-Shapley is indeed very effective against membership inference
attacks.

We stress again that the point of this experiment is not claiming that the membership inference attack
that we developed here is an optimal MI attack on data value scores; instead, this is a proof-of-concept
for the claim that data value scores can leak private information about other data points in the dataset,
and we instantiate a possible privacy attack that exploits this privacy risks. We believe it is interesting
future work to improve the attack performance as well as explore other possible threat models.

τ = −0.9 τ = −0.8 τ = −0.7 τ = −0.6 τ = −0.5 τ = −0.4 τ = −0.3 τ = −0.2 τ = −0.1
2DPlanes 0.549 0.799 0.738 0.688 0.53 0.665 0.6 0.558 0.628
Phoneme 0.777 0.679 0.736 0.673 0.704 0.692 0.588 0.522 0.5

CPU 0.75 0.672 0.638 0.635 0.512 0.518 0.58 0.545 0.508
Fraud 0.752 0.529 0.577 0.594 0.558 0.715 0.678 0.7 0.645

Creditcard 0.55 0.501 0.664 0.685 0.59 0.56 0.597 0.552 0.52
Apsfail 0.506 0.529 0.608 0.574 0.558 0.507 0.569 0.571 0.526
Click 0.718 0.56 0.545 0.6 0.568 0.735 0.535 0.56 0.52
Wind 0.528 0.65 0.7 0.585 0.585 0.58 0.568 0.562 0.632

Pol 0.772 0.62 0.748 0.715 0.6 0.592 0.59 0.532 0.672

Table 4: Results of the AUROC of our MI attack on TKNN-Shapley.

τ = −0.9 τ = −0.8 τ = −0.7 τ = −0.6 τ = −0.5 τ = −0.4 τ = −0.3 τ = −0.2 τ = −0.1
2DPlanes 0.51 0.474 0.488 0.518 0.494 0.51 0.479 0.466 0.478
Phoneme 0.502 0.505 0.512 0.506 0.5 0.484 0.552 0.538 0.482

CPU 0.468 0.489 0.486 0.51 0.523 0.524 0.468 0.466 0.527
Fraud 0.479 0.474 0.492 0.513 0.48 0.484 0.485 0.484 0.578

Creditcard 0.518 0.495 0.511 0.522 0.501 0.483 0.448 0.521 0.535
Apsfail 0.484 0.476 0.471 0.492 0.486 0.5 0.493 0.434 0.454
Click 0.492 0.491 0.49 0.484 0.488 0.482 0.544 0.452 0.434
Wind 0.52 0.496 0.514 0.492 0.53 0.488 0.504 0.522 0.43

Pol 0.491 0.503 0.51 0.496 0.492 0.488 0.458 0.523 0.487

Table 5: Results of the AUROC of our MIA attack on DP-TKNN-Shapley (ε = 0.5).

τ = −0.9 τ = −0.8 τ = −0.7 τ = −0.6 τ = −0.5 τ = −0.4 τ = −0.3 τ = −0.2 τ = −0.1
2DPlanes 0.5 0.523 0.513 0.534 0.518 0.492 0.484 0.445 0.556
Phoneme 0.507 0.529 0.524 0.472 0.476 0.488 0.543 0.512 0.47

CPU 0.492 0.487 0.504 0.485 0.473 0.489 0.453 0.49 0.508
Fraud 0.508 0.501 0.502 0.506 0.497 0.501 0.496 0.436 0.53

Creditcard 0.482 0.494 0.522 0.505 0.505 0.495 0.494 0.498 0.429
Apsfail 0.472 0.498 0.499 0.486 0.488 0.48 0.521 0.545 0.441
Click 0.502 0.529 0.501 0.508 0.518 0.496 0.545 0.47 0.456
Wind 0.533 0.539 0.478 0.504 0.493 0.498 0.529 0.499 0.419

Pol 0.498 0.513 0.509 0.51 0.482 0.492 0.489 0.52 0.528

Table 6: Results of the AUROC of our MIA attack on DP-TKNN-Shapley (ε = 1.0).

B.3 Challenges in making KNN-Shapley being differentially private

In this section, we give more details of the inherent difficulties in making the KNN-Shapley
ϕKNN
zi (D−zi) (i.e., Theorem 7) to be differentially private.

B.3.1 Large global sensitivity

We find it very challenging to tightly bound the global sensitivity of ϕKNN
zi (D−zi). Moreover, we show

that the global sensitivity of ϕKNN
zi (D−zi) can significantly exceed the magnitude of ϕKNN

zi by showing
a lower bound. Specifically, we prove that the global sensitivity bound is at least around O(1) by
constructing a specific pair of neighboring datasets.

Theorem 9 (Lower Bound for the global sensitivity of ϕKNN
z (D−z)). For a data point z = (x, y) and

validation data point z(val) = (x(val), y(val)), denote the global sensitivity of ϕKNN
z (D−z; z

(val)) as
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∆(ϕKNN
z ; z(val)) := supD−z∼D′

−z

∣∣ϕKNN
z (D−z; z

(val))− ϕKNN
z (D′

−z; z
(val))

∣∣. We have

∆(ϕKNN
z ) ≥ 1

2

(
1[y = y(val)]− 1/C

)
where C is the number of classes for the corresponding classification task.

Proof. The proof idea is to construct two neighboring datasets: D = {z2}, D′ = {z1, z2}where z1 =
(x1, y1), z2 = (x2, y2) are two data points and we let y1 = y(val). Moreover, we let d(z1, z(val)) ≤
d(z2, z

(val)). From KNN-Shapley’s formula in Theorem 7, we have

ϕKNN
z2 (D) = 1[y2 = y(val)]− 1/C

and if K ≥ 2, we have

ϕKNN
z2 (D′) =

1

4

(
1[y2 = y(val)]− 1[y1 = y(val)]

)
+

1

2

(
1[y2 = y(val)]− 1/C

)
, and if K = 1, we have

ϕKNN
z2 (D′) =

1

2

(
1[y2 = y(val)]− 1/C

)
Since 1[y1 = y(val)] = 1 (our condition), we have∣∣ϕKNN

z2 (D)− ϕKNN
z2 (D′)

∣∣ ≥ 1

2

(
1[y2 = y(val)]− 1/C

)

The above theorem tells us that the global sensitivity for KNN-Shapley is at the order of O(1). On
the other hand, we can see from the formula of KNN-Shapley in Theorem 7 that the magnitude ϕKNN

z
for many of the data points z is at the order of O(1/N). Hence, if we apply the Gaussian mechanism
and add random noise proportional to the global sensitivity bound, the resulting privatized data value
score could substantially deviate from its non-private counterpart, thereby compromising the utility
of the privatized data value scores.

Tight Global Sensitivity for the older version of KNN-Shapley from [29]. As we said earlier, it
is hard to bound the global sensitivity for ϕKNN

z . Moreover, even if we are able to bound the global
sensitivity, the bound will highly likely be large compared with the magnitude of ϕKNN

z , as we can see
from Theorem 9.

In order to find a reasonable baseline for comparing with DP-TKNN-Shapley, we consider the older
version of the KNN-Shapley developed in [29], where we show that its global sensitivity can be
tightly bounded (but still large).
Theorem 10 (Global sensitivity of ϕKNN-OLD

z (D−z) from [29]). For a data point z = (x, y) and
validation data point z(val) = (x(val), y(val)), denote the global sensitivity of ϕKNN-OLD

z (D−z; z
(val))

as ∆(ϕKNN-OLD
z ; z(val)) := supD−z∼D′

−z

∣∣ϕKNN-OLD
z (D−z; z

(val))− ϕKNN-OLD
z (D′

−z; z
(val))

∣∣. We have

∆(ϕKNN-OLD
z ; z(val)) ≤ 1

K(K + 1)

Proof. For any dataset D = D−z ∪ {z}, we sort the data points according to the distance to x(val),
and we denote zj for the jth closest data point to z(val). WLOG, suppose zi := z. We first write out
the non-recursive expression for the older KNN-Shapley ϕKNN-OLD

zi :

ϕKNN-OLD
zi =

1[yN = yval]

max(K,N)
+

N−1∑
j=i

1[yj = yval]− 1[yj+1 = yval]

K

min(K, j)

j

If N ≤ K, then we have ϕKNN-OLD
zi = 1[yi=y(val)]

K for all i (i.e., no privacy leakage in this case).
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If N > K, there are two cases:

Case 1: i ≥ K, then we have

ϕKNN-OLD
zi =

1[yi = y(val)]

i
−

N∑
j=i+1

1

(j − 1)j
1[yj = y(val)]

Hence, if we add/remove a data point zj = (xj , yj) s.t. d(xj , x
(val)) ≥ d(xi, x

(val)), we have∣∣ϕKNN-OLD
zi (D−zi)− ϕKNN-OLD

zi (D′
−zi)

∣∣ ≤ 1

(j − 1)j
≤ 1

K(K + 1)

If we add a data point zj = (xj , yj) s.t. d(xj , x
(val)) < d(xi, x

(val)), we have∣∣ϕKNN-OLD
zi (D−zi)− ϕKNN-OLD

zi (D′
−zi)

∣∣
=

∣∣∣∣∣∣
1[yi = y(val)]

i
−

N∑
j=i+1

1

(j − 1)j
1[yj = y(val)]

−
1[yi = y(val)]

i+ 1
−

N∑
j=i+2

1

(j − 1)j
1[yj = y(val)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
1

i
− 1

i+ 1

)
1[yi = y(val)]−

N∑
j=i+1

(
1

(j − 1)j
− 1

(j + 1)j

)
1[yj = y(val)]

∣∣∣∣∣∣
≤ 1

i(i+ 1)

≤ 1

K(K + 1)

When i ≥ K + 1, the sensitivity analysis for remove a data point zj = (xj , yj) s.t. d(xj , x
(val)) <

d(xi, x
(val)) is similar to the analysis above where we also have∣∣ϕKNN-OLD

zi (D−zi)− ϕKNN-OLD
zi (D′

−zi)
∣∣ ≤ 1

K(K + 1)

Case 2: i < K, then we have

ϕKNN-OLD
zi =

1[yi = y(val)]

K
−

N∑
j=K+1

1

(j − 1)j
1[yj = y(val)]

By a similar analysis, we can also show that∣∣ϕKNN-OLD
zi (D−zi)− ϕKNN-OLD

zi (D′
−zi)

∣∣ ≤ 1

K(K + 1)

The only remaining case that we haven’t discussed yet is when i = K, and we remove a data point
zj = (xj , yj) s.t. d(xj , x

(val)) < d(xi, x
(val)). In this case, we have∣∣ϕKNN-OLD

zi (D−zi)− ϕKNN-OLD
zi (D′

−zi)
∣∣

=

∣∣∣∣∣∣
1[yi = y(val)]

K
−

N∑
j=K+1

1

(j − 1)j
1[yj = y(val)]

−
1[yi = y(val)]

K
−

N∑
j=K+1

1

(j − 1)j
1[yj = y(val)]

∣∣∣∣∣∣
= 0 ≤ 1

K(K + 1)

We stress that the bound 1
K(K+1) is tight. For example, for the case where i = K, then if we add

another data point z∗ = (x∗, y∗) s.t.

d(xi, x
(val)) = d(xK , x(val)) ≤ d(x∗, x(val)) ≤ d(xK+1, x

(val))

the change of the value ϕKNN-OLD
zi will be 1

K(K+1) .
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B.3.2 Difficulty (computational challenge) in incorporating subsampling technique

“Privacy amplification by subsampling” [4] is a technique where the subsampling of a dataset
amplifies the privacy guarantees due to the reduced probability of an individual’s data being included.
Being able to incorporate such a technique is often important for achieving a decent privacy-utility
tradeoff. However, the recursive nature of KNN-Shapley computation makes it hard to incorporate
the subsampling techniques.

Specifically, recall that in practical data valuation scenarios, it is often desirable to compute the
data value scores for all of zi ∈ D. To apply the subsampling technique, we first need to create
a subsampled dataset and compute the KNN-Shapley for the target data point zi, i.e., we need to
compute ϕKNN

z (sample(D−z)). The subsampled dataset is usually constructed by sampling each data
point independently with a probability q (this is usually referred to as Poisson subsampling [4]). If
we view q as a constant, then the computation of ϕKNN

z (sample(D−z)) requires a runtime of Õ(N)

for the computation of each ϕKNN
zi . This results in a final runtime of Õ(N2) for the computation of

all (ϕKNN
zi )zi∈D, which is a significant increase in computational demand compared to the non-private

KNN-Shapley. The recursive nature of KNN-Shapley computation significantly complicates the
attempt of improving the computational efficiency. That is, it is not clear how to reuse the subsampled
dataset to compute the KNN-Shapley score for those that are not sampled. Therefore, it seems that an
Õ(N2) runtime is necessary if we want to incorporate the subsampling technique.

B.4 Baseline for experiments in Section 6.2.1

DP-KNN-Shapley. Given such an upper bound for the global sensitivity of ϕKNN-OLD
z , we can

use Gaussian mechanism (Theorem 4) to privatize ϕKNN-OLD
z , i.e., we compute ϕ̂KNN-OLD

z (D−z) :=

ϕKNN-OLD
z (D−z)+N

(
0, 1

K(K+1)

)
. We note that such a bound is still not satisfactory as the magnitude

ϕKNN-OLD
z for many of the data points z is at the order of O(1/N). Nevertheless, this is a reasonable

baseline (if it is not the only one) that we can use for comparison in DP-related experiments.

DP-KNN-Shapley with subsampling. Despite the high computational cost associated with the
incorporation of the subsampling technique, we still compare our approach with this computa-
tionally intensive baseline for completeness. More specifically, we compute ϕ̂KNN-OLD

z (D−z) :=

ϕKNN-OLD
z (sample(D−z)) +N

(
0,
(

1
K(K+1)

)2
)

.
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C Details for TKNN-Shapley

C.1 Consistency Result for TKNN

For a data point x and a threshold τ , we denote
Sx,τ := {x′|d(x, x′) ≤ τ}

the ball of radius τ centered at x. Recall that the prediction rule of TKNN when given a training set
D is

mD(x; τ) :=

{
0 |NBx,τ (D)| = 0

1
|NBx,τ (D)|

∑
x′∈NBx,τ (D) m(x′) |NBx,τ (D)| > 0

Theorem 11. Suppose m is the target function that is Lipschitz on supp(µ) where µ is the probability
measure of data distribution. As n→∞, if τn → 0 and nµ(Sx,τ )→∞ for all x ∈ supp(µ), then

lim
n→∞

Ex∼µ,Dn∼µn

[
(mDn

(x)−m(x))2
]
= 0

Proof.
Ex,Dn

[(mDn
(x)−m(x))2]

= Ex,Dn
[(mDn

(x)−m(x))2||NBx,τn(Dn)| > 0] Pr
x,Dn

[|NBx,τn(Dn)| > 0]

+ Ex,Dn
[(0−m(x))2||NBx,τn(Dn)| = 0] Pr

x,Dn

[|NBx,τn(Dn)| = 0]

lim
n→∞

Pr
x,Dn

[|NBx,τn(Dn)| = 0] = lim
n→∞

Ex

[
Pr
Dn

[|NBx,τn(Dn)| = 0]

]
= lim

n→∞
Ex [(1− µ(Sx,τn))

n
]

≤ lim
n→∞

Ex

[
1

1 + nµ(Sx,τn)

]
= 0

Suppose m has Lipschitz constant L, i.e., for any pair of data points x, x′ ∈ supp(µ), we have
|m(x)−m(x′)| ≤ L ∥x− x′∥

Ex,Dn

[
(mDn

(x)−m(x))2||NBx,τn(Dn)| > 0
]

= Ex,Dn


 1

|NBx,τn(Dn)|
∑

x′∈NBx,τn (Dn)

(m(x′)−m(x))

2

||NBx,τn(Dn)| > 0


≤ Ex,Dn

 1

|NBx,τn(Dn)|
∑

x′∈NBx,τn (Dn)

(m(x′)−m(x))2||NBx,τn(Dn)| > 0


≤ Ex,Dn

 1

|NBx,τn(Dn)|
∑

x′∈NBx,τn (Dn)

(m(x′)−m(x))2||NBx,τn(Dn)| > 0


≤ Ex,Dn

 1

|NBx,τn(Dn)|
∑

x′∈NBx,τn (Dn)

L2 ∥x− x′∥2 ||NBx,τn(Dn)| > 0


≤ Ex,Dn

 1

|NBx,τn(Dn)|
∑

x′∈NBx,τn (Dn)

L2τ2n||NBx,τn(Dn)| > 0


= L2τ2n

which→ 0 as n→∞.
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C.2 Proofs for TKNN-Shapley

Given a dataset S and a test data point (x(val), y(val)), let NBx(val),τ (S) := {(x, y)|(x, y) ∈
S, d(x, x(val)) ≤ τ} the nearest neighbor of x(val) that is within a pre-specified threshold τ . Recall
that in this case, the utility function of soft-label TKNN classifier becomes

v(S; (x(val), y(val))) :=

{
1/C |NBx(val),τ (S)| = 0

1
|NB

x(val),τ
(S)|

∑
(x,y)∈NB

x(val),τ
(S) 1[y = y(val)] |NBx(val),τ (S)| > 0

where C is the number of classes for the classification task, and 1/C is the random guess accuracy.

Semivalue. The class of data values that satisfy all the Shapley axioms except efficiency is called
semivalues. It was originally studied in the field of economics and recently proposed to tackle the
data valuation problem [39]. Unlike the Shapley value, semivalues are not unique. The following
theorem by the seminal work of [13] shows that every semivalue of a player z (in our case the player
is a data point) can be expressed as the weighted average of marginal contributions v(S∪{z})−v(S)
across different subsets S ⊆ N \ {z}.

Theorem 12 (Representation of Semivalue [13]). A value function ϕsemi is a semivalue, if and only if,
there exists a weight function w : [N ]→ R such that

∑N
k=1

(
N−1
k−1

)
w(k) = N and the value function

ϕ can be expressed as follows:

ϕzi (D−zi ; v, w) :=
1

N

N∑
k=1

w(k)
∑

S⊆D−zi
,

|S|=k−1

[v(S ∪ {z})− v(S)] (6)

Semivalues subsume both the Shapley value and the Banzhaf value with wshap(k) =
(
N−1
k−1

)−1
and

wbanz(k) =
N

2N−1 , respectively. In the following, we first discuss the general semivalue for soft-label
TKNN classifier with a weight function w. We then plug in the specific weight function for the
Shapley value.

Our goal is to derive ϕzi (D−zi ; v, w), the semivalue of zi = (xi, yi) with a weight function w when
using soft-label TKNN classifier, i.e.,

ϕzi (D−zi ; v, w) :=
1

N

N∑
k=1

w(k)
∑

S⊆D−zi
,

|S|=k−1

[v(S ∪ {zi})− v(S)]

Consider a validation data point (x(val), y(val)), and recall that v(S) := v(S; (x(val), y(val))). Denote

cx(val),τ = cx(val),τ (D−zi) := 1 +
∣∣NBx(val),τ (D−zi)

∣∣ (1 + # neighbors of x(val) in D−zi)

c
(+)

z(val),τ
= c

(+)

z(val),τ
(D−zi) :=

∑
(x,y)∈NB

x(val),τ
(D−zi

)

1[y = y(val)] (# same-label neighbors in D−zi)

Case 1: if
∥∥xi − x(val)

∥∥ > τ , we have v(S ∪ zi)− v(S) = 0 for any S, hence ϕzi (D−zi ; v, w) = 0.

Case 2: if
∥∥xi − x(val)

∥∥ ≤ τ , we have the following:

v(S ∪ zi)− v(S) = 1[yi=y(val)]
1+|NB

x(val),τ
(S)| +

(
1

1+|NB
x(val),τ

(S)| −
1

|NB
x(val),τ

(S)|

)∑
(x,y)∈NB

x(val),τ
(S) 1[y = yval]

∣∣NBx(val),τ (S)
∣∣ > 0

1[yi = y(val)]− 1/C
∣∣NBx(val),τ (S)

∣∣ = 0
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This means that the marginal contribution on S only depends on the subset NBx(val),τ (S) ⊆ S.
Plugging in the above equation for v(S ∪ zi)− v(S), we have

ϕzi (D−zi ; v, w)

=
1

N

N−1∑
k=0

w(k + 1)
∑

S⊆D−zi
,

|S|=k

[v(S ∪ {zi})− v(S)]

=
1

N

N−1∑
k=0

w(k + 1)
∑

S0⊆NB
x(val),τ

(D−zi
),

|S0|≤k

(
N − cx(val),τ

k − |S0|

)
[v(S0 ∪ {zi})− v(S0)]

=
1

N

N−1∑
k=0

w(k + 1)

k∑
j=0

∑
S0⊆NB

x(val),τ
(D−zi

),

|S0|=j

(
N − cx(val),τ

k − j

)
[v(S0 ∪ {zi})− v(S0)]

=
1

N

N−1∑
k=0

w(k + 1)


k∑

j=1

∑
S0⊆NB

x(val),τ
(D−zi

),

|S0|=j

(
N − cx(val),τ

k − j

)1[yi = y(val)]

1 + j
+

(
1

1 + j
− 1

j

) ∑
(x,y)∈S0

1[y = y(val)]


︸ ︷︷ ︸

(∗)

+

(
N − cx(val),τ

k

)[
1[yi = y(val)]− 1/C

]}

and

(∗) =
k∑

j=1

(
N − cx(val),τ

k − j

)
(
cx(val),τ − 1

j

)
1[yi = y(val)]

1 + j
+

(
1

1 + j
− 1

j

) ∑
S0⊆NB

x(val),τ
(D−zi

)

|S0|=j

∑
(x,y)∈S0

1[y = y(val)]



∑
S0⊆NB

x(val),τ
(D−zi

)

|S0|=j

∑
(x,y)∈S0

1[y = y(val)] =

j∑
ℓ=0

ℓ

(
c
(+)

z(val),τ

ℓ

)(
cx(val),τ − 1− c

(+)

z(val),τ

j − ℓ

)

= c
(+)

z(val),τ

j∑
ℓ=1

(
c
(+)

z(val),τ
− 1

ℓ− 1

)(
cx(val),τ − 1− c

(+)

z(val),τ

j − ℓ

)
= c

(+)

z(val),τ

(
cx(val),τ − 2

j − 1

)
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Hence

(∗)

=

k∑
j=1

(
N − cx(val),τ

k − j

)[(
cx(val),τ − 1

j

)
1[yi = y(val)]

1 + j
+ c

(+)

z(val),τ

(
1

1 + j
− 1

j

)(
cx(val),τ − 2

j − 1

)]

= 1[cx(val),τ ≥ 2]1[yi = y(val)]

k∑
j=1

(
N − cx(val),τ

k − j

)(
cx(val),τ − 1

j

)
1

1 + j

− c
(+)

z(val),τ

k∑
j=1

(
N − cx(val),τ

k − j

)(
cx(val),τ − 2

j − 1

)
1

j(j + 1)

= 1[cx(val),τ ≥ 2]1[yi = y(val)]

k∑
j=1

(
N − cx(val),τ

k − j

)(
cx(val),τ

j + 1

)
1

cx(val),τ

− c
(+)

z(val),τ

k∑
j=1

(
N − cx(val),τ

k − j

)(
cx(val),τ

j + 1

)
1[cx(val),τ ≥ 2]

cx(val),τ (cx(val),τ − 1)

= 1[cx(val),τ ≥ 2]

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

 k∑
j=1

(
N − cx(val),τ

k − j

)(
cx(val),τ

j + 1

)

= 1[cx(val),τ ≥ 2]

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

[(
N

k + 1

)
−

(
N − cx(val),τ

k + 1

)
− cx(val),τ

(
N − cx(val),τ

k

)]
︸ ︷︷ ︸

B(k)

Hence,

ϕzi (D−zi ; v, w) =
1

N

N−1∑
k=0

w(k + 1)

1[cx(val),τ ≥ 2]

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

B(k)

+

(
N − cx(val),τ

k

)[
1[yi = y(val)]− 1/C

]}

=
1[cx(val),τ ≥ 2]

N

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

N−1∑
k=0

w(k + 1)B(k)

+
1

N

[
1[yi = y(val)]− 1/C

]N−1∑
k=0

w(k + 1)

(
N − cx(val),τ

k

)

C.2.1 The Shapley value for TKNN (TKNN-Shapley)

Theorem 13 (Full version of TKNN-Shapley). Consider the utility function vTKNN
z(val) in (3). Given a

validation data point z(val) = (x(val), y(val)), the Shapley value ϕTKNN
zi (vTKNN

z(val)) of each training point
zi = (xi, yi) ∈ D can be calculated as follows:

ϕTKNN
zi =

1[cx(val),τ ≥ 2]A1A2 +
1[yi=y(val)]−1/C

c
x(val),τ

d(xi, x
(val)) ≤ τ

0 d(xi, x
(val)) > τ

(7)

where A1 = 1[yi=y(val)]
c
x(val),τ

−
c
(+)

z(val),τ

c
x(val),τ

(c
x(val),τ

−1) , A2 =
∑c

k=0

[
1

k+1 −
1

k+1 ·
( c−k
c
x(val),τ

)

( c+1
c
x(val),τ

)

]
− 1,
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and

c = c(D−zi) := |D−zi | (size of D−zi)

cx(val),τ = cx(val),τ (D−zi) := 1 +
∣∣NBx(val),τ (D−zi)

∣∣ (1 + # neighbors of x(val) in D−zi)

c
(+)

z(val),τ
= c

(+)

z(val),τ
(D−zi) :=

∑
(x,y)∈NB

x(val),τ
(D−zi

)

1[y = y(val)] (# same-label neighbors in D−zi)

and C is the number of classes for the classification task, and 1/C is the random guess accuracy.

Runtime: the computation of all (ϕTKNN
z1 , . . . , ϕTKNN

zN ) can be achieved in O(N) runtime in total.

The Shapley value when using full validation set: The Shapley value corresponding to the utility
function vTKNN

D(val) can be calculated as ϕTKNN
zi

(
vTKNN
D(val)

)
=

∑
z(val)∈D(val) ϕTKNN

zi

(
vTKNN
z(val)

)
.

Proof. For the Shapley value, we have w(k) =
(
N−1
k−1

)−1
.

N−1∑
k=0

w(k + 1) ·
(

N

k + 1

)
=

N−1∑
k=0

(
N − 1

k

)−1

·
(

N

k + 1

)

=

N−1∑
k=0

N

k + 1

N−1∑
k=0

w(k + 1) ·
(
N − cx(val),τ

k + 1

)
=

N−1∑
k=0

(
N − 1

k

)−1

·
(
N − cx(val),τ

k + 1

)

=

N−1∑
k=0

k!(N − 1− k)!

(N − 1)!

(N − cx(val),τ )!

(k + 1)!(N − cx(val),τ − k − 1)!

=
(N − cx(val),τ )!

(N − 1)!

N−1∑
k=0

1

k + 1

(N − 1− k)!

(N − cx(val),τ − k − 1)!

=
(N − cx(val),τ )!cx(val),τ !

(N − 1)!

N−1∑
k=0

1

k + 1

(
N − 1− k

cx(val),τ

)

= N

(
N

cx(val),τ

)−1 N−1∑
k=0

1

k + 1

(
N − 1− k

cx(val),τ

)

N−1∑
k=0

w(k + 1) ·
(
N − cx(val),τ

k

)
=

N−1∑
k=0

(
N − 1

k

)−1

·
(
N − cx(val),τ

k

)

=
(N − cx(val),τ )!

(N − 1)!

N−1∑
k=0

(N − 1− k)!

(N − cx(val),τ − k)!

=

(
N − 1

cx(val),τ − 1

)−1 N−1∑
k=0

(
N − 1− k

cx(val),τ − 1

)

=

(
N − 1

cx(val),τ − 1

)−1(
N

cx(val),τ

)
=

N

cx(val),τ

30



ϕzi(D−zi)

=
1[cx(val),τ ≥ 2]

N

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

N−1∑
k=0

(
N − 1

k

)−1

B(k)

+
1

N

[
1[yi = y(val)]− 1/C

]N−1∑
k=0

(
N − 1

k

)−1(
N − cx(val),τ

k

)

= 1[cx(val),τ ≥ 2]

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

N−1∑
k=0

 1

k + 1
− 1

k + 1

(
N−1−k
c
x(val),τ

)
(

N
c
x(val),τ

)
− 1


+
[
1[yi = y(val)]− 1/C

] 1

cx(val),τ

= 1[cx(val),τ ≥ 2]

1[yi = y(val)]

cx(val),τ

−
c
(+)

z(val),τ

cx(val),τ (cx(val),τ − 1)

 c∑
k=0

 1

k + 1
− 1

k + 1

(
c−k

c
x(val),τ

)
(

c+1
c
x(val),τ

)
− 1


+
[
1[yi = y(val)]− 1/C

] 1

cx(val),τ

C.2.2 Efficient Computation of TKNN-Shapley

As we can see, all of the quantities that are needed to compute TKNN-Shapley value
(c, cx(val),τ , c

(+)

z(val),τ
) are simply counting queries on D−zi , and hence Cz(val)(D−zi) can be com-

puted in O(N) runtime for any zi ∈ D. Since our goal is to release ϕTKNN
zi for all zi ∈ D, we need

to compute Cz(val)(D−zi) for all zi ∈ D. A more efficient way for this case is to first compute
Cz(val)(D) on the full dataset D, and then we can compute each of Cz(val)(D−zi) by

c(D−zi) = c(D)− 1

cx(val),τ (D−zi) = cx(val),τ (D)− 1[zi ∈ NBx(val),τ ]

c
(+)

z(val),τ
(D−zi) = c

(+)

z(val),τ
(D)− 1[zi ∈ NBx(val),τ ]1[yi = y(val)]

which can be computed in O(1) runtime. Hence, we can compute TKNN-Shapley ϕTKNN
zi (vTKNN

z(val)) for
all zi ∈ D within an overall computational cost of O(N).
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D Extra Details for DP-TKNN-Shapley

D.1 Privacy Guarantee for DP-TKNN-Shapley

Theorem 14 (Restatement of Theorem 6). For any z(val) ∈ D(val), releasing ϕ̂TKNN
zi (vTKNN

z(val)) :=

ϕTKNN
zi

[
Ĉz(val)(D−zi)

]
to data owner i is (ε, δ)-DP with σ =

√
3 ·

√
log(1.25/δ)/ε.

Proof. The Gaussian mechanism is known to satisfy (ε, δ)-DP with σ = ∆ ·
√
2 log(1.25/δ)/ε [16],

where ∆ := supD∼D′ ∥f(D)− f(D′)∥ represents the global sensitivity of the underlying function
f in ℓ2 norm. In our case, f calculates the 3-dimensional vector

[
c, cx(val),τ , c

(+)

z(val),τ

]
. As each

training data point may alter both cx(val),τ and c
(+)

z(val),τ
by 1, the sensitivity ∆ is

√
3. Since both

ĉx(val),τ and ĉ
(+)

z(val),τ
are privatized using the Gaussian mechanism, the privacy guarantee of ϕ̂zi is

ensured by the post-processing property of differential privacy.

D.2 Advantages of DP-TKNN-Shapley

D.2.1 Computational Efficiency via Reusing Privatized Statistics

Recall that in practical data valuation scenarios, it is often desirable to compute the data value scores
for all of zi ∈ D. As we detailed in Section 4.2 and Appendix C.2.2, for TKNN-Shapley, such a
computation only requires O(N) runtime in total if we first compute Cz(val)(D) and subsequently
Cz(val)(D−zi) for each zi ∈ D. In a similar vein, we can efficiently compute the DP variant ϕ̂TKNN

zi

for all zi ∈ D. To do so, we first calculate Ĉz(val)(D) and then, for each zi ∈ D, we compute
Ĉz(val)(D−zi) as follows:

ĉ(D−zi) = ĉ(D)− 1

ĉx(val),τ (D−zi) = ĉx(val),τ (D)− 1[zi ∈ NBx(val),τ ]

ĉ
(+)

z(val),τ
(D−zi) = ĉ

(+)

z(val),τ
(D)− 1[zi ∈ NBx(val),τ ]1[yi = y(val)]

which can be computed in O(1) runtime. Hence, we can compute DP-TKNN-Shapley ϕ̂TKNN
zi (vTKNN

z(val))
for all zi ∈ D within an overall computational cost of O(N). It is important to note that when
releasing ϕ̂TKNN

zi to individual i, the data point they hold, zi, is not private to the individual themselves.
Therefore, as long as Ĉz(val)(D) is privatized, Ĉz(val)(D−zi) and hence ϕ̂TKNN

zi also satisfy the same
privacy guarantee due to DP’s post-processing property.

D.2.2 Collusion Resistance via Reusing Privatized Statistics

In Section 5.1, we consider the single Shapley value ϕTKNN
zi (D−zi) as the function to privatize. How-

ever, when we consider the release of all Shapley valuesM(D) := (ϕ̂TKNN
z1 (D−z1), . . . , ϕ̂

TKNN
zN (D−zN ))

as a whole mechanism, one can show that such a mechanism satisfies joint differential privacy (JDP)
[34] if we reuse the privatized statistic Ĉz(val)(D) for the release of all ϕ̂TKNN

zi . The consequence
of satisfying JDP is that our mechanism is resilient against collusion among groups of individuals
without any privacy degradation. That is, even if an arbitrary group of individuals in [N ] \ i colludes
(i.e., shares their respective ϕ̂TKNN

zj values within the group), the privacy of individual i remains
uncompromised. Our method also stands resilient in scenarios where a powerful adversary sends
multiple data points and receives multiple value scores.

Definition 15 (Joint Differential Privacy [34]). For ε, δ ≥ 0, a randomized algorithmM : NX → YN

is (ε, δ)-joint differentially private if for every possible pair of z, z′ ∈ X , for every i ∈ [N ], and for
every subset of possible outputs E ⊆ YN−1, we have

Pr
M

[M(z ∪D−z)−i ∈ E] ≤ eε Pr
M

[M(z′ ∪D−z)−i ∈ E] + δ

whereM−i denotes the output ofM that excludes the ith dimension.

32



Theorem 16. The mechanism of releasing of all noisy KNN-Shapley values

M(D) := (ϕ̂TKNN
z1 (D−z1), . . . , ϕ̂

TKNN
zN (D−zN ))

satisfy (ε, δ)-JDP if σ =
√
3 ·

√
log(1.25/δ)/ε and each ϕTKNN

zi is computed via reusing the privatized
Cz(val) .

Proof. The proof relies on the “post-processing” property of differential privacy.

First of all, we select σ =
√
3 ·

√
log(1.25/δ)/ε, ensuring that Ĉz(val)(D) satisfies (ε, δ)-DP.

In the context of DP-TKNN-shapley, we calculate Ĉz(val)(D−zi) for each zi as part of a post-
processing step on Ĉz(val)(D).

It is important to note that the released data value ϕ̂TKNN
zi (D−zi) is a function of Ĉz(val)(D−zi), and

Ĉz(val)(D−zi) can be obtained as post-processing of Ĉz(val)(D) given only the knowledge of zi.
Hence, we can express the probability ofM(zi, D−zi)−i belonging to a certain set E as follows:

Pr
M

[M(zi, D−zi)−i ∈ E] = Pr
Ĉ

z(val)
(D)

[fD−zi
(Ĉz(val)(D)) ∈ E]

where
fD−zi

(Ĉz(val)(D))

=
(
ϕ̂TKNN
z1 [Ĉz(val)(D−z1)], . . . , ϕ

TKNN
zi−1

[Ĉz(val)(D−zi−1)], ϕ
TKNN
zi+1

[Ĉz(val)(D−zi+1)], . . . , ϕ
TKNN
zN [Ĉz(val)(D−zN )]

)
We note that fD−zi

is a function that does not depend on zi.

Then, for any zi, z
′
i and for any tuple of D−zi , denote D := zi ∪D−zi and D′ := z′i ∪D−zi , we

have
Pr
M

[M(zi, D−zi)−i ∈ E] = Pr
Ĉ

z(val)
(D)

[fD−zi
(Ĉz(val)(D)) ∈ E]

= Pr
Ĉ

z(val)
(D)

[Ĉz(val)(D) ∈ f−1
D−zi

(E)]

≤ eε Pr
Ĉ

z(val)
(D′)

[Ĉz(val)(D′) ∈ f−1
D−zi

(E)] + δ

= eε Pr
Ĉ

z(val)
(D′)

[fD−zi
(Ĉz(val)(D′)) ∈ E] + δ

= eε Pr
M

[M(z′i, D−zi) ∈ E] + δ

where the first inequality is due to the (ε, δ)-DP guarantee of Ĉz(val)(D).

Hence, the privacy guarantee for our DP-TKNN-Shapley remains the same even if multiple attackers
collude and share the received noisy data value scores with each other. As a comparison, the naive
DP-KNN-Shapley which independently adds noise for each released data value score does not enjoy
such powerful collusion resistance property.

D.2.3 Privacy Amplification by Subsampling

In order to further boost the privacy guarantee, we incorporate the privacy amplification by sub-
sampling technique [4]. Specifically, before any computation, we first sample each data point
independently with a probability q (this is usually referred to as Poisson subsampling). The differ-
entially private quantities based on the subsampled dataset, denoted as sample(D), are calculated
easily as follows:

ĉ(D) := round
(
c(sample(D)) +N

(
0, σ2

))
ĉx(val),τ (D) := round

(
cx(val),τ (sample(D)) +N

(
0, σ2

))
ĉ
(+)

z(val),τ
(D) := round

(
c
(+)

z(val),τ
(sample(D)) +N

(
0, σ2

))
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The function round rounds a noisy value to the nearest integer. If the noisy value is out of range
(e.g., < 0), then it is rounded to the nearest possible value within the valid range. By subsampling the
data points, the privacy guarantee is amplified. This is because the subsampling process itself is a
randomized operation that provides a level of privacy, making it harder to infer information about
individual data points. When combined with the Gaussian mechanism, the overall privacy guarantee
is improved.

The subsampling technique can be incorporated easily for DP-TKNN-Shapley as above, where the
subsampling technique only improves the computational efficiency. As a comparison, incorporating
subsampling technique for DP-KNN-Shapley will introduce a significantly higher computational cost,
as we discussed in Appendix B.3.2.

D.3 Differentially private release of ϕTKNN
zi (vTKNN

D(val)) (Privacy Accounting)

Recall that the TKNN-Shapley corresponding to the full validation set D(val) is ϕTKNN
zi

(
vTKNN
D(val)

)
=∑

z(val)∈D(val) ϕTKNN
zi (D−zi ; z

(val)). We can compute privatized ϕTKNN
zi

(
vTKNN
D(val)

)
by simply releasing

ϕTKNN
zi (D−zi ; z

(val)) for all z(val) ∈ D(val)3. To better keep track of the overall privacy cost, we use
the current state-of-the-art privacy accounting technique based on the notion of the Privacy Loss
Random Variable (PRV) [17]. Here, we provide more details about the background of the composition
of differential privacy and the privacy accounting techniques we use.

Background: Composition of Differential Privacy (“Privacy Accounting”). In practice, multiple
differentially private mechanisms may be applied to the same dataset, denoted asM(D) =M1 ◦
M2(D) := (M1(D),M2(D)).4 Differential privacy offers strong composition guarantees, and the
guarantees are derived by various composition theorems or privacy accounting techniques, including
the basic composition theorem [14], advanced composition theorem [18], and Moments Accountant
[1]. For example, the basic composition theorem states that ifM1 is (ε1, δ1)-DP andM2 is (ε2, δ2)-
DP, then the composition ofM1 andM2 is (ε1 + ε2, δ1 + δ2)-DP. In our scenario, each individual
mechanism is the release of ϕ̂TKNN

zi (D−zi ; z
(val)) for each of z(val) ∈ D(val), and we would like to

keep track of the privacy loss of releasing all of them.

Privacy Accounting Techniques based on Privacy Loss Random Variable (PRV). To better
keep track of the privacy cost, we use the current state-of-the-art privacy accounting based on the
notion of the Privacy Loss Random Variable (PRV) [17]. The PRV accountant was introduced in
[37] and later refined in [36, 25]. For any DP algorithm, one can easily compute its (ε, δ) privacy
guarantee based on the distribution of its PRV. The key property of PRVs is that, under (adaptive)
composition, they simply add up; the PRV Y of the compositionM =M1 ◦M2 ◦ · · · ◦Mk is given
by Y =

∑k
i=1 Yi, where Yi is the PRV ofMi. Therefore, one can then find the distribution of Y by

convolving the distributions of Y1, Y2, . . . , Yk. Prior works [36, 25] approximate the distribution of
PRVs by truncating and discretizing them, then using the Fast Fourier Transform (FFT) to efficiently
convolve the distributions. In our experiment, we use the FFT-based accountant from [25], the current
state-of-the-art privacy accounting technique.

3Directly privatizing ϕTKNN
zi

(
vTKNN
D(val)

)
is very difficult. Releasing more privatized statistics for the ease of

privacy analysis is common in DP, e.g., DP-SGD [1] releases all privatized gradients.
4Multiple DP mechanisms can be adaptively composed in the sense that the output of one mechanism can be

used as an input to another mechanism, i.e., M(D) = M1 ◦M2(D) := (M1(D),M2(D,M1(D))).
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E Additional Experiment Settings & Results

E.1 Datasets

A comprehensive list of datasets and sources is summarized in Table 7. Similar to the existing data
valuation literature [23, 39, 30, 60], we preprocess datasets for ease of training. For Fraud, Creditcard,
and all datasets from OpenML, we subsample the dataset to balance positive and negative labels.
For these datasets, if they have multi-class, we binarize the label by considering 1[y = 1]. For the
image dataset MNIST, CIFAR10, we apply a ResNet50 [27] that is pre-trained on the ImageNet
dataset as the feature extractor. This feature extractor produces a 1024-dimensional vector for each
image. We employ sentence embedding models [54] to extract features for the text classification
dataset AGNews and DBPedia, and the extracted features are 1024-dimensional vectors for each text
instance. We perform L2 normalization on the extracted features as part of the pre-processing step.

The size of each dataset we use is shown in Table 7. For some of the datasets, we use a subset of
the full set. We stress that we are using a much larger size of the dataset compared with prior data
valuation literature [30, 39, 60] (these works usually only pick a very small subset of the full dataset,
e.g., 2000 data points for binarized CIFAR10). The validation data size we use is 10% of the training
data size.

Dataset Number of classes Size of dataset Source
MNIST 10 50000 [41]

CIFAR10 10 50000 [38]
AGnews 4 10000 [65]
DBPedia 14 10000 [2]

Click 2 2000 https://www.openml.org/d/1218
Fraud 2 2000 [11]

Creditcard 2 2000 [71]
Apsfail 2 2000 https://www.openml.org/d/41138

Phoneme 2 2000 https://www.openml.org/d/1489
Wind 2 2000 https://www.openml.org/d/847
Pol 2 2000 https://www.openml.org/d/722

CPU 2 2000 https://www.openml.org/d/761
2DPlanes 2 2000 https://www.openml.org/d/727

Table 7: A summary of datasets used in Section 6’s experiments.

E.2 Settings & Additional Experiments for Runtime Experiments

For the runtime comparison experiment in Section 6.1, we follow similar experiment settings from
prior study [40] and use a synthetic binary classification dataset. To generate the synthetic dataset,
we sample data points from a d-dimensional standard Gaussian distribution. The labels are assigned
based on the sign of the sum of the two features.

We choose a range of training data sizes N , and compare the runtime of both TKNN/KNN-Shapley at
each N . We use 100 validation data points. For Figure 2 in the maintext, the data dimension d = 10.
Here, we show additional experiment results when d = 100. As we can see from Figure 5, again
TKNN-Shapley achieves better computational efficiency than KNN-Shapley across all training data
sizes, and is around 30% faster than KNN-Shapley for large N .

E.3 Settings & Additional Experiments for Distinguishing Data Quality Experiments

E.3.1 Details for Mislabel/Noisy Data Detection Experiment

In the experiment of mislabeled (or noisy) data detection, we randomly choose 10% of the data points
and flip their labels (or add strong noise to their features). For mislabel data detection, we flip 10% of
the labels by picking an alternative label from the rest of the classes uniformly at random. For noisy
data detection, we add zero-mean Gaussian noise to data features, where the standard deviation of the
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Figure 5: Runtime comparison of TKNN-Shapley and KNN-Shapley across various training data
sizes N when data dimension d = 100. The plot shows the average runtime based on 5 independent
runs. Experiments were conducted with an AMD 64-Core CPU Processor.

Gaussian noise added to each feature dimension is equal to the average absolute value of the feature
dimension across the full dataset.

E.3.2 Additional Experiment Results for Private Setting

Table 8 provides a comprehensive comparison of DP-TKNN-Shapley and DP-KNN-Shapley. We
conducted the experiments on DP-KNN-Shapley with subsampling on only half of the datasets due to
the considerable computational cost (at least 30× longer to execute compared to its non-subsampled
counterpart). Additionally, because DP-KNN-Shapley injects Gaussian noise independently into the
value score of each data holder, it does not have the property of being robust against collusion.

As evidenced by the results, DP-TKNN-Shapley consistently demonstrates a markedly superior
privacy-utility tradeoff compared to DP-KNN-Shapley without subsampling across all datasets. Even
when comparing with DP-KNN-Shapley with subsampling, DP-TKNN-Shapley still shows superior
performance, and often significantly outshining this time-intensive and collusion-susceptible baseline.
Notably, DP-TKNN-Shapley manages to maintain high AUROC values even when ε ≈ 0.1. The low
performance of DP-KNN-Shapley can be attributed to its relatively high global sensitivity, as we
discussed in Appendix B.3.1.

E.3.3 Additional Experiment Results for Non-private Setting

Here, we show full experimental results for various data valuation techniques in mislabel/noisy data
detection scenarios, summarized in Tables 9 and 10. In line with the main text findings, TKNN-
Shapley exhibits performance largely on par with KNN-Shapley across the majority of datasets,
demonstrating that TKNN-Shapley effectively mirrors KNN-Shapley’s ability to discern data quality.
In addition, both KNN-Shapley and TKNN-Shapley significantly outperform traditional retrain-based
data valuation techniques (LOO, Data Shapley, and Data Banzhaf), corroborating observations made
in existing studies [31, 52]. The inferior performance of Data Shapley can be attributed to sample
inefficiency and the inherent randomness during the retraining process [60].

Settings for LOO, Data Shapley and Data Banzhaf. Following the experiment settings in [23, 39]
we use logistic regression as the ML model for these techniques. For Data Shapley, we use permutation
sampling [48] for estimation. For Data Banzhaf, we use the maximum-sample-reuse (MSR) algorithm
[60] for estimation. For each dataset, we train models on 10,000 subsets (which takes more than
1000× longer time compared with both TKNN/KNN-Shapley).

E.3.4 Ablation Study on the Choice of Threshold for TKNN-Shapley

KNN-Shapley is known for being effective on a wide range of choices of K [29]. In this experiment,
we study the impact of different choices of τ on the performance of TKNN-Shapley on the tasks
of mislabeled/noisy data detection. The results are shown in Table 11 and 12. As we can see, the
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Mislabeled Data Detection Noisy Data Detection

Dataset ε DP-TKNN-Shapley DP-KNN-Shapley
(no subsampling)

DP-KNN-Shapley
(with subsampling) DP-TKNN-Shapley DP-KNN-Shapley

(no subsampling)
DP-KNN-Shapley

(with subsampling)

2dplanes
0.1 0.883 (0.017) 0.49 (0.024) 0.733 (0.011) 0.692 (0.014) 0.494 (0.023) 0.615 (0.01)
0.5 0.912 (0.009) 0.488 (0.022) 0.815 (0.006) 0.706 (0.004) 0.494 (0.012) 0.66 (0.004)
1 0.913 (0.009) 0.504 (0.019) 0.821 (0.005) 0.705 (0.007) 0.495 (0.011) 0.665 (0.004)

phoneme
0.1 0.816 (0.011) 0.5 (0.014) 0.692 (0.011) 0.648 (0.028) 0.475 (0.042) 0.566 (0.01)
0.5 0.826 (0.007) 0.497 (0.011) 0.738 (0.003) 0.683 (0.014) 0.536 (0.033) 0.588 (0.004)
1 0.826 (0.005) 0.486 (0.01) 0.741 (0.002) 0.685 (0.016) 0.494 (0.071) 0.59 (0.005)

CPU
0.1 0.932 (0.007) 0.49 (0.028) 0.881 (0.005) 0.805 (0.037) 0.42 (0.074) 0.709 (0.011)
0.5 0.946 (0.004) 0.507 (0.029) 0.928 (0.002) 0.838 (0.007) 0.472 (0.092) 0.746 (0.003)
1 0.948 (0.002) 0.512 (0.008) 0.931 (0.002) 0.839 (0.003) 0.455 (0.079) 0.748 (0.002)

Creditcard
0.1 0.661 (0.008) 0.511 (0.026) 0.584 (0.011) 0.558 (0.017) 0.479 (0.115) 0.519 (0.014)
0.5 0.663 (0.008) 0.503 (0.021) 0.624 (0.011) 0.571 (0.058) 0.513 (0.089) 0.541 (0.008)
1 0.668 (0.005) 0.491 (0.026) 0.627 (0.009) 0.585 (0.048) 0.525 (0.107) 0.545 (0.006)

Click
0.1 0.566 (0.017) 0.512 (0.013) 0.511 (0.024) 0.55 (0.012) 0.439 (0.094) 0.497 (0.017)
0.5 0.567 (0.013) 0.502 (0.018) 0.529 (0.012) 0.555 (0.01) 0.506 (0.071) 0.503 (0.018)
1 0.567 (0.007) 0.502 (0.021) 0.532 (0.01) 0.559 (0.009) 0.488 (0.076) 0.504 (0.017)

Wind
0.1 0.861 (0.021) 0.489 (0.022) 0.836 (0.01) 0.622 (0.167) 0.464 (0.282) 0.557 (0.017)
0.5 0.883 (0.002) 0.511 (0.021) 0.873 (0.004) 0.668 (0.055) 0.554 (0.282) 0.601 (0.007)
1 0.882 (0.002) 0.486 (0.022) 0.875 (0.004) 0.681 (0.032) 0.595 (0.257) 0.605 (0.008)

Fraud
0.1 0.947 (0.004) 0.497 (0.02) - 0.813 (0.033) 0.468 (0.127) -
0.5 0.952 (0.002) 0.502 (0.026) - 0.85 (0.017) 0.548 (0.192) -
1 0.953 (0.003) 0.502 (0.008) - 0.859 (0.007) 0.497 (0.162) -

Apsfail
0.1 0.903 (0.078) 0.501 (0.018) - 0.693 (0.2) 0.456 (0.357) -
0.5 0.952 (0.001) 0.521 (0.023) - 0.873 (0.014) 0.489 (0.139) -
1 0.952 (0.0) 0.49 (0.031) - 0.882 (0.003) 0.494 (0.179) -

Pol
0.1 0.844 (0.006) 0.508 (0.012) - 0.604 (0.082) 0.53 (0.212) -
0.5 0.858 (0.006) 0.5 (0.029) - 0.673 (0.039) 0.626 (0.153) -
1 0.857 (0.001) 0.516 (0.02) - 0.695 (0.02) 0.622 (0.195) -

MNIST
0.1 0.801 (0.002) 0.492 (0.007) - 0.841 (0.002) 0.384 (0.129) -
0.5 0.948 (0.002) 0495 (0.005) - 0.873 (0.001) 0.389 (0.125) -
1 0.958 (0.002) 0.495 (0.005) - 0.881 (0.002) 0.4 (0.002) -

CIFAR10
0.1 0.924 (0.002) 0.496 (0.014) - 0.821 (0.002) 0.558 (0.013) -
0.5 0.936 (0.002) 0.497 (0.012) - 0.847 (0.004) 0.560 (0.009) -
1 0.949 (0.003) 0.497 (0.012) - 0.852 (0.001) 0.560 (0.006) -

AGNews
0.1 0.725 (0.002) 0.491 (0.002) - 0.611 (0.003) 0.421 (0.065) -
0.5 0.733 (0.005) 0.492 (0.002) - 0.621 (0.001) 0.426 (0.075) -
1 0.738 (0.002) 0.494 (0.002) - 0.627 (0.001) 0.426 (0.075) -

DBPedia
0.1 0.652 (0.005) 0.499 (0.002) - 0.579 (0.002) 0.360 (0.07) -
0.5 0.654 (0.002) 0.499 (0.002) - 0.586 (0.002) 0.360 (0.09) -
1 0.657 (0.001) 0.5 (0.002) - 0.588 (0.001) 0.361 (0.07) -

Table 8: Privacy-utility tradeoff of DP-TKNN-Shapley and DP-KNN-Shapley for mislabeled/noisy
data detection task on 13 datasets. We show the AUROC at different privacy budgets ε (We set
δ = 10−5 for MNIST, CIFAR10, AGNews, and PBPedia, and we set δ = 10−4 for the rest of
dataset, following the common rule of δ ≈ 1/N ). The higher the AUROC is, the better the method
is. We show the standard deviation of AUROC across 5 independent runs in (). The results for
DP-KNN-Shapley with subsampling are omitted for half of the datasets as it requires a significant
amount of runtime.

performance of TKNN-Shapley is quite stable on a wide range of choices of τ . For example, for
2dPlanes dataset, the performance of TKNN-Shapley only varies < 0.032 between τ ∈ [−0.1,−0.6].
Moreover, τ ≈ −0.5 is a relatively robust choice of the threshold value. Hence, hyperparameter
tuning is not difficult for TKNN-Shapley. This is not too surprising; the formula of TKNN-Shapley
(in Equation (7)) shows that regardless of the choice of τ , if a training data point is within the
threshold but has a different label from the validation data, then its value is necessarily negative. At
the same time, the points that share same label as validation data are guaranteed to have a positive
value. The choice of τ only decides the magnitude but not the sign. As data valuation methods
only rely on the rank of data values to perform data selection, the performance of TKNN-Shapley is
relatively robust to the choice of τ in identifying mislabeled data points (who get negative values). A
similar argument also applies to the task of noisy data detection: noisy data is typically far from the
population; hence, as long as τ is not too large, the noisy data will receive a value score close to 0.
On the other hand, clean data will receive a positive value score, and the choice of τ only affects the
magnitude of the data value but not the sign.

Ideally, we would like to set a threshold such that for most of the queries, there are a certain amount
of neighbors whose distance to the query is below the threshold. One possible way to do this is simply
picking a τ that optimizes the final validation accuracy of the TKNN classifier (note that TKNN is
very efficient in hyperparameter tuning).

37



Dataset TKNN-Shapley KNN-Shapley Data Shapley LOO Data Banzhaf
2DPlanes 0.919 0.913 0.552 0.458 0.548
Phoneme 0.826 0.873 0.525 0.484 0.604

CPU 0.946 0.932 0.489 0.496 0.513
Fraud 0.96 0.967 0.488 0.495 0.534

Creditcard 0.662 0.646 0.517 0.487 0.536
Apsfail 0.958 0.948 0.496 0.485 0.506
Click 0.572 0.568 0.474 0.504 0.528
Wind 0.889 0.896 0.469 0.456 0.512

Pol 0.871 0.928 0.512 0.538 0.473
MNIST 0.962 0.974 - - -

CIFAR10 0.957 0.991 - - -
AG News 0.956 0.971 - - -
DBPedia 0.981 0.991 - - -

Table 9: Full Table for the AUROC of Mislabel Data Detection (non-private setting). The results for
LOO, Data Shapley, Data Banzhaf are omitted for MNIST, CIFAR10, AGNews and DBPedia as they
require a significant amount of runtime (prior works typically use a subset for MNIST and CIFAR10
[23, 39, 60]).

Dataset TKNN-Shapley KNN-Shapley Data Shapley LOO Data Banzhaf
2DPlanes 0.705 0.718 0.545 0.504 0.656
Phoneme 0.71 0.706 0.49 0.531 0.631

CPU 0.751 0.726 0.527 0.459 0.531
Fraud 0.818 0.794 0.502 0.526 0.582

Creditcard 0.611 0.64 0.535 0.513 0.506
Apsfail 0.841 0.666 0.533 0.465 0.566
Click 0.558 0.547 0.461 0.503 0.572
Wind 0.691 0.794 0.495 0.488 0.54

Pol 0.68 0.79 0.526 0.503 0.588
MNIST 0.613 0.815 - - -

CIFAR10 0.85 0.935 - - -
AG News 0.804 0.746 - - -
DBPedia 0.719 0.88 - - -

Table 10: Full Table for the AUROC of Noisy Data Detection (non-private setting). The results for
LOO, Data Shapley, Data Banzhaf are omitted for MNIST, CIFAR10, AGNews and DBPedia as they
require a significant amount of runtime (prior works typically use a subset for MNIST and CIFAR10
[23, 39, 60]).

For completeness, we also show the impact of different choices of K on the performance of KNN-
Shapley in Table 13 and 14. As we can see, KNN-Shapley’s performance is quite stable against the
different choices of K.
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Dataset τ = −0.1 τ = −0.2 τ = −0.3 τ = −0.4 τ = −0.5 τ = −0.6 τ = −0.7 τ = −0.8 τ = −0.9
2dPlanes 0.889 0.902 0.911 0.918 0.92 0.887 0.862 0.725 0.553

CPU 0.952 0.956 0.954 0.952 0.95 0.943 0.917 0.895 0.834
Phoneme 0.79 0.799 0.805 0.811 0.825 0.834 0.844 0.859 0.861

Fraud 0.961 0.956 0.951 0.954 0.959 0.957 0.931 0.884 0.75
Creditcard 0.653 0.671 0.668 0.669 0.662 0.652 0.648 0.606 0.539

Apsfail 0.959 0.952 0.962 0.967 0.962 0.952 0.924 0.899 0.851
Click 0.576 0.552 0.557 0.56 0.568 0.556 0.547 0.538 0.522
Wind 0.875 0.879 0.882 0.885 0.888 0.889 0.879 0.888 0.775

Pol 0.847 0.854 0.864 0.871 0.875 0.878 0.89 0.878 0.86

Table 11: Impact of different choices of τ for TKNN-Shapley on the performance of mislabel data
detection.

Dataset τ = −0.1 τ = −0.2 τ = −0.3 τ = −0.4 τ = −0.5 τ = −0.6 τ = −0.7 τ = −0.8 τ = −0.9
2dPlanes 0.671 0.691 0.704 0.696 0.705 0.694 0.678 0.626 0.528

CPU 0.691 0.687 0.696 0.709 0.751 0.777 0.789 0.786 0.75
Phoneme 0.681 0.688 0.691 0.698 0.71 0.718 0.716 0.725 0.72

Fraud 0.758 0.781 0.804 0.809 0.818 0.837 0.847 0.814 0.664
Creditcard 0.579 0.576 0.585 0.597 0.611 0.624 0.642 0.626 0.574

Apsfail 0.771 0.822 0.834 0.855 0.841 0.842 0.828 0.792 0.749
Click 0.53 0.544 0.537 0.539 0.558 0.563 0.521 0.521 0.539
Wind 0.592 0.612 0.637 0.663 0.691 0.727 0.747 0.754 0.719

Pol 0.594 0.638 0.643 0.661 0.68 0.682 0.712 0.721 0.699

Table 12: Impact of different choices of τ for TKNN-Shapley on the performance of noisy data
detection.

Dataset K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13 K = 14 K = 15

2dPlanes 0.914 0.914 0.915 0.915 0.916 0.915 0.915 0.914 0.915 0.915 0.914 0.91 0.905 0.898 0.896
CPU 0.936 0.936 0.937 0.937 0.937 0.937 0.938 0.937 0.936 0.934 0.932 0.929 0.928 0.927 0.921

Phoneme 0.859 0.861 0.862 0.862 0.864 0.865 0.868 0.868 0.869 0.871 0.871 0.871 0.871 0.874 0.86
Fraud 0.972 0.972 0.971 0.971 0.972 0.972 0.972 0.971 0.971 0.971 0.97 0.97 0.967 0.968 0.966

Creditcard 0.652 0.652 0.653 0.653 0.653 0.651 0.65 0.651 0.651 0.649 0.646 0.642 0.638 0.637 0.634
Apsfail 0.952 0.952 0.952 0.952 0.951 0.951 0.949 0.948 0.947 0.947 0.948 0.949 0.949 0.95 0.95
Click 0.56 0.562 0.564 0.563 0.566 0.566 0.563 0.562 0.562 0.563 0.567 0.566 0.557 0.547 0.553
Wind 0.9 0.9 0.9 0.9 0.9 0.899 0.899 0.899 0.899 0.898 0.896 0.897 0.896 0.891 0.89

Pol 0.931 0.931 0.931 0.931 0.93 0.929 0.929 0.93 0.929 0.927 0.925 0.922 0.919 0.914 0.917

Table 13: Impact of different choices of K for KNN-Shapley on the performance of mislabel data
detection.

Dataset K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13 K = 14 K = 15

2dPlanes 0.719 0.719 0.718 0.718 0.718 0.717 0.716 0.715 0.714 0.712 0.712 0.709 0.704 0.703 0.703
CPU 0.7 0.702 0.703 0.705 0.706 0.706 0.709 0.711 0.717 0.723 0.73 0.736 0.744 0.751 0.766

Phoneme 0.718 0.721 0.722 0.724 0.726 0.729 0.732 0.735 0.738 0.741 0.739 0.74 0.739 0.74 0.742
Fraud 0.786 0.788 0.789 0.792 0.794 0.794 0.795 0.797 0.797 0.799 0.803 0.805 0.811 0.815 0.822

Creditcard 0.637 0.638 0.636 0.638 0.64 0.642 0.643 0.644 0.646 0.646 0.645 0.642 0.636 0.636 0.64
Apsfail 0.667 0.667 0.667 0.666 0.666 0.666 0.666 0.668 0.671 0.674 0.678 0.683 0.69 0.711 0.763
Click 0.544 0.547 0.552 0.549 0.547 0.549 0.549 0.547 0.548 0.544 0.544 0.543 0.543 0.544 0.545
Wind 0.796 0.796 0.795 0.794 0.794 0.793 0.792 0.791 0.791 0.79 0.788 0.788 0.788 0.789 0.791

Pol 0.789 0.788 0.788 0.788 0.79 0.79 0.788 0.787 0.786 0.786 0.787 0.79 0.786 0.786 0.785

Table 14: Impact of different choices of K for KNN-Shapley on the performance of noisy data
detection.
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