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Abstract

Bayesian optimization provides a sample-efficient approach to optimize systems
that are evaluated with randomized experiments, such as Internet experiments (A/B
tests) and clinical trials. Such evaluations are often resource- and time-consuming
in order to measure noisy and long-term outcomes. Thus, the initial randomized
design, i.e., determining the number of test groups and their sample sizes, plays
a critical role in building an accurate Gaussian Process (GP) model to optimize
efficiently and decreasing experimentation cost. We develop a simulation-based
method with meta-learned priors to decide the optimal design for the initial batch
of GP-modeled randomized experiments. The meta-learning is performed on a
large corpus of randomized experiments conducted at Meta, obtaining sensible
GP priors for simulating across different designs. The one-shot optimal design
policy is derived by training a machine learning model with simulation data to map
experiment characteristics to an optimal design. Our evaluations show that our
proposed optimal design significantly improves resource-efficiency while achieving
a target GP model accuracy.

1 Introduction

Randomized experiments are the gold-standard method for Internet firms to evaluate the performance
of changes to their service [Kohavi and Longbotham, 2017]. Running these experiments is often
resource- and time-consuming since it requires using large sample sizes to detect the effects of high-
variance outcomes and running the experiments over the long periods of time to observe long-term
effects. Especially when experimenting with high-dimensional action spaces, such as continuous
parameters in a ranking policy [Letham and Bakshy, 2019], the prototypical practice that runs a
parallel set of treatments chosen adhocly and selects the best one based on observed outcomes is not
sustainable.

Bayesian optimization (BayesOpt) provides a sample-efficient approach for optimizing black-box
functions with expensive evaluations and is widely used to tune online systems that are evaluated with
A/B tests [Letham et al., 2019, Feng et al., 2020, Liu et al., 2022]. The space of possible parameters
of the underlying function or system to be optimized is the input space to BayesOpt, also referred
to as the input parameter space. The underlying function’s outcomes are only observed at several
parameter values called arms or test groups. The observed arms together with the corresponding
observed function outcomes represent the input and the output, respectively, of the Gaussian Process
(GP) model used in BayesOpt. This model allows predicting the underlying hard-to-evaluate function
values anywhere in the input parameter space along with the uncertainties. The BayesOpt framework
then uses the acquisition function optimization to suggest the most promising parameter values at
which to evaluate the underlying function next. The acquisition function uses the fitted GP model to
balance exploration, choosing parameter values with high variance, and exploitation, choosing the
parameter values with high predicted values for the underlying function.

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.



Actual Value

M
od

el
 P

re
di

ct
io

n

Not enough num of arms

Actual Value

Insufficient power per arm

Actual Value

One-shot optimal design

Figure 1: Leave-one-out cross validation predictions (mean, and 95% posterior predictive interval)
for the GP fits to the results of a 3-d real-world experiment under three different initial designs: the
first one on the left with not enough arms to cover the input parameter space but with large sample
size per arm, the second one with more arms but less sample size per arm so much more noise per
arm and the third one is somewhere in between. We see that the first two are sub-optimal as they lead
to poor out-of-sample predictions. The last one allows us to predict the out-of-sample output well
thus that design is preferable.

Considering the long evaluation time via randomized experiments, batch BayesOpt is used in practice
to take full advantage of the experimental resources and test online multiple parameter values
simultaneously. It starts with an initial batch with arms generated by space-filling designs, e.g.,
Latin hypercube, builds a Gaussian process (GP) model based on previous outcomes, and uses an
acquisition function defined from this GP model to select a batch of arms to evaluate next [Jones
et al., 1998, Snoek et al., 2012]. The process is then repeated until the optimal, or close to optimal,
parameter value is achieved.

Although BayesOpt is sequential in nature, the experiment design of the initial random batch is
critical for building an accurate GP model to generate good candidates sequentially and decreasing
experimentation cost. Having enough unique arms is known to be important to model the underlying
response surfaces, e.g., empirical rule n = 10d such that the number of arms is 10 times the input
dimension, which has been proposed and studied by Loeppky et al. [2009]. In addition, being able
to isolate signal from noise is known to be important to the GP model accuracy and BayesOpt
performance [Binois et al., 2019]. Thus, each arm requires a certain amount of samples (adequate
statistical power) to detect effects for noisy outcomes. Figure 1 demonstrates the importance of the
initial design to achieve a good GP model fit and optimization performance. This brings an important
design question in the face of noisy evaluations: how to decide the number of unique arms and
sample size per arm in order to balance exploring response surfaces with more arms while keeping an
adequate signal-to-noise ratio with the experimentation resources, i.e. total sample size, in mind?

There are two main challenges in tackling this design question: 1) In practice, the prior knowledge
of the underlying response surfaces, e.g., the variance of outcome and the distribution of GP hyper-
parameters, is typically unknown. Without such a priori information, one can hardly choose a design,
as it largely depends on the effective dimensionality of the input parameter space and the smoothness
of the response surfaces. Sequential design strategies that iterate between design and learning has
been proposed and studied as a remedy [Chen and Zhou, 2017]. However, this does not solve the
one-shot design that is desired in the batch BayesOpt, especially when evaluations take a long time.
2) Solving a full batched version of selecting locations of unique arms and the numbers of samples
allocated for each arm is not computationally tractable as discussed in Binois et al. [2019].

In this paper, we propose a simulation-based method with meta-learned priors to decide on the
optimal design for the initial batch of GP-modeled randomized experiments. The contributions of this
work are: 1) We frame this one-shot design problem as a constrained optimization problem depending
on the use case: a) obtaining the best GP model prediction accuracy given a fixed sample budget or
b) minimizing the total sample size while keeping the GP model accuracy above a certain accuracy
threshold. In both cases, we use a random uniform location for arms and use the optimization to
decide on the number of arms and the sample size per arm. 2) We conduct a meta-analysis of a
large corpus of historical randomized experiments at Meta to generate empirical GP priors. The
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meta-learned GP priors capture and transfer the information to facilitate the one-shot design for
experiments with different characteristics, e.g., parameter dimensions and outcomes. 3) We devise a
simulation-based approach to take the complexity of input-output relationship, i.e., the true underlying
response surface and the noise, into account through sampling GPs from meta-learned priors. 4) We
propose an easy-to-deploy one-shot design policy by building a machine learning model with the
simulated datasets.

2 Methodology

2.1 One-Shot Optimal Design for Gaussian Processes

Let Y = [y1, . . . , yn]
T denote the outcomes of n equally sized arms (x1, . . . ,xn) from a randomized

experiment with total sample size N . We assume the observations are from the initial batch, implying
the input arms xi are chosen to be uniformly at random in the pre-specified input parameter space
X ⊂ Rd. We assume the model yi = f(xi) + ϵi, i = 1, . . . , n, where the function f : X → R is the
true response surface and ϵi

iid∼ N (0, σ2
e) is the observation noise in which σ2

e depends on the sample
size per arm σ2

e ∝ n
N . For simplicity and comparability, the outcomes are standardized to zero mean

and unit variance; the observation noise is scaled accordingly. The input variables X = [xT
1 , · · · ,xT

n ]
are scaled to [0, 1]d, and each arm xi is a d-dimensional vector.

We assume f ∼ GP(0,K) to be a zero-mean GP with the covariance matrix K, parameterized by
lengthscales θ = (θ1, · · · , θd) and outputscale σ2

f , represented as K(xi,xj) = Cov(f(xi), f(xj)) =

σ2
f ·Kθ(xi,xj). The covariance function Kθ is taken from the Matérn family with parameter γ = 2.5,

as suggested in Rasmussen [2003]. The kernel parameters θ and σ2
f are estimated through optimizing

the marginal log likelihood and σ2
e is assumed to be known.

In one-shot optimal design, the goal is to achieve good GP prediction accuracy, which is evalu-
ated on out-of-sample mean squared error (MSE). The locations of arms are decided by a ran-
dom uniform design. The decision parameters are thus the number of arms n and the total ex-
periment sample size N . The problem can be formulated as a constrained optimization problem
based on the use case: a) minimize out-of-sample MSE given a fixed sample size budget B, i.e.,
minn,N MSEf (n,N) s.t. N ≤ B; or b) minimize sample size N to achieve a target out-of-sample
MSE denoted as τ , i.e., minn,N N s.t. MSEf (n,N) ≤ τ .

2.2 Empirical Priors from Meta-learning
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Figure 2: Empirical lengthscales distri-
bution from meta-learning. Each density
curve corresponds to the lengthscale dis-
tribution segmented based on the input pa-
rameter dimension d.

One main challenge of one-shot optimal design is that
prior distributions of variance σ2

f , noise σ2
e , and distri-

bution of kernel hyper-parameters θ are unknown. To
optimize MSE that depends on these unknown priors,
we perform a meta-analysis based on a large corpus of
historical randomized experiments at Meta to obtain
empirical priors. For each experiment, a GP with fixed
(known) noise model is fitted on the outcomes from
the initial batch of observations. A leave-one-out cross
validation is performed to filter out estimates with poor
fitted GP. This meta-analysis generates empirical prior
distributions of kernel hyper-parameters and outcome
noise across a large pool of experiments with different
parameter dimensions, conducted in different product
areas etc. Figure 2 visualizes the distribution of esti-
mated lengthscales segmented based on input parameter
dimension d. It can be seen that the effective dimension
does not linearly increase with d: higher dimensional
spaces tend to be sparse, i.e., with less important parameters impacting the outcome. Learning these
function priors by meta-learning plays an important role in guiding efficient experiment designs.
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2.3 Surrogate Data Based on Meta-Learned Priors

Directly solving the one-shot optimal design is not computationally tractable. Therefore, we consider
a simulation-based algorithm. For each design of n arms and N sample size, simulation is used
to obtain an out-of-sample MSE for a given GP prior obtained from meta-analysis. Intuitively,
this allows us to measure the GP model fit of realistic response surfaces learned from historical
experiments using different experiment designs.

We simulate realistic “true” response surfaces by sampling GPs from the GP distributions obtained
from the meta-learning. In each simulation run, given a (true) GP f from meta-learning, we evaluate a
grid of designs (n, N ). For each design, n training inputs X are generated by random uniform design
and training outputs f(X) are perturbed with noise randomly sampled from Gaussian distribution
with variance being n

N s2, in which s2 is the observed outcome variance. We fit a GP on the simulated
training data and compute the out-of-sample MSE, measuring the prediction accuracy of the fitted
GP. We run this simulation multiple times for each design and compute the average of out-of-sample
MSE. From the simulation, we measure the performance (out-of-sample MSE) of different designs
for a variety of experiments with different characteristics. Algorithm 1 in the Appendix describes the
process of generating the simulated data in more detail.

2.4 Optimal Design Policy

Based on the simulation data, we derive an optimal design policy by training a supervised machine
learning algorithm to suggest (n, N ) based on experiments’ characteristics. In particular, we build a
logistic regression model to predict the goodness of model fit (one if out-of-sample MSE is below
the accuracy threshold τ and zero otherwise) using design (n, N ) and additional experiment-specific
characteristics as the features of the logistic regression.

In our case, we use the dimension d of the input parameter space of the experiment and the signal-to-
noise ratio (SNR) sf of the outcome metric that the experiment is trying to optimize as additional
experiment characteristics. We derive the SNR metric estimate from historical randomized experi-
ments tracking that particular metric. These two additional experiment characteristics d and sf are
both naturally important for predicting the goodness of the model fit given (n, N ). For example, we
expect the experiments with larger dimension d to require larger n for their model to be fit well as
they will need more arms to cover the input parameter space. Similarly, we expect the experiments
with larger sf to allow for smaller N for the good model fit as less noisy outcomes require smaller
sample size for the good model fit.

Other supervised machine learning models, e.g., a neural network, and additional experiment features,
e.g., product area, can also be used. We decided to use the logistic regression for its interpretability.
Logistic regression allows the predictions to follow the overall expected relationship between its
input features and the predictions, e.g., output larger probabilities of a good model fit for smaller d,
larger sf and larger N .

For future experiments, the model can predict the performance of different designs and decide which
one is optimal. Given the experiment characteristics d and sf , the logistic regression predicts the
probability of a good model fit for different designs across the whole (n, N ) grid. Based on these
predicted probabilities of a good model fit, one can pick the final design depending on their use case,
i.e., depending on how they formulated the constrained optimization problem in Section 2.1. The
winning design can be: a) the one maximizing the probability of a good model fit among all the
designs with sample size below the given sample size budget B or b) the one having the smallest
sample size among the designs with the predicted probability of a good model fit above a certain
threshold.

3 Results and Discussions

Illustrative real-world experiments. Here we illustrate the simulation-based one-shot design with
three real-world experiments with 2-dimensional parameter spaces. Figure 3 shows the out-of-sample
MSE of different design choices for these experiments. The left plot shows the results of outcomes
with lowest SNR, from which we see that increasing the number of arms is always harmful for such
extremely noisy outcomes. Increasing statistical power per arm is preferable in order to isolate signal
from noise. On the other hand, for outcomes with high SNR (right plot), having more arms is more
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Figure 3: Out-of-sample MSE obtained from simulation for different designs i.e number of arms (n)
and sample sizes (N , given here as a percentage of the population). The simulations are based on
three 2-dimensional real-world randomized experiments. The signal-to-noise ratios of these three
experiment outcome metrics vary from low (left) to high (right). Different sample sizes are indicated
by different colors.

useful to achieve better GP model fit since each arm is adequately powered and the marginal gain
from increasing the sample size decreases.

For outcomes with average SNR, the middle plot shows that the optimal design choice balances
exploring new arms versus keeping enough power per arm. When there are a few arms, increasing
the number of arms n improves out-of-sample MSE; and there is a sharp transition that once n passes
a point, having more arms hurts the GP model fit.

Evaluation with a large corpus of randomized experiments. We conduct an evaluation of proposed
one-shot optimal design on a large corpus of real-world randomized experiments. The evaluation
is done in a train-test split fashion so that the optimal design policy is trained on training data and
evaluated on a separate set of experiments. We compare our method against two different design
strategies: 1) historical design used by experimenters; 2) the empirical rule n = 10d recommended
by Chapman et al. [1994] and N being historical (observed) sample size. The design is decided
by finding a lowest N that achieves a target GP model accuracy and the performance is evaluated
based on recommended sample size. The evaluation shows that our method is close to 3X more
resource-efficient. See Table 2 in the Appendix for details.

4 Conclusion

This work develops a practical algorithm for the design of randomized experiments concurrently
tuning multiple parameters via Bayesian optimization, leading to a more efficient use of experiment
resources. A meta-analysis of a large pool of real randomized experiments allows us to learn the
sensible prior distributions of the data, transferring information from historical to new experiments.
This information is further boosted by simulating more datasets across a grid of designs. The final
step of the method is a policy recommending an optimal design for brand new experiments, including
the number of arms and their sizes based on the experiments’ characteristics.

Future work will include experiment design based on other quantities of interest besides MSE and
the design of high-dimensional experiments besides d = 12, which is the largest number of tuning
parameters of any experiment in this work. Other possibilities include adding other experiment
characteristics into the optimal design policy such as the specific information of the experiment
parameters besides their total number.
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A Appendix

A.1 One-shot Optimal Design Algorithm Details

Starting with a list of real historical experiments, Algorithm 1 describes the steps for getting the
surrogate experiment datasets. Function Sample-GP draws new training and test datasets from a
given GP with the noise level computed based on the given SNR adjusted to correspond to the given
sample size per arm. By drawing multiple datasets, function Single-Design-MSE computes the
average out-of-sample MSE. Finally, Surrogate-Data fits a GP to each historical real experiment
and uses it as the ground truth for simulating more experiment datasets from a grid of designs.

Algorithm 1 Simulation Algorithm

1: function SAMPLE-GP(f, sf , n,N )

2: Sample input Xn×d based on Sobol design and out-of-sample points X⋆
m×d

i.i.d.∼ U(0, 1)
3: Sample ground truth GP f([X,X⋆])
4: Set the noise level: σϵ = sf ∗N/n

5: Perturb input points with noise ϵ, ϵ⋆
i.i.d.∼ N(0, σ2

ϵ ): Y = f(X) + ϵ and Y⋆ = f(X⋆) + ϵ⋆

6: return X,Y, σϵ,X
⋆,Y⋆

7: function SINGLE-DESIGN-MSE(f, sf , n,N )
8: Initialize average out-of-sample MSE: avg(MSE)← 0
9: for i in [T ] do

10: X,Y, σϵ,X
⋆,Y⋆ ← Sample-GP(f, sf , n,N)

11: Fit a fixed noise GP f̂ using training inputs X,Y, σϵ

12: f̂(X⋆)← Predict on testing inputs X⋆

13: Compute out-of-sample MSE: MSEi = ∥f̂(X⋆)−Y⋆∥22/m
14: Update avg(MSE)← avg(MSE) + MSEi/T

15: return avg(MSE)
16: procedure SURROGATE-DATA(List of historical experiment data {Xi,Yi, σi}, i = 1, . . . , E)
17: for i in [E] do
18: Initially empty list of surrogate data results: SD = ∅
19: Fit a fixed noise GP f̂ to (Xi,Yi, σi)
20: Estimate signal-to-noise ratio ŝf
21: for n in [min # of arms, max # of arms] do
22: for N in [min sample size, max sample size] do
23: avg(MSE)← Single-Design-MSE(f̂ , ŝf , n,N)
24: Append (ŝf , d, n,N, avg(MSE)) to SD

25: return SD

A.2 Results Evaluation Details

Figure 4 shows the output of the logistic regression used to model probability of a good model fit
for (sf = 5, d = 8). As a final step of the optimal design algorithm, we provide an optimal design
policy recommending a design corresponding to the smallest sample size for which the predicted
probability is above a given threshold (taken to be 0.8 in our algorithm). Table 1 in the Appendix
shows the experiment design recommendations for other experiment dimensions.

Table 1 shows the recommended number of arms and the total experiment sample size as a percentage
of population given by the proposed optimal design policy for a given d and with sf = 5. For a
brand new experiment optimizing a given objective metric, we use historical randomized experiment
data tracking that metric to estimate its SNR. For a metric for which there is no prior SNR estimate
one can use the overall median SNR of all historical metrics with data as an input into the logistic
regression and thus get an optimal design policy for the new experiment with that objective metric.

Table 2 shows the median number of arms and the total experiment sample size across several designs
from different experiment design algorithms. We see that our proposed algorithm needs 2.75 times
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Figure 4: The predicted probabilities of a good model fit based on logistic regression used on surrogate
data. The probabilities are depicted for varying number of arms and sample size and fixed number of
parameters (eight) and fixed signal-to-noise metric ratio (two). The thick straight lines indicate the
winning design.

d n N

1 9 5
2 12 6
3 15 7
4 17 8
5 19 9
6 22 10
7 24 11
8 26 12
9 29 13

10 31 14
11 33 15
12 35 16

Table 1: Optimal design policy recommendations for the number of arms (n) and the sample size (N )
as a percentage of population given the number of parameters (d) and metric signal-to-noise ratio
(sf = 5).

less sample size than the other algorithms while the average MSE for each algorithm is kept below
the set threshold τ = 0.2, thus the proposed algorithm is the most resource-efficient.

Design n N

Recommended by the optimal sizing alg. 13 4
Observed design 22 11

Observed sample size, num. of arms = 10 ∗ d 30 11

Table 2: The median of the number of arms and the total experiment sample size of different
experiment designs.

8


	Introduction
	Methodology
	One-Shot Optimal Design for Gaussian Processes
	Empirical Priors from Meta-learning
	Surrogate Data Based on Meta-Learned Priors
	Optimal Design Policy

	Results and Discussions
	Conclusion
	Appendix
	One-shot Optimal Design Algorithm Details
	Results Evaluation Details


