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ABSTRACT

Reinforcement Learning from Verifiable Rewards (RLVR) has revolutionized
mathematical reasoning, enabling models like DeepSeek-R1 and OpenAl-ol to
achieve human-level performance on traditional math tasks where answers are
single numbers or equations. However, extending RLVR to mathematical theo-
rem proving remains challenging due to the fundamental verification bottleneck:
unlike traditional math tasks, theorem proving generates entire reasoning pro-
cesses that lack reliable automated verification methods for reward signal genera-
tion. In this work, we address this verification bottleneck by introducing PROOF-
VERIFIER, the first generative verifier specifically designed to enable RLVR ap-
plications in mathematical theorem proving. PROOF-VERIFIER supports both for-
mal and informal language (e.g., natural language) proofs, providing the detailed
verification capabilities essential for effective reinforcement learning. To train
PROOF-VERIFIER, we develop a formal-to-informal translation pipeline for high-
quality synthetic data generation and employ a novel two-stage coarse-grained
to fine-grained reward modeling mechanism. Experimental validation demon-
strates that PROOF- VERIFIER achieves 93% verification accuracy, enabling reli-
able reward signals for RLVR applications. We show that PROOF-VERIFIER suc-
cessfully enables effective test-time scaling (79% win rate in best-of-N sampling
and 32% improvement in multi-turn proof refinement), and both single-turn and
multi-turn RLVR training, consistently improving LLM-based theorem proving
performance. Our work establishes the foundation for applying RLVR methodolo-
gies to mathematical theorem proving, extending the recent success of reasoning-
enhanced models to this challenging domain.

1 INTRODUCTION

Recently, reasoning-enhanced LLMs such as DeepSeek-R1 (DeepSeek-Al et al.,[2025)) and OpenAl-
ol (OpenAl et al.l 2024) have significantly reduced the performance gap between humans and ar-
tificial intelligence on traditional mathematical tasks (Lewkowycz et al., |2022)) where the answer
is a single number or equation. These methods employ Reinforcement Learning from Verifiable
Rewards (RLVR) (Ouyang et al.l [2022; Wang et al.l [2025b), where reward signals are provided by
comparing model outputs with reference answers, training models to generate the extended chain-
of-thought reasoning (Wei et al., 2023)) required to reach verifiable solutions on challenging bench-
marks such as HMMT (HMMT, 2025), MATH-500 (Hendrycks et al., [2021} |[Lightman et al., [2024])
and AIME (MAA| [2025).

Despite these advancements, extending RLVR to mathematical theorem proving remains challeng-
ing. Models that claim PhD-level competency continue to struggle with mathematical theorem prov-
ing problems at the high school or undergraduate level (Guo et al., | 2025; |Sheng et al.| [2025)). The
primary bottleneck stems from the fundamental verification challenge: mathematical theorem prov-
ing tasks (Polu et al.l 2022) require generating entire proof processes rather than single numbers
or equations, making automated verification for reward signal generation significantly more com-
plex. Moreover, diverse correct proofs can exist for the same statement, making comparisons with
reference answers infeasible, which is a critical limitation for RLVR applications.
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Figure 1: The training framework for PROOF-VERIFIER. (A) Formal-to-informal data synthe-
sis pipeline with ATP verification and filtering. (B) Coarse-grained training with consistency-
constrained label prediction. (C) Fine-grained training with proxy rewards from feedback-driven
performance improvements.

While Automated Theorem Provers (ATPs) like Lean4 (de Moura et al., 2015} |de Moura & Ullrich,
2021)) can automatically verify proofs written in formal language by ensuring every deductive step
conforms to a foundational logical system, they provide insufficient support for RLVR applications.
First, they cannot handle informal language, yet LLMs perform better on natural language due to
limited formal language representation in training data. Second, ATP verification results are coarse-
grained binary labels that cannot distinguish between minor computational errors and fundamental
logical flaws, both receiving the same "incorrect" label without guidance for targeted refinement.

To address this verification bottleneck and enable RLVR applications in mathematical theorem prov-
ing, we propose PROOF-VERIFIER, the first generative verifier for mathematical theorem proving
tasks that supports both formal and informal language. PROOF-VERIFIER generates a comprehen-
sive verification trajectory containing detailed error analysis, evaluation scores, actionable feedback,
and final verification labels for each proof attempt, providing the reliable reward signals essential
for effective reinforcement learning.

To support both formal and informal language, we develop a formal-to-informal translation pipeline
with controlled generation and balanced labels (Figure[I]A). We sample formal proofs, verify them
with ATPs, then translate to natural language with filtering strategies to ensure semantic consistency
and logical correctness, achieving reliable data quality verified by human evaluation.

Based on this dataset, we train PROOF-VERIFIER using a novel two-stage coarse-to-fine-grained
reward modeling mechanism (Figure[T| B, C). Since only coarse-grained labels are available initially,
we design a progressive approach: (1) Coarse-grained stage: Label prediction with consistency
constraints, where rewards require both accuracy and alignment with majority vote scores, enabling
the model to learn robust structured reasoning processes. (2) Fine-grained stage: Proxy rewards are
estimated by performance improvements brought by generated feedback (pink boxes in Figure [T)),
where feedback serves as refinement instructions to guide proof revision. This approach enables the
model to develop fine-grained discriminative capabilities for distinguishing different error types and
providing targeted refinement guidance.

Experimental validation demonstrates that PROOF-VERIFIER achieves 93% verification accuracy
on our test set, establishing reliable reward signals for RLVR applications. We show that PROOF-
VERIFIER successfully enables effective test-time scaling (Muennighoff et al., 2025)), with superior
response selection in best-of-N sampling settings (79% win rate) and multi-turn refinement instruc-
tions that improve LLM-based prover performance by 32%. Crucially, since PROOF-VERIFIER
outputs both evaluation scores (usable as reward signals) and actionable feedback (serving as refine-
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ment instructions), it naturally supports both single-turn and multi-turn RLVR training, achieving
improved performance in both configurations and demonstrating the successful extension of RLVR
methodologies to mathematical theorem proving. Finally, the detailed error analysis generated by
PROOF-VERIFIER can be aggregated to help analyze and identify failure patterns for specific mod-
els, facilitating targeted improvements in model training iterations.

2  PROOF VERIFIER

2.1 DUAL-LANGUAGE DATASET CONSTRUCTION

Enabling RLVR for mathematical theorem proving requires training data that supports reliable re-
ward signal generation across both formal and informal language proofs. Existing datasets present
a critical gap: formal language datasets provide only binary ATP verification without fine-grained
feedback, while informal language datasets lack reliable automated verification methods and may
introduce validation errors, potentially overlooking logical issues and other subtle errors that are dif-
ficult to detect. To address this limitation, we construct a comprehensive dual-language dataset with
controlled label quality and balanced coverage using our proposed formal-to-informal translation
pipeline.

As shown in Figure [T LLM-based provers generate 32 proof attempts for each formal statement,
with the Kimina Lean Server (Santos et al., 2025) providing rigorous verification labels. DeepSeek-
R1 then translates these verified formal statement-proof pairs into corresponding natural language
versions. To enhance translation quality, we construct an llm.txt (Howard, [2024) file containing
Lean4 syntax, tactics, and common proof methods as context manually. LLM-as-a-Judge is used
to subsequently verify semantic consistency and logical correctness to ensure data quality after the
conversion process. This formal-to-natural approach is more feasible than natural-to-formal transla-
tion, as understanding Lean4 syntax is simpler than generating it. The method ensures proof logic is
rigorously compiler-verified before conversion, providing controlled generation of both correct and
incorrect proofs with potential errors introduced only during the translation process.

To further enrich our training dataset distribution, we incorporate two additional natural language
datasets: the OPC dataset (Dekoninck et al.,2025)) provides labeled proof attempts on PutnamBench
statements, while RFM Bench (Guo et al.| [2025) contributes novel statements spanning different
difficulty levels (high school to graduate) and mathematical domains (geometry, algebra, number
theory, calculus). Processing details for both datasets are provided in Appendix [H|and[M]

Our final training data comprises these three datasets with balanced sampling, maintaining a 1:1
ratio between natural language and formal language data. All three datasets contribute equally to the
natural language data. The training datasets encompass a diverse range of mathematical domains,
with detailed statistical distributions presented in Appendix [F] For evaluation, we construct out-
of-distribution test datasets using different statements and sampling models than those in training,
ensuring our evaluation reflects generalization and robustness under distribution shift. The formal
language test set contains 1,000 proof attempts with ATP-verified labels, while the natural language
test set comprises 100 manually annotated statement-proof pairs with expert human verification.

2.1.1 QUALITY ASSESSMENT

Ensuring translation quality is critical for reliable reward signal generation in RLVR applications.
While formal-to-informal translation introduces potential semantic gaps, we demonstrate that sys-
tematic filtering using LLM-as-a-Judge can effectively address these challenges. Analysis of 100
randomly sampled translation pairs reveals two primary error categories, which we successfully
mitigate through targeted filtering strategies for semantic consistency and logical correctness:

Statement Weakening: Translations occasionally simplify formal statements to less restrictive con-
ditions. We employ LLM-based filtering to detect and remove these cases while preserving valid
proof-label pairs, since proofs for stronger claims remain valid for their weaker counterparts.

Syntactic Copying: Complex proofs sometimes result in direct code copying rather than natural
language translation. We apply heuristic filtering rules that successfully eliminate these instances,
achieving high precision on both validation and out-of-distribution evaluation sets. Detailed case
analysis and filtering methodologies are provided in Appendix [[}
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2.2 TRAINING APPROACH

2.2.1 PROBLEM FORMULATION

We formalize the verification task of mathematical proofs as a structured generation task. Given a
proof attempt 7 and statement x, PROOF-VERIFIER generates a response sequence © = (a, s, f,p)
where a € A represents error analysis, s € [0, 100] is the evaluation score, f € F denotes feed-
back, and p € {True, False} is the binary correctness judgment. Let 7y(r|7, z) denote our policy
parameterized by 6, and y € {True, False} be the ground truth label. We optimize # to maximize
expected reward E[R(r)] under different reward functions R(-) across two training stages, following
a coarsed-grained to fine-grained training objective.

2.2.2 STAGE 1: CONSISTENCY-CONSTRAINED BINARY VERIFICATION

While RLVR training can achieve high accuracy on label prediction tasks, it often leads to high
variance in intermediate reasoning chains. Even when models produce correct final judgments, their
error analysis and evaluation scoring can be inconsistent across multiple evaluations of the same
proof. This inconsistency poses two critical problems: (1) it undermines the model’s reliability for
fine-grained evaluation tasks where consistent scoring is essential, and (2) it creates unstable training
dynamics for Stage 2, which depends on reliable score distributions as reward signals.

To address this challenge, we introduce consistency constraints that enforce both accuracy verifica-
tion results and consistent evaluation scores. For each input (7, x), we generate N parallel samples
{r1,r9,...,rn} and define the correct prediction set as C = {r; : p; = y} and score mode:
Smode = argmax, [{r; € C : s; = s}|.

Our reward function enforces both accuracy and consistency:

Ri(ri) =2 I[p; = y and s; = Smoge] — 1 M

The intuition behind this design leverages the autoregressive generation order where error analysis
and scoring precede the final prediction label. By enforcing consistency in the intermediate steps
while supervising only the final binary judgment, the model learns to develop stable, coherent rea-
soning processes that support accurate predictions, which is crucial for the fine-grained capabilities
developed in Stage 2. Detailed theoretical analysis demonstrating the convergence properties of this
consistency-constrained approach is provided in Section [B.1}

2.2.3 STAGE 2: FEEDBACK QUALITY OPTIMIZATION

Stage 1 enables the model to distinguish correct from incorrect proofs but lacks fine-grained dis-
criminative power to assess varying degrees of proof quality. Stage 2 addresses this limitation by
leveraging our sequential generation order where evaluation scores precede feedback. This temporal
structure enables mutual supervision: fine-grained error analysis leads to more precise scores, which
in turn enables more effective feedback generation.

We initialize both feedback provider Fyp and scorer S, with Stage 1 parameters: 60 = 40 =
Bstage1- The training process operates through a multi-step feedback refinement loop. Given a math-
ematical statement z, an external prover P first generates an initial proof attempt 7y, which the
scorer Sy, evaluates to produce a baseline score sg = Sy (70, ). The feedback provider Fp then
generates n diverse feedback responses { f1, fa, ..., f»} based on the initial proof and statement.
Each feedback f; is provided to the prover P, which attempts to incorporate the suggestions and
produce a revised proof 71 ; = P(70, f;, x). The scorer evaluates these revised proofs, yielding new
scores s1,; = Sy (71, x) for each feedback-guided revision.

The key insight is that better feedback should lead to improved proofs, as measured by score in-
creases. We therefore define the reward for feedback f; based on the score improvement it enables:

Rg(fz) = sign(su — S0 — 5) . H“Sl,i — So| > 5] (2)
where 6 = 10 filters out minor score fluctuations to focus on meaningful improvements.

To address the instability inherent in jointly optimizing both the feedback provider Fy and scorer S,
we employ a momentum encoder strategy (He et al., 2020) with differentiated update frequencies.
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The feedback provider parameters are updated at every training step, while the scorer parameters
remain frozen for m = 100 steps before being updated to match the current feedback provider
parameters: ¢(*t1) < (1) when ¢ mod m = 0, and ¢t = ¢ otherwise. Theoretical analysis
for this design and the effects of momentum encoder updating strategy for training robustness is

provided in Section
These two stages all use the standard GRPO algorithm for parameters updating:

Forro(®) =8 |min | T j aip (T3 e 14 ¢) ] - gDreslmalines]]| @)
Touna 010) Touss (010)

The complete training procedure is summarized in Algorithm Detailed justification and ex-
perimental results for using GRPO exclusively without supervised fine-tuning is provided in Ap-

pendix [C|

Algorithm 1 Two-Stage PROOF- VERIFIER Training

Require: Dataset D = {(7;, x;,y;)}, prover model P, momentum interval m = 100

1: Initialize #(©) with Qwen3-8B parameters
2: Stage 1: Consistency-Constrained Training

3: fort =1to 7} do

4:  Sample batch {(75, 25, yi) }o_, ~ D

5:  for each (7x, xy, yx) in batch do

6: Generate N responses: {74 ; = (ax,i, Sk, fk,i,pk,i)}fil ~ 7o (+| Tk, Tk )
7: Define correct prediction set: Cy, = {7k : Pk = Ui}

8: Compute score mode: Smode,x = arg maxs [{rg; € Cx : Sk = S}|

9: Compute rewards: R (7 ;) using Equation

10:  end for

11:  Update via GRPO: 0 < 0 + aVy¢Tcarpo(0) using Equation

12: end for

13: Initialize scorer: ¢(®) « 9(71)

14: Stage 2: Feedback Quality Optimization
15: fort = 1to 715 do

16:  Sample mathematical statements: {;}77,
17:  for each statement x; do

18: 79,; < P(x;) {Generate initial proof}

19: 50,5 < S¢ (70,5, ;) {Score initial proof}

20: Generate n feedback: {f; ;17 ~ Fo(-|70,5, ;)

21: for each feedback f; ; do

22: T1,i,; < P(70,5, fi,j, ;) {Revise proof with feedback}
23: $1,i,j < S¢(T1,i,5, %) {Score revised proof}

24: end for

25: Compute rewards: Ry(f; ;) using Equation2]

26:  end for

27:  Update via GRPO: 0 < 0 + aVyJzrpo(0) using Equation 3]
28:  if t mod m = 0 then

29: Momentum update: ¢ < 6 {Transfer knowledge to scorer}
30:  end if
31: end for

32: return (T2

3 EFFECTIVENESS OF THE PROOF-VERIFIER
In all subsequent experiments, PROOF-VERIFIER uses simple prompts with parallel sampling, as
our comparative experiments demonstrates this configuration provides optimal robustness and con-

sistency for evaluation and verification, as detailed in Appendix [C.T]

3.1 PERFORMANCE ANALYSIS
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To verify the reliability Table 1: Performance comparison of different language models on the
of PROOF-VERIFIER for mathematical proof evaluation task.
RLVR applications, we

first evaluate its verifi- Verifi Natural Language | Formal Language
cation accuracy and the erier

correlation of fine-grained Acc Prec Rec F1 | Acc Prec Rec F1
scores for model ranking  Qwen3-8B 057 048 063 054|062 052 068 059

tasks. Qwen2.5-72B 053 044 058 050|058 048 0.63 054
o Magistral 059 050 0.65 057|064 054 070 0.6l
Verification ~ Accuracy:  Gemma 058 049 0.64 056|063 053 069 0.60

Table |I| Left presents the  Qwen3-235B  0.71 0.62 0.75 0.68 | 0.76 0.67 0.80 0.73
verification accuracy re-  Deepseek-R1  0.73 0.64 0.76 0.69 | 0.78 0.69 081 0.75
sults across both language Ours 093 093 094 093|091 090 091 0.90
modalities. ~ For natural

language proofs, PROOF-

VERIFIER significantly outperforms larger open-source models on metrics including accuracy
and F1, achieving better correlation with human evaluation, which demonstrates reliable scoring
and more consistent alignment with human preferences. The primary error source in existing
open-source models is their tendency to incorrectly classify false proofs as correct, exhibiting high
recall but low precision, indicating insufficient error detection capabilities. For formal language
verification (Table [I] Right), PROOF-VERIFIER achieves superior accuracy compared to other
models without access to compilation results, demonstrating the model’s ability to better interpret
and evaluate formal language proofs. When compilation results are included, PROOF-VERIFIER
achieves 0.98 accuracy, with ATP verification serving as the lower bound. Despite this high
baseline, PROOF-VERIFIER maintains significant advantages through its generated feedback,
which provides substantially greater utility than ATP compilation results. Comparative examples
illustrating this advantage are provided in Figure[6]in Appendix.

Ranking Correlation: We further validate the
reliability of fine-grained evaluation scores by
comparing model rankings derived from these
scores against ground truth rankings. For natu-
ral language proofs, ground truth rankings are
derived from human evaluation scores, while
formal language rankings are computed using
Pass @32 metrics. The Pearson correlations are
0.83 and 0.91 respectively at the individual item
level, while completely consistent at the model
level. The score distributions of our model
Figure 2: Distribution comparison between hu- and human evaluation are shown in Figure [2]
man and model evaluation scores using 100 ran- demonstrating the effectiveness of our training
domly sampled items from the test dataset. method. While PROOF-VERIFIER generates

consistently higher scores than human evalua-
tors, the distributions maintain the same trend. This systematic offset reflects LLM-as-a-judge’s
higher tolerance for errors due to weaker error detection capabilities, but the relative quality rank-
ings remain accurate as shown by strong correlations.

Count

3.2 ABLATION STUDIES

As shown in Table 2] incorporating our synthetic formal-to-informal translated data improves ver-
ification performance on both language modalities, demonstrating that controlled label quality and
increased data diversity are crucial for reliable reward generation. For the training methodology,
the consistency constraint significantly reduces score variance across multiple samples of the same
proof-statement pair, providing the stable evaluation capabilities necessary for reliable reference
standards in subsequent training stages. Building on this stability foundation, the fine-grained feed-
back training component increases discriminative power across different proof qualities, as evi-
denced by improved score distributions that better differentiate between varying proof attempts. To
further verify the theoretical feasibility and effectiveness of our proposed Stage 2 method, we em-
ploy human evaluators to conduct pairwise comparisons of verification trajectories, where we sepa-
rately rank the error analysis, actionable feedback, and refined proof attempts from each trajectory.

6
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The correlation between error analysis and feedback Table 2: Ablation study results.
rankings is 0.90, while the correlation between feed-
back and refined proof attempt rankings is 0.95. This  getting ACC ICC Variance
high consistency validates our hypothesis that bet- Data Ablation
ter error analysis leads to better feedback generation,  opc 082 053 0.13
which in turn produces better proof refinements. De-  +RFM 0.87 052 0.1
tails are provided in Appendix + Ours 091 055 014
Method Ablation
Baseline 091 0.55 0.14
3.3 CASE ANALYSIS + Consistency Constraint 091  0.57 0.09
+ Proxy Reward 093 0.57 0.11

We evaluated the quality of generated error analysis
and actionable feedback using human annotators across both formal and natural language. Human
evaluation shows that PROOF- VERIFIER locates approximately 81% of errors when averaged among
all annotators, indicating the model learns detailed analysis of the entire proof process to identify
errors in each proving step. For feedback, annotators considered 87% of the generated feedback
to be useful and actionable, capable of helping prover models correct errors in previous attempts.
This demonstrates that PROOF- VERIFIER generates the high-quality feedback essential for effective
RLVR applications and suggests potential for performance improvement during inference, which is
discussed in Section[4.1] Case examples are provided in Appendix [N]

4 ENABLING RLVR FOR MATHEMATICAL THEOREM PROVING

To validate that PROOF- VERIFIER provides reliable reward signals for RLVR applications, we first
demonstrate its effectiveness in test-time scaling scenarios, which represent a preliminary but essen-
tial validation of our verifier’s practical utility for reinforcement learning settings.

4.1 BEST-OF-N

We employ PROOF-VERIFIER evaluation
Win Rate Comparison scores to rank proof attempts from LLM-based
provers in best-of-N sampling settings, select-
ing the highest-scoring attempt. For natural
language evaluation, we compare the selected

R 62 v - proof against single-sample baselines through
18

Ours 73 9

human preference evaluation, measuring win
rates where best-of-N selections outperform or
tie with single samples. For formal language
R1 63 ) 26 evaluation, we use ATP verification to deter-
mine success, with ties occurring when both
) ] ) best-of-N and single-sample approaches pass
Figure 3: Win rate comparison between models  yerification. Experimental results (Figure [3)
on Natural Language (top two rows) and Formal = gemonstrate that our model’s selected samples
Language (bottom two rows) tasks. The segments  jchieve higher win rates compared to single
from left to right represent win, tie, and loss rates samples and outperform the DeepSeek-R1
respectively. R1 means Deepseek-R1-0528. model on our test dataset. This preliminary
validation confirms that PROOF-VERIFIER
generates evaluation signals that effectively guide proof selection, establishing the foundation for
more comprehensive RLVR applications in subsequent experiments.

Ours 69 13

4.2 REFINEMENT BASED ON FEEDBACK

To validate that PROOF-VERIFIER feedback enables iterative improvement essential for multi-turn
RLVR applications, we evaluate refinement capabilities across both language modalities. For natural
language proofs, we assess whether refined proofs show improvement through human evaluation.
For Lean4, we use ATP verification to compare pass@k performance before and after refinement.
Natural Language: Human annotators found that 73% of the feedback effectively identifies errors
and provides actionable guidance. However, only 51% of errors were successfully addressed in the
refinement process, while 17% of proofs showed minimal changes and 32% introduced new errors.
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This gap between feedback effectiveness (73%) and successful error correction (51%) reveals limi-
tations in current LLM-based provers’ ability to utilize external guidance, highlighting an important
direction for future RLVR training that focuses on improving feedback utilization capabilities. For-
mal Language: For Lean4 formal proofs, refinement improved pass@k performance from 37%
to 51%, demonstrating that PROOF-VERIFIER feedback provides valuable guidance for correcting
formal proof errors. The feedback primarily addresses: 1) correcting boundary condition assump-
tion errors, 2) clarifying unclear theorem scope, and 3) resolving incomplete proofs that use sorry
placeholders to skip proof goals. This 14-point improvement demonstrates that feedback-guided
refinement achieves better scaling results with fewer sampling attempts compared to sequential and
parallel scaling approaches, validating the practical utility of our verifier for RLVR applications.

4.3 REINFORCEMENT LEARNING
4.3.1 SINGLE-TURN & MULTI-TURN RL

Having demonstrated that PROOF-VERIFIER provides re-
liable evaluation scores and actionable feedback for test-
time applications, we now validate the core claim of our
work: that our verifier enables effective RLVR train-
ing for mathematical theorem proving. This represents
the ultimate test of whether we have successfully ad-
dressed the verification bottleneck that previously pre-
Reward vented RLVR applications in this domain. We eval-
uate PROOF-VERIFIER in reinforcement learning set-
tings under two configurations that reflect different RLVR
paradigms (as shown in Figure ). For training, we use
Qwen3-8B for informal language proofs and DeepSeek
Prover 2 for formal language proofs. In single-turn RL,
PROOF-VERIFIER acts as a reward model, providing bi-
nary reward signals based on label predictions (True/-
«  False) for each proof attempt, which validates the basic
RLVR functionality where our verifier provides the ver-
ifiable reward signals that were previously missing. In
multi-turn RL, PROOF-VERIFIER serves dual roles: as
a feedback provider that engages in multi-turn conversa-
tions by providing refinement instructions, and as a re-
ward model that supplies binary reward signals based on correctness predictions for each round of
proof attempts. This configuration demonstrates the full potential of our approach, enabling iterative
proof development guided by detailed feedback.

Figure 4: Comparison between single-
turn and multi-turn reinforcement learn-
ing approaches.

4.3.2 EXPERIMENTAL RESULTS Our experimental results demonstrate that RL training en-

Performance Comparison across Turns ables the model to signiﬁcantly reduce errors and improve
output quality compared to the baseline model (Figure[5).
18.0 Notably, the quality of individual sample generation im-
proved substantially, narrowing the performance gap with
best-of-n sampling and achieving higher win rates against
reference solutions.

NL Performance
FL Performance

12.0 In our multi-turn RL framework, the model receives two

complementary signals at each turn: (1) explicit feed-

Turn back from the verifier, provided as in-context information

to guide the prover model, and (2) scalar reward scores

Figure 5: Multi-turn refinement perfor- from the verifier, quantifying the relative quality of the

mance comparison. current turn’s proof attempt. The prover model’s obser-

vation at turn ¢ consists of the complete interaction his-

tory {po, fo.p1, f1,---,Pt—1, ft—1}, while the verifier fo-

cuses solely on the current proof attempt p; for scoring and feedback generation, where p; and f;

represent the proof and feedback at turn ¢, respectively. Crucially, reward signals are attributed only
to the current turn’s actions, thereby simplifying the credit assignment problem.
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Multi-turn RL training yields two improvements: First, the model’s capacity to utilize feedback
improves, with the gap between feedback quality and actual proof improvement narrowing compared
to prompt-based refinement approaches. Second, the performance degradation commonly observed
in multi-turn feedback-based systems is mitigated, as the prover becomes more robust in leveraging
beneficial feedback while avoiding deterioration from erroneous guidance (as shown in Figure [5).
This improvement can be explained by our designed reward structure and credit assignment strategy.
By optimizing only the current turn’s proof generation regardless of feedback correctness, the model
learns to selectively utilize accurate feedback for enhanced proof quality while developing resilience
against noisy or incorrect feedback. This approach implicitly trains the model to maintain correct
proofs and refine incorrect ones across diverse scenarios, leading to improved robustness in multi-
turn interactions.

5 RELATED WORK

Mathematical theorem proving has seen significant progress with benchmarks like
miniF2F (Zheng et al., 2022), FIMO (Liu et al. 2023), and PutnamBench (Tsoukalas et al.,
2024), alongside advances in Al-assisted approaches such as AlphaGeometry (Irinh et al., 2024;
Chervonyi et al.| [2025) and recent neural theorem provers (Polu & Sutskever, 2020). Current
verification relies primarily on interactive theorem provers like Lean4 (de Moura et all 2015}
de Moura & Ullrich, 2021), Coq (Huet & Paulin-Mohring 2000), and Isabelle (Nipkow et al.,
2002), with recent improvements in compilation efficiency through Kimina Lean Server (Santos
et al., 2025). However, these approaches have critical limitations for RLVR applications: they
only support formal languages while excluding natural language proofs, and provide only binary
verification results without the detailed error analysis or actionable feedback essential for effective
reinforcement learning.

Reward modeling for mathematical reasoning has primarily focused on traditional problem-
solving tasks. Process reward models (Lightman et al., [2024; Wang et al.| [2024a)) have shown suc-
cess in step-by-step verification for computational problems, while outcome reward models achieve
strong results through final answer comparison (Cobbe et al.||[2021)). More broadly, LLM-as-a-judge
approaches (Zheng et al.| 2023) have evolved from instruction-following evaluation to reward mod-
els across domains including medical QA (Croxford et al., [2025)), multimodal tasks (Chen et al.,
2024), and code generation (Zhao et al.| 2024)), with open-source alternatives like PandalLM (Wang
et al.| 2024b) and Prometheus (Kim et al.| 2024afb) providing cost-effective solutions. While these
methods succeed in traditional mathematical tasks through reference answer comparison (Chen
et al., |2025)), theorem proving’s process-oriented nature and diverse solution paths present unique
verification challenges that limit RLVR applications in this domain. Our work addresses this verifi-
cation bottleneck by developing the first dual-language verifier specifically designed for mathemat-
ical theorem proving, enabling RLVR applications through detailed error analysis and fine-grained
evaluation capabilities via novel two-stage reward modeling.

6 CONCLUSION

We introduce PROOF-VERIFIER, a generative verifier that enables effective verification for math-
ematical theorem proofs in both formal and natural languages. Through a novel data synthesis
pipeline and two-stage coarse-to-fine training framework, our model learns to provide quantitative
assessment and detailed qualitative feedback for proof attempts. Experimental results show that
PROOF-VERIFIER achieves strong verification accuracy with high correlation to human judgment
and ATP in model ranking. Our verifier effectively supports test-time scaling through best-of-n se-
lection and enables iterative proof refinement via actionable feedback. Finally, we demonstrate that
PROOF-VERIFIER serves as an effective verifiable reward model for RLVR, revealing the potential
of LLM-based verifiers to advance automated reasoning in domains without reference answers.

ETHICS STATEMENT

This work proposes PROOF-VERIFIER to enable Reinforcement Learning from Verifiable Rewards
for mathematical theorem proving, enhancing models’ mathematical reasoning capabilities. By
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generating detailed mathematical proof processes rather than potentially error-prone intermediate
steps, our approach increases the trustworthiness of LLM outputs. This advancement strengthens the
reliability and educational value of Al systems for mathematical learning and instruction, promoting
more transparent and verifiable mathematical reasoning.

REPRODICIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and ex-
perimental specifications throughout the paper and supplementary materials. Section 2 and Section
4 detail our training methodology, model architectures, and experimental setup, while the com-
plete data processing pipeline, including our formal-to-informal translation procedure and filtering
strategies, is described in Section 2.1 and Appendix F. All model configurations, hyperparameters,
training procedures, and prompt templates used in our experiments are documented in Appendices
G and M. To validate the quality of our human evaluation process, we include detailed examples
of our annotation interface and inter-annotator agreement scores in Appendix D, along with sample
cases demonstrating the assessment criteria used by human evaluators. The statistical distributions
of our training datasets, experimental configurations for all baseline comparisons, and additional
implementation details are provided in Appendices F through N. All materials necessary for repro-
ducing our experimental results, including dataset construction procedures, evaluation protocols,
and analysis methods, are included in the submitted appendices.
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A USE OF LLMS

We used Grammarly’s Al assistance to assist with grammar checking and sentence-level polishing.

=== Lean4 Code leand_code_1 ===

<ERROR_SUMMARY>
Total errors found: 1 . Sy . N
</ERROR_SUMMARY> The error occurs because of incorrect “rw" tactic syntax on line

11. The immediate issue is **"rw [h:]" should be " rw [h]"** -

remove the colon as it's invalid syntax.

<ERROR #1>

<ERROR_LOCATION> . )

Line 11, columns 2-5 If fixing the syntax doesn't resolve the recursion error, the problem
</ERROR_LOCATION> is likely that hypothesis “h’ creates an infinite rewrite loop. This
<ERROR_TYPE> happens when “h” is aqequalltythat rewrites a term back to
Single-line error itself. Here are the solutions to try in order:

</ERROR_TYPE>
1. **Fix syntax**: Change “rw [h:]" to “rw[h]®

<ERROR_TEXT> . q . g
2. **Try reverse direction**: Use "rw [¢ h]" instead

"t
</ERROR_TEXT> 3. **Use alternative tactics**: Try “simp only [h]", “exacth”, or
“apply h® dependingonwhat “h" proves
SURROUNDING_CONTEXT:
= 9: ext f ” 4. **Debug the hypothesis**: Add “#check h* before line 11 to
10: simp [h_sols] verify “h" exists and see its type
>>> E ’r"f’l['“] 5. **Enable tracing**: Use " set_option trace.Meta Tactic.rewrite
</SURR6UNDING_CONTEXT> true” before the rewrite to see what's happening
<ERROR MESSAGE> The recursion depth error typically indicates that the rewrite rule
maximum recursion depth has been reached q q PO i : . N :
use set_option maxRecDepth <num>" to increase limit is being applied infinitely, so switching tactics or rewrite direction
use ‘set_option diagnostics true' to get diagnostic information usually resolves it.
</ERROR_MESSAGE>

</ERROR #1>

(a) Lean4 Compilation Results. (b) Feedback generated by PROOF- VERIFIER.

Figure 6: Error analysis and feedback generation comparison.

B THEORETICAL ANALYSIS

B.1 CONSISTENCY-CONSTRAINED TRAINING

The consistency constraint in our Stage 1 reward function is motivated by a fundamental principle
in mathematical evaluation: independent correct assessments of the same proof should converge to
similar conclusions. To formalize this intuition, we begin by establishing the mathematical frame-
work.

Given N parallel samples {ry, 7o, ..., 7N} for a proof attempt, each response r; produces a binary
prediction p; € {True, False} and evaluation score s; € [0,100]. Let y € {True, False} denote the
ground truth label. We model the policy as 7y (7;|2) where x represents the input proof attempt.

Our fundamental assumption is that for a well-trained evaluator, the score distribution conditioned
on correct predictions should concentrate around some true value. Formally, if we denote by C =
{ri : p; = y} the set of correct predictions, then as the model quality improves, we expect:

d
5ilpi =y — Oy 4)
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. . . d e
where §,,- is a point mass at the true evaluation score ©*, and — denotes convergence in distribution.

However, during training, we observe significant variance in scores even among correct predictions.
To address this, we employ a consistency constraint based on modal consensus. Consider the em-
pirical distribution of scores among correct predictions:

Pemp(s) = E1| Z 1[s; = ] (5)

For any estimator § of the consensus score, we can define the 0-1 consensus risk as:

R(3) =E[1[s # 8]lp=y] = ZPS—Slp—y)[ 8] (6)

Expanding this expression:

§)=>Y P(s=sp=y) (7)
s'#£5
=1-P(s=3p=y) (®)

The mode estimator $poqe = arg max; P(s|p = y) minimizes this risk since:

Smode = argmax P(s|p = y) = argmin[l — P(s|p = y)] = arg min R(3) 9)

Furthermore, the mode exhibits superior robustness properties. Under e-contamination where a
fraction e of the correct predictions are replaced by adversarial scores, the empirical distribution
becomes:

Peoni(8) = (1 — €) Pemp(5) + €Paav(s) (10)

where P,qy(s) is the adversarial distribution. The mode remains stable as long as e < ~313] SI where

|S| is the number of distinct score values, while the sample mean can be arbitrarily shlfted by any
e> 0.

Now we analyze our reward function. The consistency-constrained reward can be written as:
Ri(ri) = 1[pi = y| - (21[s; = Smode] — 1) — 1[pi # y] (11D

To understand the expected behavior, we compute the expected reward. Let A = {p; = y} denote
the accuracy event and C' = {s; = Smode } denote the consistency event. Then:

E[R:(r;)] = E[1[A] - (21[C] — 1)] — E[1[A7]] (12)
=E[1[A] - 21[C]] — E[1[A]] - P(A%) (13)
= 9E[1[A N C]] — P(A) — P(A°) (14)
=2P(ANC)—P(A)— (1 - P(A)) (15)
—2P(ANC)—1 (16)

Using the conditional probability identity P(A N C') = P(C|A)P(A):

E[R, (r;)] = 2P(C|A)P(A) — 1 (17)
= PRP(CI4) ~ 53] ()
= PUAI2P(s: = sl =) = 5] (19)
For the expected reward to be positive, we need:
P(si = smodelpi =y) > 5 Pl( y (20)
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This inequality reveals a crucial trade-off: when accuracy P(A) is low, the consistency requirement
becomes more stringent. However, as accuracy improves (P(A) — 1), the consistency threshold
approaches 1, making positive rewards more achievable.

To analyze the training dynamics, consider the policy gradient:

VGE[RI(TZ)] = ]E[Rl(’l’l)VQ IOg 7T9(7’i)] (21)

Expanding using our reward decomposition:
VoE[R:1(r;)] = E[1[p; = y](21[$; = Smode] — 1)V log my(r;)] (22)
—E[L[p; # y]Vglogmy(r:)] (23)

This gradient has two components. The first term encourages both accuracy and consistency si-
multaneously, while the second term discourages incorrect predictions. The key insight is that the
gradient magnitude for consistency is proportional to the accuracy level, creating a self-reinforcing
dynamic.

As training progresses, we expect the accuracy P(p; = y) to increase. When P(p; = y) — 1, the
expected reward simplifies to:

lim  E[Ri(r:)] = 2P(8; = Smode|lpi = y) — 1 (24)
P(pi=y)—1

At this stage, the training objective becomes purely a coordination problem: all correct predictions
must agree on the modal score to achieve positive reward. The equilibrium of this coordination game
occurs when all correct predictions produce the same score, i.e., when there exists a unique score s*
such that:

me(s=s"p=y)=1 and m(s#s*p=y)=0 (25)

This implies that Var(s;|p; = y) = 0 at equilibrium, achieving perfect consistency among correct
predictions.

Define the Lyapunov function V' (§) = —E[R;(r;)]. Along the policy gradient trajectory:

av df
E = VQE[Rl(T’Z)] E

= —al|VoE[Ry (r:)]|I* < 0 27)

(26)

where o > 0 is the learning rate. Since R;(r;) is bounded, V() is bounded below, ensuring
convergence to a critical point with the desired properties.

B.2 FEEDBACK OPTIMIZATION VIA SCORE IMPROVEMENT

The effectiveness of our Stage 2 training relies on a fundamental insight about the autoregressive
generation process and how score improvements can serve as proxies for feedback quality. Our
model generates responses following a specific sequential order: error analysis — evaluation score
— feedback — final label.

Let r = (a, s, f,p) denote a complete response where a represents error analysis, s the evaluation
score, f the feedback, and p the final binary prediction. Under autoregressive factorization, the
likelihood decomposes as:

mo(rlx) = mo(alz)mo(s|a, x)mo(fls, a, 2)mo(plf, s, 0, x) (28)

The key observation is that since s is generated before f, the evaluation score represents the model’s
assessment of proof quality based purely on error analysis, independent of the feedback content.
This temporal independence allows us to interpret score improvements as objective measures of
feedback effectiveness.

Consider the following formalization: let 7 be an initial proof attempt and Fy our feedback provider.
When Fj generates feedback f, a prover P uses this feedback to produce a revised proof 7;. If our
scoring function is Sy, then the score improvement is As = Sy (1) — Sy (70).
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The fundamental assumption underlying our approach is that effective feedback should systemati-
cally lead to better proofs. Formally, for high-quality feedback f, we expect E[As|f] > 0. This
motivates our reward function:

+1 ifSLj, —s90>0

Ry(fi) =9 —1 ifs;; —s9o<—0 (29)
0 if |817i - S()| S )

To understand why this reward structure is optimal, we analyze its expected value. Let As; =
$1,; — So and define the improvement distribution as P(As). Then:

[e's) —0
E[Rs(f,)] = /5 P(As)d(As) — / P(As) d(As) (30)
= P(As > 6) — P(As < —9) 31)

For this expectation to be positive, we need P(As > §) > P(As < —d), which occurs when the
feedback provider generates more improvements than degradations. The policy gradient becomes:

VoE[Ry(fi)] = E[Ra(fi) Ve log mo(filso, ao, )] (32)

Substituting our reward structure:

VoE[R(f,)] = /5 P(As)V log 7 (il 0, ao, ) d(As) (33)
-3
- / P(As)V log 7 (fi]s0, ao, ) d(As) (34)

This gradient directly increases the probability of generating feedback that leads to score improve-
ments while decreasing the probability of feedback that causes degradations.

However, a critical challenge emerges from the circular dependency between the feedback provider
Fp and scorer Sy. If both components update simultaneously, we encounter a moving target prob-
lem. To formalize this instability, consider the joint dynamics of the two components.

At step t, the feedback provider parameters #(*) are updated based on rewards computed using scorer
parameters ¢(*). Simultaneously, if the scorer updates to ¢(**1), it changes the reward landscape for
the next iteration. This creates a coupled dynamical system:

00+ = 01 1 g VyE[Ry(fi; )] 53
D = (1) 4 0y VyE[Ry (r;;01)] (36)

The problem is that the reward function Ry depends on ¢, so when ¢ changes, the reward signal
for the same feedback changes, creating instability. To analyze this mathematically, consider the
Jacobian of the combined system:

2 VoE[R] 5 VoE[Ro]

J =
ZVER] LVER)]

(37)

The off-diagonal terms %VQE[RQ] and %V¢E[R1] represent the coupling between the two op-

timization problems. When these terms are large, the system can exhibit oscillatory or unstable
behavior.

The momentum encoder strategy addresses this by decoupling the update frequencies. Instead of
updating both parameters every step, we maintain:

®) ift mod m # 0
(t+1) _ 0] if t mod m
¢ {G(t) ift mod m =0 (38)
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This creates periods of stability where ¢ remains fixed while 6 optimizes against a consistent reward
signal. During these intervals, the feedback provider’s optimization problem becomes:

max E[R2(fi; dixed)] (39)

Since ¢ is fixed, the off-diagonal coupling terms vanish, and the optimization becomes stable. The
convergence analysis during each fixed-¢ period follows standard policy gradient theory.

When ¢ updates (every m steps), it incorporates the improved feedback generation capabilities
developed during the previous period. This creates a staircase-like improvement pattern where each
plateau represents stable optimization followed by a knowledge transfer step.

To analyze convergence, we need to distinguish between two different measures of performance. Let
Q(0) represent the true quality of feedback generated by parameters 6, measured by an idealized,
consistent evaluation standard. In contrast, S, (-) represents the score assigned by the current model
parameters ¢, which may vary across different parameter settings.

The crucial insight is that while 8(*”*) was optimized to maximize E[S ((t—1)m) (Trevisea (0))], this does

not guarantee that E[Sm) (Trevisea(0™))] > E[Sycc—1)m) (Trevised (0™))] because the scoring
function itself has changed.

However, we can establish convergence through a different approach. Consider the sequence of
feedback quality improvements measured by a fixed, external evaluation standard Q*(-). During
each interval [(¢ — 1)m, tm), the feedback provider 6 is optimized according to:

o) = 9F) 1 aVyE[Ry(f; ™) (40)

Since the reward Ry is designed to correlate with true improvement (i.e., E[Ra(f;#)] > 0 when
Q*(f) > Q*(baseline)), we have:

This inequality holds because #(*™) was specifically trained to generate feedback that leads to im-
provements as measured by a scorer that was previously optimized for the same objective.

The momentum update ensures that the new scorer Sym) inherits the improved capabilities from
the feedback training process. While we cannot guarantee that the numerical scores will increase,
we can establish that the overall system capability improves monotonically.

To formalize this, define the system-wide performance as:

O(t) = mTaXE[Q*(THT = P(Fy (10),70)] (42)

This represents the best possible proof that can be achieved by applying feedback from the current
model. Under our training scheme:

®(tm) > ®((t — 1)m) (43)

The momentum update preserves this monotonic improvement while providing training stability.
The key insight is that even though individual score values may fluctuate due to changing evaluation
criteria, the underlying capability to generate effective feedback improves consistently.

C TRAINING APPROACH DISCUSSION

The backbone of PROOF-VERIFIER is Qwen3-8B. Our model is trained exclusively using RL with-
out prior SFT, as we find that additional SFT training reduces the diversity of the exploration space
during rollout generation while providing only marginal performance improvements. We identify
two main advantages for score distribution of SFT through pre-experiments: (1) distilling knowl-
edge from larger models (e.g., Qwen3-235B) to smaller models improves the robustness of evalu-
ation score distributions, and (2) applying self-consistency filtering strategies to datasets generated
by the model itself for self-training also enhances robustness. However, we find that these benefits
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can be naturally integrated into the RL training process by designing reward function that provids
positive rewards only for responses that are both correct and group-consistent. Additionally, while
SFT traditionally is used to establish output format, this can be achieved directly through the reward
function design. Thus, PROOF-VERIFIER is trained using GRPO entirely, with the reward function
serving as the core design mechanism. The training process consists of two steps, detailed below,
following a coarse-grained to fine-grained training objective progression.

C.1 EVALUATION STRATEGY DESIGN

When performing multiple evaluations on a single proof candidate, the stability and reliability
of evaluation scores are crucial for robust assessment. We analyze two key factors that influ-
ence evaluation quality: (1) sampling strategy, including Single Sample, Parallel Sampling, and
IID sampling, where the key distinction between the latter two is that parallel sampling generates
trajectories that influence each other through various parameters (e.g., repetition penalties, beam
group sizes), while IID sampling generates completely independent evaluations, and (2) prompt
complexity, comparing simple prompts versus detailed rubric-based prompts. We conduct exper-
iments across multiple benchmarks including CombiBench, FIMO, miniF2F, ProofNet, Prover-
Bench, and PutnamBench. Using LLM-based provers, we first generate informal and formal proof
candidates via IID sampling, then evaluate them using two models of different scales: Qwen3-8B
and Qwen3-235B. Results are shown in Table 3] where outliers represent abnormal scores exceed-
ing the expected [0-100] range, ICC measures the consistency of ratings across multiple evalu-
ations of the same proof, and Median CV quantifies the relative variability in evaluation scores.
We find that parallel sampling pro-
duces more stable evaluations than
IID sampling, with lower outlier

Sampling Median CV| ICC1 Outlier(%) |

rates and higher consistency met- Qwen3-8B

rics. Additionally, parallel sampling C+Parallel 0.1031 0.5540 4.3
achieves higher computational effi- — IID 0.1056 0.5537 4.7
ciency under VLLM-optimized in- S+Parallel 0.0979 0.6140 1.5
frastructure. Regarding prompt de- — 1ID 0.0983 0.5737 1.6

sign, complex prompts containing de-

tailed scoring rubrics surprisingly un- Qwen3-235B

derperform compared to simple, di- S—II’Ia]I)allel 88%8 8282? 1461
rect prompts, likely due to increased ) ’ ’
instruction complexity leading to in- S(_-:};?]r; llel 883;‘;’ gg‘;’;g 78%

consistent interpretation. Therefore,
we adopt Simple Prompt + Parallel
Sampling for all subsequent experi-
ments.

Table 3: Consistency and reliability of evaluation scores
across different models, prompts, and sampling strategies.
S/C denotes simple/complex prompts, respectively.

D HumAN
ANNOTATION INTERFACE

We developed a web-based interface for human evaluation of mathematical proof assistance quality
through pairwise comparisons within each response type.

D.1 INTERFACE DESIGN
The interface displays four components (Figure [7): the original mathematical statement at the top,
the student’s proof attempt below it, two response panels side-by-side in the center, and selection

buttons at the bottom. Each comparison presents two responses of the same type (e.g., error analysis
A vs. error analysis B).

D.2 EVALUATION SETUP

For each response type, annotators complete 20 pairwise comparisons. Panel positions are random-
ized to avoid bias. Annotators select which response would be more helpful for a student.
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Mathematical Statement
Given positive integers n and &, there is a finite set A(n,k) = {0, @z, ..., @n} Where o = (@i, Birz, s Bisli-a)icn)s Bty Biszs wery Biglicdisn € {0, 1} and @iy + @iz + .o + 2w = 1

fori=1,2, .., n. For an n-term sequence £ : (1, x1), (2, X2), ..., (n, Xn), if x; = 1 and x;s; - x5 € {0, 1, .., k} fori=1,2, ., n - 1, then it is called a "G-sequence". At this

time, denote G(€2) = 8y,x + 82,52 + ... + An,n. Prove that for any set A(n k), there exists a "G-sequence" Q such that (k + 1)G(£2) > kn.

Student's Proof Attempt
Proof: [ will use the probabilistic method to show the existence of such a G-sequence.
First, let me count the total number of G-sequences. Since x, = 1 and each subsequent X..; can increase by at most k, we have at most (k+1)*™' possible G-sequences.

Now I'll compute the sum $.G(®) over all G-sequences 2. For each pasition i and value j, the term a;, ; appears in exactly the number of G-sequences where x; = j. Since §.j ai,j = | for each i,

and each G-sequence visits exactly one position per step, we get SG(2)  (number of G-sequences).
By the pigeonhole principle, there exists a G-sequence €2 such that G(£) 2 (average value). Since the tofal sum is at least the number of sequences, the average is at least 1.

Therefore, there exists a G-sequence with G(Q) = 1, which gives us (k+1)G(Q) = k+1 > kn when k+1 > kn. However; this argument breaks down when k+1 < kn...

Feedback A - Error Analysis Feedback B - Actionable Feedback
The proof attempt an of the ic method and the The proof shows promise in its approach but requires significant structural improvements
pigeonhole principle but contains critical errors in the application of these concepts. Here's to establish the desired inequality. Here's a constructive analysis:

a breakdown of the feedback:

Strengths Identified: You correctly recognize that this is an extremal problem requiring

1. Conceptual Understanding: The user correctly identifies the total number of G- either probabilistic or constructive methods. The notation is properly established, and you
sequences and the structure of G(2). They also attempt to use the probabilistic method and understand the constraint structure of G-sequences.
the pigeonhole principle, which are valid strategies for such problems.

Critical Issues to Address:
2. Logical Gaps: The core error lies in the incorrect inequality (k + 13 > kn - (k + 1)o7 « Mathematical Rigor: The current argument lacks the necessary inequality chain. You
This inequality is not generally true, and the proof fails to address cases where it does not need to establish that max G(€2) > average G(€2), then show this average exceeds kn/(k+1)
hold (e.g., n = 2, k = 1). The argument also misapplies the pigeonhole principle by + Counting Analysis: Properly all possible G-seq) and their
assuming that the average value being greater than kn guarantees the existence of a The total number is at most (kc+1*71, not (k+1)¢
sequence exceeding kn. + Boundary Cases: Verify your approach works for small values: n=1k=1 gives

satisfaction, but n=2 k=1 requires careful analysis.

3. Suggestions for Improvement:

- Re-examine the Inequality: The proof should address the general case by deri R ded Next Steps:

the relationship between k + 1 and kn for all n and k. For example, when k + 1 < kn, 1. Establish Lower Bound: Prove that ¥G(®) > n-(total sequences), using the constraint
alternative methods (e.g., explicit construction of a G-sequence) may be necessary. that each position contributes at least once across all sequences.

- Clarify the Pigeonhole Principle Application: The argument should explicitly show 2. Apply Exiremal Principle: Since the maximum value must be at least the average,
that the average value of (k + 1)G(Q) being at least k + | ensures the existence of a show max G(£2) > n-(k+1)"" > kn/(k+1).

sequence with (k + 1)G(€2) > kn, which requires a more rigorous analysis of the total sum 3. Verify Inequality: Confirm that n/(k+1) > kn/(k+1) simplifies to the target inequality.

and individual contributions.
- Consider Edge Cases: The proof should test edge cases like n = 1 or k = 1 to ensure the This approach transforms your intuitive understanding into a rigorous proof framework.

result holds universally,

Which feedback is more helpful?

You selected Feedback B as more helpful!
Selection recorded at 11:33:11 PM

Figure 7: Human annotation interface for pairwise comparison of mathematical proof assistance
types. The web-based evaluation tool presents annotators with a mathematical statement and two
alternative response types from three categories: error analysis, actionable feedback, and refined
proof.
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D.3 WIN RATE ANALYSIS

After collecting preferences across all pairs, we analyze correlations between win rates within the
same verification trajectory. For example, if verification trajectory A’s error analysis outperforms
trajectory B’s error analysis, we examine whether trajectory A’s actionable feedback also outper-
forms trajectory B’s feedback, revealing consistency across response types.

E RELATED WORK

Mathematical theorem proving has seen significant progress with benchmarks like
miniF2F (Zheng et al) [2022), FIMO (Liu et al) [2023), and PutnamBench (Tsoukalas et al.,
2024]), alongside advances in Al-assisted approaches such as AlphaGeometry (Trinh et al., 2024;
Chervonyi et al., [2025) and recent neural theorem provers (Polu & Sutskever, 2020). Current
verification relies primarily on interactive theorem provers like Lean4 (de Moura et all 2015}
de Moura & Ullrich} 2021), Coq (Huet & Paulin-Mohring| 2000), and Isabelle (Nipkow et al.,
2002), with recent improvements in compilation efficiency through Kimina Lean Server (Santos
et al., 2025). However, these approaches have critical limitations for RLVR applications: they
only support formal languages while excluding natural language proofs, and provide only binary
verification results without the detailed error analysis or actionable feedback essential for effective
reinforcement learning.

Reward modeling for mathematical reasoning has primarily focused on traditional problem-
solving tasks. Process reward models (Lightman et al., [2024; Wang et al.| [2024a)) have shown suc-
cess in step-by-step verification for computational problems, while outcome reward models achieve
strong results through final answer comparison (Cobbe et al.,2021). More broadly, LLM-as-a-judge
approaches (Zheng et al.l 2023) have evolved from instruction-following evaluation to reward mod-
els across domains including medical QA (Croxford et al.l |2025), multimodal tasks (Chen et al.,
2024]), and code generation (Zhao et al.,|2024), with open-source alternatives like PandalLM (Wang
et al.,2024b) and Prometheus (Kim et al.| 2024afb) providing cost-effective solutions. While these
methods succeed in traditional mathematical tasks through reference answer comparison (Chen
et al., 2025), theorem proving’s process-oriented nature and diverse solution paths present unique
verification challenges that limit RLVR applications in this domain. Our work addresses this verifi-
cation bottleneck by developing the first dual-language verifier specifically designed for mathemat-
ical theorem proving, enabling RLVR applications through detailed error analysis and fine-grained
evaluation capabilities via novel two-stage reward modeling.

F TRAINING DATASET STATISTICS

Our initial data is divided into natural language data and formal language data, including the
statement-proof pairs labeled to be correct or not.

For statement-proof pairs in natural language, we utilize the statements from OPC dateset/Dekoninck
et al.| (2025) and RFM dataset |Guo et al.| (2025). We use different reasoning models to generate
multiple proofs for a single statement, which we then label as either correct or incorrect. Of the
statement-proof pairs in our initial pool, 2,000 are from the RFM dataset (582 labeled as correct,
1,418 as incorrect) and 3,039 are from the OPC dataset (1,109 labeled as correct, 1,930 as incorrect).
To balance the dataset, we remove a number of incorrect proofs. The final dataset consists of 1,164
entries from the RFM dataset and 2,218 from the OPC dataset, with an equal number of incorrect and
correct proofs. We evenly extract data from the formal statement-proof pairs of datasets including
MiniF2F Zheng et al.| (2022), ProofNet |Azerbayev et al| (2023), PutnamBench [Tsoukalas et al.
(2024), ProverBench Ren et al.| (2025)), CombiBench |[Liu et al.| (2025)), Fimo [Liu et al. (2023)), and
Hmmt [Zhang et al.| (2025b) (Note that the number of statements in these datasets varies, and the
quantity of our dataset refers to the number of statement-proof pairs but not statements. Besides,
dataset like Hmmt contains statements and proofs in natural language, and we translate them into
formal language), and ensure that the total amount of formal data is roughly the same as that of
natural language data. Ultimately, we obtain a final dataset of 6764 entries, as shown in Table [4]
And we also count the distribution of knowledge domains, as shown in TableE], which can be seen
as a rough evaluation of the diversity of our dataset.
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[ MiniF2F @ Algebra
‘ [ PutnamBench ‘ © Number Theory
o ‘ :iion:biBenCh ~ O Geometry
2 O Combinatorics
Informal B Hmmt Category O Calculus
[ ProofNet ' @ Sequence
[ ProverBench . O Probability
[ RFMDataset © Trigonometry
[l OPCDataset

Figure 8: Benchmark statistics and category distribution.

Dataset Name Data Size
OPC Dataset 2218
RFM Dataset 1164
MiniF2F 484
ProofNet 484
PutnamBench 484
ProverBench 484
CombiBench 484
Fimo 484
Hmmt 484
Total 6770

Table 4: Statistics of training set data sources.

G PROMPT TEMPLATE DESIGN

These training datasets are formatted into a predefined prompt template for training. The evaluator
is instructed to generate error analysis, evaluation scores, and actionable feedback as output. Natural
language inputs include the statement and proof, while formal language inputs additionally include
compilation results. We find this essential because without compilation results, the trained evaluator
often produces incorrect analyses with low accuracy. This occurs because Lean4 proofs can encom-
pass numerous proof steps and strategies within just one or two lines of code, requiring significant
compilation time even for the compiler. Rather than having the evaluator perform lengthy reasoning
to interpret the code and analyze potential errors, we directly provide compilation results to help it
better understand the code and proof states, enabling more accurate and targeted feedback.

We compared two types of prompts: 1) simple free-style prompts that only constrain the format of
model outputs, versus 2) complex prompts with specific guidance, such as requiring analysis from
given perspectives, summing scores across multiple dimensions, and generating feedback from pre-
defined frameworks. These two types of prompts are shown in Appendix [Ml Counterintuitively, we
found that the first prompt yields significantly better results than the second. Even large models
may make errors when summing evaluation scores and struggle to follow complex instructions. For
the second type, models fail to follow the instruction to provide a detailed and in-depth analysis
for each required perspective, instead offering only superficial and cursory responses. In contrast,
simple prompts allow models to perform targeted, self-adaptive detailed analysis and provide spe-
cific feedback. For training, overly specific and complex prompts can be viewed as parameterized
prefixes that constrain the exploration space of conditional generation rollouts, thereby preventing
model improvement. Simple prompts provide models with sufficient search space, where as long
as the format is correct, the optimization of intermediate processes relies on self-exploration, which
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Domain Data Size
Algebra 1480
Number Theory 1184
Calculus 958
Geometry 886
Combinatorics 740
Sequence 592
Probability 392
Trigonometry 422

Table 5: Statistics of different mathematical domains.

can fully leverage the strengths of RL to train more powerful models. Our experiments confirm
this point: in RL, specific and complex prompts not only perform poorly initially but also provide
limited improvement for the model. Detailed experimental results are shown in Appendix [K]

H RFM DATASET

The prompt template follows a rubric-based evaluation containing 10 perspectives, covering various
common proof errors such as Transformation Error, Hidden Assumption, and Boundary Neglect,
as detailed in Appendix [M] We employed three PhD-level math students to independently label
the data (discarding entries where consensus was not reached), and comparison revealed a Pearson
correlation coefficient of 0.89, thus demonstrating the feasibility of using this approach for large-
scale labeling of this dataset, where the noise level remains within acceptable bounds.

1) OPC Dataset Dekoninck et al.[(2025): Contains proof attempts generated by multiple advanced
reasoning models using natural language on PutnamBench (Tsoukalas et al.|[2024)) statements. Mul-
tiple human experts label these proof attempts as True or False. For cases where annotators disagree,
we apply majority voting when feasible; otherwise, we discard instances with substantial disagree-
ment.

2) RFM Bench Guo et al.|(2025): A benchmark contains proof statements across multiple difficulty
levels (high school, undergraduate, graduate) and mathematical domains, including geometry, alge-
bra, inequalities, number theory, and calculus. All statements are human-annotated and verified for
quality and difficulty control. Since this dataset contains only statements, we generate proof candi-
dates using advanced reasoning models and employ LL.M-as-a-judge labeling with Gemini-2.5-Pro
as the evaluator, as we find that Gemini-2.5-Pro demonstrates strong proof evaluation capabilities
on this dataset under carefully designed rubrics. Finally, we extract 100 {statement, proof attempt}
pairs for human annotation to form part of our test set.

Both datasets may introduce validation errors, potentially overlooking logical issues and other subtle
errors that are difficult to detect. Moreover, they contain only natural language proofs without formal
language coverage. To address these limitations, we introduce a third data construction method.

I TEST DATASET COLLECTION

For formal language, we selected different prover models (DeepSeek Prover V2 Ren et al.| (2025),
Kimina Prover [Wang et al.| (2025a), Goedel Prover [Lin et al.| (2025)), Leanabell Prover Zhang et al.
(2025a), and STP Prover| Dong & Ma|(2025)) that differ from training data collection models, sam-
pling 32 proof attempts per statement on new benchmarks with compiler-generated labels. For nat-
ural language, we used various series models (Qwen3, Mistral, Magistral [Mistral-Al et al.| (2025),
Qwen 2.5, Gemma|lTeam et al.|(2025)), DeepSeek R1) for sampling, with 100 samples labeled by hu-
man annotators and the remaining labeled by Gemini-2.5-Pro. Our three human annotators achieved
Cohen’s Kappa|Cohen|(1960) scores of 0.86, 0.86, and 0.88, validating the high quality and reliabil-
ity of the test set. The final test set contains Sk formal language and 1k natural language samples.
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J MODEL INTRODUCTION

J.1 GENERAL PROPOSE MODELS

Qwen series. We use the Qwen-2.5-7B, Qwen-2.5-72B, Qwen-3-8B and Qwen3-30B |Qwen et al.
(2025) in our experiments. Both Qwen2.5-8B and Qwen3-8B acquire extensive mathematical
knowledge during pre-training, and Qwen3-8B, in particular, has ability to handle more difficult
mathematical problems. As a result, they are widely used as base models for training in research.
Qwen-2.5-72B is the largest open-source model in Qwen-2.5 series, which demonstrates signif-
icant improvements in mathematical ability compared to its predecessors. Qwen3-30B, a new
representative model of the Qwen series, adopts a mixture-of-experts architecture and can employ
long chain-of-thoughts, which greatly improves its mathematical reasoning capability. Specifically,
the Qwen3-30B model shows strong performance on competition-level math benchmarks, such as
AIME-2024 Jia| (2025) and AIME-2025 |OpenCompass Team!|(2025)).

Mistral and Magistral series. Mistral [Mistral-Al et al.[ (2025) is a series of powerful, efficient
language models from the Mistral Al. The models are known for their strong performance across
various tasks while being efficient. These models achieve good performance on various mathemati-
cal benchmarks like MATH |Hendrycks et al.| (2021) and GSM8K |Cobbe et al.|(2021), proving their
strong capabilities from basic arithmetic to advanced problem-solving. To further improve models’
reasoning ability, Mistral Al introduced the Magistral series. These new models are specifically
trained for advanced reasoning tasks and capable of performing long chain-of-thought. This makes
their problem-solving process more transparent and reliable for complex applications, while achiev-
ing high scores on challenging math benchmarks like AIME-2024 Jia|(2025)) and AIME-2025|Open-
Compass Team)|(2025]).

Gemma series. Gemma|Team et al.|(2025) is a family of lightweight, open-source models developed
by Google. The recent Gemma-3 series represents a significant leap forward in capabilities and
efficiency. A key highlight of the Gemma 3 series is its exceptional performance in mathematical
reasoning. The technical report confirms that Gemma 3 models demonstrate substantial gains over
their predecessors on critical math benchmarks, specifically MATH and HiddenMath.

Deepseek-R1. Deepseek-R1 |DeepSeek-Al et al.| (2025) is one of the most prominent open-source
reasoning models, widely used for complex mathematical reasoning. Its performance on two
competition-level datasets, AIME-2024 and AIME-2025, is comparable to top commercial models,
achieving a pass@1 score of nearly 90% or higher. Furthermore, Deepseek-R1’s recent performance
on the RFM Dataset for mathematical proofs is shown to surpass many reasoning models.

Gemini-2.5-pro. The Gemini-2.5-pro (Comanici et al.| (2025) model is dedicated to pushing the
frontier of Al with advanced reasoning. In addition to its excellent performance on common math
competition datasets like AIME, this model has also recently been shown to surpass other models in
its mathematical proof generation ability under the same criteria.

J.2  PROVER MODELS

In this paper, we refer to models that are specifically trained to generate formal proofs from formal
statements as prover models. In this subsection, we provide a short introduction to the prover models
we used.

DeepSeek-Prover-V2. DeepSeek-Prover-V2 Ren et al.| (2025)) is an open source prover model for
theorem proving in Lean 4, which is distinguished by its innovative pipeline that effectively uni-
fies informal, human-like reasoning with the rigor of formal proof generation. Its core feature is
a two-stage process that begins by using a powerful general model (DeepSeek-V3 |DeepSeek-Al
et al.| (2025)) to decompose complex theorems into a high-level proof sketch composed of simpler
subgoals. These subgoals are then solved by a more specialized prover model.

KIMINA Prover. KIMINA Prover [Wang et al.| (2025a)) emulates human problem solving by gen-
erating a mix of informal mathematical intuition and formal Lean 4 code. This process allows it to
iteratively build and refine a proof.

Goedel Prover. The core innovation of Goedel Prover|Lin et al.|(2025) lies in addressing the scarcity
of formal mathematical data through a two-pronged approach. It automatically translates a massive
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dataset of 1.64 million math problems from natural language into formal statements. Besides, it
employs a training method where the model generates proofs for these statements, and any new
correct proofs are added back into the training set to iteratively create a more powerful prover.

Leanabell Prover. Leanabell Prover [Zhang et al.|(2025a)undergoes a two-stage post-training strat-
egy. The first stage is supervised fine-tuning on a large, custom-curated dataset. This dataset not
only includes a massive collection of statement-proof pairs but, more importantly, incorporates syn-
thetic data designed to integrate self-reflection and error correction. This is achieved by generating
Chain-of-Thought style explanations for why a proof failed and how it is corrected. Second, us-
ing the GRPO algorithm, the finetuned model learns by generating entire proofs and receiving a
direct reward signal from the Lean 4 compiler based on whether the proof is successfully verified.
This strategy of combining SFT with cognitive data and RL optimization allows Leanabell-Prover
to achieve good performance.

STP Prover. The training of STP prover Dong & Ma|(2025) simultaneously operates in two roles of
prover and conjecturer. These two roles create a dynamic self-play feedback loop. The conjecturer
creates novel problems that are barely provable by the prover’s current ability. This process generates
a continuous stream of appropriately difficult training data. This allows the model to improve its
reasoning skills without requiring more human-created datasets, effectively creating its own adaptive
learning curriculum.

K ABLATION STUDY ON PROMPT DESIGN

Verifier Acc Prec Rec F1
Simple Prompt 0.57 0.58 0.55 0.56
Simple Prompt + RL 0.86 0.87 0.85 0.86
Complex Prompt 043 045 042 043

Complex Prompt + RL  0.52 0.53 0.51 0.52

Table 6: Comparison of prompt types during inference and after RL training. Simple Prompt out-
performs Complex Prompt in both settings.

As shown in Table [6] we found that Simple Prompt performs better than Complex Prompt in both
zero-shot stage and after RL training. The reason is that overly complex prompts are difficult for
models to follow, resulting in poor inference performance. Additionally, overly complex prompts
limit the model’s exploration space, where model outputs become constrained and RL cannot effec-
tively optimize the model further.

L TRANSLATION ERROR

In this section, we provide cases to show the errors that occurred when translating the formal state-
ments or proofs to natural language statements or proofs.

L.1 STATEMENT TRANSFORMATION ERROR

We identify three main kinds of statement transformation errors: Premise Difference, Conclusion
Difference, Not to Prove. Premise Difference refers to a discrepancy where the premise provided
by the translated natural language statement differs from those off the original formal statement,as
shown in Figure [0} [I0] 1] In each figure, we mark the translation errors in red and provided an
analysis of the errors.Taking Figure[9]as an example, the original formal statement does not provide
aby specific value for the function f(x) and its corresponding inverse function at a given point,
but only presented an equality condition. However, the translated natural language statement does
include a value. Although these values do not affect the solution in this specific example, it still
highlights a semantic inconsistency.

Conclusion Difference refers to a discrepancy where the conclusion to be proven in the formal lan-
guage statement differs from the conclusion of the translated natural language statement, as shown
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in Figure [I0} [T} T2} [13] [I4] For example, in Figure [I2] the conclusion to be proven in the formal
language statement is that a certain property holds for all positive integers. However, the natural
language statement is incorrectly rendered as proving there are infinitely many such integers. While
these two concepts are somewhat related, the difference between them is significant.

Not to Prove refers to a situation where the natural language statement fails to clearly distinguish
between the premises and the conclusion to be proven(Figure[I3] [I6). In some cases, the translation
is even a problem that requires a numerical result instead of a proof(Figure|17).

p
Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Suppose f(x) 1s an invertible function with f(2)=f"{-1}(2)=4.
Show f(f(2)) = 2. -/

theorem mathd_algebra_ 188 (o : Equiv R R)
(h: o' 2=02)
o (o0 2) =2 := by

Transformed Natural Language Statement:

Suppose f is a bijective function from the real numbers to the real numbers, with the property that both
f(2) and its inverse function f~*(2) evaluate to 4. What is the value of f(f(2))? Show that it equals 2.

Error Type: Premise Difference

Error Analysis: The natural language statement describes the specific values f(2) = 4 and
f~1(2) = 4, while the Lean code states that f(2) and f~1(2) are equal, without explicitly
mentioning the value 4. This error may have been affected by the comment content in the lean
code.

Figure 9: A failure case of Premise Difference.

L.2 PROOF TRANSLATION ERROR

We also explored the bad cases of converting formal proofs into natural language proofs. A common
case is that the natural language proof translated by the model is merely an annotation of the formal
proof, as shown in Figure |18| and This means it is not a complete proof on its own, because
languages like Lean 4 contain elements such as tactics that are not fully explained in the translation.
Furthermore, we also discover cases where the natural language proofs and formal proofs use dif-
ferent methods(Figure[20). Although these proofs may be correct on their own, they fail to meet our
consistency requirement.

M PROMPTS

In this section, we detail the prompts used in our experiments.

Figure [21] is the prompt we provide to Gemini-2.5-pro to judge the proofs generated by various
LLMs for statements from RFM Dataset. This prompt not only asks the model to provide an overall
correctness score, but also requires it to categorize any errors into one or more failure modes, which
are detailed in Figure 22]

Figure [23| and |24| show the prompts provided to our evaluator to evaluate a formalized proof, with
and without verification information from the Lean 4 compiler, respectively.

Figure [25] and [27) show the prompts provided to our evaluator to evaluate a natural language proof,
with and without detailed rubrics to give the final score, respectively.
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Formal Statement and proof:

import Mathlib
open Matrix
def coeff_matrix : Matrix (Fin 4) (Fin 3) Q :=
reprr =19, 8, 01,
'f -71, 30, 01,
[ _21 ll O]I
[ 4, 0, 111
def aug_matrix : Matrix (Fin 4) (Fin 4) Q :=
vvprg o -19, 8, 0, -1087,
'r -71, 30, 0, —-4047],
U _21 1, Or _12]1
't 4, 0, 1, 1411

axiom rank_of matrix : rank coeff_matrix = 2 A rank aug_matrix = 2
axiom verify_solution : (4, -4, -2) € {x : QO X Q X Q

-19 *» x.1 + 8 » x.2.1 = =108 A

=71 » x.1 + 30 » x.2.1 = -404 A

-2 x x.1 + x.2.1 = =12 A

4 % x.1 + x.2.2 = 14}
/—— The system of linear equations has a unique solution (4, -4, -2).

-/
theorem unique_solution : 3! x : Q X Q X Q,
-19 » x.1 + 8 » x.2.1 = =108 A
=71 » x.1 + 30 » x.2.1 = =404 A
-2 * x.1 + x.2.1 = =12 A
4 % x.1 + x.2.2 = 14 := by

Transformed Natural Language Statement:

Consider the system of linear equations:

1)-19x + 8y =-108

2) -71x + 30y = -404

3)-2x+y=-12

Hadx +z=14

Prove that this system has a unique solution (4, -4, -2).

Error Type: Premise Difference and Conclusion Difference

Error Analysis: In the formalized statement, it is directly given that the rank of the coefficient
matrix is equal to the rank of the augmented matrix, which falls under the category of premise
difference. The formalized statement directly indicates that (4, -4, 2) is a solution to the equation,
so it only needs to prove uniqueness. However, the natural language statement first needs to prove
that (4, -4, 2) is a solution to the equation, which belongs to conclusion difference.

Figure 10: A failure case of Premise Difference and Conclusion Difference.

N FEEDBACK CASE STUDY

To intuitively demonstrate the effectiveness of our evaluator, we present some cases in this section,

as shown in Figures 28] 29] [30] and [31] Figures [28] [29] and [30] show feedback on formal proofs,
while Figure [31] provides feedback on a natural language proof.

From the feedback on formal proofs, we can clearly see that the evaluator’s feedback can iden-
tify and correct errors related to the properties of Lean, as well as point out the missing parts
in the formal proof. For example, the case shown in Figure [30] indicated that the feedback pre-
cisely identifies the critical gap, which is the missing proof that m < 4 required to apply the func-
tion’s conditional definition—and resolves it by directing the user to the essential Mathlib theorem
Real.pi_lt_four. It corrects the ineffective simp_all tactic by prescribing explicit hypothesis applica-
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Formal Statement and proof:

import Mathlib
/-— Let f(u,v) be differentiable with

Af Jou — df Jov = 2(u — v)e” ()

and f(u,0) =u?e"“. Then:

a) For g(z,y) = f(z,y —x) we have 0g/0x = (4 — 2y)e™Y;

b) flu,v) = (u® 4+ v?)e @),

c) f has a unique global minimum at (0,0) with f(0,0)=0. -/
open Real

variable {u v xy : R}

noncomputable def £ (u v : R) : R) (u2 + v2) * exp (—(u + v))

noncomputable def g (x y ¢ R) : R) := f x (y — Xx)

axiom f_partial_condition (u v : R) :

deriv (fun u => f u v) u - deriv (fun v => f u v) v = 2 * (u - v) =*
exp (—(utv))

axiom f_initial_condition (u : R))

fuo0=nu’» exp (-u)

axiom partial_g x (x y : R) :

deriv (fun x => g x y) x = (4 » x — 2 % y) * exp (-y)

lemma g_expression (x y : R)

gxy=(x2+ (y - x)?%) x exp (-y) :=

Transformed Natural Language Statement:

Consider a differentiable function f(u, v) that satisfies:

1. The difference between its partial derivative with respect to v and its partial derivative with
respect to v equals 2(u — v)e~ ()

2. The initial condition f(u,0) = u?e™

We are to show that:

a) For g(x,y) = f(x,y — x), the partial derivative of g with respect to x is (4x — 2y)e™ ¥

b) The function f(u,v) has the explicit form (u? + v?)e~(4+)

¢) The function f has a unique global minimum at (0, 0) with value 0

Error Type: Premise Difference and Conclusion Difference

Error Analysis: In the formalized statement, it is only necessary to prove that g(x, y) = (x> +
(y - x)®) * exp(-y). However, the natural language statement needs to prove three statements.
Among them, statements (a) and (b) are given as known conditions in the formalized statement,
and statement (c) is not reflected in the lean code. Therefore, it falls into both the categories of
Premise Difference and Conclusion Difference.

Figure 11: A failure case of Premise Difference and Conclusion Difference

tion (hy _ (Real.pi_nonneg, Real.pi_lt_four)), transforming an incomplete automation attempt into
a robust, verifiable proof that adheres strictly to the function’s domain conditions.

From the feedback on natural language proofs shown in Figure 31| we can see the feedback ac-
curately point out that the inequality used in the proof is invalid and does not hold under certain
conditions. It even provided failure cases of the inequality and a corresponding improvement plan.
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Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— For how many positive integers m does there exist at least one
positive integer n

such that m-n<m+4+n?

(A) 4 (B) 6 (C) 9 (D) 12 (E)infinitely
many. Show that it is (E)infinitely many.-/

theorem amcl2a_2002_p6 (n : N)
(h_0 : 0 < n)
dn,m>nAdp, mxp<m-+p := by

Transformed Natural Language Statement:

How many positive integers m exist such that there is at least one positive integer n satisfying the
inequality m - n < m + n? The options are: - (A) 4 - (B) 6 - (C) 9 - (D) 12 - (E) infinitely many.
We are to show that the correct answer is (E) infinitely many.

Error Type: Conclusion Difference

Error Analysis: The formalized statement means that a certain conclusion holds for any n
greater than 0, while the natural language statement means that there are infinitely many values
of n for which this conclusion holds. Therefore, this belongs to a conclusion difference.

Figure 12: A failure case of Conclusion Difference

Formal Statement and proof:

import Mathlib

/—— Let A be a real 2x2 matrix. Then the determinant of A% is always
nonnegative, i.e., det(A%)>0.-/

open Matrix

variable (A : Matrix (Fin 2) (Fin 2) R)

lemma det_A_sqg : det (A x A) = (det A) A 2 := by

Transformed Natural Language Statement:

Let A be a real 2 x 2 matrix. Show that the determinant of A? is always non-negative, i.e.,
det(A?) > 0.

Error Type: Conclusion Difference

Error Analysis: In the formalized statement, it is required to prove that the determinant of a
matrix squared is equal to the square of the determinant. However, the natural language statement
needs to prove that the determinant of a matrix squared is greater than or equal to 0. Therefore,
this belongs to a Conclusion Difference.

Figure 13: A failure case of Conclusion Difference.
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Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— What is the tens digit of 5°2005? Show that it is 2. -/
theorem mathd_numbertheory_198
5 A 2005 % 100 = 25 := by

Transformed Natural Language Statement:

What is the tens digit of 529952 Prove that it is 2.

Error Type: Conclusion Difference

Error Analysis: The statement in the formal language requires proving that the remainder is 25,
while the statement in natural language only needs to prove that the tens digit of the remainder is
2.

Figure 14: A failure case of Conclusion Difference.

Formal Statement and proof:

import Mathlib

/- The composition of the functions wu(z)=sinz and v(z)=2? is
w(v(z)) = sin(z?). -/

open Real

noncomputable def u (x : R) : R := sinz

def v (X : R) : R := 2

theorem composition_of_sine_and_guadratic (x : R)
u (v x) = sin(z?) := by

Transformed Natural Language Statement:

What is the composition of the functions u(r) = sinx and v(z) = 22, and how does it
simplify? The composition u(v(x)) simplifies to:

u(v(z)) = sin(z?)

Error Type: Not to Prove
Error Analysis: The natural language statement presents the content of the formal language as
a factual elaboration, rather than treating it as a mathematical proof problem.

Figure 15: A failure case of Not to Prove.
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Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/- Let f(x)=x%—92%+ 24z be a real-valued function defined on R. Then

1. f(x) has a local maximum at = =2.
2. f(z) has a local minimum at z=4.

3. These are the only local extrema of f(x) on R. -/
open Real

noncomputable def f (x : R) : R := 2 = 9 x 22 + 24 % x
noncomputable def f_deriv (x : R) : R := 3 « 2 - 18 x x + 24
noncomputable def f_second_ deriv (x : R) : R := 6 = x — 18
axiom critical_points : f_deriv x = 0 < x =2 V x = 4

lemma second_derivative_test (x : R) (h : f_deriv x = 0)
((x = 2 N f_second_deriv x < 0) V (x
:= by

= 4 A f_second_deriv x > 0))

Transformed Natural Language Statement:

Consider the real-valued function f(x) = 2® — 922 + 24z defined on all real numbers. The
statement claims that: 1. The function has a local maximum at x = 2 2. The function has

a local minimum at x = 4 3. These are the only local extrema of the function on the real
numbers

Error Type: Not to Prove

Error Analysis: The natural language statement expounds on the claim of the formal language,
yet it is not a mathematical proof problem itself.

Figure 16: A failure case of Not to Prove.
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Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Solve the system:
X +y + z = a
x"2 + y*2 + z"2 = b2
xy = z"2
where a and b are constants.
Give the conditions on a and b so that x, y, z are distinct
positive numbers. -/
theorem imo_1961_pl (x vy z a b : R)

(h.0 : 0<x AO0O<y AO0K< 2z)

(h_1 x #vy) (h .2 :y # z) (h_ 3 z # x)
(h.4 : x +y + z = a)

(h.5 : x*"2 + y*2 + z"2 = b"2)

(h_6 : x xy = 2"2)

0 <aAbr2 < z"2 AN a2 <3 x b*"2 := by

Transformed Natural Language Statement:

Given three positive real numbers x, y, z that are all distinct, and two constants a and b, solve
the system of equations:

l.Lz+y+z=a

2. 22+ 2 + 22 =07

3.2y =22

Find the conditions that a and b must satisfy for the system to have distinct positive real
solutions x, y, 2.

Error Type: Not to Prove
Error Analysis: The natural language statement requires finding the conditions that meet the
problem, rather than proving the problem described by the formal language.

Figure 17: A failure case of Not to Prove.
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Formal Statement and proof:

import Mathlib
open Real
variable {u v x y : R}

noncomputable def f (uv : R) : R := (u"2 + v"*2) * exp (—-(u + v))
/—-— The function g defined in terms of f -/
noncomputable def g (x vy : R) : R := f x (y - x)
axiom f_partial_condition (u v : R) :
deriv (fun u => f u v) u - deriv (fun v => f u v) v = 2 x (u - v) =*
exp (- (utv))
axiom f_initial condition (u : R)
ful0=u"2  exp (-u)

axiom partial_g x (x y : R) :
deriv (fun x => g x y) x = (4 x x = 2 x y) * exp (-y)
lemma g_expression (x y : R) :
gxy= (x2+ (y - x)"2)
simp only [g, f]
ring

* exp (-y) := by

Transformed Natural Language Proof:

The proof proceeds as follows:

1. We start with the definition of g(z,y) as f(z,y — x), where f is defined to be (u? +
U2)67(u+v)_

2. The goal is to show that g(z,y) equals (22 + (y — x)?)e Y.

3. By substituting the definition of f into g, we get: g(x,y) = f(z,y — ) = (2?2 + (y —
"I}')2)€_($+(y_w))

4. Simplifying the exponent: —(x + (y — x)) = —y

5. Thus we have g(x,y) = (22 + (y — x)?)e™¥

6. The proof uses the ’simp’ tactic in Lean to simplify the expression, focusing only on the
definitions of g and f.

7. The ’ring’ tactic is then used to verify that the algebraic manipulations are correct.

This shows that the given expression for g(x, y) in terms of f is indeed correct, which supports
part (b) of the statement about the form of f(u,v).

Error Analysis: This natural language proof is actually an explanation of the formal language
proof and cannot exist as an independent solution to the problem. Especially in the key parts of
the problem, it only explains the tactics used in the formal language without providing a correct
natural language proof.

Figure 18: A failure case of translating formal proof to natural language proof.
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r

Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-—— If \( Q= 11-51 \), \( E = 11+5i \), and \( D = 2i \), find \( O\
cdot E \cdot D \). Show that it is 292i.-/

theorem mathd_algebra_192 (g e d : \mathbb{C})

(h.0 : g=11 - 5  Complex.I) (h.1 : e = 11 + 5 % Complex.I)

(h.2 : d =2 x Complex.I) : g * e » d = 292 » Complex.I := by

rw [h 0, h_1, h_2]

simp only [Complex.ext_iff, Complex.mul_re,

Complex.mul_im, Complex.add_re,

Complex.add_im,

Complex.ofReal_re, Complex.ofReal_im,

Complex.ofReal_add, Complex.ofReal_mul,

Complex.I_re,

Complex.I_im]

norm_num

<;> ring

<;> norm_num

<;> ring

Transformed Natural Language Proof:

To prove that Q x E x D = 292i, we follow these steps:

1. First, we substitute the given values into the expression: - Replace @ with (11 — 57) - Replace F with
(11 + 5%) - Replace D with (24)

2. We then expand the multiplication step by step: - First multiply @ and F using complex multiplication
rules - Then multiply the result by D

3. During the expansion, we: - Separate the real and imaginary parts of the complex numbers - Apply
the distributive property of multiplication - Simplify using the fact that i> = —1 - Combine like terms
4. The simplification process involves: - Calculating the real parts (which should cancel out) - Calcu-
lating the imaginary parts (which should combine to 292) - Using basic arithmetic operations (addition,
multiplication) - Normalizing the numerical expressions

5. After all simplifications, we verify that: - The real part becomes 0 - The imaginary part becomes
exactly 292 - Thus the final result is indeed 292¢

Error Analysis: The proof in formal language uses Lean’s internal algebraic simplification
mechanism, and its correctness can be verified. However, the corresponding natural language

proof must provide a detailed simplification process, which the above proof fails to do.
&

Figure 19: A failure case of ranslating formal proof to natural language proof.
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Formal Statement and proof:

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Show that there are infinitely many positive integers m for
which
there exists at least one positive integer m such that
m-n<m+n. -/
theorem amcl2a_2002_p6 (n : N) (h_0 : 0 < n)
dm, m>n A dp, m*p <m+ p := by
/- For any positive n, choose m = n+l and p = 1.
Then (n+1)*1 = n+l < n+2 = (n+l1)+1, so the inequality holds. -/
use n + 1

constructor
- exact Nat.lt_succ_self n —-— n+l > n
- use 1
simp -—— (n+1)*1 < (n+1)+1

Transformed Natural Language Proof:

To prove that there are infinitely many positive integers m for which there exists at least one
positive integer n such that m - n < m + n, we proceed as follows:

1. Constructing m: For any given positive integer n, define m = n + 1. This ensures m > n
(sincen + 1 > n).

2. Verifying the inequality: Substitute m =n + lintom -n < m + n:

(n+l)-n<(n+1)+n
Simplify: n? + n < 2n + 1. For Lean’s proof, choosing p = 1 simplifies the inequality to:
m+1)-1<(n+1)+1 = n+1<n+2

which is always true.

3. Conclusion: For every n, m = n 4 1 works with p = 1, so there are infinitely many such
m. The answer is (E) infinitely many.

Note: Lean uses p = 1 for simplification, but the key idea of infinitely many m remains.

Error Analysis: The formal language proof and the natural language proof adopt different ap-
proaches.

Figure 20: A failure case of translating formal proof to natural language proof.
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Evaluation Prompt(RFM Dataset):

You are a math teacher highly skilled in evaluating proofs.
**Problem Statement**: [Original Question]
**Student’s Answer**: [LLM generated Proof]

Your Tasks

1. **Detailed Analysis**: Read the student’s answer and thought process carefully.

- If a claim is obvious in students’s answer, you may accept it as valid provided the overall
logic is sound.

- If the category **“Others”** is triggered, briefly describe the error in the Analysis section.

2. **Binary Scoring**: After your analysis, output *only* the exact block below, inside triple
back-ticks, nothing else:

Error Pattern Analysis

- Transformation Error: 1|0
- Over Generalization: 1]0
- Invalid Construction: 1|0
- Wrong Division: 1]0

- Circular Reasoning: 1|0
- Logic Violation: 1]0

- Hidden Assumption: 1]0
- Boundary Neglect: 1|0

- Vague Argument: 1|0

- Vague Argument: 1|0

- Others: 1|0

Overall Correctness
- 10

Error Pattern Rubric
Presented in Figure[22]

Scoring Semantics

- In **Error Pattern Analysis**: “1” = this error pattern **is present**. “0” = this error pattern
**is NOT present™*.

- In **Qverall Correctness**: “1” = the proof is **completely correct** (no errors). “0” =
the proof **contains at least one error**.

Consistency Rule
If **any** error pattern is “1”, then **Overall Correctness must be “0”**. Only when

**all** error patterns are “0” is Overall Correctness “1”.

Do not output anything after the code block. Your answer is:

Figure 21: The evaluation prompt we use when assessing the answers to questions in the RFM
Dataset generated by various models, which is provided to the Gemini-2.5-pro model.
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Error Pattern Rubric:

1.

Category: Transformation Error

Definition: Recasting the target statement into a non-equivalent or strictly weaker one.
Typical example: To prove convergence of »_ a,, only prove lima, = 0; or replace
“A < B”with“A=DB".

2.

Category: Over Generalization

Definition: Inferring a universal claim from a few special or hand-picked cases.

Typical example: Verifying for n = 1, 3,5 then claiming the result holds for all n € ().

3

Category: Invalid Construction

Definition: Failing to construct an object that should exist, or constructing one that doesn’t
meet requirements.

Typical example: Claiming a function that is everywhere linear yet nowhere differentiable.

Category: Wrong Division

Definition: Partitioning into cases that miss at least one legitimate possibility or overlap.
Typical example: When analyzing the behavior of a function, dividing cases as “always
positive,” “always zero,” and “always negative.”

5.

Category: Circular Reasoning

Definition: Using the conclusion (or an equivalent reformulation) as a hidden or explicit
premise.

Typical example: Assuming B when trying to prove A= B.

Category: Logic Violation
Definition: A deduction step that contradicts logical or algebraic rules.
Typical example: From a < b and ¢ < d concluding a — ¢ < b — d without checking signs.

Category: Hidden Assumption
Definition: Applying a theorem or step whose hypotheses were neither stated nor proven.
Typical example: Differentiating a function known only to be continuous.

Category: Boundary Neglect

Definition: Ignoring edge cases, endpoints, or limiting situations so the argument holds only
“in the middle.”

Typical example: Proving f(z) = /() differentiable on [0, 1] without checking at 2 = 0.

9

Category: Vague Argument

Definition: Relying on intuition, diagrams, or “obvious” without formal justification.
Typical example: “The series obviously converges because the terms get smaller.”
10.

Category: Incomplete Proof

Definition: mitting an essential component such as the converse, base case, or a logical
bridge.

Typical example: Proving sufficiency but not necessity in an “if and only if.”

11.

Category: Others

Definition: Any error not covered by the categories above.

Figure 22: The error pattern rubric used by the prompt shown in Figure
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Lean 4 Evaluation Template w/ Verification

<TASK_TYPE>
formal_proof_evaluation
<TASK_TYPE>

<THEOREM >
{theorem_statement }
<THEOREM>

<PROOF_ATTEMPT >
{proof_code}
<PROOF_ATTEMPT >

<VERIFICATION_RESULT >
{verification_output}
<VERIFICATION_RESULT >

Please evaluate this Lean 4 proof attempt and provide structured feedback.
Your response must follow this exact format:

<ERROR_ANALYSIS>

[Provide detailed technical analysis of the error, including error type classification, root
cause, and severity assessment]

<ERROR_ANALYSIS>

<SCORE>
[Provide a numerical score from 0-100]
<SCORE>

<FEEDBACK >

[Provide specific, actionable suggestions for fixing the proof, including concrete code
changes and alternative approaches]

<FEEDBACK >

Figure 23: The prompt with verification provided to evaluator to evaluate formal proof.

49



Under review as a conference paper at ICLR 2026

Lean 4 Evaluation Template w/o Verification

<TASK_TYPE >
formal_proof_evaluation
<TASK_TYPE>

<THEOREM>
{theorem_statement }
<THEOREM >

<PROOF_ATTEMPT>
{proof_code}
<PROOF_ATTEMPT >

Please evaluate this Lean 4 proof attempt and provide structured feedback.
Your response must follow this exact format:

<ERROR_ANALYSIS>

[Provide detailed technical analysis of the error, including error type classification, root
cause, and severity assessment]

<ERROR_ANALYSIS>

<SCORE>
[Provide a numerical score from 0-100]
<SCORE>

<FEEDBACK>

[Provide specific, actionable suggestions for fixing the proof, including concrete code
changes and alternative approaches]

<FEEDBACK>

Figure 24: The prompt without verification provided to evaluator to evaluate formal proof.
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Natural Language Proof Evaluation Prompt w/ Rubrics

<TASK_TYPE>

natural_proof_evaluation

<TASK_TYPE>

<PROBLEM>

{problem_statement}

<PROBLEM>

<PROOF_ATTEMPT>

{proof_text}

<PROOF_ATTEMPT>

Please evaluate this natural language mathematical proof from the folowing rubrics and
provide structured feedback.

<RUBRICS>

<Rubrics> <RUBRICS>

Your response must follow this exact format:

<ERROR_ANALYSIS>

[Follow the above rubrics to provide a detailed conceptual analysis step by step, carefully
assessing the proof attempt from each rubric perspective as detailed as possible. You should
output a score for each rubric after your analysis, and provide a brief explanation for each
score. The scores should be in the range of 0-10 for each rubric, with 0 indicating no
evidence of the criterion and 10 indicating perfect adherence to the criterion. For each rubric,
please repeat the proof attempt step by step and analyze it according to the rubric.]
<ERROR_ANALYSIS>

<SCORE>

[In this field, please provide the sum of the scores from all rubrics, which should be a number
between 0 and 80, please use addition to calculate the final score step by step and output the
final score in the <SUM>1int <SUM> format.

Please first write down the equation for the final score calculation, e.g., "Final Score = int +
int + int = int", and then output the final score in the <SUM>int <SUM> format.]
<SCORE>

<FEEDBACK>

[In this field, please provide the feedback that can help the student improve their proof
attempt. The feedback must be based on the error analysis and scores provided above, and
should provide clear guidance. Please do not provide the ground truth of the proof directly.]
<FEEDBACK >

Figure 25: The prompt with rubrics provided to evaluator to evaluate natural language proof. The
detailed <rubrics> is shown in Figure
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The Rubrics used in Natural Language Proof Evaluation Prompt

<RUBRICS>

1. Logical Soundness & Step Validity [0-10]

* Content: Whether reasoning is valid, whether logical fallacies or counterexamples exist;
whether each reasoning step is correct and reasonable

* Assessment: Check logical derivation relationships, identify fallacy patterns, verify
single-step reasoning

2. Completeness of Argument [0-10]

* Content: Whether all necessary cases are covered, whether proof gaps or missing branches
exist

* Assessment: Check case coverage, identify unhandled assumptions or boundary conditions
3. Justification & Adequacy [0-10]

* Content: Whether each assertion has sufficient basis, founded on established
theorems/axioms/definitions

* Assessment: Verify theoretical support for each key assertion

4. Problem Comprehension & Setup [0-10]

* Content: Whether the problem statement is correctly understood, whether initial
assumptions and goals are clear and appropriate

* Assessment: Compare proof setup with problem requirements for consistency

5. Mathematical Rigor [0-10]

* Terminology & Notation: Whether mathematical terms, symbols, definitions, and theorems
are used correctly and appropriately

* Computational Accuracy: Whether arithmetic, algebraic, or other mathematical calculation
errors are avoided

* Assessment: Verify accuracy of symbolic operations and computational processes

6. Clarity & Presentation [0-10]

* Content: Whether proof structure is logically sound, whether language is clear and
comprehensible

* Assessment: Check readability, fluency, and structural organization

7. Relevance & Focus [0-10]

* Content: Whether all statements and calculations are relevant to the proof goal, avoiding
redundancy

* Assessment: Identify irrelevant content and reasoning that deviates from the main line

8. Conclusion Completeness [0-10]

* Content: Whether there is a clear concluding statement that summarizes what has been
proven

* Assessment: Check correspondence between conclusion and objectives

<RUBRICS>

Figure 26: The rubrics used in prompt shown in Figure
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Natural Language Proof Evaluation Prompt

<TASK_TYPE >
natural_proof_evaluation
<TASK_TYPE>

<PROBLEM >
{problem_statement}
<PROBLEM >

<PROOF_ATTEMPT >
{proof_text}
<PROOF_ATTEMPT >

Please evaluate this natural language mathematical proof and provide structured feedback.
Your response must follow this exact format:

<ERROR_ANALYSIS>

[Provide detailed conceptual analysis of mathematical reasoning, including logical structure
assessment, missing components, and error classification]

<ERROR_ANALYSIS>

<SCORE>
[Provide a numerical score from 0-100]
<SCORE>

<FEEDBACK>

[Provide educational feedback focusing on mathematical concepts, reasoning gaps, and
suggestions for improvement with clear explanations]

<FEEDBACK>

Figure 27: The prompt without rubrics provided to evaluator to evaluate natural language proof.
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p
Statement and Proof:

import Mathlib
open Real

noncomputable def f (x : R) : R := (1 / cos x) "2

axiom value_at_pi_over_3 : £ (m / 3) = 4

axiom derivative\_of\_f (x : R) : HasDerivAt f (2 * (1 / cos x) "2 x
tan x) x

axiom derivative_value_at_pi_over_3 : (2 * (1 / cos (m / 3)) "2 % tan
(m / 3)) = 8 x Real.sgrt 3

theorem tangent_line_equation
Vxy: R, y=8x Real.sqgrt 3 » (x — 7 / 3) + 4 &
y —f (m/ 3) = (2 % (1L / cos (m / 3)) "2 x tan (w / 3)) * (x — @ /
3) =
intro x y
constructor
- intro h
rw [h, value_at_pi_over_3]
ring
- intro h
rw [value_at_pi_over_3] at h
rw [h]
ring

Feedback:

To fix the proof:

1. In the backward direction, after substituting °f(7)/3) = 4°, the equation becomes ‘y — 4 =
8v3 (a: — %) ‘. Instead of using ‘rw [h]‘, directly add 4 to both sides using ‘rw [+— h]‘ or ‘have h’ :
y=8V3(x — %) +4:=byrw [h]; ring.

2. Replace the line ‘rw [h]‘ with ‘rw [«— h]‘ to correctly isolate ‘y*.

3. Ensure the ring tactic is applied to the transformed equation to simplify it to the target form. Example
correction for the backward direction:

-intro h

rw [value_at_pi_over_3] ath

haveh’ : y=8 * Real.sqrt 3 * (x - 7/ 3) + 4 :=by rw

[h]; ring

rw [h’]

Comments:

This feedback is highly beneficial: it correctly identifies the logical error in the proof (the misuse
of rw [h] in the backward direction), provides clear and actionable fixes, and includes pedagogical
explanations.

Figure 28: A case of feedback.
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Statement and Proof:

theorem aime_1990_p4 (x : R) (ho : 0 < x) (h1 : x "2 — 10 » x — 29 #

0)
(hg :+ x "2 — 10 * x — 45 #0) (hs : x 2 — 10 * x — 69 #0)
(hgy : 1 / (x "2 - 10 » x —29) + 1/ (x ~2 - 10 = x — 45) = 2 / «(
x N2 - 10 » x - 69) = 0)
x = 13 := by
have x_pos : 0 < x := hyg
have hi : x "2 — 10 * x — 29 #0 := =
have he : x "2 - 10 * x — 45 #0 := hg
have hg : x "2 — 10 * x — 69 #0 := hg
field_simp [h1, ho, hs] at hg
linarith
Feedback:

1. **Missing Quadratic Solution**: After determining y = 39, the proof must solve the quadratic equa-
tion x2 - 10x - 39 = 0. Add code to derive x = 13 from this equation.

2. **Use of linarith**: linarith is insufficient here because it only solves linear equations. Instead, use
algebraic manipulation (e.g., ’simp’, 'rw’, or ’ring’) to solve the quadratic equation.

3. **Correct Algebraic Steps**: Explicitly show the quadratic solution steps, such as completing the
square or using the quadratic formula, to justify x = 13.

4. **Example Fix**: Replace "linarith’ with "have hs : 22 — 10 %z — 39 = 0 := by rw [h,]’, then solve
for x using ’simp’ or 'ring’.

Comments:
This feedback is essential because it precisely diagnoses the critical error—the misuse of linarith
for solving quadratic equations—while correctly identifying the core mathematical structure (x2 -
10x - 39 = 0) derived from the hypotheses. It mandates explicit solution of the quadratic equation
and provides implementable, pedagogically sound steps to complete the proof. By replacing
inadequate tactics with algebraic reasoning and leveraging the positivity constraint to eliminate
extraneous roots, the proposed fix delivers a complete and verifiable solution.

Figure 29: A case of feedback.
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Ve

Statement and Proof:

theorem mathd_algebra_480 (f : R - R) (ho : V x < 0, £ x = -x "2 -
1)
(h1 : Vx, 0<xAx <4 - f x=2) (hg : V x >4, f x = Real.sqrt x)
f Real.pi = 2 := by
have h : 0 < Real.pi := Real.pi_pos
simp_all [hi]

Feedback:

1. **Add proof for m < 4**: Use a theorem like ‘Real.pi_It_four® (if available) to establish ‘Real.pi <
4°. If not, construct the proof using real number properties.

2. **Correctly apply h1**: Replace *simp_all [h1]” with explicit application of h; using ’h1 _ (And.intro
(Real.pi_nonneg) (Real.pi_lt_four))’ (adjusting theorem names as needed).

3. **Refactor the proof**: Structure the proof as: - Prove 0 < Real.pi’ from 0 < Real.pi’. - Prove
’Real.pi <4’. - Use "h;’ with these conditions to conclude ’f Real.pi = 2°.

Comments: This feedback is highly beneficial as it precisely identifies the critical gap—the
missing proof that m < 4 required to apply the function’s conditional definition—and resolves
it by directing the user to the essential Mathlib theorem Real.pi_lt_four. It corrects the in-
effective simp_all tactic by prescribing explicit hypothesis application (h; _ (Real.pi_nonneg,
Real.pi_lt_four)), transforming an incomplete automation attempt into a robust, verifiable proof
that adheres strictly to the function’s domain conditions while enhancing pedagogical clarity.

Figure 30: A case of feedback.
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Statement and Proof:

Given positive integers n and k, there is a finite set A¢, ) = {ai,az,...,a,} where
@ = (@315 04,25 oy Qi (i—1)k41)s i1, @52, Qi (i—1kt1 € 10,1} and a;1 + a2 + ... +
a; (i—1)k+1 = 1 fori =1,2,...,n. For an n-term sequence Q : (1,z1), (2, 22), ..., (n, 2y,), if
x1=1and z;y; —x; € {0,1,...,k} fori = 1,2,...,n — 1, then it is called a "G-sequence".
At this time, denote G(Q) = a1,4; + @22, + ... + Gn e, . Prove that for any set A, ), there
exists a "G-sequence" © such that (k 4 1)) > kn.

Proof:

To prove that for any set A(,, 1), there exists a G-sequence 2 such that (k + DEE) > kn, we
can use the probabilistic method and properties of G-sequences.

Key Observations: 1. **G-sequences**: A G-sequence ) starts at x; = 1 and each subse-
quent x; 1 satisfies 0 < ;11 — 2; < k. There are (k + 1)"~! such sequences since each step
has k + 1 choices.

2. **Function G(Q)**: G() counts the number of positions ¢ where x; is the position of the
1 in ;. Let ; denote the position of the 1 in ay; then G(Q) = Y"1 | 14,43

3. **Probabilistic Method**: Consider a random G-sequence () where each step is chosen
uniformly. Define X = G(£2). We need to show there exists a sequence with (k + 1)% > kn.
Analysis: - The total number of G-sequences is (k +1)"~!. - For each sequence, (k 4 1)%(%)
is the product of (k + 1) for each ¢ where x; = t;, and 1 otherwise.

Sum of (k + 1)) The sum of (k + 1)%(? over all G-sequences is at least (k 4 1)™. This
is because each sequence contributes at least k + 1 (since 1 = t; = 1 always, so G(€2) > 1),
and there are (k + 1)"~! sequences.

Pigeonhole Principle: If all sequences had (k + I)G(Q) < kn, then the total sum would be at
most kn x (k + 1)"~1. However, we know the total sum is at least (k + 1)", so:

(k+1)" > kn x (k+1)"*

Simplifying, this implies k¥ + 1 > kn, which is true for n = 1. For n > 2, the exponential
growth of (k+1)" compared to the linear growth of kn ensures that there must exist a sequence
where (k +1)¢() > kn.

Feedback:

The proof attempt demonstrates an understanding of the probabilistic method and the pigeonhole princi-
ple but contains critical errors in the application of these concepts. Here’s a breakdown of the feedback:
1. **Conceptual Understanding**: The user correctly identifies the total number of G-sequences and
the structure of G(§2). They also attempt to use the probabilistic method and the pigeonhole principle,
which are valid strategies for such problems.

2. **Logical Gaps**: The core error lies in the incorrect inequality (k + 1)™ > kn - (k 4+ 1)" %
This inequality is not generally true, and the proof fails to address cases where it does not hold (e.g.,
n = 2,k = 1). The argument also misapplies the pigeonhole principle by assuming that the average
value being greater than kn guarantees the existence of a sequence exceeding kn.

3. **Suggestions for Improvement**: - **Re-examine the Inequality**: The proof should address the
general case by considering the relationship between k + 1 and kn for all n and k. For example, when
k + 1 < kn, alternative methods (e.g., explicit construction of a G-sequence) may be necessary. -
**Clarify the Pigeonhole Principle Application**: The argument should explicitly show that the average
value of (k 4+ 1)%(? being at least k + 1 ensures the existence of a sequence with (k 4+ 1)) > kn,
which requires a more rigorous analysis of the total sum and individual contributions. - **Consider Edge
Cases**: The proof should test edge cases like n = 1 or £ = 1 to ensure the result holds universally.

Comments: The feedback is highly beneficial as it specifically identifies critical errors in the
proof, such as the incorrect application of the inequality (k+1)" > kn-(k-+1)""! and its failure
in cases like n = 2, k = 1, while constructively suggesting improvements like re-examining the
inequality for all n and k, clarifying the pigeonhole principle usage, and testing edge cases; this
precise, actionable guidance helps the author address logical gaps and enhance the proof’s rigor,
making it both educational and effective for refinement.

Figure 31: A case of feedback.
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