

000 PROOF-VERIFIER: ENABLING REINFORCEMENT 001 LEARNING FROM VERIFIABLE REWARDS FOR MATH- 002 EMATICAL THEOREM PROVING 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Reinforcement Learning from Verifiable Rewards (RLVR) has revolutionized
014 mathematical reasoning, enabling models like DeepSeek-R1 and OpenAI-o1 to
015 achieve human-level performance on traditional math tasks where answers are
016 single numbers or equations. However, extending RLVR to mathematical theo-
017 rem proving remains challenging due to the fundamental verification bottleneck:
018 unlike traditional math tasks, theorem proving generates entire reasoning pro-
019 cesses that lack reliable automated verification methods for reward signal gen-
020 eration. In this work, we address this verification bottleneck by introducing PROOF-
021 VERIFIER, the first generative verifier specifically designed to enable RLVR ap-
022 plications in mathematical theorem proving. PROOF-VERIFIER supports both for-
023 mal and informal language (e.g., natural language) proofs, providing the detailed
024 verification capabilities essential for effective reinforcement learning. To train
025 PROOF-VERIFIER, we develop a formal-to-informal translation pipeline for high-
026 quality synthetic data generation and employ a novel two-stage coarse-grained
027 to fine-grained reward modeling mechanism. Experimental validation demon-
028 strates that PROOF-VERIFIER achieves 93% verification accuracy, enabling reli-
029 able reward signals for RLVR applications. We show that PROOF-VERIFIER suc-
030 cessfully enables effective test-time scaling (79% win rate in best-of-N sampling
031 and 32% improvement in multi-turn proof refinement), and both single-turn and
032 multi-turn RLVR training, consistently improving LLM-based theorem proving
033 performance. Our work establishes the foundation for applying RLVR methodolo-
034 gies to mathematical theorem proving, extending the recent success of reasoning-
035 enhanced models to this challenging domain.
036
037

1 INTRODUCTION

038 Recently, reasoning-enhanced LLMs such as DeepSeek-R1 (DeepSeek-AI et al., 2025) and OpenAI-
039 o1 (OpenAI et al., 2024) have significantly reduced the performance gap between humans and ar-
040 tificial intelligence on traditional mathematical tasks (Lewkowycz et al., 2022) where the answer
041 is a single number or equation. These methods employ Reinforcement Learning from Verifiable
042 Rewards (RLVR) (Ouyang et al., 2022; Wang et al., 2025b), where reward signals are provided by
043 comparing model outputs with reference answers, training models to generate the extended chain-
044 of-thought reasoning (Wei et al., 2023) required to reach verifiable solutions on challenging bench-
045 marks such as HMMT (HMMT, 2025), MATH-500 (Hendrycks et al., 2021; Lightman et al., 2024)
046 and AIME (MAA, 2025).

047 Despite these advancements, extending RLVR to mathematical theorem proving remains challeng-
048 ing. Models that claim PhD-level competency continue to struggle with mathematical theorem prov-
049 ing problems at the high school or undergraduate level (Guo et al., 2025; Sheng et al., 2025). The
050 primary bottleneck stems from the fundamental verification challenge: mathematical theorem prov-
051 ing tasks (Polu et al., 2022) require generating entire proof processes rather than single numbers
052 or equations, making automated verification for reward signal generation significantly more com-
053 plex. Moreover, diverse correct proofs can exist for the same statement, making comparisons with
reference answers infeasible, which is a critical limitation for RLVR applications.

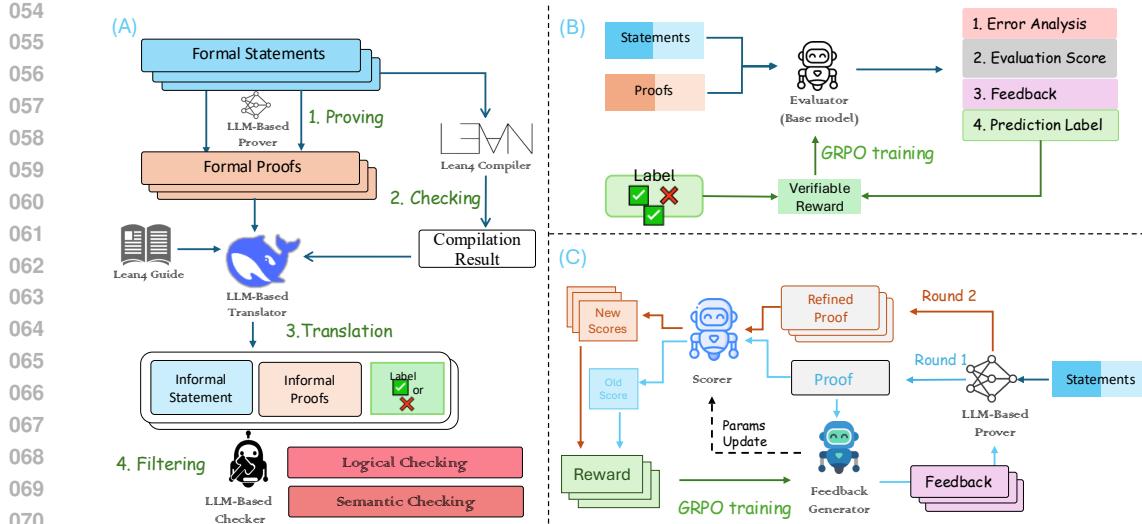


Figure 1: The training framework for PROOF-VERIFIER. (A) Formal-to-informal data synthesis pipeline with ATP verification and filtering. (B) Coarse-grained training with consistency-constrained label prediction. (C) Fine-grained training with proxy rewards from feedback-driven performance improvements.

While Automated Theorem Provers (ATPs) like Lean4 (de Moura et al., 2015; de Moura & Ullrich, 2021) can automatically verify proofs written in formal language by ensuring every deductive step conforms to a foundational logical system, they provide insufficient support for RLVR applications. First, they cannot handle informal language, yet LLMs perform better on natural language due to limited formal language representation in training data. Second, ATP verification results are coarse-grained binary labels that cannot distinguish between minor computational errors and fundamental logical flaws, both receiving the same "incorrect" label without guidance for targeted refinement.

To address this verification bottleneck and enable RLVR applications in mathematical theorem proving, we propose PROOF-VERIFIER, the first generative verifier for mathematical theorem proving tasks that supports both formal and informal language. PROOF-VERIFIER generates a comprehensive verification trajectory containing detailed error analysis, evaluation scores, actionable feedback, and final verification labels for each proof attempt, providing the reliable reward signals essential for effective reinforcement learning.

To support both formal and informal language, we develop a formal-to-informal translation pipeline with controlled generation and balanced labels (Figure 1 A). We sample formal proofs, verify them with ATPs, then translate to natural language with filtering strategies to ensure semantic consistency and logical correctness, achieving reliable data quality verified by human evaluation.

Based on this dataset, we train PROOF-VERIFIER using a novel two-stage coarse-to-fine-grained reward modeling mechanism (Figure 1 B, C). Since only coarse-grained labels are available initially, we design a progressive approach: (1) **Coarse-grained stage**: Label prediction with consistency constraints, where rewards require both accuracy and alignment with majority vote scores, enabling the model to learn robust structured reasoning processes. (2) **Fine-grained stage**: Proxy rewards are estimated by performance improvements brought by generated feedback (pink boxes in Figure 1), where feedback serves as refinement instructions to guide proof revision. This approach enables the model to develop fine-grained discriminative capabilities for distinguishing different error types and providing targeted refinement guidance.

Experimental validation demonstrates that PROOF-VERIFIER achieves 93% verification accuracy on our test set, establishing reliable reward signals for RLVR applications. We show that PROOF-VERIFIER successfully enables effective test-time scaling (Muennighoff et al., 2025), with superior response selection in best-of-N sampling settings (79% win rate) and multi-turn refinement instructions that improve LLM-based prover performance by 32%. Crucially, since PROOF-VERIFIER outputs both evaluation scores (usable as reward signals) and actionable feedback (serving as refine-

108
109
110
111
112
ment instructions), it naturally supports both single-turn and multi-turn RLVR training, achieving
improved performance in both configurations and demonstrating the successful extension of RLVR
methodologies to mathematical theorem proving. Finally, the detailed error analysis generated by
PROOF-VERIFIER can be aggregated to help analyze and identify failure patterns for specific mod-
els, facilitating targeted improvements in model training iterations.

2 PROOF VERIFIER

2.1 DUAL-LANGUAGE DATASET CONSTRUCTION

Enabling RLVR for mathematical theorem proving requires training data that supports reliable reward signal generation across both formal and informal language proofs. Existing datasets present a critical gap: formal language datasets provide only binary ATP verification without fine-grained feedback, while informal language datasets lack reliable automated verification methods and may introduce validation errors, potentially overlooking logical issues and other subtle errors that are difficult to detect. To address this limitation, we construct a comprehensive dual-language dataset with controlled label quality and balanced coverage using our proposed formal-to-informal translation pipeline.

As shown in Figure 1, LLM-based provers generate 32 proof attempts for each formal statement, with the Kimina Lean Server (Santos et al., 2025) providing rigorous verification labels. DeepSeek-R1 then translates these verified formal statement-proof pairs into corresponding natural language versions. To enhance translation quality, we construct an `llm.txt` (Howard, 2024) file containing Lean4 syntax, tactics, and common proof methods as context manually. LLM-as-a-Judge is used to subsequently verify semantic consistency and logical correctness to ensure data quality after the conversion process. This formal-to-natural approach is more feasible than natural-to-formal translation, as understanding Lean4 syntax is simpler than generating it. The method ensures proof logic is rigorously compiler-verified before conversion, providing controlled generation of both correct and incorrect proofs with potential errors introduced only during the translation process.

To further enrich our training dataset distribution, we incorporate two additional natural language datasets: the OPC dataset (Dekoninck et al., 2025) provides labeled proof attempts on PutnamBench statements, while RFM Bench (Guo et al., 2025) contributes novel statements spanning different difficulty levels (high school to graduate) and mathematical domains (geometry, algebra, number theory, calculus). Processing details for both datasets are provided in Appendix H and M.

Our final training data comprises these three datasets with balanced sampling, maintaining a 1:1 ratio between natural language and formal language data. All three datasets contribute equally to the natural language data. The training datasets encompass a diverse range of mathematical domains, with detailed statistical distributions presented in Appendix F. For evaluation, we construct out-of-distribution test datasets using different statements and sampling models than those in training, ensuring our evaluation reflects generalization and robustness under distribution shift. The formal language test set contains 1,000 proof attempts with ATP-verified labels, while the natural language test set comprises 100 manually annotated statement-proof pairs with expert human verification.

2.1.1 QUALITY ASSESSMENT

Ensuring translation quality is critical for reliable reward signal generation in RLVR applications. While formal-to-informal translation introduces potential semantic gaps, we demonstrate that systematic filtering using LLM-as-a-Judge can effectively address these challenges. Analysis of 100 randomly sampled translation pairs reveals two primary error categories, which we successfully mitigate through targeted filtering strategies for semantic consistency and logical correctness:

Statement Weakening: Translations occasionally simplify formal statements to less restrictive conditions. We employ LLM-based filtering to detect and remove these cases while preserving valid proof-label pairs, since proofs for stronger claims remain valid for their weaker counterparts.

159 **Syntactic Copying:** Complex proofs sometimes result in direct code copying rather than natural
160 language translation. We apply heuristic filtering rules that successfully eliminate these instances,
161 achieving high precision on both validation and out-of-distribution evaluation sets. Detailed case
analysis and filtering methodologies are provided in Appendix L.

162 2.2 TRAINING APPROACH
163164 2.2.1 PROBLEM FORMULATION
165

166 We formalize the verification task of mathematical proofs as a structured generation task. Given a
167 proof attempt τ and statement x , PROOF-VERIFIER generates a response sequence $r = (a, s, f, p)$
168 where $a \in \mathcal{A}$ represents error analysis, $s \in [0, 100]$ is the evaluation score, $f \in \mathcal{F}$ denotes feed-
169 back, and $p \in \{\text{True}, \text{False}\}$ is the binary correctness judgment. Let $\pi_\theta(r|\tau, x)$ denote our policy
170 parameterized by θ , and $y \in \{\text{True}, \text{False}\}$ be the ground truth label. We optimize θ to maximize
171 expected reward $\mathbb{E}[R(r)]$ under different reward functions $R(\cdot)$ across two training stages, following
172 a coarsed-grained to fine-grained training objective.

173 2.2.2 STAGE 1: CONSISTENCY-CONSTRAINED BINARY VERIFICATION
174

175 While RLVR training can achieve high accuracy on label prediction tasks, it often leads to high
176 variance in intermediate reasoning chains. Even when models produce correct final judgments, their
177 error analysis and evaluation scoring can be inconsistent across multiple evaluations of the same
178 proof. This inconsistency poses two critical problems: (1) it undermines the model’s reliability for
179 fine-grained evaluation tasks where consistent scoring is essential, and (2) it creates unstable training
180 dynamics for Stage 2, which depends on reliable score distributions as reward signals.

181 To address this challenge, we introduce consistency constraints that enforce both accuracy verifica-
182 tion results and consistent evaluation scores. For each input (τ, x) , we generate N parallel samples
183 $\{r_1, r_2, \dots, r_N\}$ and define the correct prediction set as $\mathcal{C} = \{r_i : p_i = y\}$ and score mode:
184 $s_{\text{mode}} = \arg \max_s |\{r_i \in \mathcal{C} : s_i = s\}|$.

185 Our reward function enforces both accuracy and consistency:

$$187 R_1(r_i) = 2 \cdot \mathbb{I}[p_i = y \text{ and } s_i = s_{\text{mode}}] - 1 \quad (1)$$

189 The intuition behind this design leverages the autoregressive generation order where error analysis
190 and scoring precede the final prediction label. By enforcing consistency in the intermediate steps
191 while supervising only the final binary judgment, the model learns to develop stable, coherent rea-
192 soning processes that support accurate predictions, which is crucial for the fine-grained capabilities
193 developed in Stage 2. Detailed theoretical analysis demonstrating the convergence properties of this
194 consistency-constrained approach is provided in Section B.1.

195 2.2.3 STAGE 2: FEEDBACK QUALITY OPTIMIZATION
196

197 Stage 1 enables the model to distinguish correct from incorrect proofs but lacks fine-grained dis-
198 criminative power to assess varying degrees of proof quality. Stage 2 addresses this limitation by
199 leveraging our sequential generation order where evaluation scores precede feedback. This temporal
200 structure enables mutual supervision: fine-grained error analysis leads to more precise scores, which
201 in turn enables more effective feedback generation.

202 We initialize both feedback provider F_θ and scorer S_ϕ with Stage 1 parameters: $\theta^{(0)} = \phi^{(0)} =$
203 θ_{Stage1} . The training process operates through a multi-step feedback refinement loop. Given a math-
204 ematical statement x , an external prover P first generates an initial proof attempt τ_0 , which the
205 scorer S_ϕ evaluates to produce a baseline score $s_0 = S_\phi(\tau_0, x)$. The feedback provider F_θ then
206 generates n diverse feedback responses $\{f_1, f_2, \dots, f_n\}$ based on the initial proof and statement.
207 Each feedback f_i is provided to the prover P , which attempts to incorporate the suggestions and
208 produce a revised proof $\tau_{1,i} = P(\tau_0, f_i, x)$. The scorer evaluates these revised proofs, yielding new
209 scores $s_{1,i} = S_\phi(\tau_{1,i}, x)$ for each feedback-guided revision.

210 The key insight is that better feedback should lead to improved proofs, as measured by score in-
211 creases. We therefore define the reward for feedback f_i based on the score improvement it enables:

$$212 R_2(f_i) = \text{sign}(s_{1,i} - s_0 - \delta) \cdot \mathbb{I}[|s_{1,i} - s_0| > \delta] \quad (2)$$

213 where $\delta = 10$ filters out minor score fluctuations to focus on meaningful improvements.

214 To address the instability inherent in jointly optimizing both the feedback provider F_θ and scorer S_ϕ ,
215 we employ a momentum encoder strategy (He et al., 2020) with differentiated update frequencies.

216 The feedback provider parameters are updated at every training step, while the scorer parameters
 217 remain frozen for $m = 100$ steps before being updated to match the current feedback provider
 218 parameters: $\phi^{(t+1)} \leftarrow \theta^{(t)}$ when $t \bmod m = 0$, and $\phi^{(t+1)} = \phi^{(t)}$ otherwise. Theoretical analysis
 219 for this design and the effects of momentum encoder updating strategy for training robustness is
 220 provided in Section B.2.

221 These two stages all use the standard GRPO algorithm for parameters updating:

$$223 \quad \mathcal{J}_{GRPO}(\theta) = \mathbb{E} \left[\min \left[\frac{\pi_\theta(o|q)}{\pi_{\theta_{old}}(o|q)} \hat{A}, \text{clip} \left(\frac{\pi_\theta(o|q)}{\pi_{\theta_{old}}(o|q)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A} \right] - \beta \mathbb{D}_{KL}[\pi_\theta || \pi_{ref}] \right] \quad (3)$$

225 The complete training procedure is summarized in Algorithm 1. Detailed justification and ex-
 226 perimental results for using GRPO exclusively without supervised fine-tuning is provided in Ap-
 227 pendix C.

229 **Algorithm 1** Two-Stage PROOF-VERIFIER Training

231 **Require:** Dataset $\mathcal{D} = \{(\tau_i, x_i, y_i)\}$, prover model P , momentum interval $m = 100$
 232 1: Initialize $\theta^{(0)}$ with Qwen3-8B parameters
 233 2: **Stage 1: Consistency-Constrained Training**
 234 3: **for** $t = 1$ to T_1 **do**
 235 4: Sample batch $\{(\tau_k, x_k, y_k)\}_{k=1}^B \sim \mathcal{D}$
 236 5: **for** each (τ_k, x_k, y_k) in batch **do**
 237 6: Generate N responses: $\{r_{k,i} = (a_{k,i}, s_{k,i}, f_{k,i}, p_{k,i})\}_{i=1}^N \sim \pi_\theta(\cdot | \tau_k, x_k)$
 238 7: Define correct prediction set: $\mathcal{C}_k = \{r_{k,i} : p_{k,i} = y_k\}$
 239 8: Compute score mode: $s_{\text{mode},k} = \arg \max_s |\{r_{k,i} \in \mathcal{C}_k : s_{k,i} = s\}|$
 240 9: Compute rewards: $R_1(r_{k,i})$ using Equation 1
 241 10: **end for**
 242 11: Update via GRPO: $\theta \leftarrow \theta + \alpha \nabla_\theta \mathcal{J}_{GRPO}(\theta)$ using Equation 3
 243 12: **end for**
 244 13: Initialize scorer: $\phi^{(0)} \leftarrow \theta^{(T_1)}$
 245 14: **Stage 2: Feedback Quality Optimization**
 246 15: **for** $t = 1$ to T_2 **do**
 247 16: Sample mathematical statements: $\{x_j\}_{j=1}^M$
 248 17: **for** each statement x_j **do**
 249 18: $\tau_{0,j} \leftarrow P(x_j)$ {Generate initial proof}
 250 19: $s_{0,j} \leftarrow S_\phi(\tau_{0,j}, x_j)$ {Score initial proof}
 251 20: Generate n feedback: $\{f_{i,j}\}_{i=1}^n \sim F_\theta(\cdot | \tau_{0,j}, x_j)$
 252 21: **for** each feedback $f_{i,j}$ **do**
 253 22: $\tau_{1,i,j} \leftarrow P(\tau_{0,j}, f_{i,j}, x_j)$ {Revise proof with feedback}
 254 23: $s_{1,i,j} \leftarrow S_\phi(\tau_{1,i,j}, x_j)$ {Score revised proof}
 255 24: **end for**
 256 25: Compute rewards: $R_2(f_{i,j})$ using Equation 2
 257 26: **end for**
 258 27: Update via GRPO: $\theta \leftarrow \theta + \alpha \nabla_\theta \mathcal{J}_{GRPO}(\theta)$ using Equation 3
 259 28: **if** $t \bmod m = 0$ **then**
 260 29: Momentum update: $\phi \leftarrow \theta$ {Transfer knowledge to scorer}
 261 30: **end if**
 262 31: **end for**
 263 32: **return** $\theta^{(T_2)}$

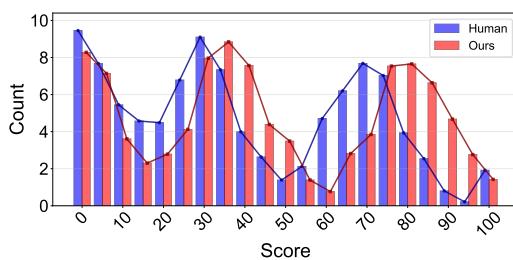
263 **3 EFFECTIVENESS OF THE PROOF-VERIFIER**

265 In all subsequent experiments, PROOF-VERIFIER uses simple prompts with parallel sampling, as
 266 our comparative experiments demonstrates this configuration provides optimal robustness and con-
 267 sistency for evaluation and verification, as detailed in Appendix C.1.

268
 269 **3.1 PERFORMANCE ANALYSIS**

270 To verify the reliability
 271 of PROOF-VERIFIER for
 272 RLV applications, we
 273 first evaluate its verifi-
 274 cation accuracy and the
 275 correlation of fine-grained
 276 scores for model ranking
 277 tasks.

278 **Verification Accuracy:**
 279 Table 1 Left presents the
 280 verification accuracy re-
 281 sults across both language
 282 modalities. For natural
 283 language proofs, PROOF-
 284 VERIFIER significantly outperforms larger open-source models on metrics including accuracy
 285 and F1, achieving better correlation with human evaluation, which demonstrates reliable scoring
 286 and more consistent alignment with human preferences. The primary error source in existing
 287 open-source models is their tendency to incorrectly classify false proofs as correct, exhibiting high
 288 recall but low precision, indicating insufficient error detection capabilities. For formal language
 289 verification (Table 1 Right), PROOF-VERIFIER achieves superior accuracy compared to other
 290 models without access to compilation results, demonstrating the model’s ability to better interpret
 291 and evaluate formal language proofs. When compilation results are included, PROOF-VERIFIER
 292 achieves 0.98 accuracy, with ATP verification serving as the lower bound. Despite this high
 293 baseline, PROOF-VERIFIER maintains significant advantages through its generated feedback,
 294 which provides substantially greater utility than ATP compilation results. Comparative examples
 illustrating this advantage are provided in Figure 6 in Appendix.



305 Figure 2: Distribution comparison between hu-
 306 man and model evaluation scores using 100 ran-
 307 domly sampled items from the test dataset.

308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718

324 The correlation between error analysis and feedback
 325 rankings is 0.90, while the correlation between feed-
 326 back and refined proof attempt rankings is 0.95. This
 327 high consistency validates our hypothesis that bet-
 328 ter error analysis leads to better feedback generation,
 329 which in turn produces better proof refinements. De-
 330 tails are provided in Appendix D.

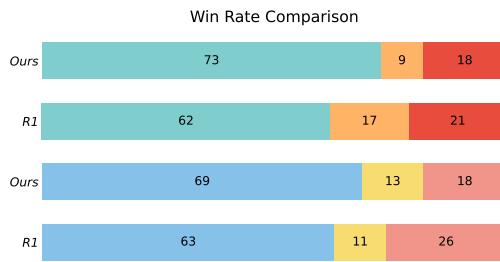
331 3.3 CASE ANALYSIS

332 We evaluated the quality of generated error analysis
 333 and actionable feedback using human annotators across both formal and natural language. Human
 334 evaluation shows that PROOF-VERIFIER locates approximately 81% of errors when averaged among
 335 all annotators, indicating the model learns detailed analysis of the entire proof process to identify
 336 errors in each proving step. For feedback, annotators considered 87% of the generated feedback
 337 to be useful and actionable, capable of helping prover models correct errors in previous attempts.
 338 This demonstrates that PROOF-VERIFIER generates the high-quality feedback essential for effective
 339 RLVR applications and suggests potential for performance improvement during inference, which is
 340 discussed in Section 4.1. Case examples are provided in Appendix N.

341 4 ENABLING RLVR FOR MATHEMATICAL THEOREM PROVING

342 To validate that PROOF-VERIFIER provides reliable reward signals for RLVR applications, we first
 343 demonstrate its effectiveness in test-time scaling scenarios, which represent a preliminary but essen-
 344 tial validation of our verifier’s practical utility for reinforcement learning settings.

345 4.1 BEST-OF-N



346 Figure 3: Win rate comparison between models
 347 on Natural Language (top two rows) and Formal
 348 Language (bottom two rows) tasks. The segments
 349 from left to right represent win, tie, and loss rates
 350 respectively. R1 means Deepseek-R1-0528.

351 We employ PROOF-VERIFIER evaluation
 352 scores to rank proof attempts from LLM-based
 353 provers in best-of-N sampling settings, select-
 354 ing the highest-scoring attempt. For natural
 355 language evaluation, we compare the selected
 356 proof against single-sample baselines through
 357 human preference evaluation, measuring win
 358 rates where best-of-N selections outperform or
 359 tie with single samples. For formal language
 360 evaluation, we use ATP verification to deter-
 361 mine success, with ties occurring when both
 362 best-of-N and single-sample approaches pass
 363 verification. Experimental results (Figure 3)
 364 demonstrate that our model’s selected samples
 365 achieve higher win rates compared to single
 366 samples and outperform the DeepSeek-R1
 367 model on our test dataset. This preliminary
 368 validation confirms that PROOF-VERIFIER
 369 generates evaluation signals that effectively guide proof selection, establishing the foundation for
 370 more comprehensive RLVR applications in subsequent experiments.

371 4.2 REFINEMENT BASED ON FEEDBACK

372 To validate that PROOF-VERIFIER feedback enables iterative improvement essential for multi-turn
 373 RLVR applications, we evaluate refinement capabilities across both language modalities. For natural
 374 language proofs, we assess whether refined proofs show improvement through human evaluation.
 375 For Lean4, we use ATP verification to compare pass@k performance before and after refinement.
 376 **Natural Language:** Human annotators found that 73% of the feedback effectively identifies errors
 377 and provides actionable guidance. However, only 51% of errors were successfully addressed in the
 378 refinement process, while 17% of proofs showed minimal changes and 32% introduced new errors.

Table 2: Ablation study results.

Setting	ACC	ICC	Variance
<i>Data Ablation</i>			
OPC	0.82	0.53	0.13
+ RFM	0.87	0.52	0.11
+ Ours	0.91	0.55	0.14
<i>Method Ablation</i>			
Baseline	0.91	0.55	0.14
+ Consistency Constraint	0.91	0.57	0.09
+ Proxy Reward	0.93	0.57	0.11

This gap between feedback effectiveness (73%) and successful error correction (51%) reveals limitations in current LLM-based provers' ability to utilize external guidance, highlighting an important direction for future RLVR training that focuses on improving feedback utilization capabilities. **Formal Language:** For Lean4 formal proofs, refinement improved pass@k performance from 37% to 51%, demonstrating that PROOF-VERIFIER feedback provides valuable guidance for correcting formal proof errors. The feedback primarily addresses: 1) correcting boundary condition assumption errors, 2) clarifying unclear theorem scope, and 3) resolving incomplete proofs that use `sorry` placeholders to skip proof goals. This 14-point improvement demonstrates that feedback-guided refinement achieves better scaling results with fewer sampling attempts compared to sequential and parallel scaling approaches, validating the practical utility of our verifier for RLVR applications.

4.3 REINFORCEMENT LEARNING

4.3.1 SINGLE-TURN & MULTI-TURN RL

Figure 4: Comparison between single-turn and multi-turn reinforcement learning approaches.

ward model that supplies binary reward signals based on correctness predictions for each round of proof attempts. This configuration demonstrates the full potential of our approach, enabling iterative proof development guided by detailed feedback.

4.3.2 EXPERIMENTAL RESULTS

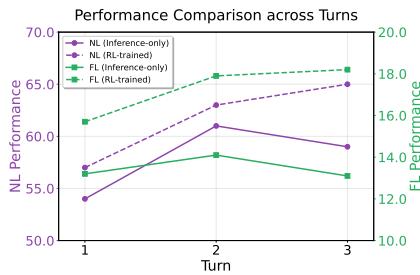


Figure 5: Multi-turn refinement performance comparison.

Focuses solely on the current proof attempt p_t for scoring and feedback generation, where p_i and f_i represent the proof and feedback at turn i , respectively. Crucially, reward signals are attributed only to the current turn's actions, thereby simplifying the credit assignment problem.

Having demonstrated that PROOF-VERIFIER provides reliable evaluation scores and actionable feedback for test-time applications, we now validate the core claim of our work: that our verifier enables effective RLVR training for mathematical theorem proving. This represents the ultimate test of whether we have successfully addressed the verification bottleneck that previously prevented RLVR applications in this domain. We evaluate PROOF-VERIFIER in reinforcement learning settings under two configurations that reflect different RLVR paradigms (as shown in Figure 4). For training, we use Qwen3-8B for informal language proofs and DeepSeek Prover 2 for formal language proofs. In single-turn RL, PROOF-VERIFIER acts as a reward model, providing binary reward signals based on label predictions (True/False) for each proof attempt, which validates the basic RLVR functionality where our verifier provides the verifiable reward signals that were previously missing. In multi-turn RL, PROOF-VERIFIER serves dual roles: as a feedback provider that engages in multi-turn conversations by providing refinement instructions, and as a re-

Our experimental results demonstrate that RL training enables the model to significantly reduce errors and improve output quality compared to the baseline model (Figure 5). Notably, the quality of individual sample generation improved substantially, narrowing the performance gap with best-of-n sampling and achieving higher win rates against reference solutions.

In our multi-turn RL framework, the model receives two complementary signals at each turn: (1) explicit feedback from the verifier, provided as in-context information to guide the prover model, and (2) scalar reward scores from the verifier, quantifying the relative quality of the current turn's proof attempt. The prover model's observation at turn t consists of the complete interaction history $\{p_0, f_0, p_1, f_1, \dots, p_{t-1}, f_{t-1}\}$, while the verifier fo-

432 Multi-turn RL training yields two improvements: First, the model’s capacity to utilize feedback
 433 improves, with the gap between feedback quality and actual proof improvement narrowing compared
 434 to prompt-based refinement approaches. Second, the performance degradation commonly observed
 435 in multi-turn feedback-based systems is mitigated, as the prover becomes more robust in leveraging
 436 beneficial feedback while avoiding deterioration from erroneous guidance (as shown in Figure 5).
 437 This improvement can be explained by our designed reward structure and credit assignment strategy.
 438 By optimizing only the current turn’s proof generation regardless of feedback correctness, the model
 439 learns to selectively utilize accurate feedback for enhanced proof quality while developing resilience
 440 against noisy or incorrect feedback. This approach implicitly trains the model to maintain correct
 441 proofs and refine incorrect ones across diverse scenarios, leading to improved robustness in multi-
 442 turn interactions.

443 5 RELATED WORK

444 **Mathematical theorem proving** has seen significant progress with benchmarks like
 445 miniF2F (Zheng et al., 2022), FIMO (Liu et al., 2023), and PutnamBench (Tsoukalas et al.,
 446 2024), alongside advances in AI-assisted approaches such as AlphaGeometry (Trinh et al., 2024;
 447 Chervonyi et al., 2025) and recent neural theorem provers (Polu & Sutskever, 2020). Current
 448 verification relies primarily on interactive theorem provers like Lean4 (de Moura et al., 2015;
 449 de Moura & Ullrich, 2021), Coq (Huet & Paulin-Mohring, 2000), and Isabelle (Nipkow et al.,
 450 2002), with recent improvements in compilation efficiency through Kimia Lean Server (Santos
 451 et al., 2025). However, these approaches have critical limitations for RLVR applications: they
 452 only support formal languages while excluding natural language proofs, and provide only binary
 453 verification results without the detailed error analysis or actionable feedback essential for effective
 454 reinforcement learning.

455 **Reward modeling for mathematical reasoning** has primarily focused on traditional problem-
 456 solving tasks. Process reward models (Lightman et al., 2024; Wang et al., 2024a) have shown suc-
 457 cess in step-by-step verification for computational problems, while outcome reward models achieve
 458 strong results through final answer comparison (Cobbe et al., 2021). More broadly, LLM-as-a-judge
 459 approaches (Zheng et al., 2023) have evolved from instruction-following evaluation to reward mod-
 460 els across domains including medical QA (Croxford et al., 2025), multimodal tasks (Chen et al.,
 461 2024), and code generation (Zhao et al., 2024), with open-source alternatives like PandaLM (Wang
 462 et al., 2024b) and Prometheus (Kim et al., 2024a;b) providing cost-effective solutions. While these
 463 methods succeed in traditional mathematical tasks through reference answer comparison (Chen
 464 et al., 2025), theorem proving’s process-oriented nature and diverse solution paths present unique
 465 verification challenges that limit RLVR applications in this domain. Our work addresses this verifi-
 466 cation bottleneck by developing the first dual-language verifier specifically designed for mathemat-
 467 ical theorem proving, enabling RLVR applications through detailed error analysis and fine-grained
 468 evaluation capabilities via novel two-stage reward modeling.

470 6 CONCLUSION

471 We introduce PROOF-VERIFIER, a generative verifier that enables effective verification for math-
 472 ematical theorem proofs in both formal and natural languages. Through a novel data synthesis
 473 pipeline and two-stage coarse-to-fine training framework, our model learns to provide quantitative
 474 assessment and detailed qualitative feedback for proof attempts. Experimental results show that
 475 PROOF-VERIFIER achieves strong verification accuracy with high correlation to human judgment
 476 and ATP in model ranking. Our verifier effectively supports test-time scaling through best-of-n se-
 477 lection and enables iterative proof refinement via actionable feedback. Finally, we demonstrate that
 478 PROOF-VERIFIER serves as an effective verifiable reward model for RLVR, revealing the potential
 479 of LLM-based verifiers to advance automated reasoning in domains without reference answers.

480 ETHICS STATEMENT

481 This work proposes PROOF-VERIFIER to enable Reinforcement Learning from Verifiable Rewards
 482 for mathematical theorem proving, enhancing models’ mathematical reasoning capabilities. By

486 generating detailed mathematical proof processes rather than potentially error-prone intermediate
 487 steps, our approach increases the trustworthiness of LLM outputs. This advancement strengthens the
 488 reliability and educational value of AI systems for mathematical learning and instruction, promoting
 489 more transparent and verifiable mathematical reasoning.

490

491 REPRODUCIBILITY STATEMENT

492

493 To ensure reproducibility of our results, we provide comprehensive implementation details and ex-
 494 perimental specifications throughout the paper and supplementary materials. Section 2 and Section
 495 4 detail our training methodology, model architectures, and experimental setup, while the com-
 496 plete data processing pipeline, including our formal-to-informal translation procedure and filtering
 497 strategies, is described in Section 2.1 and Appendix F. All model configurations, hyperparameters,
 498 training procedures, and prompt templates used in our experiments are documented in Appendices
 499 G and M. To validate the quality of our human evaluation process, we include detailed examples
 500 of our annotation interface and inter-annotator agreement scores in Appendix D, along with sample
 501 cases demonstrating the assessment criteria used by human evaluators. The statistical distributions
 502 of our training datasets, experimental configurations for all baseline comparisons, and additional
 503 implementation details are provided in Appendices F through N. All materials necessary for repro-
 504 ducing our experimental results, including dataset construction procedures, evaluation protocols,
 505 and analysis methods, are included in the submitted appendices.

506

507 REFERENCES

508

509 Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
 510 and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level math-
 511 ematics, 2023. URL <https://arxiv.org/abs/2302.12433>.

512 Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinch Li,
 513 Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evalua-
 514 tions, 2025. URL <https://arxiv.org/abs/2504.10481>.

515 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang,
 516 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge
 517 with vision-language benchmark, 2024. URL <https://arxiv.org/abs/2402.04788>.

518 Yuri Chervonyi, Trieu H. Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Mene-
 519 gali, Junehyuk Jung, Vikas Verma, Quoc V. Le, and Thang Luong. Gold-medalist performance in
 520 solving olympiad geometry with alphageometry2, 2025. URL <https://arxiv.org/abs/2502.03544>.

521

522 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 523 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 524 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

525

526 Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and Psychological Mea-*
 527 *surement*, 20(1):37–46, 1960. doi: 10.1177/001316446002000104.

528

529 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 530 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marrs, Sam Petulla, Colin
 531 Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
 532 Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
 533 Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
 534 Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilai Deutel, Nam Nguyen,
 535 Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller,
 536 Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan
 537 Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy
 538 Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Hey-
 539 ward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik,
 Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu,

540 Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-
 541 Juen Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Le-
 542 ichner, Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin
 543 Chen, Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios
 544 Vytiniotis, Jieru Mei, Mu Cai, Mohammed Badawi, Corey Fry, Ale Hartman, Daniel Zheng,
 545 Eric Jia, James Keeling, Annie Louis, Ying Chen, Efren Robles, Wei-Chih Hung, Howard Zhou,
 546 Nikita Saxena, Sonam Goenka, Olivia Ma, Zach Fisher, Mor Hazan Taege, Emily Graves, David
 547 Steiner, Yujia Li, Sarah Nguyen, Rahul Sukthankar, Joe Stanton, Ali Eslami, Gloria Shen, Berkin
 548 Akin, Alexey Guseynov, Yiqian Zhou, Jean-Baptiste Alayrac, Armand Joulin, Efrat Farkash,
 549 Ashish Thapliyal, Stephen Roller, Noam Shazeer, Todor Davchev, Terry Koo, Hannah Forbes-
 550 Pollard, Kartik Audhkhasi, Greg Farquhar, Adi Mayrav Gilady, Maggie Song, John Aslanides,
 551 Piermaria Mendolicchio, Alicia Parrish, John Blitzer, Pramod Gupta, Xiaoen Ju, Xiaochen Yang,
 552 Puranjay Datta, Andrea Tacchetti, Sanket Vaibhav Mehta, Gregory Dibb, Shubham Gupta, Federico
 553 Piccinini, Raia Hadsell, Sujee Rajayogam, Jiepu Jiang, Patrick Griffin, Patrik Sundberg,
 554 Jamie Hayes, Alexey Frolov, Tian Xie, Adam Zhang, Kingshuk Dasgupta, Uday Kalra, Lior
 555 Shani, Klaus Macherey, Tzu-Kuo Huang, Liam MacDermed, Karthik Duddu, Paulo Zucchello,
 556 Zi Yang, Jessica Lo, Kai Hui, Matej Kastelic, Derek Gasaway, Qijun Tan, Summer Yue, Pablo
 557 Barrio, John Wieting, Weel Yang, Andrew Nystrom, Solomon Demmessie, Anselm Levskaya,
 558 Fabio Viola, Chetan Tekur, Greg Billok, George Necula, Mandar Joshi, Rylan Schaeffer, Swach-
 559 hand Lokhande, Christina Sorokin, Pradeep Shenoy, Mia Chen, Mark Collier, Hongji Li, Tay-
 560 lor Bos, Nevan Wickers, Sun Jae Lee, Angéline Pouget, Santhosh Thangaraj, Kyriakos Axio-
 561 tis, Phil Crone, Rachel Sterneck, Nikolai Chinaev, Victoria Krakovna, Oleksandr Ferludin, Ian
 562 Gemp, Stephanie Winkler, Dan Goldberg, Ivan Korotkov, Kefan Xiao, Malika Mehrotra, Sandeep
 563 Mariserla, Vihari Piratla, Terry Thurk, Khiem Pham, Hongxu Ma, Alexandre Senges, Ravi Ku-
 564 mar, Clemens Meyer, Ellie Talius, Nuo Wang Pierse, Ballie Sandhu, Horia Toma, Kuo Lin, Swa-
 565 roop Nath, Tom Stone, Dorsa Sadigh, Nikita Gupta, Arthur Guez, Avi Singh, Matt Thomas, Tom
 566 Duerig, Yuan Gong, Richard Tanburn, Lydia Lihui Zhang, Phuong Dao, Mohamed Hammad,
 567 Sirui Xie, Shruti Rijhwani, Ben Murdoch, Duhyeon Kim, Will Thompson, Heng-Tze Cheng,
 568 Daniel Sohn, Pablo Sprechmann, Qiantong Xu, Srinivas Tadepalli, Peter Young, Ye Zhang, Hansa
 569 Srinivasan, Miranda Aperghis, Aditya Ayyar, Hen Fitoussi, Ryan Burnell, David Madras, Mike
 570 Dusenberry, Xi Xiong, Tayo Oguntebi, Ben Albrecht, Jörg Bornschein, Jovana Mitrović, Ma-
 571 son Dimarco, Bhargav Kanagal Shamanna, Premal Shah, Eren Sezener, Shyam Upadhyay, Dave
 572 Lacey, Craig Schiff, Sebastien Baur, Sanjay Ganapathy, Eva Schnider, Mateo Wirth, Connor
 573 Schenck, Andrey Simanovsky, Yi-Xuan Tan, Philipp Fränken, Dennis Duan, Bharath Mankalale,
 574 Nikhil Dhawan, Kevin Sequeira, Zichuan Wei, Shivanker Goel, Caglar Unlu, Yukun Zhu, Haitian
 575 Sun, Ananth Balashankar, Kurt Shuster, Megh Umekar, Mahmoud Alnahlawi, Aäron van den
 576 Oord, Kelly Chen, Yuexiang Zhai, Zihang Dai, Kuang-Huei Lee, Eric Doi, Lukas Zilka, Rohith
 577 Vallu, Disha Shrivastava, Jason Lee, Hisham Husain, Honglei Zhuang, Vincent Cohen-Addad,
 578 Jarred Barber, James Atwood, Adam Sadovsky, Quentin Wellens, Steven Hand, Arunkumar Ra-
 579 jendran, Aybuke Turker, CJ Carey, Yuanzhong Xu, Hagen Soltau, Zefei Li, Xinying Song, Con-
 580 glong Li, Iurii Kemaev, Sasha Brown, Andrea Burns, Viorica Patrachean, Piotr Stanczyk, Renga
 581 Aravamudhan, Mathieu Blondel, Hila Noga, Lorenzo Blanco, Will Song, Michael Isard, Mandar
 582 Sharma, Reid Hayes, Dalia El Badawy, Avery Lamp, Itay Laish, Olga Kozlova, Kelvin Chan,
 583 Sahil Singla, Srinivas Sunkara, Mayank Upadhyay, Chang Liu, Aijun Bai, Jarek Wilkiewicz,
 584 Martin Zlocha, Jeremiah Liu, Zhuowan Li, Haiguang Li, Omer Barak, Ganna Raboshchuk, Jiho
 585 Choi, Fangyu Liu, Erik Jue, Mohit Sharma, Andreea Marzoca, Robert Busa-Fekete, Anna Ko-
 586 rsun, Andre Elisseeff, Zhe Shen, Sara Mc Carthy, Kay Lamerigts, Anahita Hosseini, Hanzhao
 587 Lin, Charlie Chen, Fan Yang, Kushal Chauhan, Mark Omernick, Dawei Jia, Karina Zainul-
 588 lina, Demis Hassabis, Danny Vainstein, Ehsan Amid, Xiang Zhou, Ronny Votel, Eszter Vértes,
 589 Xinjian Li, Zongwei Zhou, Angeliki Lazaridou, Brendan McMahan, Arjun Narayanan, Hubert
 590 Soyer, Sujoy Basu, Kayi Lee, Bryan Perozzi, Qin Cao, Leonard Berrada, Rahul Arya, Ke Chen,
 591 Katrina Xu, Matthias Lochbrunner, Alex Hofer, Sahand Sharifzadeh, Renjie Wu, Sally Gold-
 592 man, Pranjal Awasthi, Xuezhi Wang, Yan Wu, Claire Sha, Biao Zhang, Maciej Mikuła, Filippo
 593 Graziano, Siobhan McLaughlin, Irene Giannoumis, Youhei Namiki, Chase Malik, Carey Rade-
 baugh, Jamie Hall, Ramiro Leal-Cavazos, Jianmin Chen, Vikas Sindhwani, David Kao, David
 Greene, Jordan Griffith, Chris Welty, Ceslee Montgomery, Toshihiro Yoshino, Liangzhe Yuan,
 Noah Goodman, Assaf Hurwitz Michaely, Kevin Lee, KP Sawhney, Wei Chen, Zheng Zheng,
 Megan Shum, Nikolay Savinov, Etienne Pot, Alex Pak, Morteza Zadimoghaddam, Sijal Bhat-
 nagar, Yoad Lewenberg, Blair Kutzman, Ji Liu, Lesley Katzen, Jeremy Selier, Josip Djolonga,

594 Dmitry Lepikhin, Kelvin Xu, Jacky Liang, Jiewen Tan, Benoit Schillings, Muge Ersoy, Pete
 595 Blois, Bernd Bandemer, Abhimanyu Singh, Sergei Lebedev, Pankaj Joshi, Adam R. Brown,
 596 Evan Palmer, Shreya Pathak, Komal Jalan, Fedir Zubach, Shuba Lall, Randall Parker, Alok Gun-
 597 jan, Sergey Rogulenko, Sumit Sanghai, Zhaoqi Leng, Zoltan Egyed, Shixin Li, Maria Ivanova,
 598 Kostas Andriopoulos, Jin Xie, Elan Rosenfeld, Auriel Wright, Ankur Sharma, Xinyang Geng,
 599 Yicheng Wang, Sam Kwei, Renke Pan, Yujing Zhang, Gabby Wang, Xi Liu, Chak Yeung, Eliz-
 600 abeth Cole, Aviv Rosenberg, Zhen Yang, Phil Chen, George Polovets, Pranav Nair, Rohun Sax-
 601 ena, Josh Smith, Shuo yiin Chang, Aroma Mahendru, Svetlana Grant, Anand Iyer, Irene Cai,
 602 Jed McGiffin, Jiaming Shen, Alanna Walton, Antonious Girgis, Oliver Woodman, Rosemary Ke,
 603 Mike Kwong, Louis Rouillard, Jinmeng Rao, Zhihao Li, Yuntao Xu, Flavien Prost, Chi Zou,
 604 Ziwei Ji, Alberto Magni, Tyler Liechty, Dan A. Calian, Deepak Ramachandran, Igor Krivokon,
 605 Hui Huang, Terry Chen, Anja Hauth, Anastasija Ilić, Weijuan Xi, Hyuntaek Lim, Vlad-Doru
 606 Ion, Pooya Moradi, Metin Toksoz-Exley, Kalesha Bullard, Miltos Allamanis, Xiaomeng Yang,
 607 Sophie Wang, Zhi Hong, Anita Gergely, Cheng Li, Bhavishya Mittal, Vitaly Kovalev, Victor
 608 Ungureanu, Jane Labanowski, Jan Wassenberg, Nicolas Lacasse, Geoffrey Cideron, Petar De-
 609 vić, Annie Marsden, Lynn Nguyen, Michael Fink, Yin Zhong, Tatsuya Kiyono, Desi Ivanov,
 610 Sally Ma, Max Bain, Kiran Yalasangi, Jennifer She, Anastasia Petrushkina, Mayank Lunayach,
 611 Carla Bromberg, Sarah Hodkinson, Vilobh Meshram, Daniel Vlasic, Austin Kyker, Steve Xu, Jeff
 612 Stanway, Zuguang Yang, Kai Zhao, Matthew Tung, Seth Odoom, Yasuhisa Fujii, Justin Gilmer,
 613 Eunyoung Kim, Felix Halim, Quoc Le, Bernd Bohnet, Seliem El-Sayed, Behnam Neyshabur,
 614 Malcolm Reynolds, Dean Reich, Yang Xu, Erica Moreira, Anuj Sharma, Zeyu Liu, Moham-
 615 mad Javad Hosseini, Naina Raisinghani, Yi Su, Ni Lao, Daniel Formoso, Marco Gelmi, Almog
 616 Gueta, Tapomay Dey, Elena Gribovskaya, Domagoj Ćevid, Sidharth Mudgal, Garrett Bingham,
 617 Jianling Wang, Anurag Kumar, Alex Cullum, Feng Han, Konstantinos Bousmalis, Diego Cedillo,
 618 Grace Chu, Vladimir Magay, Paul Michel, Ester Hlavnova, Daniele Calandriello, Setareh Ari-
 619 afar, Kaisheng Yao, Vikash Sehwag, Arpi Vezer, Agustin Dal Lago, Zhenkai Zhu, Paul Kishan
 620 Rubenstein, Allen Porter, Anirudh Baddepudi, Oriana Riva, Mihai Dorin Istin, Chih-Kuan Yeh,
 621 Zhi Li, Andrew Howard, Nilpa Jha, Jeremy Chen, Raoul de Liedekerke, Zafarali Ahmed, Mikel
 622 Rodriguez, Tanuj Bhatia, Bangju Wang, Ali Elqursh, David Klinghoffer, Peter Chen, Pushmeet
 623 Kohli, Te I, Weiyang Zhang, Zack Nado, Jilin Chen, Maxwell Chen, George Zhang, Aayush
 624 Singh, Adam Hillier, Federico Lebron, Yiqing Tao, Ting Liu, Gabriel Dulac-Arnold, Jingwei
 625 Zhang, Shashi Narayan, Buhuang Liu, Orhan Firat, Abhishek Bhowmick, Bingyuan Liu, Hao
 626 Zhang, Zizhao Zhang, Georges Rotival, Nathan Howard, Anu Sinha, Alexander Grushetsky, Ben-
 627 jamin Beyret, Keerthana Gopalakrishnan, James Zhao, Kyle He, Szabolcs Payrits, Zaid Nabulsi,
 628 Zhaoyi Zhang, Weijie Chen, Edward Lee, Nova Fallen, Sreenivas Gollapudi, Aurick Zhou, Filip
 629 Pavetić, Thomas Köppe, Shiyu Huang, Rama Pasumarthi, Nick Fernando, Felix Fischer, Daria
 630 Ćurko, Yang Gao, James Svensson, Austin Stone, Haroon Qureshi, Abhishek Sinha, Apoorv
 631 Kulshreshtha, Martin Matysiak, Jieming Mao, Carl Saroufim, Aleksandra Faust, Qingnan Duan,
 632 Gil Fidel, Kaan Katircioglu, Raphaël Lopez Kaufman, Dhruv Shah, Weize Kong, Abhishek
 633 Bapna, Gellért Weisz, Emma Dunleavy, Praneet Dutta, Tianqi Liu, Rahma Chaabouni, Carolina
 634 Parada, Marcus Wu, Alexandra Belias, Alessandro Bissacco, Stanislav Fort, Li Xiao, Fantine
 635 Huot, Chris Knutsen, Yochai Blau, Gang Li, Jennifer Prendki, Juliette Love, Yinlam Chow, Pichi
 636 Charoenpanit, Hidetoshi Shimokawa, Vincent Coriou, Karol Gregor, Tomas Izo, Arjun Akula,
 637 Mario Pinto, Chris Hahn, Dominik Paulus, Jiaxian Guo, Neha Sharma, Cho-Jui Hsieh, Adaeze
 638 Chukwuka, Kazuma Hashimoto, Nathalie Rauschmayr, Ling Wu, Christof Angermueller, Yulong
 639 Wang, Sebastian Gerlach, Michael Pliskin, Daniil Mirylenka, Min Ma, Lexi Baugher, Bryan Gale,
 640 Shaan Bijwadia, Nemanja Rakićević, David Wood, Jane Park, Chung-Ching Chang, Babi Seal,
 641 Chris Tar, Kacper Krasowiak, Yiwen Song, Georgi Stephanov, Gary Wang, Marcello Maggioni,
 642 Stein Xudong Lin, Felix Wu, Shachi Paul, Zixuan Jiang, Shubham Agrawal, Bilal Piot, Alex
 643 Feng, Cheolmin Kim, Tulsee Doshi, Jonathan Lai, Chuqiao, Xu, Sharad Vikram, Ciprian Chelba,
 644 Sebastian Krause, Vincent Zhuang, Jack Rae, Timo Denk, Adrian Collister, Lotte Weerts, Xi-
 645 anghong Luo, Yifeng Lu, Håvard Garnes, Nitish Gupta, Terry Spitz, Avinatan Hassidim, Lihao
 646 Liang, Izhak Shafran, Peter Humphreys, Kenny Vassigh, Phil Wallis, Virat Shejwalkar, Nicolas
 647 Perez-Nieves, Rachel Hornung, Melissa Tan, Beka Westberg, Andy Ly, Richard Zhang, Brian
 Farris, Jongbin Park, Alec Kosik, Zeynep Cankara, Andrii Maksai, Yunhan Xu, Albin Cassirer,
 Sergi Caelles, Abbas Abdolmaleki, Mencher Chiang, Alex Fabrikant, Shravya Shetty, Luheng
 He, Mai Giménez, Hadi Hashemi, Sheena Panthapuckle, Yana Kulizhskaya, Salil Deshmukh,
 Daniele Pighin, Robin Alazard, Disha Jindal, Seb Noury, Pradeep Kumar S, Siyang Qin, Xerxes
 Dotiwalla, Stephen Spencer, Mohammad Babaeizadeh, Blake JianHang Chen, Vaibhav Mehta,

648 Jennie Lees, Andrew Leach, Penporn Koanantakool, Ilia Akolzin, Ramona Comanescu, Junwhan
 649 Ahn, Alexey Svyatkovskiy, Basil Mustafa, David D'Ambrosio, Shiva Mohan Reddy Garlapati,
 650 Pascal Lamblin, Alekh Agarwal, Shuang Song, Pier Giuseppe Sessa, Pauline Coquinot, John
 651 Maggs, Hussain Masoom, Divya Pitta, Yaqing Wang, Patrick Morris-Suzuki, Billy Porter, John-
 652 son Jia, Jeffrey Dudek, Raghavender R, Cosmin Paduraru, Alan Ansell, Tolga Bolukbasi, Tony
 653 Lu, Ramya Ganeshan, Zi Wang, Henry Griffiths, Rodrigo Benenson, Yifan He, James Swirhun,
 654 George Papamakarios, Aditya Chawla, Kuntal Sengupta, Yan Wang, Vedrana Milutinovic, Igor
 655 Mordatch, Zhipeng Jia, Jamie Smith, Will Ng, Shitij Nigam, Matt Young, Eugen Vušak, Blake
 656 Hechtman, Sheela Goenka, Avital Zipori, Kareem Ayoub, Ashok Popat, Trilok Acharya, Luo
 657 Yu, Dawn Bloxwich, Hugo Song, Paul Roit, Haiqiong Li, Aviel Boag, Nigamaa Nayakanti,
 658 Bilva Chandra, Tianli Ding, Aahil Mehta, Cath Hope, Jiageng Zhang, Idan Heimlich Shtacher,
 659 Kartikeya Badola, Ryo Nakashima, Andrei Sozanschi, Iulia Comşa, Ante Žužul, Emily Cave-
 660 ness, Julian Odell, Matthew Watson, Dario de Cesare, Phillip Lippe, Derek Lockhart, Siddharth
 661 Verma, Huizhong Chen, Sean Sun, Lin Zhuo, Aditya Shah, Prakhar Gupta, Alex Muzio, Ning
 662 Niu, Amir Zait, Abhinav Singh, Meenu Gaba, Fan Ye, Prajit Ramachandran, Mohammad Saleh,
 663 Raluca Ada Popa, Ayush Dubey, Frederick Liu, Sara Javanmardi, Mark Epstein, Ross Hemsley,
 664 Richard Green, Nishant Ranka, Eden Cohen, Chuyuan Kelly Fu, Sanjay Ghemawat, Jed Borovik,
 665 James Martens, Anthony Chen, Pranav Shyam, André Susano Pinto, Ming-Hsuan Yang, Alexan-
 666 dru Tifrea, David Du, Boqing Gong, Ayushi Agarwal, Seungyeon Kim, Christian Frank, Saloni
 667 Shah, Xiaodan Song, Zhiwei Deng, Ales Mikhalap, Kleopatra Chatziprimou, Timothy Chung,
 668 Toni Creswell, Susan Zhang, Yennie Jun, Carl Lebsack, Will Truong, Slavica Andačić, Itay Yona,
 669 Marco Fornoni, Rong Rong, Serge Toropov, Afzal Shama Soudagar, Andrew Audibert, Salah
 670 Zaiem, Zaheer Abbas, Andrei Rusu, Sahitya Potluri, Shitao Weng, Anastasios Kementsietsidis,
 671 Anton Tsitsulin, Daiyi Peng, Natalie Ha, Sanil Jain, Tejas Latkar, Simeon Ivanov, Cory McLean,
 672 Anirudh GP, Rajesh Venkataraman, Canoei Liu, Dilip Krishnan, Joel D'sa, Roey Yogev, Paul
 673 Collins, Benjamin Lee, Lewis Ho, Carl Doersch, Gal Yona, Shawn Gao, Felipe Tiengo Ferreira,
 674 Adnan Ozturk, Hannah Muckenhirk, Ce Zheng, Gargi Balasubramaniam, Mudit Bansal, George
 675 van den Driessche, Sivan Eiger, Salem Haykal, Vedant Misra, Abhimanyu Goyal, Danilo Martins,
 676 Gary Leung, Jonas Valfridsson, Four Flynn, Will Bishop, Chenxi Pang, Yoni Halpern, Honglin
 677 Yu, Lawrence Moore, Yuvein, Zhu, Sridhar Thiagarajan, Yoel Drori, Zhisheng Xiao, Lucio Dery,
 678 Rolf Jagerman, Jing Lu, Eric Ge, Vaibhav Aggarwal, Arjun Khare, Vinh Tran, Oded Elyada,
 679 Ferran Alet, James Rubin, Ian Chou, David Tian, Libin Bai, Lawrence Chan, Lukasz Lew, Karo-
 680 lis Misiunas, Taylan Bilal, Aniket Ray, Sindhu Raghu, Alex Castro-Ros, Viral Carpenter,
 681 CJ Zheng, Michael Kilgore, Josef Broder, Emily Xue, Praveen Kallakuri, Dheeru Dua, Nancy
 682 Yuen, Steve Chien, John Schultz, Saurabh Agrawal, Reut Tsarfaty, Jingcao Hu, Ajay Kannan,
 683 Dror Marcus, Nisarg Kothari, Baochen Sun, Ben Horn, Matko Bošnjak, Ferjad Naeem, Dean
 684 Hirsch, Lewis Chiang, Boya Fang, Jie Han, Qifei Wang, Ben Hora, Antoine He, Mario Lučić,
 685 Beer Changpinyo, Anshuman Tripathi, John Youssef, Chester Kwak, Philippe Schlattner, Cat
 686 Graves, Rémi Leblond, Wenjun Zeng, Anders Andreassen, Gabriel Rasskin, Yue Song, Eddie
 687 Cao, Junhyuk Oh, Matt Hoffman, Wojtek Skut, Yichi Zhang, Jon Stritar, Xingyu Cai, Saarthak
 688 Khanna, Kathie Wang, Shriya Sharma, Christian Reisswig, Younghoon Jun, Aman Prasad, Ta-
 689 tiana Sholokhova, Preeti Singh, Adi Gerzi Rosenthal, Anian Ruoss, Françoise Beaufays, Sean
 690 Kirmani, Dongkai Chen, Johan Schalkwyk, Jonathan Herzig, Been Kim, Josh Jacob, Damien
 691 Vincent, Adrian N Reyes, Ivana Balazevic, Léonard Hussonot, Jon Schneider, Parker Barnes,
 692 Luis Castro, Spandana Raj Babbula, Simon Green, Serkan Cabi, Nico Duduta, Danny Driess,
 693 Rich Galt, Noam Velan, Junjie Wang, Hongyang Jiao, Matthew Mauger, Du Phan, Miteyan Patel,
 694 Vlado Galić, Jerry Chang, Eyal Marcus, Matt Harvey, Julian Salazar, Elahe Dabir, Suraj Satishku-
 695 mar Sheth, Amol Mandhane, Hanie Sedghi, Jeremiah Willcock, Amir Zandieh, Shruthi Prab-
 696 hakara, Aida Amini, Antoine Miech, Victor Stone, Massimo Nicosia, Paul Niemczyk, Ying Xiao,
 697 Lucy Kim, Sławek Kwasiborski, Vikas Verma, Ada Maksutaj Oflazer, Christoph Hirnschall, Pe-
 698 ter Sung, Lu Liu, Richard Everett, Michiel Bakker, Ágoston Weisz, Yufei Wang, Vivek Sam-
 699 pathkumar, Uri Shaham, Bibo Xu, Yasemin Altun, Mingqiu Wang, Takaaki Saeki, Guanjie Chen,
 700 Emanuel Taropa, Shanthal Vasanth, Sophia Austin, Lu Huang, Goran Petrovic, Qingyun Dou,
 701 Daniel Golovin, Grigory Rozhdestvenskiy, Allie Culp, Will Wu, Motoki Sano, Divya Jain, Julia
 Proskurnia, Sébastien Cevey, Alejandro Cruzado Ruiz, Piyush Patil, Mahdi Mirzazadeh, Eric Ni,
 Javier Snaider, Lijie Fan, Alexandre Fréchette, AJ Piergiovanni, Shariq Iqbal, Kenton Lee, Clau-
 dio Fantacci, Jinwei Xing, Lisa Wang, Alex Irpan, David Raposo, Yi Luan, Zhuoyuan Chen, Har-
 ish Ganapathy, Kevin Hui, Jiazhong Nie, Isabelle Guyon, Heming Ge, Roopali Vij, Hui Zheng,
 Dayeong Lee, Alfonso Castaño, Khuslen Baatarsukh, Gabriel Ibagon, Alexandra Chronopoulou,

702 Nicholas FitzGerald, Shashank Viswanadha, Safeen Huda, Rivka Moroshko, Georgi Stoyanov,
 703 Prateek Kolhar, Alain Vaucher, Ishaan Watts, Adhi Kuncoro, Henryk Michalewski, Satish Kam-
 704 bala, Bat-Orgil Batsaikhan, Alek Andreev, Irina Jurenka, Maigo Le, Qihang Chen, Wael Al Jishi,
 705 Sarah Chakera, Zhe Chen, Aditya Kini, Vikas Yadav, Aditya Siddhant, Ilia Labzovsky, Balaji
 706 Lakshminarayanan, Carrie Grimes Bostock, Pankil Botadra, Ankesh Anand, Colton Bishop, Sam
 707 Conway-Rahman, Mohit Agarwal, Yani Donchev, Achintya Singhal, Félix de Chaumont Quiry,
 708 Natalia Ponomareva, Nishant Agrawal, Bin Ni, Kalpesh Krishna, Masha Samsikova, John Karro,
 709 Yilun Du, Tamara von Glehn, Caden Lu, Christopher A. Choquette-Choo, Zhen Qin, Tingnan
 710 Zhang, Sicheng Li, Divya Tyam, Swaroop Mishra, Wing Lowe, Colin Ji, Weiyi Wang, Man-
 711 aal Faruqui, Ambrose Slone, Valentin Dalibard, Arunachalam Narayanaswamy, John Lambert,
 712 Pierre-Antoine Manzagol, Dan Karliner, Andrew Bolt, Ivan Lobov, Aditya Kusupati, Chang
 713 Ye, Xuan Yang, Heiga Zen, Nelson George, Mukul Bhutani, Olivier Lacombe, Robert Riachi,
 714 Gagan Bansal, Rachel Soh, Yue Gao, Yang Yu, Adams Yu, Emily Nottage, Tania Rojas-Esponda,
 715 James Noraky, Manish Gupta, Ragha Kotikalapudi, Jichuan Chang, Sanja Deur, Dan Graur, Alex
 716 Mossin, Erin Farnese, Ricardo Figueira, Alexandre Moufarek, Austin Huang, Patrik Zochbauer,
 717 Ben Ingram, Tongzhou Chen, Zelin Wu, Adrià Puigdomènech, Leland Rechis, Da Yu, Sri Gay-
 718 atri Sundara Padmanabhan, Rui Zhu, Chu ling Ko, Andrea Banino, Samira Daruki, Aarush Sel-
 719 van, Dhruva Bhaswar, Daniel Hernandez Diaz, Chen Su, Salvatore Scellato, Jennifer Brennan,
 720 Woohyun Han, Grace Chung, Priyanka Agrawal, Urvashi Khandelwal, Khe Chai Sim, Mor-
 721 gane Lustman, Sam Ritter, Kelvin Guu, Jiawei Xia, Prateek Jain, Emma Wang, Tyrone Hill,
 722 Mirko Rossini, Marija Kostelac, Tautvydas Misiunas, Amit Sabne, Kyuyeun Kim, Ahmet Is-
 723 cen, Congchao Wang, José Leal, Ashwin Sreevatsa, Utku Evci, Manfred Warmuth, Saket Joshi,
 724 Daniel Suo, James Lottes, Garrett Honke, Brendan Jou, Stefani Karp, Jieru Hu, Himanshu Sahni,
 725 Adrien Ali Taïga, William Kong, Samrat Ghosh, Renshen Wang, Jay Pavagadhi, Natalie Axels-
 726 son, Nikolai Grigorev, Patrick Siegler, Rebecca Lin, Guohui Wang, Emilio Parisotto, Sharath
 727 Maddineni, Krishan Subudhi, Eyal Ben-David, Elena Poichernina, Orgad Keller, Thi Avrahami,
 728 Zhe Yuan, Pulkit Mehta, Jialu Liu, Sherry Yang, Wendy Kan, Katherine Lee, Tom Funkhouser,
 729 Derek Cheng, Hongzhi Shi, Archit Sharma, Joe Kelley, Matan Eyal, Yury Malkov, Corentin Tal-
 730 lec, Yuval Bahat, Shen Yan, Xintian, Wu, David Lindner, Chengda Wu, Avi Caciularu, Xiyang
 731 Luo, Rodolphe Jenatton, Tim Zaman, Yingying Bi, Ilya Kornakov, Ganesh Mallya, Daisuke
 732 Ikeda, Itay Karo, Anima Singh, Colin Evans, Praneeth Netrapalli, Vincent Nallatamby, Isaac
 733 Tian, Yannis Assael, Vikas Raunak, Victor Carbune, Ioana Bica, Lior Madmoni, Dee Cattle,
 734 Snchit Grover, Krishna Somandepalli, Sid Lall, Amelio Vázquez-Reina, Riccardo Patana, Jiaqi
 735 Mu, Pranav Talluri, Maggie Tran, Rajeev Aggarwal, RJ Skerry-Ryan, Jun Xu, Mike Burrows,
 736 Xiaoyue Pan, Edouard Yvinec, Di Lu, Zhiying Zhang, Duc Dung Nguyen, Hairong Mu, Gabriel
 737 Barcik, Helen Ran, Lauren Beltrone, Krzysztof Choromanski, Dia Kharrat, Samuel Albanie, Sean
 738 Purser-haskell, David Bieber, Carrie Zhang, Jing Wang, Tom Hudson, Zhiyuan Zhang, Han Fu,
 739 Johannes Mauerer, Mohammad Hossein Bateni, AJ Maschinot, Bing Wang, Muye Zhu, Arjun
 740 Pillai, Tobias Weyand, Shuang Liu, Oscar Akerlund, Fred Bertsch, Vittal Premachandran, Ali-
 741 cia Jin, Vincent Roulet, Peter de Boursac, Shubham Mittal, Ndaba Ndebele, Georgi Karadzhov,
 742 Sahra Ghalebikesabi, Ricky Liang, Allen Wu, Yale Cong, Nimesh Ghelani, Sumeet Singh, Ba-
 743 har Fatemi, Warren, Chen, Charles Kwong, Alexey Kolganov, Steve Li, Richard Song, Chenkai
 744 Kuang, Sobhan Miryoosefi, Dale Webster, James Wendt, Arkadiusz Socala, Guolong Su, Artur
 745 Mendonça, Abhinav Gupta, Xiaowei Li, Tomy Tsai, Qiong, Hu, Kai Kang, Angie Chen, Ser-
 746 tan Girgin, Yongqin Xian, Andrew Lee, Nolan Ramsden, Leslie Baker, Madeleine Clare Elish,
 747 Varvara Krayanova, Rishabh Joshi, Jiri Simsa, Yao-Yuan Yang, Piotr Ambroszczyk, Dipankar
 748 Ghosh, Arjun Kar, Yuan Shangguan, Yumeya Yamamori, Yaroslav Akulov, Andy Brock, Hao-
 749 tian Tang, Siddharth Vashishta, Rich Munoz, Andreas Steiner, Kalyan Andra, Daniel Eppens,
 750 Qixuan Feng, Hayato Kobayashi, Sasha Goldshtein, Mona El Mahdy, Xin Wang, Jilei, Wang,
 751 Richard Killam, Tom Kwiatkowski, Kavya Kopparapu, Serena Zhan, Chao Jia, Alexei Bende-
 752 bury, Sheryl Luo, Adrià Recasens, Timothy Knight, Jing Chen, Mohak Patel, YaGuang Li, Ben
 753 Withbroe, Dean Weesner, Kush Bhatia, Jie Ren, Danielle Eisenbud, Ebrahim Songhori, Yanhua
 754 Sun, Travis Choma, Tasos Kementsietsidis, Lucas Manning, Brian Roark, Wael Farhan, Jie Feng,
 755 Susheel Tatineni, James Cobon-Kerr, Yunjie Li, Lisa Anne Hendricks, Isaac Noble, Chris Breaux,
 Nate Kushman, Liqian Peng, Fuzhao Xue, Taylor Tobin, Jamie Rogers, Josh Lipschultz, Chris
 Alberti, Alexey Vlaskin, Mostafa Dehghani, Roshan Sharma, Tris Warkentin, Chen-Yu Lee, Be-
 nigno Uria, Da-Cheng Juan, Angad Chandorkar, Hila Sheftel, Ruibo Liu, Elnaz Davoodi, Borja
 De Balle Pigem, Kedar Dhamdhhere, David Ross, Jonathan Hoech, Mahdis Mahdieh, Li Liu, Qiu-
 jia Li, Liam McCafferty, Chenxi Liu, Markus Mircea, Yunting Song, Omkar Savant, Alaa Saade,

756 Colin Cherry, Vincent Hellendoorn, Siddharth Goyal, Paul Pucciarelli, David Vilar Torres, Zohar Yahav, Hyo Lee, Lars Lowe Sjoesund, Christo Kirov, Bo Chang, Deepanway Ghoshal, Lu Li,
 757 Gilles Baechler, Sébastien Pereira, Tara Sainath, Anudhyan Boral, Dominik Grewe, Afiep Halumi,
 758 Nguyet Minh Phu, Tianxiao Shen, Marco Tulio Ribeiro, Dhriti Varma, Alex Kaskasoli, Vlad Fein-
 759 berg, Navneet Potti, Jarrod Kahn, Matheus Wisniewski, Shakir Mohamed, Arnar Mar Hrafnkels-
 760 son, Bobak Shahriari, Jean-Baptiste Lespiau, Lisa Patel, Legg Yeung, Tom Paine, Lantao Mei,
 761 Alex Ramirez, Rakesh Shivanna, Li Zhong, Josh Woodward, Guilherme Tubone, Samira Khan,
 762 Heng Chen, Elizabeth Nielsen, Catalin Ionescu, Utsav Prabhu, Mingcen Gao, Qingze Wang, Sean
 763 Augenstein, Neesha Subramaniam, Jason Chang, Fotis Iliopoulos, Jiaming Luo, Myriam Khan,
 764 Weicheng Kuo, Denis Teplyashin, Florence Perot, Logan Kilpatrick, Amir Globerson, Hongkun
 765 Yu, Anfal Siddiqui, Nick Sukhanov, Arun Kandoor, Umang Gupta, Marco Andreetto, Moran
 766 Ambar, Donnie Kim, Paweł Wesołowski, Sarah Perrin, Ben Limonchik, Wei Fan, Jim Stephan,
 767 Ian Stewart-Binks, Ryan Kappedal, Tong He, Sarah Cogan, Romina Datta, Tong Zhou, Jiayu
 768 Ye, Leandro Kieliger, Ana Ramalho, Kyle Kastner, Fabian Mentzer, Wei-Jen Ko, Arun Suggala,
 769 Tianhao Zhou, Shiraz Butt, Hana Strejček, Lior Belenki, Subhashini Venugopalan, Mingyang
 770 Ling, Evgenii Eltyshev, Yunxiao Deng, Geza Kovacs, Mukund Raghavachari, Hanjun Dai, Tal
 771 Schuster, Steven Schwarcz, Richard Nguyen, Arthur Nguyen, Gavin Buttimore, Shrestha Basu
 772 Mallick, Sudeep Gandhe, Seth Benjamin, Michal Jastrzebski, Le Yan, Sugato Basu, Chris Apps,
 773 Isabel Edkins, James Allingham, Immanuel Odisho, Tomas Kociský, Jewel Zhao, Linting Xue,
 774 Apoorv Reddy, Chrysovalantis Anastasiou, Aviel Atias, Sam Redmond, Kieran Milan, Nico-
 775 las Heess, Herman Schmit, Allan Dafoe, Daniel Andor, Tynan Gangwani, Anca Dragan, Sheng
 776 Zhang, Ashyana Kachra, Gang Wu, Siyang Xue, Kevin Aydin, Siqi Liu, Yuxiang Zhou, Mahan
 777 Malihi, Austin Wu, Siddharth Gopal, Candice Schumann, Peter Stys, Alek Wang, Mirek Olšák,
 778 Dangyi Liu, Christian Schallhart, Yiran Mao, Demetra Brady, Hao Xu, Tomas Mery, Chawin
 779 Sitawarin, Siva Velusamy, Tom Cobley, Alex Zhai, Christian Walder, Nitzan Katz, Ganesh Jawa-
 780 har, Chinmay Kulkarni, Antoine Yang, Adam Paszke, Yinan Wang, Bogdan Damoc, Zalán Bor-
 781 soss, Ray Smith, Jinning Li, Mansi Gupta, Andrei Kapishnikov, Sushant Prakash, Florian Luisier,
 782 Rishabh Agarwal, Will Grathwohl, Kuangyuan Chen, Kehang Han, Nikhil Mehta, Andrew Over,
 783 Shekoofeh Azizi, Lei Meng, Niccolò Dal Santo, Kelvin Zheng, Jane Shapiro, Igor Petrovski,
 784 Jeffrey Hui, Amin Ghafouri, Jasper Snoek, James Qin, Mandy Jordan, Caitlin Sikora, Jonathan
 785 Malmaud, Yuheng Kuang, Aga Świertlik, Ruoxin Sang, Chongyang Shi, Leon Li, Andrew Rosen-
 786 berg, Shubin Zhao, Andy Crawford, Jan-Thorsten Peter, Yun Lei, Xavier Garcia, Long Le, Todd
 787 Wang, Julien Amelot, Dave Orr, Praneeth Kacham, Dana Alon, Gladys Tyen, Abhinav Arora,
 788 James Lyon, Alex Kurakin, Mimi Ly, Theo Guidroz, Zhipeng Yan, Rina Panigrahy, Pingmei
 789 Xu, Thais Kagohara, Yong Cheng, Eric Noland, Jinhyuk Lee, Jonathan Lee, Cathy Yip, Maria
 790 Wang, Efrat Nehoran, Alexander Bykovsky, Zhihao Shan, Ankit Bhagatwala, Chaochao Yan, Jie
 791 Tan, Guillermo Garrido, Dan Ethier, Nate Hurley, Grace Vesom, Xu Chen, Siyuan Qiao, Ab-
 792 hishek Nayyar, Julian Walker, Paramjit Sandhu, Mihaela Rosca, Danny Swisher, Mikhail Dek-
 793 tiarev, Josh Dillon, George-Cristian Muraru, Manuel Tragut, Artiom Myaskovsky, David Reid,
 794 Marko Velic, Owen Xiao, Jasmine George, Mark Brand, Jing Li, Wenhao Yu, Shane Gu, Xiang
 795 Deng, François-Xavier Aubet, Soheil Hassas Yeganeh, Fred Alcober, Celine Smith, Trevor Cohn,
 796 Kay McKinney, Michael Tschannen, Ramesh Sampath, Gowoon Cheon, Liangchen Luo, Luyang
 797 Liu, Jordi Orbay, Hui Peng, Gabriela Botea, Xiaofan Zhang, Charles Yoon, Cesar Magalhaes,
 798 Paweł Stradomski, Ian Mackinnon, Steven Hemingray, Kumaran Venkatesan, Rhys May, Jaeyoun
 799 Kim, Alex Druinsky, Jingchen Ye, Zheng Xu, Terry Huang, Jad Al Abdallah, Adil Dostmohamed,
 800 Rachana Fellinger, Tsendsuren Munkhdalai, Akanksha Maurya, Peter Garst, Yin Zhang, Maxim
 801 Krikun, Simon Bucher, Aditya Srikanth Veerubhotla, Yaxin Liu, Sheng Li, Nishesh Gupta, Jakub
 802 Adamek, Hanwen Chen, Bennett Orlando, Aleksandr Zaks, Joost van Amersfoort, Josh Camp, Hui
 803 Wan, HyunJeong Choe, Zhichun Wu, Kate Olszewska, Weiren Yu, Archita Vadali, Martin Scholz,
 804 Daniel De Freitas, Jason Lin, Amy Hua, Xin Liu, Frank Ding, Yichao Zhou, Boone Severson, Ka-
 805 terina Tsihlas, Samuel Yang, Tammo Spalink, Varun Yerram, Helena Pankov, Rory Blevins, Ben
 806 Vargas, Sarthak Jauhari, Matt Miecnikowski, Ming Zhang, Sandeep Kumar, Clement Farabet,
 807 Charline Le Lan, Sebastian Flennerhag, Yonatan Bitton, Ada Ma, Arthur Bražinskas, Eli Collins,
 808 Niharika Ahuja, Sneha Kudugunta, Anna Bortsova, Minh Giang, Wanzheng Zhu, Ed Chi, Scott
 809 Lundberg, Alexey Stern, Subha Puttagunta, Jing Xiong, Xiao Wu, Yash Pande, Amit Jhindal,
 Daniel Murphy, Jon Clark, Marc Brockschmidt, Maxine Deines, Kevin R. McKee, Dan Bahir,
 Jiajun Shen, Minh Truong, Daniel McDuff, Andrea Gesmundo, Edouard Rosseel, Bowen Liang,
 Ken Caluwaerts, Jessica Hamrick, Joseph Kready, Mary Cassin, Rishikesh Ingale, Li Lao, Scott
 Pollock, Yifan Ding, Wei He, Lizzeth Bellot, Joana Iljazi, Ramya Sree Boppana, Shan Han, Tara

810 Thompson, Amr Khalifa, Anna Bulanova, Blagoj Mitrevski, Bo Pang, Emma Cooney, Tian Shi,
 811 Rey Coaguila, Tamar Yakar, Marc'aurelio Ranzato, Nikola Momchev, Chris Rawles, Zachary
 812 Charles, Young Maeng, Yuan Zhang, Rishabh Bansal, Xiaokai Zhao, Brian Albert, Yuan Yuan,
 813 Sudheendra Vijayanarasimhan, Roy Hirsch, Vinay Ramasesh, Kiran Vodrahalli, Xingyu Wang,
 814 Arushi Gupta, DJ Strouse, Jianmo Ni, Roma Patel, Gabe Taubman, Zhouyuan Huo, Dero Gharib-
 815 ian, Marianne Monteiro, Hoi Lam, Shobha Vasudevan, Aditi Chaudhary, Isabela Albuquerque,
 816 Kilol Gupta, Sebastian Riedel, Chaitra Hegde, Avraham Ruderman, András György, Marcus
 817 Wainwright, Ashwin Chaugule, Burcu Karagol Ayan, Tomer Levinboim, Sam Shleifer, Yogesh
 818 Kalley, Vahab Mirrokni, Abhishek Rao, Prabakar Radhakrishnan, Jay Hartford, Jialin Wu, Zhen-
 819 hai Zhu, Francesco Bertolini, Hao Xiong, Nicolas Serrano, Hamish Tomlinson, Myle Ott, Yifan
 820 Chang, Mark Graham, Jian Li, Marco Liang, Xiangzhu Long, Sebastian Borgeaud, Yanif Ahmad,
 821 Alex Grills, Diana Mincu, Martin Izzard, Yuan Liu, Jinyu Xie, Louis O'Bryan, Sameera Ponda,
 822 Simon Tong, Michelle Liu, Dan Malkin, Khalid Salama, Yuankai Chen, Rohan Anil, Anand Rao,
 823 Rigel Swavely, Misha Bilenko, Nina Anderson, Tat Tan, Jing Xie, Xing Wu, Lijun Yu, Oriol
 824 Vinyals, Andrey Ryabtsev, Rumen Dangovski, Kate Baumli, Daniel Keysers, Christian Wright,
 825 Zoe Ashwood, Betty Chan, Artem Shtefan, Yaohui Guo, Ankur Bapna, Radu Soricut, Steven
 826 Pecht, Sabela Ramos, Rui Wang, Jiahao Cai, Trieu Trinh, Paul Barham, Linda Friso, Eli Stickgold,
 827 Xiangzhuo Ding, Siamak Shakeri, Diego Ardila, Eleftheria Briakou, Phil Culliton, Adam Raveret,
 828 Jingyu Cui, David Saxton, Subhrajit Roy, Javad Azizi, Pengcheng Yin, Lucia Loher, Andrew Bunner,
 829 Min Choi, Faruk Ahmed, Eric Li, Yin Li, Shengyang Dai, Michael Elabd, Sriram Ganapathy,
 830 Shivani Agrawal, Yiqing Hua, Paige Kunkle, Sujeewan Rajayogam, Arun Ahuja, Arthur Conmy,
 831 Alex Vasiloff, Parker Beak, Christopher Yew, Jayaram Mudigonda, Bartek Wydrowski, Jon Blan-
 832 ton, Zhengdong Wang, Yann Dauphin, Zhuo Xu, Martin Polacek, Xi Chen, Hexiang Hu, Pauline
 833 Sho, Markus Kunesch, Mehdi Hafezi Manshadi, Eliza Rutherford, Bo Li, Sissie Hsiao, Iain Barr,
 834 Alex Tudor, Matija Kecman, Arsha Nagrani, Vladimir Pchelin, Martin Sundermeyer, Aishwarya P
 835 S, Abhijit Karmarkar, Yi Gao, Grishma Chole, Olivier Bachem, Isabel Gao, Arturo BC, Matt
 836 Dibb, Mauro Verzetti, Felix Hernandez-Campos, Yana Lunts, Matthew Johnson, Julia Di Trapani,
 837 Raphael Koster, Idan Brusilovsky, Binbin Xiong, Megha Mohabey, Han Ke, Joe Zou, Tea Sabolić,
 838 Víctor Campos, John Palowitch, Alex Morris, Linhai Qiu, Pranavaraj Ponnuramu, Fangtao Li,
 839 Vivek Sharma, Kiranbir Sodhia, Kaan Tekelioglu, Aleksandr Chuklin, Madhavi Yenugula, Erika
 840 Gemzer, Theofilos Strinopoulos, Sam El-Husseini, Huiyu Wang, Yan Zhong, Edouard Leurent,
 841 Paul Natsev, Weijun Wang, Dre Mahaarachchi, Tao Zhu, Songyou Peng, Sami Alabed, Cheng-
 842 Chun Lee, Anthony Brohan, Arthur Szlam, GS Oh, Anton Kovsharov, Jenny Lee, Renee Wong,
 843 Megan Barnes, Gregory Thornton, Felix Gimeno, Omer Levy, Martin Sevenich, Melvin Johnson,
 844 Jonathan Mallinson, Robert Dadashi, Ziyue Wang, Qingchun Ren, Preethi Lahoti, Arka Dhar,
 845 Josh Feldman, Dan Zheng, Thatcher Ulrich, Liviu Panait, Michiel Blokzijl, Cip Baetu, Josip
 846 Matak, Jitendra Harlalka, Maulik Shah, Tal Marian, Daniel von Dincklage, Cosmo Du, Ruy Ley-
 847 Wild, Bethanie Brownfield, Max Schumacher, Yury Stuken, Shadi Noghabi, Sonal Gupta, Xiaoqi
 848 Ren, Eric Malmi, Felix Weissenberger, Blanca Huergo, Maria Bauza, Thomas Lampe, Arthur
 849 Douillard, Mojtaba Seyedhosseini, Roy Frostig, Zoubin Ghahramani, Kelvin Nguyen, Kashyap
 850 Krishnakumar, Chengxi Ye, Rahul Gupta, Alireza Nazari, Robert Geirhos, Pete Shaw, Ahmed
 851 Eleryan, Dima Damen, Jennimaria Palomaki, Ted Xiao, Qiyin Wu, Quan Yuan, Phoenix Mead-
 852 owlark, Matthew Bilotti, Raymond Lin, Mukund Sridhar, Yannick Schroecker, Da-Woon Chung,
 853 Jincheng Luo, Trevor Strohman, Tianlin Liu, Anne Zheng, Jesse Emond, Wei Wang, Andrew
 854 Lampinen, Toshiyuki Fukuzawa, Folawiyo Campbell-Ajala, Monica Roy, James Lee-Thorp, Lily
 855 Wang, Iftekhar Naim, Tony, Nguy ên, Guy Bensky, Aditya Gupta, Dominika Rogozińska, Justin
 856 Fu, Thanumalayan Sankaranarayana Pillai, Petar Veličković, Shahar Drath, Philipp Neubeck,
 857 Vaibhav Tulsyan, Arseniy Klimovskiy, Don Metzler, Sage Stevens, Angel Yeh, Junwei Yuan,
 858 Tianhe Yu, Kelvin Zhang, Alec Go, Vincent Tsang, Ying Xu, Andy Wan, Isaac Galatzer-Levy,
 859 Sam Sobell, Abodunrinwa Toki, Elizabeth Salesky, Wenlei Zhou, Diego Antognini, Sholto Dou-
 860 glas, Shimu Wu, Adam Lelkes, Frank Kim, Paul Cavallaro, Ana Salazar, Yuchi Liu, James Besley,
 861 Tiziana Refice, Yiling Jia, Zhang Li, Michal Sokolik, Arvind Kannan, Jon Simon, Jo Chick, Avia
 862 Aharon, Meet Gandhi, Mayank Daswani, Keyvan Amiri, Vighnesh Birodkar, Abe Ittycheriah,
 863 Peter Grabowski, Oscar Chang, Charles Sutton, Zhixin, Lai, Umesh Telang, Susie Sargsyan, Tao
 Jiang, Raphael Hoffmann, Nicole Brichtova, Matteo Hessel, Jonathan Halcrow, Sammy Jerome,
 Geoff Brown, Alex Tomala, Elena Buchatskaya, Dian Yu, Sachit Menon, Pol Moreno, Yuguo
 Liao, Vicky Zayats, Luming Tang, SQ Mah, Ashish Shenoy, Alex Siegman, Majid Hadian, Okwan
 Kwon, Tao Tu, Nima Khajehnouri, Ryan Foley, Parisa Haghani, Zhongru Wu, Vaishakh Keshava,
 Khyatti Gupta, Tony Bruguier, Rui Yao, Danny Karmon, Luisa Zintgraf, Zhicheng Wang, En-

864 rique Piqueras, Junehyuk Jung, Jenny Brennan, Diego Machado, Marissa Giustina, MH Tessler,
 865 Kamyu Lee, Qiao Zhang, Joss Moore, Kasper Daugaard, Alexander Frömmgen, Jennifer Beat-
 866 tie, Fred Zhang, Daniel Kasenberg, Ty Geri, Danfeng Qin, Gaurav Singh Tomar, Tom Ouyang,
 867 Tianli Yu, Luowei Zhou, Rajiv Mathews, Andy Davis, Yaoyiran Li, Jai Gupta, Damion Yates,
 868 Linda Deng, Elizabeth Kemp, Ga-Young Joung, Sergei Vassilvitskii, Mandy Guo, Pallavi LV,
 869 Dave Dopsone, Sami Lachgar, Lara McConaughey, Himadri Choudhury, Dragos Dena, Aaron
 870 Cohen, Joshua Ainslie, Sergey Levi, Parthasarathy Gopavarapu, Polina Zablotskaia, Hugo Val-
 871 let, Sanaz Bahargam, Xiaodan Tang, Nenad Tomasev, Ethan Dyer, Daniel Balle, Hongrae Lee,
 872 William Bono, Jorge Gonzalez Mendez, Vadim Zubov, Shentao Yang, Ivor Rendulic, Yanyan
 873 Zheng, Andrew Hogue, Golan Pundak, Ralph Leith, Avishkar Bhoopchand, Michael Han, Mis-
 874 lav Žanić, Tom Schaul, Manolis Delakis, Tejas Iyer, Guanyu Wang, Harman Singh, Abdelrah-
 875 man Abdelhamed, Tara Thomas, Siddhartha Brahma, Hilal Dib, Naveen Kumar, Wenxuan Zhou,
 876 Liang Bai, Pushkar Mishra, Jiao Sun, Valentin Anklin, Roykrong Sukkerd, Lauren Agubuzu, An-
 877 ton Briukhov, Anmol Gulati, Maximilian Sieb, Fabio Pardo, Sara Nasso, Junquan Chen, Kexin
 878 Zhu, Tiberiu Sosea, Alex Goldin, Keith Rush, Spurthi Amba Hombaiah, Andreas Noever, Al-
 879 lan Zhou, Sam Haves, Mary Phuong, Jake Ades, Yi ting Chen, Lin Yang, Joseph Pagadura,
 880 Stan Bileschi, Victor Cotruta, Rachel Saputro, Arijit Pramanik, Sean Ammirati, Dan Garrette,
 881 Kevin Villela, Tim Blyth, Canfer Akbulut, Neha Jha, Alban Rustemi, Arissa Wongpanich, Chi-
 882 rag Nagpal, Yonghui Wu, Morgane Rivière, Sergey Kishchenko, Pranesh Srinivasan, Alice Chen,
 883 Animesh Sinha, Trang Pham, Bill Jia, Tom Hennigan, Anton Bakalov, Nithya Attaluri, Drew
 884 Garmon, Daniel Rodriguez, Dawid Wegner, Wenhao Jia, Evan Senter, Noah Fiedel, Denis Pe-
 885 tek, Yuchuan Liu, Cassidy Hardin, Harshal Tushar Lehri, Joao Carreira, Sara Smoot, Marcel
 886 Prasetya, Nami Akazawa, Anca Stefanou, Chia-Hua Ho, Anelia Angelova, Kate Lin, Min Kim,
 887 Charles Chen, Marcin Sieniek, Alice Li, Tongfei Guo, Sorin Baltateanu, Pouya Tafti, Michael
 888 Wunder, Nadav Olmert, Divyansh Shukla, Jingwei Shen, Neel Kovelamudi, Balaji Venkatraman,
 889 Seth Neel, Romal Thoppilan, Jerome Connor, Frederik Benzing, Axel Stjerngren, Golnaz Ghi-
 890 asi, Alex Polozov, Joshua Howland, Theophane Weber, Justin Chiu, Ganesh Poomal Girirajan,
 891 Andreas Terzis, Pidong Wang, Fangda Li, Yoav Ben Shalom, Dinesh Tewari, Matthew Denton,
 892 Roee Aharoni, Norbert Kalb, Heri Zhao, Junlin Zhang, Angelos Filos, Matthew Rahtz, Lalit Jain,
 893 Connie Fan, Vitor Rodrigues, Ruth Wang, Richard Shin, Jacob Austin, Roman Ring, Mariella
 894 Sanchez-Vargas, Mehadi Hassen, Ido Kessler, Uri Alon, Gufeng Zhang, Wenhui Chen, Yenai Ma,
 895 Xiance Si, Le Hou, Azalia Mirhoseini, Marc Wilson, Geoff Bacon, Becca Roelofs, Lei Shu,
 896 Gautam Vasudevan, Jonas Adler, Artur Dwornik, Tayfun Terzi, Matt Lawlor, Harry Askham,
 897 Mike Bernico, Xuanyi Dong, Chris Hidey, Kevin Kilgour, Gaël Liu, Surya Bhupatiraju, Luke
 898 Leonhard, Siqi Zuo, Partha Talukdar, Qing Wei, Aliaksei Severyn, Vít Listík, Jong Lee, Aditya
 899 Tripathi, SK Park, Yossi Matias, Hao Liu, Alex Ruiz, Rajesh Jayaram, Jackson Tolins, Pierre
 900 Marcenac, Yiming Wang, Bryan Seybold, Henry Prior, Deepak Sharma, Jack Weber, Mikhail
 901 Sirotenko, Yunhsuan Sung, Dayou Du, Ellie Pavlick, Stefan Zinke, Markus Freitag, Max Dylla,
 902 Montse Gonzalez Arenas, Natan Potikha, Omer Goldman, Connie Tao, Rachita Chhaparia, Maria
 903 Voitovich, Pawan Dogra, Andrija Ražnatović, Zak Tsai, Chong You, Oleaser Johnson, George
 904 Tucker, Chenjie Gu, Jae Yoo, Maryam Majzoubi, Valentin Gabeur, Bahram Raad, Rocky Rhodes,
 905 Kashyap Kolipaka, Heidi Howard, Geta Sampeman, Benny Li, Chulayuth Asawaroengchai, Duy
 906 Nguyen, Chiyuan Zhang, Timothee Cour, Xinxin Yu, Zhao Fu, Joe Jiang, Po-Sen Huang, Gabriela
 907 Surita, Iñaki Iturrate, Yael Karov, Michael Collins, Martin Baeuml, Fabian Fuchs, Shilpa Shetty,
 908 Swaroop Ramaswamy, Sayna Ebrahimi, Qiuchen Guo, Jeremy Shar, Gabe Barth-Maron, Sravanti
 909 Addepalli, Bryan Richter, Chin-Yi Cheng, Eugénie Rives, Fei Zheng, Johannes Griesser, Nishanth
 910 Dikkala, Yoel Zeldes, Ilkin Safarli, Dipanjan Das, Himanshu Srivastava, Sadh MNM Khan, Xin
 911 Li, Aditya Pandey, Larisa Markeeva, Dan Belov, Qiqi Yan, Mikołaj Rybiński, Tao Chen, Megha
 912 Nawhal, Michael Quinn, Vineetha Govindaraj, Sarah York, Reed Roberts, Roopal Garg, Namrata
 913 Godbole, Jake Abernethy, Anil Das, Lam Nguyen Thiet, Jonathan Tompson, John Nham, Neera
 914 Vats, Ben Caine, Wesley Helmholz, Francesco Pongetti, Yeongil Ko, James An, Clara Huiyi Hu,
 915 Yu-Cheng Ling, Julia Pawar, Robert Leland, Keisuke Kinoshita, Waleed Khawaja, Marco Selvi,
 916 Eugene Ie, Danila Sinopalnikov, Lev Proleev, Nilesh Tripuraneni, Michele Bevilacqua, Seungji
 917 Lee, Clayton Sanford, Dan Suh, Dustin Tran, Jeff Dean, Simon Baumgartner, Jens Heitkaemper,
 918 Sagar Gubbi, Kristina Toutanova, Yichong Xu, Chandu Thekkath, Keran Rong, Palak Jain, Annie
 919 Xie, Yan Virin, Yang Li, Lubo Litchev, Richard Powell, Tarun Bharti, Adam Kraft, Nan Hua,
 920 Marissa Ikonomidis, Ayal Hitron, Sanjiv Kumar, Loic Matthey, Sophie Bridgers, Lauren Lax,
 921 Ishaan Malhi, Ondrej Skopek, Ashish Gupta, Jiawei Cao, Michelle Rasquinha, Siim Pöder, Wojciech
 922 Stokowiec, Nicholas Roth, Guowang Li, Michaël Sander, Joshua Kessinger, Vihan Jain, Ed-

918 ward Loper, Wonpyo Park, Michal Yarom, Liqun Cheng, Guru Guruganesh, Kanishka Rao, Yan
 919 Li, Catarina Barros, Mikhail Sushkov, Chun-Sung Ferng, Rohin Shah, Ophir Aharoni, Ravin Ku-
 920 mar, Tim McConnell, Peiran Li, Chen Wang, Fernando Pereira, Craig Swanson, Fayaz Jamil, Yan
 921 Xiong, Anitha Vijayakumar, Prakash Shroff, Kedar Soparkar, Jindong Gu, Livio Baldini Soares,
 922 Eric Wang, Kushal Majmundar, Aurora Wei, Kai Bailey, Nora Kassner, Chizu Kawamoto, Goran
 923 Žužić, Victor Gomes, Abhirut Gupta, Michael Guzman, Ishita Dasgupta, Xinyi Bai, Zhufeng Pan,
 924 Francesco Piccinno, Hadas Natalie Vogel, Octavio Ponce, Adrian Hutter, Paul Chang, Pan-Pan
 925 Jiang, Ionel Gog, Vlad Ionescu, James Manyika, Fabian Pedregosa, Harry Ragan, Zach Behrman,
 926 Ryan Mullins, Coline Devin, Aroonalok Pyne, Swapnil Gawde, Martin Chadwick, Yiming Gu,
 927 Sasan Tavakkol, Andy Twigg, Naman Goyal, Ndidi Elue, Anna Goldie, Srinivasan Venkatachary,
 928 Hongliang Fei, Ziqiang Feng, Marvin Ritter, Isabel Leal, Sudeep Dasari, Pei Sun, Alif Raditya
 929 Rochman, Brendan O'Donoghue, Yuchen Liu, Jim Sproch, Kai Chen, Natalie Clay, Slav Petrov,
 930 Sailesh Sidhwani, Ioana Mihailescu, Alex Panagopoulos, AJ Piergiovanni, Yunfei Bai, George
 931 Powell, Deep Karkhanis, Trevor Yacovone, Petr Mitrichev, Joe Kovac, Dave Uthus, Amir Yaz-
 932 danbakhsh, David Amos, Steven Zheng, Bing Zhang, Jin Miao, Bhuvana Ramabhadran, Soroush
 933 Radpour, Shantanu Thakoor, Josh Newlan, Oran Lang, Orion Jankowski, Shikhar Bharadwaj,
 934 Jean-Michel Sarr, Shereen Ashraf, Sneha Mondal, Jun Yan, Ankit Singh Rawat, Sarmishta Velury,
 935 Greg Kochanski, Tom Eccles, Franz Och, Abhanshu Sharma, Ethan Mahintorabi, Alex Gurney,
 936 Carrie Muir, Vered Cohen, Saksham Thakur, Adam Bloniarz, Asier Mujika, Alexander Pritzel,
 937 Paul Caron, Altaf Rahman, Fiona Lang, Yasumasa Onoe, Petar Sirkovic, Jay Hoover, Ying Jian,
 938 Pablo Duque, Arun Narayanan, David Soergel, Alex Haig, Loren Maggiore, Shyamal Buch,
 939 Josef Dean, Ilya Figotin, Igor Karpov, Shaleen Gupta, Denny Zhou, Muhuan Huang, Ashwin
 940 Vaswani, Christopher Semturs, Kaushik Shivakumar, Yu Watanabe, Vinodh Kumar Rajendran,
 941 Eva Lu, Yanhan Hou, Wenting Ye, Shikhar Vashishth, Nana Nti, Vytenis Sakenas, Darren Ni,
 942 Doug DeCarlo, Michael Bendersky, Sumit Bagri, Nacho Cano, Elijah Peake, Simon Tokumine,
 943 Varun Godbole, Carlos Guía, Tanya Lando, Vittorio Selo, Seher Ellis, Danny Tarlow, Daniel
 944 Gillick, Alessandro Epasto, Siddhartha Reddy Jonnalagadda, Meng Wei, Meiyang Xie, Ankur
 945 Taly, Michela Paganini, Mukund Sundararajan, Daniel Toyama, Ting Yu, Dessie Petrova, Aneesh
 946 Pappu, Rohan Agrawal, Senaka Buthupitiya, Justin Frye, Thomas Buschmann, Remi Crocker,
 947 Marco Tagliasacchi, Mengchao Wang, Da Huang, Sagi Perel, Brian Wieder, Hideto Kazawa,
 948 Weiyue Wang, Jeremy Cole, Himanshu Gupta, Ben Golan, Seojin Bang, Nitish Kulkarni, Ken
 949 Franko, Casper Liu, Doug Reid, Sid Dalmia, Jay Whang, Kevin Cen, Prasha Sundaram, Johan
 950 Ferret, Berivan Isik, Lucian Ionita, Guan Sun, Anna Shekhawat, Muqthar Mohammad, Philip
 951 Pham, Ronny Huang, Karthik Raman, Xingyi Zhou, Ross Mcilroy, Austin Myers, Sheng Peng,
 952 Jacob Scott, Paul Covington, Sofia Erell, Pratik Joshi, João Gabriel Oliveira, Natasha Noy, Tajwar
 953 Nasir, Jake Walker, Vera Axelrod, Tim Dozat, Pu Han, Chun-Te Chu, Eugene Weinstein, Anand
 954 Shukla, Shreyas Chandrakaladharan, Petra Poklukar, Bonnie Li, Ye Jin, Prem Eruvbetine, Steven
 955 Hansen, Avigail Dabush, Alon Jacovi, Samrat Phatale, Chen Zhu, Steven Baker, Mo Shomrat,
 956 Yang Xiao, Jean Pouget-Abadie, Mingyang Zhang, Fanny Wei, Yang Song, Helen King, Yiling
 957 Huang, Yun Zhu, Ruoxi Sun, Juliana Vicente Franco, Chu-Cheng Lin, Sho Arora, Hui, Li, Vi-
 958 vian Xia, Luke Vilnis, Mariano Schain, Kaiz Alarakyia, Laurel Prince, Aaron Phillips, Caleb
 959 Habtegebriel, Luyao Xu, Huan Gui, Santiago Ontanon, Lora Aroyo, Karan Gill, Peggy Lu,
 960 Yash Katariya, Dhruv Madeka, Shankar Krishnan, Shubha Srinivas Raghvendra, James Freed-
 961 man, Yi Tay, Gaurav Menghani, Peter Choy, Nishita Shetty, Dan Abolafia, Doron Kukliansky,
 962 Edward Chou, Jared Lichtarge, Ken Burke, Ben Coleman, Dee Guo, Larry Jin, Indro Bhat-
 963 tacharya, Victoria Langston, Yiming Li, Suyog Kotecha, Alex Yakubovich, Xinyun Chen, Pe-
 964 tre Petrov, Tolly Powell, Yanzhang He, Corbin Quick, Kanav Garg, Dawsen Hwang, Yang Lu,
 965 Srinadh Bhojanapalli, Kristian Kjems, Ramin Mehran, Aaron Archer, Hado van Hasselt, Ash-
 966 win Balakrishna, JK Kearns, Meiqi Guo, Jason Riesa, Mikita Sazanovich, Xu Gao, Chris Sauer,
 967 Chengrun Yang, XiangHai Sheng, Thomas Jimma, Wouter Van Gansbeke, Vitaly Nikolaev, Wei
 968 Wei, Katie Millican, Ruizhe Zhao, Justin Snyder, Levent Bolelli, Maura O'Brien, Shawn Xu, Fei
 969 Xia, Wentao Yuan, Arvind Neelakantan, David Barker, Sachin Yadav, Hannah Kirkwood, Fa-
 970 rooq Ahmad, Joel Wee, Jordan Grimstad, Boyu Wang, Matthew Wiethoff, Shane Settle, Miaosen
 971 Wang, Charles Blundell, Jingjing Chen, Chris Duvarney, Grace Hu, Olaf Ronneberger, Alex Lee,
 972 Yuanzhen Li, Abhishek Chakladar, Alena Butryna, Georgios Evangelopoulos, Guillaume Des-
 973 jardins, Jonni Kanerva, Henry Wang, Averi Nowak, Nick Li, Alyssa Loo, Art Khurshudov, Lau-
 974 rent El Shafey, Nagabhushan Baddi, Karel Lenc, Yasaman Razeghi, Tom Lieber, Amer Sinha,
 975 Xiao Ma, Yao Su, James Huang, Asahi Ushio, Hanna Klimczak-Plucińska, Kareem Mohamed,
 976 JD Chen, Simon Osindero, Stav Ginzburg, Lampros Lamprou, Vasilisa Bashlovkina, Duc-Hieu

972 Tran, Ali Khodaei, Ankit Anand, Yixian Di, Ramy Eskander, Manish Reddy Vuyyuru, Jasmine
 973 Liu, Aishwarya Kamath, Roman Goldenberg, Mathias Bellaiche, Juliette Pluto, Bill Rosgen, Has-
 974 san Mansoor, William Wong, Suhas Ganesh, Eric Bailey, Scott Baird, Dan Deutsch, Jinoo Baek,
 975 Xuhui Jia, Chansoo Lee, Abe Friesen, Nathaniel Braun, Kate Lee, Amayika Panda, Steven M.
 976 Hernandez, Duncan Williams, Jianqiao Liu, Ethan Liang, Arnaud Autef, Emily Pitler, Deepali
 977 Jain, Phoebe Kirk, Oskar Bunyan, Jaume Sanchez Elias, Tongxin Yin, Machel Reid, Aedan
 978 Pope, Nikita Putikhin, Bidisha Samanta, Sergio Guadarrama, Dahun Kim, Simon Rowe, Mar-
 979 cella Valentine, Geng Yan, Alex Salcianu, David Silver, Gan Song, Richa Singh, Shuai Ye, Han-
 980 nah DeBalsi, Majd Al Merey, Eran Ofek, Albert Webson, Shibl Mourad, Ashwin Kakarla, Silvio
 981 Lattanzi, Nick Roy, Evgeny Sluzhaev, Christina Butterfield, Alessio Tonioni, Nathan Waters,
 982 Sudhindra Kopalle, Jason Chase, James Cohan, Girish Ramchandra Rao, Robert Berry, Michael
 983 Voznesensky, Shuguang Hu, Kristen Chiaffullo, Sharat Chikkerur, George Scrivener, Ivy Zheng,
 984 Jeremy Wiesner, Wolfgang Macherey, Timothy Lillicrap, Fei Liu, Brian Walker, David Welling,
 985 Elinor Davies, Yangsibo Huang, Lijie Ren, Nir Shabat, Alessandro Agostini, Mariko Iinuma,
 986 Dustin Zelle, Rohit Sathyanarayana, Andrea D'olimpio, Morgan Redshaw, Matt Ginsberg, Ash-
 987 win Murthy, Mark Geller, Tatiana Matejovicova, Ayan Chakrabarti, Ryan Julian, Christine Chan,
 988 Qiong Hu, Daniel Jarrett, Manu Agarwal, Jeshwanth Challagundla, Tao Li, Sandeep Tata, Wen
 989 Ding, Maya Meng, Zhuyun Dai, Giulia Vezzani, Shefali Garg, Jannis Bulian, Mary Jasarevic,
 990 Honglong Cai, Harish Rajamani, Adam Santoro, Florian Hartmann, Chen Liang, Bartek Perz,
 991 Apoorv Jindal, Fan Bu, Sungyong Seo, Ryan Poplin, Adrian Goedeckemeyer, Badih Ghazi,
 992 Nikhil Khadke, Leon Liu, Kevin Mather, Mingda Zhang, Ali Shah, Alex Chen, Jinliang Wei, Ke-
 993 shav Shivam, Yuan Cao, Donghyun Cho, Angelo Scorza Scarpati, Michael Moffitt, Clara Barbu,
 994 Ivan Jurin, Ming-Wei Chang, Hongbin Liu, Hao Zheng, Shachi Dave, Christine Kaeser-Chen,
 995 Xiaobin Yu, Alvin Abdagic, Lucas Gonzalez, Yanping Huang, Peilin Zhong, Cordelia Schmid,
 996 Bryce Petrini, Alex Wertheim, Jifan Zhu, Hoang Nguyen, Kaiyang Ji, Yanqi Zhou, Tao Zhou,
 997 Fangxiaoyu Feng, Regev Cohen, David Rim, Shubham Milind Phal, Petko Georgiev, Ariel Brand,
 998 Yue Ma, Wei Li, Somit Gupta, Chao Wang, Pavel Dubov, Jean Tarbouriech, Kingshuk Majumder,
 999 Huijian Li, Norman Rink, Apurv Suman, Yang Guo, Yinghao Sun, Arun Nair, Xiaowei Xu, Mo-
 1000 hamed Elhawaty, Rodrigo Cabrera, Guangxing Han, Julian Eisenschlos, Junwen Bai, Yuqi Li,
 1001 Yamini Bansal, Thibault Sellam, Mina Khan, Hung Nguyen, Justin Mao-Jones, Nikos Parot-
 1002 sidis, Jake Marcus, Cindy Fan, Roland Zimmermann, Yony Kochinski, Laura Graesser, Feryal
 1003 Behbahani, Alvaro Caceres, Michael Riley, Patrick Kane, Sandra Lefdal, Rob Willoughby, Paul
 1004 Vicol, Lun Wang, Shujian Zhang, Ashleah Gill, Yu Liang, Gautam Prasad, Soroosh Mariooryad,
 1005 Mehran Kazemi, Zifeng Wang, Kritika Muralidharan, Paul Voigtlaender, Jeffrey Zhao, Huanjie
 1006 Zhou, Nina D'Souza, Aditi Mavalankar, Séb Arnold, Nick Young, Obaid Sarvana, Chace Lee,
 1007 Milad Nasr, Tingting Zou, Seokhwan Kim, Lukas Haas, Kaushal Patel, Neslihan Bulut, David
 1008 Parkinson, Courtney Biles, Dmitry Kalashnikov, Chi Ming To, Aviral Kumar, Jessica Austin, Alex
 1009 Greve, Lei Zhang, Megha Goel, Yeqing Li, Sergey Yaroshenko, Max Chang, Abhishek Jindal, Ge-
 1010 off Clark, Hagai Taitelbaum, Dale Johnson, Ofir Roval, Jeongwoo Ko, Anhad Mohananey, Chris-
 1011 tian Schuler, Shenil Dodhia, Ruichao Li, Kazuki Osawa, Claire Cui, Peng Xu, Rushin Shah, Tao
 1012 Huang, Ela Gruzewska, Nathan Clement, Mudit Verma, Olcan Sercinoglu, Hai Qian, Viral Shah,
 1013 Masa Yamaguchi, Abhinit Modi, Takahiro Kosakai, Thomas Strohmann, Junhao Zeng, Beliz
 1014 Gunel, Jun Qian, Austin Tarango, Krzysztof Jastrzębski, Robert David, Jyn Shan, Parker Schuh,
 1015 Kunal Lad, Willi Gierke, Mukundan Madhavan, Xinyi Chen, Mark Kurzeja, Rebeca Santamaria-
 1016 Fernandez, Dawn Chen, Alexandra Cordell, Yuri Chervonyi, Frankie Garcia, Nithish Kannen,
 1017 Vincent Perot, Nan Ding, Shlomi Cohen-Ganor, Victor Lavrenko, Junru Wu, Georgie Evans,
 1018 Cicero Nogueira dos Santos, Madhavi Sewak, Ashley Brown, Andrew Hard, Joan Puigcerver,
 1019 Zeyu Zheng, Yizhong Liang, Evgeny Gladchenko, Reeve Ingle, Uri First, Pierre Sermanet, Char-
 1020 lotte Magister, Mihajlo Velimirović, Sashank Reddi, Susanna Ricco, Eirikur Agustsson, Hartwig
 1021 Adam, Nir Levine, David Gaddy, Dan Holtmann-Rice, Xuanhui Wang, Ashutosh Sathe, Abhi-
 1022 jit Guha Roy, Blaž Bratanič, Alen Carin, Harsh Mehta, Silvano Bonacina, Nicola De Cao, Mara
 1023 Finkelstein, Verena Rieser, Xinyi Wu, Florent Altché, Dylan Scandinaro, Li Li, Nino Vieillard,
 1024 Nikhil Sethi, Garrett Tanzer, Zhi Xing, Shibo Wang, Parul Bhatia, Gui Citovsky, Thomas An-
 1025 thony, Sharon Lin, Tianze Shi, Shoshana Jakobovits, Gena Gibson, Raj Apte, Lisa Lee, Mingqing
 1026 Chen, Arunkumar Byravan, Petros Maniatis, Kellie Webster, Andrew Dai, Pu-Chin Chen, Jiaqi
 1027 Pan, Asya Fadeeva, Zach Gleicher, Thang Luong, and Niket Kumar Bhumihar. Gemini 2.5: Push-
 1028 ing the frontier with advanced reasoning, multimodality, long context, and next generation agentic
 1029 capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.
 1030

1026 Emma Croxford, Yanjun Gao, Elliot First, Nicholas Pellegrino, Miranda Schnier, John Caskey, Max
 1027 Oguss, Graham Wills, Guanhua Chen, Dmitriy Dligach, Matthew M. Churpek, Anoop Mayam-
 1028 purath, Frank Liao, Cherodeep Goswami, Karen K. Wong, Brian W. Patterson, and Majid Af-
 1029 shar. Automating evaluation of ai text generation in healthcare with a large language model
 1030 (llm)-as-a-judge. *medRxiv*, May 2025. doi: 10.1101/2025.04.22.25326219. URL <https://www.medrxiv.org/content/10.1101/2025.04.22.25326219v1>. Preprint.

1032 Leonardo Mendonça de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
 1033 language. In *CADE*, 2021. URL <https://api.semanticscholar.org/CorpusID:235800962>.

1035 Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
 1036 Raumer. The lean theorem prover (system description). In *CADE*, 2015. URL <https://api.semanticscholar.org/CorpusID:232990>.

1039 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 1040 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 1041 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 1042 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 1043 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 1044 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 1045 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 1046 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 1047 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 1048 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 1049 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 1050 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 1051 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
 1052 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 1053 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 1054 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 1055 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 1056 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 1057 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 1058 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 1059 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 1060 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 1061 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 1062 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 1063 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 1064 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 1065 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 1066 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 1067 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

1068 Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin Vechev, Miroslav Mari-
 1069 nov, Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, Nikolay Drenchev,
 1070 Lazar Todorov, Kalina Nikolova, Nikolay Georgiev, Vanesa Kalinkova, and Margulan Ismol-
 1071 dayev. The open proof corpus: A large-scale study of llm-generated mathematical proofs, 2025.
 1072 URL <https://arxiv.org/abs/2506.21621>.

1073 Kefan Dong and Tengyu Ma. Beyond limited data: Self-play llm theorem provers with iterative
 1074 conjecturing and proving. *arXiv preprint arXiv:2502.00212*, 2025.

1075 Dadi Guo, Jiayu Liu, Zhiyuan Fan, Zhitao He, Haoran Li, Yumeng Wang, and Yi R. Fung. Mathe-
 1076 matical proof as a litmus test: Revealing failure modes of advanced large reasoning models, 2025.
 1077 URL <https://arxiv.org/abs/2506.17114>.

1078 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 1079 unsupervised visual representation learning, 2020. URL <https://arxiv.org/abs/1911.05722>.

1080 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 1081 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
 1082 URL <https://arxiv.org/abs/2103.03874>.

1083 HMMT. The harvard-mit mathematics tournament (hmmt). <https://www.hmmt.org/>, 2025.
 1084 Accessed: 2025-09-14.

1085 Jeremy Howard. The /llms.txt file: A proposal to help llms use websites, September 2024. URL
 1086 <https://llmstxt.org/>. A proposal to standardize the use of /llms.txt files for providing
 1087 LLM-friendly content on websites.

1088 Gérard P. Huet and Christine Paulin-Mohring. The coq proof assistant reference manual. 2000.
 1089 URL <https://api.semanticscholar.org/CorpusID:59695435>.

1090 Maxwell Jia. Aime 2024 dataset. https://huggingface.co/datasets/Maxwell-Jia/AIME_2024, feb 2025. American Invitational Mathematics Examination 2024, 30 items.

1091 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 1092 Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing fine-
 1093 grained evaluation capability in language models, 2024a. URL <https://arxiv.org/abs/2310.08491>.

1094 Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
 1095 Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
 1096 model specialized in evaluating other language models, 2024b. URL <https://arxiv.org/abs/2405.01535>.

1097 Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
 1098 Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
 1099 Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
 1100 soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 1101 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
 1102 <https://openreview.net/forum?id=IFXTZERXdM7>.

1103 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 1104 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 1105 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=v8L0pN6EOi>.

1106 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
 1107 Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
 1108 automated theorem proving, 2025. URL <https://arxiv.org/abs/2502.07640>.

1109 Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
 1110 Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. Fimo: A challenge for-
 1111 mal dataset for automated theorem proving, 2023. URL <https://arxiv.org/abs/2309.04295>.

1112 Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
 1113 Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li,
 1114 and Zhengying Liu. Combibench: Benchmarking llm capability for combinatorial mathematics,
 1115 2025. URL <https://arxiv.org/abs/2505.03171>.

1116 MAA. American invitational mathematics examination (aime). <https://maa.org/math-competitions/aime>, 2025. Accessed: 2025-09-14.

1117 Mistral-AI, :, Abhinav Rastogi, Albert Q. Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lam-
 1118 ple, Jason Rute, Joep Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu,
 1119 Léonard Blier, Lucile Saulnier, Matthieu Dinot, Maxime Darrin, Neha Gupta, Roman Soletskyi,
 1120 Sagar Vaze, Teven Le Scao, Yihan Wang, Adam Yang, Alexander H. Liu, Alexandre Sablay-
 1121 rolles, Amélie Héliou, Amélie Martin, Andy Ehrenberg, Anmol Agarwal, Antoine Roux, Arthur
 1122 Dariset, Arthur Mensch, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Chris Bam-
 1123 ford, Christian Wallenwein, Christophe Renaudin, Clémence Lanfranchi, Darius Dabert, Devon

1134 Mizelle, Diego de las Casas, Elliot Chane-Sane, Emilien Fugier, Emma Bou Hanna, Gauthier
 1135 Delerce, Gauthier Guinet, Georgii Novikov, Guillaume Martin, Himanshu Jaju, Jan Ludziejewski,
 1136 Jean-Hadrien Chabran, Jean-Malo Delignon, Joachim Studnia, Jonas Amar, Josselin Somerville
 1137 Roberts, Julien Denize, Karan Saxena, Kush Jain, Lingxiao Zhao, Louis Martin, Luyu Gao,
 1138 Lélio Renard Lavaud, Marie Pellat, Mathilde Guillaumin, Mathis Felardos, Maximilian Au-
 1139 gustin, Mickaël Seznec, Nikhil Raghuraman, Olivier Duchenne, Patricia Wang, Patrick von
 1140 Platen, Patryk Saffer, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Mud-
 1141 direddy, Philomène Chagniot, Pierre Stock, Pravesh Agrawal, Romain Sauvestre, Rémi Dela-
 1142 court, Sanchit Gandhi, Sandeep Subramanian, Shashwat Dalal, Siddharth Gandhi, Soham Ghosh,
 1143 Srijan Mishra, Sumukh Aithal, Szymon Antoniak, Thibault Schueller, Thibault Lavril, Thomas
 1144 Robert, Thomas Wang, Timothée Lacroix, Valeria Nemychnikova, Victor Paltz, Virgile Richard,
 1145 Wen-Ding Li, William Marshall, Xuanyu Zhang, and Yunhao Tang. Magistral, 2025. URL
 1146 <https://arxiv.org/abs/2506.10910>.
 1147
 1148 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 1149 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 1150 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.
 1151
 1152 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. *Isabelle/HOL: A Proof Assistant for*
 1153 *Higher-Order Logic*, volume 2283 of *Lecture Notes in Computer Science*. Springer, 2002. ISBN
 978-3-540-43376-7. doi: 10.1007/3-540-45949-9.
 1154
 1155 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
 1156 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
 1157 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
 1158 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
 1159 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 1160 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
 1161 Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
 1162 Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
 1163 Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
 1164 Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
 1165 Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
 1166 abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
 1167 Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
 1168 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
 1169 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
 1170 drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
 1171 Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
 1172 Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
 1173 Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
 1174 Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
 1175 Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singh, Karina Nguyen, Karl
 1176 Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
 1177 Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
 1178 Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
 1179 draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
 1180 Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
 1181 Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
 1182 Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
 1183 Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
 1184 Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
 1185 Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
 1186 Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
 1187 Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
 1188 Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
 1189 wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
 1190 Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
 1191 Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
 1192 lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,

1188 Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
 1189 Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
 1190 Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
 1191 Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
 1192 Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

1193 OpenCompass Team. Aime 2025 dataset. <https://huggingface.co/datasets/opencompass/AIME2025>, feb 2025. American Invitational Mathematics Examination 2025,
 1194 30 items.

1195

1196 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 1197 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 1198 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 1199 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

1200

1201 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
 1202 2020. URL <https://arxiv.org/abs/2009.03393>.

1203

1204 Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
 1205 Sutskever. Formal mathematics statement curriculum learning, 2022. URL <https://arxiv.org/abs/2202.01344>.

1206

1207 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 1208 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 1209 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 1210 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 1211 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 1212 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 1213 URL <https://arxiv.org/abs/2412.15115>.

1214 Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
 1215 Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
 1216 Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing for-
 1217 mal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL
 1218 <https://arxiv.org/abs/2504.21801>.

1219

1220 Marco Dos Santos, Haiming Wang, Hugues de Saxcé, Ran Wang, Mantas Baksys, Mert Unsal,
 1221 Junqi Liu, Zhengying Liu, and Jia Li. Kimina lean server: Technical report, 2025. URL <https://arxiv.org/abs/2504.21230>.

1222

1223 Jiayi Sheng, Luna Lyu, Jikai Jin, Tony Xia, Alex Gu, James Zou, and Pan Lu. Solving inequality
 1224 proofs with large language models, 2025. URL <https://arxiv.org/abs/2506.07927>.

1225

1226 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 1227 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 1228 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 1229 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 1230 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 1231 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 1232 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 1233 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 1234 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 1235 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 1236 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 1237 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 1238 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 1239 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 1240 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 1241 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,

1242 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 1243 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 1244 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 1245 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 1246 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 1247 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 1248 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 1249 Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 1250 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 1251 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 1252 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 1253 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 1254 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 1255 ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 1256 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 1257 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
 1258 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 1259 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

1260 Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geo-
 1261 metry without human demonstrations. *Nature*, 625(7995):476–482, 2024. doi: 10.1038/s41586-023-06747-5. URL <https://doi.org/10.1038/s41586-023-06747-5>.

1262 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
 1263 tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
 1264 putnam mathematical competition, 2024. URL <https://arxiv.org/abs/2407.11214>.

1265 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
 1266 Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey,
 1267 Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
 1268 Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
 1269 Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
 1270 Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
 1271 Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforce-
 1272 ment learning, 2025a. URL <https://arxiv.org/abs/2504.11354>.

1273 Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
 1274 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.
 1275 URL <https://arxiv.org/abs/2312.08935>.

1276 Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya
 1277 Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, and Yue Zhang. Pan-
 1278 dalm: An automatic evaluation benchmark for llm instruction tuning optimization, 2024b. URL
 1279 <https://arxiv.org/abs/2306.05087>.

1280 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 1281 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 1282 Shen. Reinforcement learning for reasoning in large language models with one training example,
 1283 2025b. URL <https://arxiv.org/abs/2504.20571>.

1284 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 1285 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
 1286 2023. URL <https://arxiv.org/abs/2201.11903>.

1287 Jingyuan Zhang, Qi Wang, Xinguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
 1288 Zhou, and Kun Gai. Leanabell-prover: Posttraining scaling in formal reasoning, 2025a. URL
 1289 <https://arxiv.org/abs/2504.06122>.

1290 Ziyin Zhang, Jiahao Xu, Zhiwei He, Tian Liang, Qiuzhi Liu, Yansi Li, Linfeng Song, Zhen-
 1291 Pu Liang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Deeptheo-
 1292 rem: Advancing llm reasoning for theorem proving through natural language and reinforcement
 1293

1296 learning. *ArXiv*, abs/2505.23754, 2025b. URL <https://api.semanticscholar.org/>
 1297 CorpusID:278996747.

1298

1299 Yuwei Zhao, Ziyang Luo, Yuchen Tian, Hongzhan Lin, Weixiang Yan, Annan Li, and Jing Ma.
 1300 Codejudge-eval: Can large language models be good judges in code understanding?, 2024. URL
 1301 <https://arxiv.org/abs/2408.10718>.

1302 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
 1303 formal olympiad-level mathematics, 2022. URL <https://arxiv.org/abs/2109.00110>.

1304

1305 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 1306 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 1307 Judging ILM-as-a-judge with mt-bench and chatbot arena, 2023. URL <https://arxiv.org/abs/2306.05685>.

1308

1309

1310

A USE OF LLMs

1311 We used Grammarly's AI assistance to assist with grammar checking and sentence-level polishing.

1312

1313

1314

```
1315 === Lean4 Code lean4_code_1 ===
1316 <ERROR_SUMMARY>
1317 Total errors found: 1
1318 </ERROR_SUMMARY>
1319
1320 <ERROR #1>
1321 <ERROR_LOCATION>
1322 Line 11, columns 2-5
1323 </ERROR_LOCATION>
1324
1325 <ERROR_TYPE>
1326 Single-line error
1327 </ERROR_TYPE>
1328
1329 <ERROR_TEXT>
1330 "rw"
1331 </ERROR_TEXT>
1332
1333 <SURROUNDING_CONTEXT>
1334 9:   ext f
1335 10:   simp [h_sols]
1336 >>> 11:   rw [h]
1337 12:   rfr
1338 </SURROUNDING_CONTEXT>
1339
1340 <ERROR_MESSAGE>
1341 maximum recursion depth has been reached
1342 use `set_option maxRecDepth <num>` to increase limit
1343 use `set_option diagnostics true` to get diagnostic information
1344 </ERROR_MESSAGE>
1345 </ERROR #1>
```

(a) Lean4 Compilation Results.

The error occurs because of incorrect `rw` tactic syntax on line 11. The immediate issue is **`rw[h:]` should be `rw[h]`** - remove the colon as it's invalid syntax.

If fixing the syntax doesn't resolve the recursion error, the problem is likely that hypothesis `h` creates an infinite rewrite loop. This happens when `h` is an equality that rewrites a term back to itself. Here are the solutions to try in order:

1. **Fix syntax**: Change `rw[h:]` to `rw[h]`
2. **Try reverse direction**: Use `rw[← h]` instead
3. **Use alternative tactics**: Try `simp only [h]`, `exact h`, or `apply h` depending on what `h` proves
4. **Debug the hypothesis**: Add `#check h` before line 11 to verify `h` exists and see its type
5. **Enable tracing**: Use `set_option trace.Meta.Tactic.rewrite true` before the rewrite to see what's happening

The recursion depth error typically indicates that the rewrite rule is being applied infinitely, so switching tactics or rewrite direction usually resolves it.

(b) Feedback generated by PROOF-VERIFIER.

Figure 6: Error analysis and feedback generation comparison.

B THEORETICAL ANALYSIS

B.1 CONSISTENCY-CONSTRAINED TRAINING

1339 The consistency constraint in our Stage 1 reward function is motivated by a fundamental principle
 1340 in mathematical evaluation: independent correct assessments of the same proof should converge to
 1341 similar conclusions. To formalize this intuition, we begin by establishing the mathematical frame-
 1342 work.

1343 Given N parallel samples $\{r_1, r_2, \dots, r_N\}$ for a proof attempt, each response r_i produces a binary
 1344 prediction $p_i \in \{\text{True}, \text{False}\}$ and evaluation score $s_i \in [0, 100]$. Let $y \in \{\text{True}, \text{False}\}$ denote the
 1345 ground truth label. We model the policy as $\pi_\theta(r_i|x)$ where x represents the input proof attempt.

1346 Our fundamental assumption is that for a well-trained evaluator, the score distribution conditioned
 1347 on correct predictions should concentrate around some true value. Formally, if we denote by $\mathcal{C} =$
 1348 $\{r_i : p_i = y\}$ the set of correct predictions, then as the model quality improves, we expect:

$$s_i | p_i = y \xrightarrow{d} \delta_{\mu^*} \quad (4)$$

1350 where δ_{μ^*} is a point mass at the true evaluation score μ^* , and \xrightarrow{d} denotes convergence in distribution.
 1351

1352 However, during training, we observe significant variance in scores even among correct predictions.
 1353 To address this, we employ a consistency constraint based on modal consensus. Consider the em-
 1354 pirical distribution of scores among correct predictions:

$$1355 \quad P_{\text{emp}}(s) = \frac{1}{|\mathcal{C}|} \sum_{r_i \in \mathcal{C}} \mathbf{1}[s_i = s] \quad (5)$$

1358 For any estimator \hat{s} of the consensus score, we can define the 0-1 consensus risk as:
 1359

$$1360 \quad R(\hat{s}) = \mathbb{E}[\mathbf{1}[s \neq \hat{s}] | p = y] = \sum_{s'} P(s = s' | p = y) \mathbf{1}[s' \neq \hat{s}] \quad (6)$$

1362 Expanding this expression:
 1363

$$1364 \quad R(\hat{s}) = \sum_{s' \neq \hat{s}} P(s = s' | p = y) \quad (7)$$

$$1367 \quad = 1 - P(s = \hat{s} | p = y) \quad (8)$$

1368 The mode estimator $\hat{s}_{\text{mode}} = \arg \max_s P(s | p = y)$ minimizes this risk since:
 1369

$$1370 \quad \hat{s}_{\text{mode}} = \arg \max_s P(s | p = y) = \arg \min_s [1 - P(s | p = y)] = \arg \min_s R(\hat{s}) \quad (9)$$

1372 Furthermore, the mode exhibits superior robustness properties. Under ϵ -contamination where a
 1373 fraction ϵ of the correct predictions are replaced by adversarial scores, the empirical distribution
 1374 becomes:

$$1375 \quad P_{\text{cont}}(s) = (1 - \epsilon)P_{\text{emp}}(s) + \epsilon P_{\text{adv}}(s) \quad (10)$$

1376 where $P_{\text{adv}}(s)$ is the adversarial distribution. The mode remains stable as long as $\epsilon < \frac{1}{2} - \frac{1}{2|\mathcal{S}|}$ where
 1377 $|\mathcal{S}|$ is the number of distinct score values, while the sample mean can be arbitrarily shifted by any
 1378 $\epsilon > 0$.
 1379

1380 Now we analyze our reward function. The consistency-constrained reward can be written as:
 1381

$$1382 \quad R_1(r_i) = \mathbf{1}[p_i = y] \cdot (2\mathbf{1}[s_i = s_{\text{mode}}] - 1) - \mathbf{1}[p_i \neq y] \quad (11)$$

1383 To understand the expected behavior, we compute the expected reward. Let $A = \{p_i = y\}$ denote
 1384 the accuracy event and $C = \{s_i = s_{\text{mode}}\}$ denote the consistency event. Then:
 1385

$$1387 \quad \mathbb{E}[R_1(r_i)] = \mathbb{E}[\mathbf{1}[A] \cdot (2\mathbf{1}[C] - 1)] - \mathbb{E}[\mathbf{1}[A^c]] \quad (12)$$

$$1388 \quad = \mathbb{E}[\mathbf{1}[A] \cdot 2\mathbf{1}[C]] - \mathbb{E}[\mathbf{1}[A]] - P(A^c) \quad (13)$$

$$1389 \quad = 2\mathbb{E}[\mathbf{1}[A \cap C]] - P(A) - P(A^c) \quad (14)$$

$$1390 \quad = 2P(A \cap C) - P(A) - (1 - P(A)) \quad (15)$$

$$1391 \quad = 2P(A \cap C) - 1 \quad (16)$$

1393 Using the conditional probability identity $P(A \cap C) = P(C|A)P(A)$:
 1394

$$1395 \quad \mathbb{E}[R_1(r_i)] = 2P(C|A)P(A) - 1 \quad (17)$$

$$1396 \quad = P(A)[2P(C|A) - \frac{1}{P(A)}] \quad (18)$$

$$1397 \quad = P(A)[2P(s_i = s_{\text{mode}} | p_i = y) - \frac{1}{P(A)}] \quad (19)$$

1401 For the expected reward to be positive, we need:
 1402

$$1403 \quad P(s_i = s_{\text{mode}} | p_i = y) > \frac{1}{2P(A)} \quad (20)$$

1404 This inequality reveals a crucial trade-off: when accuracy $P(A)$ is low, the consistency requirement
 1405 becomes more stringent. However, as accuracy improves ($P(A) \rightarrow 1$), the consistency threshold
 1406 approaches $\frac{1}{2}$, making positive rewards more achievable.
 1407

1408 To analyze the training dynamics, consider the policy gradient:

$$1409 \nabla_{\theta} \mathbb{E}[R_1(r_i)] = \mathbb{E}[R_1(r_i) \nabla_{\theta} \log \pi_{\theta}(r_i)] \quad (21)$$

1410
 1411 Expanding using our reward decomposition:

$$1412 \nabla_{\theta} \mathbb{E}[R_1(r_i)] = \mathbb{E}[\mathbf{1}[p_i = y](2\mathbf{1}[s_i = s_{\text{mode}}] - 1) \nabla_{\theta} \log \pi_{\theta}(r_i)] \quad (22)$$

$$1413 - \mathbb{E}[\mathbf{1}[p_i \neq y] \nabla_{\theta} \log \pi_{\theta}(r_i)] \quad (23)$$

1414
 1415 This gradient has two components. The first term encourages both accuracy and consistency si-
 1416 multaneously, while the second term discourages incorrect predictions. The key insight is that the
 1417 gradient magnitude for consistency is proportional to the accuracy level, creating a self-reinforcing
 1418 dynamic.
 1419

1420 As training progresses, we expect the accuracy $P(p_i = y)$ to increase. When $P(p_i = y) \rightarrow 1$, the
 1421 expected reward simplifies to:

$$1422 \lim_{P(p_i=y) \rightarrow 1} \mathbb{E}[R_1(r_i)] = 2P(s_i = s_{\text{mode}} | p_i = y) - 1 \quad (24)$$

1423
 1424 At this stage, the training objective becomes purely a coordination problem: all correct predictions
 1425 must agree on the modal score to achieve positive reward. The equilibrium of this coordination game
 1426 occurs when all correct predictions produce the same score, i.e., when there exists a unique score s^*
 1427 such that:

$$1428 \pi_{\theta}(s = s^* | p = y) = 1 \quad \text{and} \quad \pi_{\theta}(s \neq s^* | p = y) = 0 \quad (25)$$

1429
 1430 This implies that $\text{Var}(s_i | p_i = y) = 0$ at equilibrium, achieving perfect consistency among correct
 1431 predictions.

1432 Define the Lyapunov function $V(\theta) = -\mathbb{E}[R_1(r_i)]$. Along the policy gradient trajectory:

$$1433 \frac{dV}{dt} = -\nabla_{\theta} \mathbb{E}[R_1(r_i)]^T \frac{d\theta}{dt} \quad (26)$$

$$1436 = -\alpha \|\nabla_{\theta} \mathbb{E}[R_1(r_i)]\|^2 \leq 0 \quad (27)$$

1437 where $\alpha > 0$ is the learning rate. Since $R_1(r_i)$ is bounded, $V(\theta)$ is bounded below, ensuring
 1438 convergence to a critical point with the desired properties.
 1439

1440 B.2 FEEDBACK OPTIMIZATION VIA SCORE IMPROVEMENT

1441 The effectiveness of our Stage 2 training relies on a fundamental insight about the autoregressive
 1442 generation process and how score improvements can serve as proxies for feedback quality. Our
 1443 model generates responses following a specific sequential order: error analysis \rightarrow evaluation score
 1444 \rightarrow feedback \rightarrow final label.
 1445

1446 Let $r = (a, s, f, p)$ denote a complete response where a represents error analysis, s the evaluation
 1447 score, f the feedback, and p the final binary prediction. Under autoregressive factorization, the
 1448 likelihood decomposes as:

$$1449 \pi_{\theta}(r|x) = \pi_{\theta}(a|x) \pi_{\theta}(s|a, x) \pi_{\theta}(f|s, a, x) \pi_{\theta}(p|f, s, a, x) \quad (28)$$

1450
 1451 The key observation is that since s is generated before f , the evaluation score represents the model's
 1452 assessment of proof quality based purely on error analysis, independent of the feedback content.
 1453 This temporal independence allows us to interpret score improvements as objective measures of
 1454 feedback effectiveness.
 1455

1456 Consider the following formalization: let τ_0 be an initial proof attempt and F_{θ} our feedback provider.
 1457 When F_{θ} generates feedback f , a prover P uses this feedback to produce a revised proof τ_1 . If our
 1458 scoring function is S_{ϕ} , then the score improvement is $\Delta s = S_{\phi}(\tau_1) - S_{\phi}(\tau_0)$.

The fundamental assumption underlying our approach is that effective feedback should systematically lead to better proofs. Formally, for high-quality feedback f , we expect $\mathbb{E}[\Delta s|f] > 0$. This motivates our reward function:

$$R_2(f_i) = \begin{cases} +1 & \text{if } s_{1,i} - s_0 > \delta \\ -1 & \text{if } s_{1,i} - s_0 < -\delta \\ 0 & \text{if } |s_{1,i} - s_0| \leq \delta \end{cases} \quad (29)$$

To understand why this reward structure is optimal, we analyze its expected value. Let $\Delta s_i = s_{1,i} - s_0$ and define the improvement distribution as $P(\Delta s)$. Then:

$$\mathbb{E}[R_2(f_i)] = \int_{-\infty}^{\infty} P(\Delta s) d(\Delta s) - \int_{-\infty}^{-\delta} P(\Delta s) d(\Delta s) \quad (30)$$

$$= P(\Delta s > \delta) - P(\Delta s < -\delta) \quad (31)$$

For this expectation to be positive, we need $P(\Delta s > \delta) > P(\Delta s < -\delta)$, which occurs when the feedback provider generates more improvements than degradations. The policy gradient becomes:

$$\nabla_{\theta} \mathbb{E}[R_2(f_i)] = \mathbb{E}[R_2(f_i) \nabla_{\theta} \log \pi_{\theta}(f_i | s_0, a_0, x)] \quad (32)$$

Substituting our reward structure:

$$\nabla_{\theta} \mathbb{E}[R_2(f_i)] = \int_{\delta}^{\infty} P(\Delta s) \nabla_{\theta} \log \pi_{\theta}(f_i | s_0, a_0, x) d(\Delta s) \quad (33)$$

$$- \int_{-\infty}^{-\delta} P(\Delta s) \nabla_{\theta} \log \pi_{\theta}(f_i | s_0, a_0, x) d(\Delta s) \quad (34)$$

This gradient directly increases the probability of generating feedback that leads to score improvements while decreasing the probability of feedback that causes degradations.

However, a critical challenge emerges from the circular dependency between the feedback provider F_{θ} and scorer S_{ϕ} . If both components update simultaneously, we encounter a moving target problem. To formalize this instability, consider the joint dynamics of the two components.

At step t , the feedback provider parameters $\theta^{(t)}$ are updated based on rewards computed using scorer parameters $\phi^{(t)}$. Simultaneously, if the scorer updates to $\phi^{(t+1)}$, it changes the reward landscape for the next iteration. This creates a coupled dynamical system:

$$\theta^{(t+1)} = \theta^{(t)} + \alpha_{\theta} \nabla_{\theta} \mathbb{E}[R_2(f_i; \phi^{(t)})] \quad (35)$$

$$\phi^{(t+1)} = \phi^{(t)} + \alpha_{\phi} \nabla_{\phi} \mathbb{E}[R_1(r_j; \theta^{(t)})] \quad (36)$$

The problem is that the reward function R_2 depends on ϕ , so when ϕ changes, the reward signal for the same feedback changes, creating instability. To analyze this mathematically, consider the Jacobian of the combined system:

$$J = \begin{bmatrix} \frac{\partial}{\partial \theta} \nabla_{\theta} \mathbb{E}[R_2] & \frac{\partial}{\partial \phi} \nabla_{\theta} \mathbb{E}[R_2] \\ \frac{\partial}{\partial \phi} \nabla_{\phi} \mathbb{E}[R_1] & \frac{\partial}{\partial \phi} \nabla_{\phi} \mathbb{E}[R_1] \end{bmatrix} \quad (37)$$

The off-diagonal terms $\frac{\partial}{\partial \phi} \nabla_{\theta} \mathbb{E}[R_2]$ and $\frac{\partial}{\partial \theta} \nabla_{\phi} \mathbb{E}[R_1]$ represent the coupling between the two optimization problems. When these terms are large, the system can exhibit oscillatory or unstable behavior.

The momentum encoder strategy addresses this by decoupling the update frequencies. Instead of updating both parameters every step, we maintain:

$$\phi^{(t+1)} = \begin{cases} \phi^{(t)} & \text{if } t \bmod m \neq 0 \\ \theta^{(t)} & \text{if } t \bmod m = 0 \end{cases} \quad (38)$$

1512 This creates periods of stability where ϕ remains fixed while θ optimizes against a consistent reward
 1513 signal. During these intervals, the feedback provider's optimization problem becomes:

$$1515 \max_{\theta} \mathbb{E}[R_2(f_i; \phi_{\text{fixed}})] \quad (39)$$

1517 Since ϕ is fixed, the off-diagonal coupling terms vanish, and the optimization becomes stable. The
 1518 convergence analysis during each fixed- ϕ period follows standard policy gradient theory.

1519 When ϕ updates (every m steps), it incorporates the improved feedback generation capabilities
 1520 developed during the previous period. This creates a staircase-like improvement pattern where each
 1521 plateau represents stable optimization followed by a knowledge transfer step.

1522 To analyze convergence, we need to distinguish between two different measures of performance. Let
 1523 $Q(\theta)$ represent the true quality of feedback generated by parameters θ , measured by an idealized,
 1524 consistent evaluation standard. In contrast, $S_{\phi}(\cdot)$ represents the score assigned by the current model
 1525 parameters ϕ , which may vary across different parameter settings.

1526 The crucial insight is that while $\theta^{(tm)}$ was optimized to maximize $\mathbb{E}[S_{\phi^{((t-1)m)}}(\tau_{\text{revised}}(\theta))]$, this does
 1527 not guarantee that $\mathbb{E}[S_{\phi^{(tm)}}(\tau_{\text{revised}}(\theta^{(tm)}))] \geq \mathbb{E}[S_{\phi^{((t-1)m)}}(\tau_{\text{revised}}(\theta^{(tm)}))]$ because the scoring
 1528 function itself has changed.

1529 However, we can establish convergence through a different approach. Consider the sequence of
 1530 feedback quality improvements measured by a fixed, external evaluation standard $Q^*(\cdot)$. During
 1531 each interval $[(t-1)m, tm]$, the feedback provider θ is optimized according to:

$$1534 \theta^{(k+1)} = \theta^{(k)} + \alpha \nabla_{\theta} \mathbb{E}[R_2(f; \phi^{((t-1)m)})] \quad (40)$$

1535 Since the reward R_2 is designed to correlate with true improvement (i.e., $\mathbb{E}[R_2(f; \phi)] > 0$ when
 1536 $Q^*(f) > Q^*(\text{baseline})$), we have:

$$1538 Q^*(\theta^{(tm)}) \geq Q^*(\theta^{((t-1)m)}) \quad (41)$$

1540 This inequality holds because $\theta^{(tm)}$ was specifically trained to generate feedback that leads to im-
 1541 provements as measured by a scorer that was previously optimized for the same objective.

1542 The momentum update ensures that the new scorer $S_{\theta^{(tm)}}$ inherits the improved capabilities from
 1543 the feedback training process. While we cannot guarantee that the numerical scores will increase,
 1544 we can establish that the overall system capability improves monotonically.

1546 To formalize this, define the system-wide performance as:

$$1547 \Phi(t) = \max_{\tau} \mathbb{E}[Q^*(\tau) | \tau = P(F_{\theta^{(t)}}(\tau_0), \tau_0)] \quad (42)$$

1549 This represents the best possible proof that can be achieved by applying feedback from the current
 1550 model. Under our training scheme:

$$1552 \Phi(tm) \geq \Phi((t-1)m) \quad (43)$$

1554 The momentum update preserves this monotonic improvement while providing training stability.
 1555 The key insight is that even though individual score values may fluctuate due to changing evaluation
 1556 criteria, the underlying capability to generate effective feedback improves consistently.

1558 C TRAINING APPROACH DISCUSSION

1560 The backbone of PROOF-VERIFIER is Qwen3-8B. Our model is trained exclusively using RL with-
 1561 out prior SFT, as we find that additional SFT training reduces the diversity of the exploration space
 1562 during rollout generation while providing only marginal performance improvements. We identify
 1563 two main advantages for score distribution of SFT through pre-experiments: (1) distilling knowl-
 1564 edge from larger models (e.g., Qwen3-235B) to smaller models improves the robustness of eval-
 1565 uation score distributions, and (2) applying self-consistency filtering strategies to datasets generated
 by the model itself for self-training also enhances robustness. However, we find that these benefits

1566 can be naturally integrated into the RL training process by designing reward function that provides
 1567 positive rewards only for responses that are both correct and group-consistent. Additionally, while
 1568 SFT traditionally is used to establish output format, this can be achieved directly through the reward
 1569 function design. Thus, PROOF-VERIFIER is trained using GRPO entirely, with the reward function
 1570 serving as the core design mechanism. The training process consists of two steps, detailed below,
 1571 following a coarse-grained to fine-grained training objective progression.
 1572

1573 C.1 EVALUATION STRATEGY DESIGN

1575 When performing multiple evaluations on a single proof candidate, the stability and reliability
 1576 of evaluation scores are crucial for robust assessment. We analyze two key factors that influence
 1577 evaluation quality: (1) sampling strategy, including Single Sample, Parallel Sampling, and
 1578 IID sampling, where the key distinction between the latter two is that parallel sampling generates
 1579 trajectories that influence each other through various parameters (e.g., repetition penalties, beam
 1580 group sizes), while IID sampling generates completely independent evaluations, and (2) prompt
 1581 complexity, comparing simple prompts versus detailed rubric-based prompts. We conduct experiments
 1582 across multiple benchmarks including CombiBench, FIMO, miniF2F, ProofNet, Prover-
 1583 Bench, and PutnamBench. Using LLM-based provers, we first generate informal and formal proof
 1584 candidates via IID sampling, then evaluate them using two models of different scales: Qwen3-8B
 1585 and Qwen3-235B. Results are shown in Table 3, where outliers represent abnormal scores exceeding
 1586 the expected [0-100] range, ICC measures the consistency of ratings across multiple evaluations
 1587 of the same proof, and Median CV quantifies the relative variability in evaluation scores.
 1588

1589 We find that parallel sampling produces more stable evaluations than
 1590 IID sampling, with lower outlier rates and higher consistency metrics. Additionally, parallel sampling
 1591 achieves higher computational efficiency under VLLM-optimized infrastructure. Regarding prompt de-
 1592 sign, complex prompts containing detailed scoring rubrics surprisingly underperform compared to simple, di-
 1593 rect prompts, likely due to increased instruction complexity leading to inconsistent interpretation. Therefore,
 1594 we adopt Simple Prompt + Parallel Sampling for all subsequent experiments.
 1595

1604 D HUMAN 1605 ANNOTATION INTERFACE

1606 We developed a web-based interface for human evaluation of mathematical proof assistance quality
 1607 through pairwise comparisons within each response type.
 1608

1609 D.1 INTERFACE DESIGN

1610 The interface displays four components (Figure 7): the original mathematical statement at the top,
 1611 the student’s proof attempt below it, two response panels side-by-side in the center, and selection
 1612 buttons at the bottom. Each comparison presents two responses of the same type (e.g., error analysis
 1613 A vs. error analysis B).
 1614

1615 D.2 EVALUATION SETUP

1616 For each response type, annotators complete 20 pairwise comparisons. Panel positions are random-
 1617 ized to avoid bias. Annotators select which response would be more helpful for a student.
 1618

Sampling	Median CV ↓	ICC ↑	Outlier(%) ↓
Qwen3-8B			
C+Parallel	0.1031	0.5540	4.3
→ IID	0.1056	0.5537	4.7
S+Parallel	<u>0.0979</u>	<u>0.6140</u>	<u>1.5</u>
→ IID	0.0983	0.5737	1.6
Qwen3-235B			
C+Parallel	0.0770	0.8085	1.4
→ IID	0.0769	0.8081	1.6
S+Parallel	0.0713	0.8372	0.2
→ IID	0.0753	0.8128	0.3

1619 Table 3: Consistency and reliability of evaluation scores
 across different models, prompts, and sampling strategies.
 S/C denotes simple/complex prompts, respectively.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Mathematical Statement

Given positive integers n and k , there is a finite set $A(n,k) = \{a_1, a_2, \dots, a_n\}$ where $a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,(-1)k+1})$, $a_{i,1}, a_{i,2}, \dots, a_{i,(-1)k+1} \in \{0, 1\}$ and $a_{i,1} + a_{i,2} + \dots + a_{i,(-1)k+1} = 1$ for $i = 1, 2, \dots, n$. For an n -term sequence $\Omega : (1, x_1), (2, x_2), \dots, (n, x_n)$, if $x_1 = 1$ and $x_{i+1} - x_i \in \{0, 1, \dots, k\}$ for $i = 1, 2, \dots, n-1$, then it is called a "G-sequence". At this time, denote $G(\Omega) = a_{1,x_1} + a_{2,x_2} + \dots + a_{n,x_n}$. Prove that for any set $A(n,k)$, there exists a "G-sequence" Ω such that $(k+1)G(\Omega) > kn$.

Student's Proof Attempt

Proof: I will use the probabilistic method to show the existence of such a G-sequence.

First, let me count the total number of G-sequences. Since $x_1 = 1$ and each subsequent x_{i+1} can increase by at most k , we have at most $(k+1)^{n-1}$ possible G-sequences.

Now I'll compute the sum $\sum G(\Omega)$ over all G-sequences Ω . For each position i and value j , the term $a_{i,j}$ appears in exactly the number of G-sequences where $x_i = j$. Since $\sum_j a_{i,j} = 1$ for each i , and each G-sequence visits exactly one position per step, we get $\sum G(\Omega) \geq \text{number of G-sequences}$.

By the pigeonhole principle, there exists a G-sequence Ω such that $G(\Omega) \geq \text{average value}$. Since the total sum is at least the number of sequences, the average is at least 1.

Therefore, there exists a G-sequence with $G(\Omega) \geq 1$, which gives us $(k+1)G(\Omega) \geq k+1 > kn$. *However, this argument breaks down when $k+1 \leq kn$...*

Feedback A - Error Analysis

The proof attempt demonstrates an understanding of the probabilistic method and the pigeonhole principle but contains critical errors in the application of these concepts. Here's a breakdown of the feedback:

- 1. Conceptual Understanding:** The user correctly identifies the total number of G-sequences and the structure of $G(\Omega)$. They also attempt to use the probabilistic method and the pigeonhole principle, which are valid strategies for such problems.
- 2. Logical Gaps:** The core error lies in the incorrect inequality $(k+1)^n > kn \cdot (k+1)^{n-1}$. This inequality is not generally true, and the proof fails to address cases where it does not hold (e.g., $n = 2, k = 1$). The argument also misapplies the pigeonhole principle by assuming that the average value being greater than kn guarantees the existence of a sequence exceeding kn .

3. Suggestions for Improvement:

- Re-examine the Inequality:** The proof should address the general case by considering the relationship between $k+1$ and kn for all n and k . For example, when $k+1 \leq kn$, alternative methods (e.g., explicit construction of a G-sequence) may be necessary.
- Clarify the Pigeonhole Principle Application:** The argument should explicitly show that the average value of $(k+1)G(\Omega)$ being at least $k+1$ ensures the existence of a sequence with $(k+1)G(\Omega) > kn$, which requires a more rigorous analysis of the total sum and individual contributions.
- Consider Edge Cases:** The proof should test edge cases like $n = 1$ or $k = 1$ to ensure the result holds universally.

Feedback B - Actionable Feedback

The proof shows promise in its approach but requires significant structural improvements to establish the desired inequality. Here's a constructive analysis:

Strengths Identified: You correctly recognize that this is an extremal problem requiring either probabilistic or constructive methods. The notation is properly established, and you understand the constraint structure of G-sequences.

Critical Issues to Address:

- Mathematical Rigor:** The current argument lacks the necessary inequality chain. You need to establish that $\max G(\Omega) \geq \text{average } G(\Omega)$, then show this average exceeds $kn/(k+1)$.
- Counting Analysis:** Properly enumerate all possible G-sequences and their contributions. The total number is at most $(k+1)^{n-1}$, not $(k+1)^n$.
- Boundary Cases:** Verify your approach works for small values: $n=1, k=1$ gives trivial satisfaction, but $n=2, k=1$ requires careful analysis.

Recommended Next Steps:

- 1. Establish Lower Bound:** Prove that $\sum G(\Omega) \geq n$ (total sequences), using the constraint that each position contributes at least once across all sequences.
- 2. Apply Extremal Principle:** Since the maximum value must be at least the average, show $\max G(\Omega) \geq n \cdot (k+1)^{n-1} > kn/(k+1)$.
- 3. Verify Inequality:** Confirm that $n/(k+1) > kn/(k+1)$ simplifies to the target inequality.

This approach transforms your intuitive understanding into a rigorous proof framework.

Which feedback is more helpful?

Choose A

Choose B

You selected Feedback B as more helpful!

Selection recorded at 11:33:11 PM

Figure 7: Human annotation interface for pairwise comparison of mathematical proof assistance types. The web-based evaluation tool presents annotators with a mathematical statement and two alternative response types from three categories: error analysis, actionable feedback, and refined proof.

1674
1675 D.3 WIN RATE ANALYSIS
16761677 After collecting preferences across all pairs, we analyze correlations between win rates within the
1678 same verification trajectory. For example, if verification trajectory A’s error analysis outperforms
1679 trajectory B’s error analysis, we examine whether trajectory A’s actionable feedback also outper-
1680 forms trajectory B’s feedback, revealing consistency across response types.
16811681 E RELATED WORK
16821683 **Mathematical theorem proving** has seen significant progress with benchmarks like
1684 miniF2F (Zheng et al., 2022), FIMO (Liu et al., 2023), and PutnamBench (Tsoukalas et al.,
1685 2024), alongside advances in AI-assisted approaches such as AlphaGeometry (Trinh et al., 2024;
1686 Chervonyi et al., 2025) and recent neural theorem provers (Polu & Sutskever, 2020). Current
1687 verification relies primarily on interactive theorem provers like Lean4 (de Moura et al., 2015;
1688 de Moura & Ullrich, 2021), Coq (Huet & Paulin-Mohring, 2000), and Isabelle (Nipkow et al.,
1689 2002), with recent improvements in compilation efficiency through Kimina Lean Server (Santos
1690 et al., 2025). However, these approaches have critical limitations for RLVR applications: they
1691 only support formal languages while excluding natural language proofs, and provide only binary
1692 verification results without the detailed error analysis or actionable feedback essential for effective
1693 reinforcement learning.
16941695 **Reward modeling for mathematical reasoning** has primarily focused on traditional problem-
1696 solving tasks. Process reward models (Lightman et al., 2024; Wang et al., 2024a) have shown suc-
1697 cess in step-by-step verification for computational problems, while outcome reward models achieve
1698 strong results through final answer comparison (Cobbe et al., 2021). More broadly, LLM-as-a-judge
1699 approaches (Zheng et al., 2023) have evolved from instruction-following evaluation to reward mod-
1700 els across domains including medical QA (Croxford et al., 2025), multimodal tasks (Chen et al.,
1701 2024), and code generation (Zhao et al., 2024), with open-source alternatives like PandaLM (Wang
1702 et al., 2024b) and Prometheus (Kim et al., 2024a;b) providing cost-effective solutions. While these
1703 methods succeed in traditional mathematical tasks through reference answer comparison (Chen
1704 et al., 2025), theorem proving’s process-oriented nature and diverse solution paths present unique
1705 verification challenges that limit RLVR applications in this domain. Our work addresses this verifi-
1706 cation bottleneck by developing the first dual-language verifier specifically designed for mathemati-
1707 cal theorem proving, enabling RLVR applications through detailed error analysis and fine-grained
1708 evaluation capabilities via novel two-stage reward modeling.
17091708 F TRAINING DATASET STATISTICS
17091710 Our initial data is divided into natural language data and formal language data, including the
1711 statement-proof pairs labeled to be correct or not.
17121713 For statement-proof pairs in natural language, we utilize the statements from OPC dataset Dekoninck
1714 et al. (2025) and RFM dataset Guo et al. (2025). We use different reasoning models to generate
1715 multiple proofs for a single statement, which we then label as either correct or incorrect. Of the
1716 statement-proof pairs in our initial pool, 2,000 are from the RFM dataset (582 labeled as correct,
1717 1,418 as incorrect) and 3,039 are from the OPC dataset (1,109 labeled as correct, 1,930 as incorrect).
1718 To balance the dataset, we remove a number of incorrect proofs. The final dataset consists of 1,164
1719 entries from the RFM dataset and 2,218 from the OPC dataset, with an equal number of incorrect and
1720 correct proofs. We evenly extract data from the formal statement-proof pairs of datasets including
1721 MiniF2F Zheng et al. (2022), ProofNet Azerbayev et al. (2023), PutnamBench Tsoukalas et al.
1722 (2024), ProverBench Ren et al. (2025), CombiBench Liu et al. (2025), Fimo Liu et al. (2023), and
1723 Hmmt Zhang et al. (2025b) (Note that the number of statements in these datasets varies, and the
1724 quantity of our dataset refers to the number of statement-proof pairs but not statements. Besides,
1725 dataset like Hmmt contains statements and proofs in natural language, and we translate them into
1726 formal language), and ensure that the total amount of formal data is roughly the same as that of
1727 natural language data. Ultimately, we obtain a final dataset of 6764 entries, as shown in Table 4.
1728 And we also count the distribution of knowledge domains, as shown in Table 5, which can be seen
1729 as a rough evaluation of the diversity of our dataset.
1730

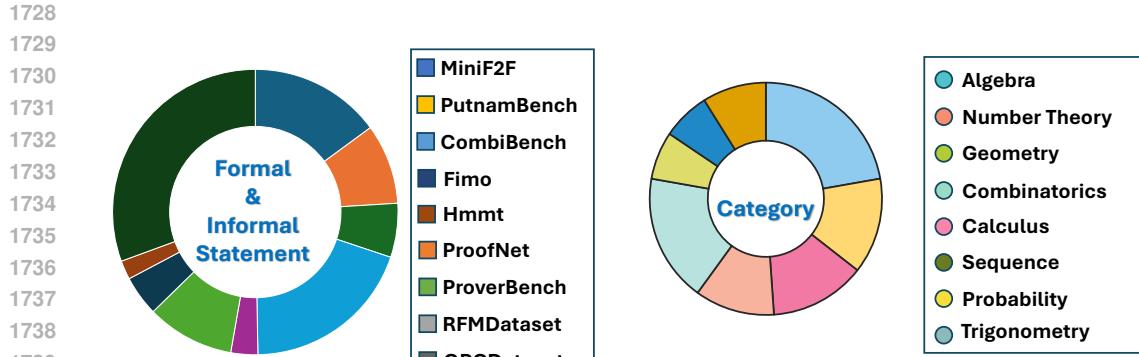


Figure 8: Benchmark statistics and category distribution.

Dataset Name	Data Size
OPC Dataset	2218
RFM Dataset	1164
MiniF2F	484
ProofNet	484
PutnamBench	484
ProverBench	484
CombiBench	484
Fimo	484
Hmmt	484
Total	6770

Table 4: Statistics of training set data sources.

G PROMPT TEMPLATE DESIGN

These training datasets are formatted into a predefined prompt template for training. The evaluator is instructed to generate error analysis, evaluation scores, and actionable feedback as output. Natural language inputs include the statement and proof, while formal language inputs additionally include compilation results. We find this essential because without compilation results, the trained evaluator often produces incorrect analyses with low accuracy. This occurs because Lean4 proofs can encompass numerous proof steps and strategies within just one or two lines of code, requiring significant compilation time even for the compiler. Rather than having the evaluator perform lengthy reasoning to interpret the code and analyze potential errors, we directly provide compilation results to help it better understand the code and proof states, enabling more accurate and targeted feedback.

We compared two types of prompts: 1) simple free-style prompts that only constrain the format of model outputs, versus 2) complex prompts with specific guidance, such as requiring analysis from given perspectives, summing scores across multiple dimensions, and generating feedback from pre-defined frameworks. These two types of prompts are shown in Appendix M. Counterintuitively, we found that the first prompt yields significantly better results than the second. Even large models may make errors when summing evaluation scores and struggle to follow complex instructions. For the second type, models fail to follow the instruction to provide a detailed and in-depth analysis for each required perspective, instead offering only superficial and cursory responses. In contrast, simple prompts allow models to perform targeted, self-adaptive detailed analysis and provide specific feedback. For training, overly specific and complex prompts can be viewed as parameterized prefixes that constrain the exploration space of conditional generation rollouts, thereby preventing model improvement. Simple prompts provide models with sufficient search space, where as long as the format is correct, the optimization of intermediate processes relies on self-exploration, which

Domain	Data Size
Algebra	1480
Number Theory	1184
Calculus	958
Geometry	886
Combinatorics	740
Sequence	592
Probability	392
Trigonometry	422

Table 5: Statistics of different mathematical domains.

can fully leverage the strengths of RL to train more powerful models. Our experiments confirm this point: in RL, specific and complex prompts not only perform poorly initially but also provide limited improvement for the model. Detailed experimental results are shown in Appendix K.

H RFM DATASET

The prompt template follows a rubric-based evaluation containing 10 perspectives, covering various common proof errors such as Transformation Error, Hidden Assumption, and Boundary Neglect, as detailed in Appendix M. We employed three PhD-level math students to independently label the data (discarding entries where consensus was not reached), and comparison revealed a Pearson correlation coefficient of 0.89, thus demonstrating the feasibility of using this approach for large-scale labeling of this dataset, where the noise level remains within acceptable bounds.

1) OPC Dataset Dekoninck et al. (2025): Contains proof attempts generated by multiple advanced reasoning models using natural language on PutnamBench (Tsoukalas et al., 2024) statements. Multiple human experts label these proof attempts as True or False. For cases where annotators disagree, we apply majority voting when feasible; otherwise, we discard instances with substantial disagreement.

2) RFM Bench Guo et al. (2025): A benchmark contains proof statements across multiple difficulty levels (high school, undergraduate, graduate) and mathematical domains, including geometry, algebra, inequalities, number theory, and calculus. All statements are human-annotated and verified for quality and difficulty control. Since this dataset contains only statements, we generate proof candidates using advanced reasoning models and employ LLM-as-a-judge labeling with Gemini-2.5-Pro as the evaluator, as we find that Gemini-2.5-Pro demonstrates strong proof evaluation capabilities on this dataset under carefully designed rubrics. Finally, we extract 100 {statement, proof attempt} pairs for human annotation to form part of our test set.

Both datasets may introduce validation errors, potentially overlooking logical issues and other subtle errors that are difficult to detect. Moreover, they contain only natural language proofs without formal language coverage. To address these limitations, we introduce a third data construction method.

I TEST DATASET COLLECTION

For formal language, we selected different prover models (DeepSeek Prover V2 Ren et al. (2025), Kimina Prover Wang et al. (2025a), Goedel Prover Lin et al. (2025), Leanabell Prover Zhang et al. (2025a), and STP Prover Dong & Ma (2025)) that differ from training data collection models, sampling 32 proof attempts per statement on new benchmarks with compiler-generated labels. For natural language, we used various series models (Qwen3, Mistral, Magistral Mistral-AI et al. (2025), Qwen 2.5, Gemma Team et al. (2025), DeepSeek R1) for sampling, with 100 samples labeled by human annotators and the remaining labeled by Gemini-2.5-Pro. Our three human annotators achieved Cohen’s Kappa Cohen (1960) scores of 0.86, 0.86, and 0.88, validating the high quality and reliability of the test set. The final test set contains 5k formal language and 1k natural language samples.

1836
1837

J MODEL INTRODUCTION

1838
1839

J.1 GENERAL PROPOSE MODELS

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

Qwen series. We use the Qwen-2.5-7B, Qwen-2.5-72B, Qwen-3-8B and Qwen3-30B Qwen et al. (2025) in our experiments. Both Qwen2.5-8B and Qwen3-8B acquire extensive mathematical knowledge during pre-training, and Qwen3-8B, in particular, has ability to handle more difficult mathematical problems. As a result, they are widely used as base models for training in research. Qwen-2.5-72B is the largest open-source model in Qwen-2.5 series, which demonstrates significant improvements in mathematical ability compared to its predecessors. Qwen3-30B, a new representative model of the Qwen series, adopts a mixture-of-experts architecture and can employ long chain-of-thoughts, which greatly improves its mathematical reasoning capability. Specifically, the Qwen3-30B model shows strong performance on competition-level math benchmarks, such as AIME-2024 Jia (2025) and AIME-2025 OpenCompass Team (2025).

1850
1851
1852
1853
1854
1855
1856
1857
1858

Mistral and Magistral series. Mistral Mistral-AI et al. (2025) is a series of powerful, efficient language models from the Mistral AI. The models are known for their strong performance across various tasks while being efficient. These models achieve good performance on various mathematical benchmarks like MATH Hendrycks et al. (2021) and GSM8K Cobbe et al. (2021), proving their strong capabilities from basic arithmetic to advanced problem-solving. To further improve models' reasoning ability, Mistral AI introduced the Magistral series. These new models are specifically trained for advanced reasoning tasks and capable of performing long chain-of-thought. This makes their problem-solving process more transparent and reliable for complex applications, while achieving high scores on challenging math benchmarks like AIME-2024 Jia (2025) and AIME-2025 Open-Compass Team (2025).

1859
1860
1861
1862
1863

Gemma series. Gemma Team et al. (2025) is a family of lightweight, open-source models developed by Google. The recent Gemma-3 series represents a significant leap forward in capabilities and efficiency. A key highlight of the Gemma 3 series is its exceptional performance in mathematical reasoning. The technical report confirms that Gemma 3 models demonstrate substantial gains over their predecessors on critical math benchmarks, specifically MATH and HiddenMath.

1864
1865
1866
1867
1868

Deepseek-R1. Deepseek-R1 DeepSeek-AI et al. (2025) is one of the most prominent open-source reasoning models, widely used for complex mathematical reasoning. Its performance on two competition-level datasets, AIME-2024 and AIME-2025, is comparable to top commercial models, achieving a pass@1 score of nearly 90% or higher. Furthermore, Deepseek-R1's recent performance on the RFM Dataset for mathematical proofs is shown to surpass many reasoning models.

1869
1870
1871
1872
1873

Gemini-2.5-pro. The Gemini-2.5-pro Comanici et al. (2025) model is dedicated to pushing the frontier of AI with advanced reasoning. In addition to its excellent performance on common math competition datasets like AIME, this model has also recently been shown to surpass other models in its mathematical proof generation ability under the same criteria.

1874
1875

J.2 PROVER MODELS

1876
1877
1878

In this paper, we refer to models that are specifically trained to generate formal proofs from formal statements as prover models. In this subsection, we provide a short introduction to the prover models we used.

1879
1880
1881
1882
1883
1884

DeepSeek-Prover-V2. DeepSeek-Prover-V2 Ren et al. (2025) is an open source prover model for theorem proving in Lean 4, which is distinguished by its innovative pipeline that effectively unifies informal, human-like reasoning with the rigor of formal proof generation. Its core feature is a two-stage process that begins by using a powerful general model (DeepSeek-V3 DeepSeek-AI et al. (2025)) to decompose complex theorems into a high-level proof sketch composed of simpler subgoals. These subgoals are then solved by a more specialized prover model.

1885
1886
1887
1888

KIMINA Prover. KIMINA Prover Wang et al. (2025a) emulates human problem solving by generating a mix of informal mathematical intuition and formal Lean 4 code. This process allows it to iteratively build and refine a proof.

1889

Goedel Prover. The core innovation of Goedel Prover Lin et al. (2025) lies in addressing the scarcity of formal mathematical data through a two-pronged approach. It automatically translates a massive

1890 dataset of 1.64 million math problems from natural language into formal statements. Besides, it
 1891 employs a training method where the model generates proofs for these statements, and any new
 1892 correct proofs are added back into the training set to iteratively create a more powerful prover.
 1893

1894 **Leanabell Prover.** Leanabell Prover Zhang et al. (2025a) undergoes a two-stage post-training strat-
 1895 egy. The first stage is supervised fine-tuning on a large, custom-curated dataset. This dataset not
 1896 only includes a massive collection of statement-proof pairs but, more importantly, incorporates syn-
 1897 thetic data designed to integrate self-reflection and error correction. This is achieved by generating
 1898 Chain-of-Thought style explanations for why a proof failed and how it is corrected. Second, us-
 1899 ing the GRPO algorithm, the finetuned model learns by generating entire proofs and receiving a
 1900 direct reward signal from the Lean 4 compiler based on whether the proof is successfully verified.
 1901 This strategy of combining SFT with cognitive data and RL optimization allows Leanabell-Prover
 1902 to achieve good performance.

1902 **STP Prover.** The training of STP prover Dong & Ma (2025) simultaneously operates in two roles of
 1903 prover and conjecturer. These two roles create a dynamic self-play feedback loop. The conjecturer
 1904 creates novel problems that are barely provable by the prover’s current ability. This process generates
 1905 a continuous stream of appropriately difficult training data. This allows the model to improve its
 1906 reasoning skills without requiring more human-created datasets, effectively creating its own adaptive
 1907 learning curriculum.

1909 K ABLATION STUDY ON PROMPT DESIGN

1912 Verifier	1913 Acc	1914 Prec	1915 Rec	1916 F1
1913 Simple Prompt	0.57	0.58	0.55	0.56
1914 Simple Prompt + RL	0.86	0.87	0.85	0.86
1915 Complex Prompt	0.43	0.45	0.42	0.43
1916 Complex Prompt + RL	0.52	0.53	0.51	0.52

1918 Table 6: Comparison of prompt types during inference and after RL training. Simple Prompt out-
 1919 performs Complex Prompt in both settings.

1921 As shown in Table 6, we found that Simple Prompt performs better than Complex Prompt in both
 1922 zero-shot stage and after RL training. The reason is that overly complex prompts are difficult for
 1923 models to follow, resulting in poor inference performance. Additionally, overly complex prompts
 1924 limit the model’s exploration space, where model outputs become constrained and RL cannot effec-
 1925 tively optimize the model further.

1927 L TRANSLATION ERROR

1929 In this section, we provide cases to show the errors that occurred when translating the formal state-
 1930 ments or proofs to natural language statements or proofs.

1932 L.1 STATEMENT TRANSFORMATION ERROR

1934 We identify three main kinds of statement transformation errors: *Premise Difference*, *Conclusion*
 1935 *Difference*, *Not to Prove*. *Premise Difference* refers to a discrepancy where the premise provided
 1936 by the translated natural language statement differs from those off the original formal statement, as
 1937 shown in Figure 9, 10, 11. In each figure, we mark the translation errors in red and provided an
 1938 analysis of the errors. Taking Figure 9 as an example, the original formal statement does not provide
 1939 aby specific value for the function $f(x)$ and its corresponding inverse function at a given point,
 1940 but only presented an equality condition. However, the translated natural language statement does
 1941 include a value. Although these values do not affect the solution in this specific example, it still
 1942 highlights a semantic inconsistency.

1943 *Conclusion Difference* refers to a discrepancy where the conclusion to be proven in the formal lan-
 1944 guage statement differs from the conclusion of the translated natural language statement, as shown

1944 in Figure 10, 11, 12, 13, 14. For example, in Figure 12, the conclusion to be proven in the formal
 1945 language statement is that a certain property holds for all positive integers. However, the natural
 1946 language statement is incorrectly rendered as proving there are infinitely many such integers. While
 1947 these two concepts are somewhat related, the difference between them is significant.

1948 *Not to Prove* refers to a situation where the natural language statement fails to clearly distinguish
 1949 between the premises and the conclusion to be proven(Figure 15, 16). In some cases, the translation
 1950 is even a problem that requires a numerical result instead of a proof(Figure 17).

1952 Formal Statement and proof:

```
1954
1955 import Mathlib
1956 import Aesop
1957 set_option maxHeartbeats 0
1958 open BigOperators Real Nat Topology Rat
1959 /-- Suppose  $f(x)$  is an invertible function with  $f(2)=f^{-1}(2)=4$ .
1960 Show  $f(f(2)) = 2$ . -/
1961 theorem mathd_algebra_188 ( $\sigma$  : Equiv R R)
1962   ( $h$  :  $\sigma^{-1} 2 = \sigma 2$ ) :
1963    $\sigma (\sigma 2) = 2$  := by
```

1964 Transformed Natural Language Statement:

1965 Suppose f is a bijective function from the real numbers to the real numbers, with the property that both
 1966 $f(2)$ and its inverse function $f^{-1}(2)$ evaluate to 4. What is the value of $f(f(2))$? Show that it equals 2.

1968 Error Type: Premise Difference

1969 **Error Analysis:** The natural language statement describes the specific values $f(2) = 4$ and
 1970 $f^{-1}(2) = 4$, while the Lean code states that $f(2)$ and $f^{-1}(2)$ are equal, without explicitly
 1971 mentioning the value 4. This error may have been affected by the comment content in the lean
 1972 code.

1974 Figure 9: A failure case of *Premise Difference*.

1977 L.2 PROOF TRANSLATION ERROR

1979 We also explored the bad cases of converting formal proofs into natural language proofs. A common
 1980 case is that the natural language proof translated by the model is merely an annotation of the formal
 1981 proof, as shown in Figure 18 and 19. This means it is not a complete proof on its own, because
 1982 languages like Lean 4 contain elements such as tactics that are not fully explained in the translation.
 1983 Furthermore, we also discover cases where the natural language proofs and formal proofs use dif-
 1984 ferent methods(Figure 20). Although these proofs may be correct on their own, they fail to meet our
 1985 consistency requirement.

1986 M PROMPTS

1989 In this section, we detail the prompts used in our experiments.

1990 Figure 21 is the prompt we provide to *Gemini-2.5-pro* to judge the proofs generated by various
 1991 LLMs for statements from RFM Dataset. This prompt not only asks the model to provide an overall
 1992 correctness score, but also requires it to categorize any errors into one or more failure modes, which
 1993 are detailed in Figure 22.

1994 Figure 23 and 24 show the prompts provided to our evaluator to evaluate a formalized proof, with
 1995 and without verification information from the Lean 4 compiler, respectively.

1996 Figure 25 and 27 show the prompts provided to our evaluator to evaluate a natural language proof,
 1997 with and without detailed rubrics to give the final score, respectively.

```

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Formal Statement and proof:

import Mathlib
open Matrix
def coeff_matrix : Matrix (Fin 4) (Fin 3) Q :=
  !![![ -19, 8, 0],
       ![-71, 30, 0],
       ![-2, 1, 0],
       ![ 4, 0, 1]]
def aug_matrix : Matrix (Fin 4) (Fin 4) Q :=
  !![![ -19, 8, 0, -108],
       ![-71, 30, 0, -404],
       ![-2, 1, 0, -12],
       ![ 4, 0, 1, 14]]
axiom rank_of_matrix : rank coeff_matrix = 2 ∧ rank aug_matrix = 2
axiom verify_solution : (4, -4, -2) ∈ {x : Q × Q × Q |
  -19 * x.1 + 8 * x.2.1 = -108 ∧
  -71 * x.1 + 30 * x.2.1 = -404 ∧
  -2 * x.1 + x.2.1 = -12 ∧
  4 * x.1 + x.2.2 = 14}
-- The system of linear equations has a unique solution (4, -4, -2).
/
theorem unique_solution : ∃! x : Q × Q × Q,
  -19 * x.1 + 8 * x.2.1 = -108 ∧
  -71 * x.1 + 30 * x.2.1 = -404 ∧
  -2 * x.1 + x.2.1 = -12 ∧
  4 * x.1 + x.2.2 = 14 := by

```

Transformed Natural Language Statement:

Consider the system of linear equations:

- 1) $-19x + 8y = -108$
- 2) $-71x + 30y = -404$
- 3) $-2x + y = -12$
- 4) $4x + z = 14$

Prove that this system has a unique solution (4, -4, -2).

Error Type: Premise Difference and Conclusion Difference

Error Analysis: In the formalized statement, it is directly given that the rank of the coefficient matrix is equal to the rank of the augmented matrix, which falls under the category of premise difference. The formalized statement directly indicates that (4, -4, 2) is a solution to the equation, so it only needs to prove uniqueness. However, the natural language statement first needs to prove that (4, -4, 2) is a solution to the equation, which belongs to conclusion difference.

Figure 10: A failure case of *Premise Difference* and *Conclusion Difference*.

N FEEDBACK CASE STUDY

To intuitively demonstrate the effectiveness of our evaluator, we present some cases in this section, as shown in Figures 28, 29, 30, and 31. Figures 28, 29, and 30 show feedback on formal proofs, while Figure 31 provides feedback on a natural language proof.

From the feedback on formal proofs, we can clearly see that the evaluator's feedback can identify and correct errors related to the properties of Lean, as well as point out the missing parts in the formal proof. For example, the case shown in Figure 30 indicated that the feedback precisely identifies the critical gap, which is the missing proof that $\pi < 4$ required to apply the function's conditional definition—and resolves it by directing the user to the essential Mathlib theorem `Real.pi_lt_four`. It corrects the ineffective `simp_all` tactic by prescribing explicit hypothesis applica-

```

2052
2053
2054
2055 import Mathlib
2056 -- Let  $f(u, v)$  be differentiable with
2057  $\partial f / \partial u - \partial f / \partial v = 2(u - v)e^{-(u+v)}$ 
2058 and  $f(u, 0) = u^2 e^{-u}$ . Then:
2059 a) For  $g(x, y) = f(x, y - x)$  we have  $\partial g / \partial x = (4x - 2y)e^{-y}$ ;
2060 b)  $f(u, v) = (u^2 + v^2)e^{-(u+v)}$ ;
2061 c)  $f$  has a unique global minimum at  $(0, 0)$  with  $f(0, 0) = 0$ . --/
2062 open Real
2063 variable {u v x y : R}
2064 noncomputable def f (u v : R) : R := (u2 + v2) * exp (- (u + v))
2065 noncomputable def g (x y : R) : R := f x (y - x)
2066 axiom f_partial_condition (u v : R) :
2067   deriv (fun u => f u v) u - deriv (fun v => f u v) v = 2 * (u - v) *
2068     exp (- (u+v))
2069 axiom f_initial_condition (u : R) :
2070   f u 0 = u2 * exp (-u)
2071 axiom partial_g_x (x y : R) :
2072   deriv (fun x => g x y) x = (4 * x - 2 * y) * exp (-y)
2073 lemma g_expression (x y : R) :
2074   g x y = (x2 + (y - x)2) * exp (-y) :=

```

2074 Transformed Natural Language Statement:

2075 Consider a differentiable function $f(u, v)$ that satisfies:

2076 1. The difference between its partial derivative with respect to u and its partial derivative with
2077 respect to v equals $2(u - v)e^{-(u+v)}$
2078 2. The initial condition $f(u, 0) = u^2 e^{-u}$

2079 We are to show that:

2080 a) For $g(x, y) = f(x, y - x)$, the partial derivative of g with respect to x is $(4x - 2y)e^{-y}$
2081 b) The function $f(u, v)$ has the explicit form $(u^2 + v^2)e^{-(u+v)}$
2082 c) The function f has a unique global minimum at $(0, 0)$ with value 0

2084 Error Type: Premise Difference and Conclusion Difference

2085 **Error Analysis:** In the formalized statement, it is only necessary to prove that $g(x, y) = (x^2 +$
2086 $(y - x)^2) * \exp(-y)$. However, the natural language statement needs to prove three statements.
2087 Among them, statements (a) and (b) are given as known conditions in the formalized statement,
2088 and statement (c) is not reflected in the lean code. Therefore, it falls into both the categories of
2089 *Premise Difference* and *Conclusion Difference*.

2091 Figure 11: A failure case of *Premise Difference and Conclusion Difference*

2092 tion ($h_1 \perp \langle \text{Real.pi_nonneg}, \text{Real.pi_lt_four} \rangle$), transforming an incomplete automation attempt into
2093 a robust, verifiable proof that adheres strictly to the function's domain conditions.

2094 From the feedback on natural language proofs shown in Figure 31, we can see the feedback ac-
2095 curately point out that the inequality used in the proof is invalid and does not hold under certain
2096 conditions. It even provided failure cases of the inequality and a corresponding improvement plan.

2097
2098
2099
2100
2101
2102
2103
2104
2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

Formal Statement and proof:

```

import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat
/- For how many positive integers m does there exist at least one
positive integer n
such that m · n ≤ m + n?
(A) 4 (B) 6 (C) 9 (D) 12 (E) infinitely
many. Show that it is (E) infinitely many.-/
theorem amc12a_2002_p6 (n : N)
  (h_0 : 0 < n) :
  ∃m, m > n ∧ ∃p, m * p ≤ m + p := by

```

Transformed Natural Language Statement:

How many positive integers m exist such that there is at least one positive integer n satisfying the inequality $m \cdot n \leq m + n$? The options are: - (A) 4 - (B) 6 - (C) 9 - (D) 12 - (E) infinitely many.

We are to show that the correct answer is (E) infinitely many.

Error Type: Conclusion Difference

Error Analysis: The formalized statement means that a certain conclusion holds for any n greater than 0, while the natural language statement means that there are infinitely many values of n for which this conclusion holds. Therefore, this belongs to a Conclusion Difference.

Figure 12: A failure case of *Conclusion Difference***Formal Statement and proof:**

```

import Mathlib
/- Let A be a real  $2 \times 2$  matrix. Then the determinant of  $A^2$  is always
nonnegative, i.e.,  $\det(A^2) \geq 0$ .-/
open Matrix
variable (A : Matrix (Fin 2) (Fin 2) R)
lemma det_A_sq : det (A * A) = (det A) ^ 2 := by

```

Transformed Natural Language Statement:

Let A be a real 2×2 matrix. Show that the determinant of A^2 is always non-negative, i.e., $\det(A^2) \geq 0$.

Error Type: Conclusion Difference

Error Analysis: In the formalized statement, it is required to prove that the determinant of a matrix squared is equal to the square of the determinant. However, the natural language statement needs to prove that the determinant of a matrix squared is greater than or equal to 0. Therefore, this belongs to a Conclusion Difference.

Figure 13: A failure case of *Conclusion Difference*.

2160

2161

2162

2163

Formal Statement and proof:

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

```
import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

/- What is the tens digit of 5^2005? Show that it is 2. -/
theorem mathd_numbertheory_198 :
  5 ^ 2005 % 100 = 25 := by
```

Transformed Natural Language Statement:

2175

What is the tens digit of 5^{2005} ? **Prove that it is 2.**

2176

Error Type: Conclusion Difference

Error Analysis: The statement in the formal language requires proving that the remainder is 25, while the statement in natural language only needs to prove that the tens digit of the remainder is 2.

2181

2182

Figure 14: A failure case of *Conclusion Difference*.

2183

2184

2185

2186

2187

2188

2189

Formal Statement and proof:

2190

2191

2192

2193

2194

```
import Mathlib
/- The composition of the functions  $u(x) = \sin x$  and  $v(x) = x^2$  is
 $u(v(x)) = \sin(x^2)$ . -/
open Real
noncomputable def u (x : R) : R := sin x
def v (x : R) : R := x^2
theorem composition_of_sine_and_quadratic (x : R) :
  u (v x) = sin(x^2) := by
```

Transformed Natural Language Statement:

2200

2201

2202

2203

What is the composition of the functions $u(x) = \sin x$ and $v(x) = x^2$, and how does it simplify? The composition $u(v(x))$ simplifies to:

$$u(v(x)) = \sin(x^2)$$

2204

2205

2206

Error Type: Not to Prove

2207

2208

2209

Error Analysis: The natural language statement presents the content of the formal language as a factual elaboration, rather than treating it as a mathematical proof problem.

2210

2211

2212

2213

Figure 15: A failure case of *Not to Prove*.

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223

2224 **Formal Statement and proof:**

2225
 2226 **import** Mathlib
 2227 **import** Aesop
 2228 **set_option** maxHeartbeats 0
 2229 **open** BigOperators Real Nat Topology Rat
 2230 */- Let $f(x) = x^3 - 9x^2 + 24x$ be a real-valued function defined on \mathbb{R} . Then*
 2231 *:*
 2232 *1. $f(x)$ has a local maximum at $x = 2$.*
 2233 *2. $f(x)$ has a local minimum at $x = 4$.*
 2234 *3. These are the only local extrema of $f(x)$ on \mathbb{R} . -/*
 2235 **open** Real
 2236 noncomputable def f (x : R) : R := x³ - 9 * x² + 24 * x
 2237
 2238 noncomputable def f_deriv (x : R) : R := 3 * x² - 18 * x + 24
 2239
 2240 noncomputable def f_second_deriv (x : R) : R := 6 * x - 18
 2241
 2242 axiom critical_points : f_deriv x = 0 \leftrightarrow x = 2 \vee x = 4
 2243 lemma second_derivative_test (x : R) (h : f_deriv x = 0) :
 2244 ((x = 2 \wedge f_second_deriv x < 0) \vee (x = 4 \wedge f_second_deriv x > 0))
 2245 := **by**

2246 **Transformed Natural Language Statement:**

2247
 2248 Consider the real-valued function $f(x) = x^3 - 9x^2 + 24x$ defined on all real numbers. The
 2249 statement claims that: 1. The function has a local maximum at $x = 2$ 2. The function has
 2250 a local minimum at $x = 4$ 3. These are the only local extrema of the function on the real
 2251 numbers

2252 **Error Type:** Not to Prove

2253 **Error Analysis:** The natural language statement expounds on the claim of the formal language,
 2254 yet it is not a mathematical proof problem itself.

2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

Figure 16: A failure case of *Not to Prove*.

```

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279 Formal Statement and proof:
2280
2281 import Mathlib
2282 import Aesop
2283 set_option maxHeartbeats 0
2284 open BigOperators Real Nat Topology Rat
2285
2286 -- Solve the system:
2287 x + y + z = a
2288 x^2 + y^2 + z^2 = b^2
2289 xy = z^2
2290 where a and b are constants.
2291 Give the conditions on a and b so that x, y, z are distinct
2292 positive numbers. -/
2293
2294 theorem imo_1961_p1 (x y z a b : R)
2295   (h_0 : 0 < x ∧ 0 < y ∧ 0 < z)
2296   (h_1 : x ≠ y) (h_2 : y ≠ z) (h_3 : z ≠ x)
2297   (h_4 : x + y + z = a)
2298   (h_5 : x^2 + y^2 + z^2 = b^2)
2299   (h_6 : x * y = z^2) :
2300     0 < a ∧ b^2 < z^2 ∧ a^2 < 3 * b^2 := by
2301
2302
2303
2304
2305
2306
2307 Transformed Natural Language Statement:
2308
2309 Given three positive real numbers  $x, y, z$  that are all distinct, and two constants  $a$  and  $b$ , solve
2310 the system of equations:
2311
2312 1.  $x + y + z = a$ 
2313 2.  $x^2 + y^2 + z^2 = b^2$ 
2314 3.  $xy = z^2$ 
2315
2316 Find the conditions that  $a$  and  $b$  must satisfy for the system to have distinct positive real
2317 solutions  $x, y, z$ .
2318
2319
2320
2321

```

Figure 17: A failure case of *Not to Prove*.

2322
2323
2324
2325
2326
2327
2328
2329

2330 **Formal Statement and proof:**

```
2331
2332 import Mathlib
2333 open Real
2334 variable {u v x y : R}
2335 noncomputable def f (u v : R) : R := (u^2 + v^2) * exp (- (u + v))
2336 /-- The function g defined in terms of f -/
2337 noncomputable def g (x y : R) : R := f x (y - x)
2338 axiom f_partial_condition (u v : R) :
2339   deriv (fun u => f u v) u - deriv (fun v => f u v) v = 2 * (u - v) *
2340   exp (- (u+v))
2341 axiom f_initial_condition (u : R) :
2342   f u 0 = u^2 * exp (-u)
2343 axiom partial_g_x (x y : R) :
2344   deriv (fun x => g x y) x = (4 * x - 2 * y) * exp (-y)
2345 lemma g_expression (x y : R) :
2346   g x y = (x^2 + (y - x)^2) * exp (-y) := by
2347   simp only [g, f]
2348   ring
```

2349 **Transformed Natural Language Proof:**

2350 The proof proceeds as follows:
2351 1. We start with the definition of $g(x, y)$ as $f(x, y - x)$, where f is defined to be $(u^2 + v^2)e^{-(u+v)}$.
2352 2. The goal is to show that $g(x, y)$ equals $(x^2 + (y - x)^2)e^{-y}$.
2353 3. By substituting the definition of f into g , we get: $g(x, y) = f(x, y - x) = (x^2 + (y - x)^2)e^{-(x+(y-x))}$
2354 4. Simplifying the exponent: $-(x + (y - x)) = -y$
2355 5. Thus we have $g(x, y) = (x^2 + (y - x)^2)e^{-y}$
2356 6. The proof uses the 'simp' tactic in Lean to simplify the expression, focusing only on the
2357 definitions of g and f .
2358 7. The 'ring' tactic is then used to verify that the algebraic manipulations are correct.
2359 This shows that the given expression for $g(x, y)$ in terms of f is indeed correct, which supports
2360 part (b) of the statement about the form of $f(u, v)$.

2361
2362 **Error Analysis:** This natural language proof is actually an explanation of the formal language
2363 proof and cannot exist as an independent solution to the problem. Especially in the key parts of
2364 the problem, it only explains the tactics used in the formal language without providing a correct
2365 natural language proof.

2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Figure 18: A failure case of translating formal proof to natural language proof.

2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383

2384 Formal Statement and proof:

2385
 2386 **import** Mathlib
 2387 **import** Aesop
 2388 **set_option** maxHeartbeats 0
 2389 **open** BigOperators Real Nat Topology Rat
 2390 *-- If $Q = 11 - 5i$, $E = 11 + 5i$, and $D = 2i$, find $Q \cdot E \cdot D$. Show that it is $292i$.* --/
 2391 **theorem** mathd_algebra_192 (q e d : \mathbb{C})
 2392 $(h_0 : q = 11 - 5 * \mathbf{Complex.I})$ $(h_1 : e = 11 + 5 * \mathbf{Complex.I})$
 2393 $(h_2 : d = 2 * \mathbf{Complex.I})$: $q * e * d = 292 * \mathbf{Complex.I} := \mathbf{by}$
 2394 **rw** [h_0, h_1, h_2]
 2395 **simp** only [**Complex.ext_iff**, **Complex.mul_re**,
 2396 **Complex.mul_im**, **Complex.add_re**,
 2397 **Complex.add_im**,
 2398 **Complex.ofReal_re**, **Complex.ofReal_im**,
 2399 **Complex.ofReal_add**, **Complex.ofReal_mul**,
 2400 **Complex.I_re**,
 2401 **Complex.I_im**]
 2402 **norm_num**
 2403 $<;> \mathbf{ring}$
 2404 $<;> \mathbf{norm_num}$
 2405 $<;> \mathbf{ring}$

2405 Transformed Natural Language Proof:

2406 To prove that $Q \times E \times D = 292i$, we follow these steps:
 2407 1. First, we substitute the given values into the expression: - Replace Q with $(11 - 5i)$ - Replace E with
 2408 $(11 + 5i)$ - Replace D with $(2i)$
 2409 2. We then expand the multiplication step by step: - First multiply Q and E using complex multiplication
 2410 rules - Then multiply the result by D
 2411 3. During the expansion, we: - Separate the real and imaginary parts of the complex numbers - Apply
 2412 the distributive property of multiplication - Simplify using the fact that $i^2 = -1$ - Combine like terms
 2413 4. The simplification process involves: - Calculating the real parts (which should cancel out) - Calculating
 2414 the imaginary parts (which should combine to 292) - Using basic arithmetic operations (addition,
 2415 multiplication) - Normalizing the numerical expressions
 2416 5. After all simplifications, we verify that: - The real part becomes 0 - The imaginary part becomes
 2417 exactly 292 - Thus the final result is indeed $292i$

2418 **Error Analysis:** The proof in formal language uses Lean's internal algebraic simplification
 2419 mechanism, and its correctness can be verified. However, the corresponding natural language
 2420 proof must provide a detailed simplification process, which the above proof fails to do.

2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

Figure 19: A failure case of translating formal proof to natural language proof.

2430
2431
2432
2433
2434
2435
2436
2437

2438 Formal Statement and proof:

```
2439
2440 import Mathlib
2441 import Aesop
2442 set_option maxHeartbeats 0
2443 open BigOperators Real Nat Topology Rat
2444 -- Show that there are infinitely many positive integers m for
2445 which
2446 there exists at least one positive integer n such that
2447 m · n ≤ m + n. --/
2448 theorem amc12a_2002_p6 (n : N) (h_0 : 0 < n) :
2449   ∃ m, m > n ∧ ∃ p, m * p ≤ m + p := by
2450   /- For any positive n, choose m = n+1 and p = 1.
2451   Then (n+1)*1 = n+1 ≤ n+2 = (n+1)+1, so the inequality holds. -/
2452   use n + 1
2453   constructor
2454   · exact Nat.lt_succ_self n           -- n+1 > n
2455   · use 1
2456   · simp                           -- (n+1)*1 ≤ (n+1)+1
```

2457 Transformed Natural Language Proof:

2458 To prove that there are infinitely many positive integers m for which there exists at least one
2459 positive integer n such that $m \cdot n \leq m + n$, we proceed as follows:

1. Constructing m : For any given positive integer n , define $m = n + 1$. This ensures $m > n$ (since $n + 1 > n$).
2. Verifying the inequality: Substitute $m = n + 1$ into $m \cdot n \leq m + n$:

$$(n + 1) \cdot n \leq (n + 1) + n$$

2463 Simplify: $n^2 + n \leq 2n + 1$. For Lean's proof, choosing $p = 1$ simplifies the inequality to:

$$(n + 1) \cdot 1 \leq (n + 1) + 1 \implies n + 1 \leq n + 2$$

2464 which is always true.

3. Conclusion: For every n , $m = n + 1$ works with $p = 1$, so there are infinitely many such m . The answer is (E) infinitely many.

2465 Note: Lean uses $p = 1$ for simplification, but the key idea of infinitely many m remains.

2466 **Error Analysis:** The formal language proof and the natural language proof adopt different approaches.

2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Figure 20: A failure case of translating formal proof to natural language proof.

2484
2485
2486
2487
2488
2489

Evaluation Prompt(RFM Dataset):

2490 You are a math teacher highly skilled in evaluating proofs.
2491 **Problem Statement**: [Original Question]
2492 **Student's Answer**: [LLM generated Proof]
2493
2494 **Your Tasks**
2495 1. **Detailed Analysis**: Read the student's answer and thought process carefully.
2496 - If a claim is obvious in students's answer, you may accept it as valid provided the overall
2497 logic is sound.
2498 - If the category **"Others"** is triggered, briefly describe the error in the Analysis section.
2499
2500 2. **Binary Scoring**: After your analysis, output **only** the exact block below, inside triple
2501 back-ticks, nothing else:
2502

2503 Error Pattern Analysis
2504 - Transformation Error: 1|0
2505 - Over Generalization: 1|0
2506 - Invalid Construction: 1|0
2507 - Wrong Division: 1|0
2508 - Circular Reasoning: 1|0
2509 - Logic Violation: 1|0
2510 - Hidden Assumption: 1|0
2511 - Boundary Neglect: 1|0
2512 - Vague Argument: 1|0
2513 - Vague Argument: 1|0
2514 - Others: 1|0
2515
2516

Overall Correctness

- 1|0
,"

Error Pattern Rubric

Presented in Figure 22

Scoring Semantics

- In **Error Pattern Analysis**: "1" = this error pattern **is present**. "0" = this error pattern **is NOT present**.
- In **Overall Correctness**: "1" = the proof is **completely correct** (no errors). "0" = the proof **contains at least one error**.

Consistency Rule

If **any** error pattern is "1", then **Overall Correctness must be "0"**. Only when **all** error patterns are "0" is Overall Correctness "1".

2529 Do not output anything after the code block. Your answer is:
2530

2531
2532 Figure 21: The evaluation prompt we use when assessing the answers to questions in the RFM
2533 Dataset generated by various models, which is provided to the *Gemini-2.5-pro* model.
2534

2535
2536
2537

2538

2539

2540

2541

2542

2543

Error Pattern Rubric:

1.

Category: Transformation Error

Definition: Recasting the target statement into a non-equivalent or strictly weaker one.

Typical example: To prove convergence of $\sum a_n$, only prove $\lim a_n = 0$; or replace “ $A \iff B$ ” with “ $A \Rightarrow B$ ”.

2.

Category: Over Generalization

Definition: Inferring a universal claim from a few special or hand-picked cases.

Typical example: Verifying for $n = 1, 3, 5$ then claiming the result holds for all $n \in (N)$.

3.

Category: Invalid Construction

Definition: Failing to construct an object that should exist, or constructing one that doesn't meet requirements.

Typical example: Claiming a function that is everywhere linear yet nowhere differentiable.

4.

Category: Wrong Division

Definition: Partitioning into cases that miss at least one legitimate possibility or overlap.

Typical example: When analyzing the behavior of a function, dividing cases as “always positive,” “always zero,” and “always negative.”

5.

Category: Circular Reasoning

Definition: Using the conclusion (or an equivalent reformulation) as a hidden or explicit premise.

Typical example: Assuming B when trying to prove $A \Rightarrow B$.

6.

Category: Logic Violation

Definition: A deduction step that contradicts logical or algebraic rules.

Typical example: From $a < b$ and $c < d$ concluding $a - c < b - d$ without checking signs.

7.

Category: Hidden Assumption

Definition: Applying a theorem or step whose hypotheses were neither stated nor proven.

Typical example: Differentiating a function known only to be continuous.

8.

Category: Boundary Neglect

Definition: Ignoring edge cases, endpoints, or limiting situations so the argument holds only “in the middle.”

Typical example: Proving $f(x) = \sqrt{x}$ differentiable on $[0, 1]$ without checking at $x = 0$.

9.

Category: Vague Argument

Definition: Relying on intuition, diagrams, or “obvious” without formal justification.

Typical example: “The series obviously converges because the terms get smaller.”

10.

Category: Incomplete Proof

Definition: omitting an essential component such as the converse, base case, or a logical bridge.

Typical example: Proving sufficiency but not necessity in an “if and only if.”

11.

Category: Others

Definition: Any error not covered by the categories above.

2588

2589

2590

2591

Figure 22: The error pattern rubric used by the prompt shown in Figure 21.

2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602

2603 **Lean 4 Evaluation Template w/ Verification**

2604 <TASK_TYPE>
 2605 formal_proof_evaluation
 2606 <TASK_TYPE>
 2607
 2608 <THEOREM>
 2609 {theorem_statement}
 2610 <THEOREM>
 2611 <PROOF_ATTEMPT>
 2612 {proof_code}
 2613 <PROOF_ATTEMPT>
 2614
 2615 <VERIFICATION_RESULT>
 2616 {verification_output}
 2617 <VERIFICATION_RESULT>
 2618
 2619 Please evaluate this Lean 4 proof attempt and provide structured feedback.
 2620 Your response must follow this exact format:
 2621
 2622 <ERROR_ANALYSIS>
 2623 [Provide detailed technical analysis of the error, including error type classification, root
 2624 cause, and severity assessment]
 2625 <ERROR_ANALYSIS>
 2626
 2627 <SCORE>
 2628 [Provide a numerical score from 0-100]
 2629 <SCORE>
 2630
 2631 <FEEDBACK>
 2632 [Provide specific, actionable suggestions for fixing the proof, including concrete code
 2633 changes and alternative approaches]
 2634 <FEEDBACK>

2635 Figure 23: The prompt with verification provided to evaluator to evaluate formal proof.
 2636

2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645

2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657

Lean 4 Evaluation Template w/o Verification

2658
 2659 <TASK_TYPE>
 2660 formal_proof_evaluation
 2661 <TASK_TYPE>
 2662
 2663 <THEOREM>
 2664 {theorem_statement}
 2665 <THEOREM>
 2666
 2667 <PROOF_ATTEMPT>
 2668 {proof_code}
 2669 <PROOF_ATTEMPT>
 2670
 2671 Please evaluate this Lean 4 proof attempt and provide structured feedback.
 Your response must follow this exact format:
 2672
 2673 <ERROR_ANALYSIS>
 2674 [Provide detailed technical analysis of the error, including error type classification, root
 2675 cause, and severity assessment]
 2676 <ERROR_ANALYSIS>
 2677
 2678 <SCORE>
 2679 [Provide a numerical score from 0-100]
 2680 <SCORE>
 2681
 2682 <FEEDBACK>
 2683 [Provide specific, actionable suggestions for fixing the proof, including concrete code
 2684 changes and alternative approaches]
 2685 <FEEDBACK>

2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699

Figure 24: The prompt without verification provided to evaluator to evaluate formal proof.

2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709 **Natural Language Proof Evaluation Prompt w/ Rubrics**
 2710
 2711 <TASK_TYPE>
 2712 natural_proof_evaluation
 2713 <TASK_TYPE>
 2714 <PROBLEM>
 2715 {problem_statement}
 2716 <PROBLEM>
 2717 <PROOF_ATTEMPT>
 2718 {proof_text}
 2719 <PROOF_ATTEMPT>
 2720 Please evaluate this natural language mathematical proof from the folowing rubrics and
 2721 provide structured feedback.
 2722 <RUBRICS>
 2723 <Rubrics> <RUBRICS>
 2724 Your response must follow this exact format:
 2725 <ERROR_ANALYSIS>
 2726 [Follow the above rubrics to provide a detailed conceptual analysis step by step, carefully
 2727 assessing the proof attempt from each rubric perspective as detailed as possible. You should
 2728 output a score for each rubric after your analysis, and provide a brief explanation for each
 2729 score. The scores should be in the range of 0-10 for each rubric, with 0 indicating no
 2730 evidence of the criterion and 10 indicating perfect adherence to the criterion. For each rubric,
 2731 please repeat the proof attempt step by step and analyze it according to the rubric.]
 2732 <ERROR_ANALYSIS>
 2733 <SCORE>
 2734 [In this field, please provide the sum of the scores from all rubrics, which should be a number
 2735 between 0 and 80, please use addition to calculate the final score step by step and output the
 2736 final score in the <SUM>int<SUM> format.
 2737 Please first write down the equation for the final score calculation, e.g., "Final Score = int +
 2738 int + int = int", and then output the final score in the <SUM>int<SUM> format.]
 2739 <SCORE>
 2740 <FEEDBACK>
 2741 [In this field, please provide the feedback that can help the student improve their proof
 2742 attempt. The feedback must be based on the error analysis and scores provided above, and
 2743 should provide clear guidance. Please do not provide the ground truth of the proof directly.]
 2744 <FEEDBACK>
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753

2754
2755
2756
2757
2758
2759
2760
2761

The Rubrics used in Natural Language Proof Evaluation Prompt

<RUBRICS>

1. Logical Soundness & Step Validity [0-10]
 - * Content: Whether reasoning is valid, whether logical fallacies or counterexamples exist; whether each reasoning step is correct and reasonable
 - * Assessment: Check logical derivation relationships, identify fallacy patterns, verify single-step reasoning
2. Completeness of Argument [0-10]
 - * Content: Whether all necessary cases are covered, whether proof gaps or missing branches exist
 - * Assessment: Check case coverage, identify unhandled assumptions or boundary conditions
3. Justification & Adequacy [0-10]
 - * Content: Whether each assertion has sufficient basis, founded on established theorems/axioms/definitions
 - * Assessment: Verify theoretical support for each key assertion
4. Problem Comprehension & Setup [0-10]
 - * Content: Whether the problem statement is correctly understood, whether initial assumptions and goals are clear and appropriate
 - * Assessment: Compare proof setup with problem requirements for consistency
5. Mathematical Rigor [0-10]
 - * Terminology & Notation: Whether mathematical terms, symbols, definitions, and theorems are used correctly and appropriately
 - * Computational Accuracy: Whether arithmetic, algebraic, or other mathematical calculation errors are avoided
 - * Assessment: Verify accuracy of symbolic operations and computational processes
6. Clarity & Presentation [0-10]
 - * Content: Whether proof structure is logically sound, whether language is clear and comprehensible
 - * Assessment: Check readability, fluency, and structural organization
7. Relevance & Focus [0-10]
 - * Content: Whether all statements and calculations are relevant to the proof goal, avoiding redundancy
 - * Assessment: Identify irrelevant content and reasoning that deviates from the main line
8. Conclusion Completeness [0-10]
 - * Content: Whether there is a clear concluding statement that summarizes what has been proven
 - * Assessment: Check correspondence between conclusion and objectives

<RUBRICS>

2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Figure 26: The rubrics used in prompt shown in Figure 25

2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820

Natural Language Proof Evaluation Prompt

2821 <TASK_TYPE>
 2822 natural_proof_evaluation
 2823 <TASK_TYPE>
 2824
 2825 <PROBLEM>
 2826 {problem_statement}
 2827 <PROBLEM>
 2828
 2829 <PROOF_ATTEMPT>
 2830 {proof_text}
 2831 <PROOF_ATTEMPT>
 2832
 2833 Please evaluate this natural language mathematical proof and provide structured feedback.
 Your response must follow this exact format:
 2834
 2835 <ERROR_ANALYSIS>
 2836 [Provide detailed conceptual analysis of mathematical reasoning, including logical structure
 2837 assessment, missing components, and error classification]
 2838 <ERROR_ANALYSIS>
 2839
 2840 <SCORE>
 2841 [Provide a numerical score from 0-100]
 2842 <SCORE>
 2843
 2844 <FEEDBACK>
 2845 [Provide educational feedback focusing on mathematical concepts, reasoning gaps, and
 2846 suggestions for improvement with clear explanations]
 2847 <FEEDBACK>

2849
 2850 Figure 27: The prompt without rubrics provided to evaluator to evaluate natural language proof.
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861

2862
2863
2864
2865
2866
2867
2868
2869

Statement and Proof:

```
2870
2871 import Mathlib
2872 open Real
2873 noncomputable def f (x : R) : R := (1 / cos x) ^ 2
2874 axiom value_at_pi_over_3 : f (π / 3) = 4
2875 axiom derivative_of_f (x : R) : HasDerivAt f (2 * (1 / cos x) ^ 2 * tan x) x
2876 axiom derivative_value_at_pi_over_3 : (2 * (1 / cos (π / 3)) ^ 2 * tan (π / 3)) = 8 * Real.sqrt 3
2877 theorem tangent_line_equation :
2878   ∀ x y : R, y = 8 * Real.sqrt 3 * (x - π / 3) + 4 ↔
2879   y - f (π / 3) = (2 * (1 / cos (π / 3)) ^ 2 * tan (π / 3)) * (x - π / 3) :=
2880   intro x y
2881   constructor
2882   · intro h
2883     rw [h, value_at_pi_over_3]
2884     ring
2885   · intro h
2886     rw [value_at_pi_over_3] at h
2887     rw [h]
2888     ring
2889
2890
2891
```

Feedback:

2892 To fix the proof:
2893 1. In the backward direction, after substituting ' $f(\pi/3) = 4$ ', the equation becomes ' $y - 4 = 8\sqrt{3}(x - \frac{\pi}{3})$ '. Instead of using 'rw [h]', directly add 4 to both sides using 'rw [\leftarrow h]' or 'have h' :
2894 $y = 8\sqrt{3}(x - \frac{\pi}{3}) + 4 :=$ by rw [h]; ring'.
2895 2. Replace the line 'rw [h]' with 'rw [\leftarrow h]' to correctly isolate 'y'.
2896 3. Ensure the ring tactic is applied to the transformed equation to simplify it to the target form. Example
2897 correction for the backward direction:
2898 · intro h
2899 rw [value_at_pi_over_3] at h
2900 have h' : y = 8 * Real.sqrt 3 * (x - π / 3) + 4 := by rw
2901 [h]; ring
2902 rw [h']

Comments:

2903 This feedback is highly beneficial: it correctly identifies the logical error in the proof (the misuse
2904 of rw [h] in the backward direction), provides clear and actionable fixes, and includes pedagogical
2905 explanations.

Figure 28: A case of *feedback*.

2907
2908
2909
2910
2911
2912
2913
2914
2915

2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928

Statement and Proof:

```
2929 theorem aime_1990_p4 (x : ℝ) (h0 : 0 < x) (h1 : x ^2 - 10 * x - 29 ≠
2930   0)
2931   (h2 : x ^2 - 10 * x - 45 ≠ 0) (h3 : x ^2 - 10 * x - 69 ≠ 0)
2932   (h4 : 1 / (x ^2 - 10 * x - 29) + 1 / (x ^2 - 10 * x - 45) - 2 / (
2933     x ^ 2 - 10 * x - 69) = 0) :
2934   x = 13 := by
2935   have x_pos : 0 < x := h0
2936   have h1 : x ^2 - 10 * x - 29 ≠ 0 := h1
2937   have h2 : x ^2 - 10 * x - 45 ≠ 0 := h2
2938   have h3 : x ^2 - 10 * x - 69 ≠ 0 := h3
2939   field_simp [h1, h2, h3] at h4
2940   linarith
```

Feedback:

1. **Missing Quadratic Solution**: After determining $y = 39$, the proof must solve the quadratic equation $x^2 - 10x - 39 = 0$. Add code to derive $x = 13$ from this equation.
2. **Use of linarith**: linarith is insufficient here because it only solves linear equations. Instead, use algebraic manipulation (e.g., 'simp', 'rw', or 'ring') to solve the quadratic equation.
3. **Correct Algebraic Steps**: Explicitly show the quadratic solution steps, such as completing the square or using the quadratic formula, to justify $x = 13$.
4. **Example Fix**: Replace 'linarith' with 'have $h_5 : x^2 - 10 * x - 39 = 0 := by rw [h_y]$ ', then solve for x using 'simp' or 'ring'.

Comments:

This feedback is essential because it precisely diagnoses the critical error—the misuse of linarith for solving quadratic equations—while correctly identifying the core mathematical structure ($x^2 - 10x - 39 = 0$) derived from the hypotheses. It mandates explicit solution of the quadratic equation and provides implementable, pedagogically sound steps to complete the proof. By replacing inadequate tactics with algebraic reasoning and leveraging the positivity constraint to eliminate extraneous roots, the proposed fix delivers a complete and verifiable solution.

Figure 29: A case of *feedback*.

2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969

2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984

2985 **Statement and Proof:**

2986
 2987 **theorem** mathd_algebra_480 (f : $\mathbb{R} \rightarrow \mathbb{R}$) (h₀ : $\forall x < 0$, f x = -x ² -
 2988 1)
 2989 (h₁ : $\forall x$, $0 \leq x \wedge x < 4 \rightarrow f x = 2$) (h₂ : $\forall x \geq 4$, f x = Real.sqrt x)
 2990 : f Real.pi = 2 := **by**
 2991 have h : 0 < Real.pi := Real.pi_pos
 2992 simp_all [h₁]

2993 **Feedback:**

2994
 2995 1. **Add proof for $\pi < 4$ **: Use a theorem like 'Real.pi_lt_four' (if available) to establish 'Real.pi <
 2996 4'. If not, construct the proof using real number properties.
 2997 2. **Correctly apply h_1 **: Replace 'simp_all [h₁]' with explicit application of h_1 using ' $h_1 \perp$ (And.intro
 2998 (Real.pi_nonneg) (Real.pi_lt_four))' (adjusting theorem names as needed).
 2999 3. **Refactor the proof**: Structure the proof as: - Prove ' $0 \leq \text{Real.pi}$ ' from ' $0 < \text{Real.pi}$ '. - Prove
 3000 ' $\text{Real.pi} < 4$ '. - Use ' h_1 ' with these conditions to conclude ' $f \text{Real.pi} = 2$ '.

3001 **Comments:** This feedback is highly beneficial as it precisely identifies the critical gap—the
 3002 missing proof that $\pi < 4$ required to apply the function's conditional definition—and resolves
 3003 it by directing the user to the essential Mathlib theorem Real.pi_lt_four. It corrects the
 3004 ineffective simp_all tactic by prescribing explicit hypothesis application ($h_1 \perp \langle \text{Real.pi_nonneg},$
 3005 $\text{Real.pi_lt_four} \rangle$), transforming an incomplete automation attempt into a robust, verifiable proof
 3006 that adheres strictly to the function's domain conditions while enhancing pedagogical clarity.

3007
 3008 Figure 30: A case of *feedback*.
 3009

3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

Statement and Proof:

Given positive integers n and k , there is a finite set $A_{(n,k)} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ where $\alpha_i = (a_{i,1}, a_{i,2}, \dots, a_{i,(i-1)k+1})$, $a_{i,1}, a_{i,2}, \dots, a_{i,(i-1)k+1} \in \{0, 1\}$ and $a_{i,1} + a_{i,2} + \dots + a_{i,(i-1)k+1} = 1$ for $i = 1, 2, \dots, n$. For an n -term sequence $\Omega : (1, x_1), (2, x_2), \dots, (n, x_n)$, if $x_1 = 1$ and $x_{i+1} - x_i \in \{0, 1, \dots, k\}$ for $i = 1, 2, \dots, n - 1$, then it is called a "G-sequence". At this time, denote $G(\Omega) = a_{1,x_1} + a_{2,x_2} + \dots + a_{n,x_n}$. Prove that for any set $A_{(n,k)}$, there exists a "G-sequence" Ω such that $(k + 1)^{G(\Omega)} > kn$.

Proof:

To prove that for any set $A_{(n,k)}$, there exists a G-sequence Ω such that $(k + 1)^{G(\Omega)} > kn$, we can use the probabilistic method and properties of G-sequences.

Key Observations: 1. ****G-sequences**:** A G-sequence Ω starts at $x_1 = 1$ and each subsequent x_{i+1} satisfies $0 \leq x_{i+1} - x_i \leq k$. There are $(k + 1)^{n-1}$ such sequences since each step has $k + 1$ choices.

2. ****Function $G(\Omega)$ **:** $G(\Omega)$ counts the number of positions i where x_i is the position of the 1 in α_i . Let t_i denote the position of the 1 in α_i ; then $G(\Omega) = \sum_{i=1}^n \mathbf{1}_{\{x_i=t_i\}}$.

3. ****Probabilistic Method**:** Consider a random G-sequence Ω where each step is chosen uniformly. Define $X = G(\Omega)$. We need to show there exists a sequence with $(k + 1)^X > kn$.

Analysis: - The total number of G-sequences is $(k + 1)^{n-1}$. - For each sequence, $(k + 1)^{G(\Omega)}$ is the product of $(k + 1)$ for each i where $x_i = t_i$, and 1 otherwise.

Sum of $(k + 1)^{G(\Omega)}$: The sum of $(k + 1)^{G(\Omega)}$ over all G-sequences is at least $(k + 1)^n$. This is because each sequence contributes at least $k + 1$ (since $x_1 = t_1 = 1$ always, so $G(\Omega) \geq 1$), and there are $(k + 1)^{n-1}$ sequences.

Pigeonhole Principle: If all sequences had $(k + 1)^{G(\Omega)} \leq kn$, then the total sum would be at most $kn \times (k + 1)^{n-1}$. However, we know the total sum is at least $(k + 1)^n$, so:

$$(k + 1)^n > kn \times (k + 1)^{n-1}$$

Simplifying, this implies $k + 1 > kn$, which is true for $n = 1$. For $n \geq 2$, the exponential growth of $(k+1)^n$ compared to the linear growth of kn ensures that there must exist a sequence where $(k + 1)^{G(\Omega)} > kn$.

Feedback:

The proof attempt demonstrates an understanding of the probabilistic method and the pigeonhole principle but contains critical errors in the application of these concepts. Here's a breakdown of the feedback: 1. ****Conceptual Understanding**:** The user correctly identifies the total number of G-sequences and the structure of $G(\Omega)$. They also attempt to use the probabilistic method and the pigeonhole principle, which are valid strategies for such problems.

2. ****Logical Gaps**:** The core error lies in the incorrect inequality $(k + 1)^n > kn \cdot (k + 1)^{n-1}$. This inequality is not generally true, and the proof fails to address cases where it does not hold (e.g., $n = 2, k = 1$). The argument also misapplies the pigeonhole principle by assuming that the average value being greater than kn guarantees the existence of a sequence exceeding kn .

3. ****Suggestions for Improvement**:** - ****Re-examine the Inequality**:** The proof should address the general case by considering the relationship between $k + 1$ and kn for all n and k . For example, when $k + 1 \leq kn$, alternative methods (e.g., explicit construction of a G-sequence) may be necessary. - ****Clarify the Pigeonhole Principle Application**:** The argument should explicitly show that the average value of $(k + 1)^{G(\Omega)}$ being at least $k + 1$ ensures the existence of a sequence with $(k + 1)^{G(\Omega)} > kn$, which requires a more rigorous analysis of the total sum and individual contributions. - ****Consider Edge Cases**:** The proof should test edge cases like $n = 1$ or $k = 1$ to ensure the result holds universally.

Comments: The feedback is highly beneficial as it specifically identifies critical errors in the proof, such as the incorrect application of the inequality $(k+1)^n > kn \cdot (k+1)^{n-1}$ and its failure in cases like $n = 2, k = 1$, while constructively suggesting improvements like re-examining the inequality for all n and k , clarifying the pigeonhole principle usage, and testing edge cases; this precise, actionable guidance helps the author address logical gaps and enhance the proof's rigor, making it both educational and effective for refinement.

Figure 31: A case of feedback.