MOoESD: Unveil Speculative Decoding’s Potential for
Accelerating Sparse MoE

Zongle Huang'> Lei Zhu?> Zongyuan Zhan? Ting Hu? Weikai Mao? Xianzhi Yu?
Yongpan Liu'3" Tianyu Zhang?'
!Tsinghua University ~2Huawei Noah’s Ark Lab 3BNRist
{huangz123}@mails.tsinghua.edu.cn {ypliu}@tsinghua.edu.cn
{zhulei168,zhanzongyuan,huting35,maoweikai,yuxianzhi,zhangtianyu59}@huawei.com

Abstract

Large Language Models (LLMs) have achieved remarkable success across many
applications, with Mixture of Experts (MoE) models demonstrating great potential.
Compared to traditional dense models, MoEs achieve better performance with less
computation. Speculative decoding (SD) is a widely used technique to accelerate
LLM inference without accuracy loss, but it has been considered efficient only for
dense models. In this work, we first demonstrate that, under medium batch sizes,
MOoE surprisingly benefits more from SD than dense models. Furthermore, as MoE
becomes sparser — the prevailing trend in MoE designs — the batch size range where
SD acceleration is expected to be effective becomes broader. To quantitatively
understand tradeoffs involved in SD, we develop a reliable modeling based on
theoretical analyses. While current SD research primarily focuses on improving
acceptance rates of algorithms, changes in workload and model architecture can
still lead to degraded SD acceleration even with high acceptance rates. To address
this limitation, we introduce a new metric target efficiency that characterizes these
effects, thus helping researchers identify system bottlenecks and understand SD
acceleration more comprehensively. For scenarios like private serving, this work
unveils a new perspective to speed up MoE inference, where existing solutions
struggle. Experiments on different GPUs show up to 2.29x speedup for Qwen2-
57B-A14B at medium batch sizes and validate our theoretical predictions.

1 Introduction

Recent years have witnessed remarkable success in Large Language Models (LLMs), with Mixture
of Experts (MoE) architectures showing tremendous potential. Unlike dense models use a single
feed-forward network (FFN) to process all inputs, MoE models replace the FFN with multiple
specialized "expert" networks plus a router that selectively activates only a few experts for each input
token. Such sparsity in structure enables MoEs with more parameters to achieve higher computational
efficiency, and multiple state-of-the-art LLMs, such as DeepseekV3 [[1]] and Qwen2.5-Max [2]], are
all MoEs. MoE model architectures are evolving toward larger scales with increased sparsity [3} 4, [1]]
and more balanced workload distribution among experts [3, 6].

Speculative decoding (SD) is a lossless technique to accelerate LLM inference, but conventional
wisdom suggests that its efficacy diminishes when applied to MoEs. In SD, a smaller draft model is
introduced to rapidly generate multiple candidate tokens, while the larger target model verifies these
predictions in parallel, preserving only correctly speculated tokens. For dense models’ inference, the
time taken to generate a single token and verify multiple ones is roughly the same, as both tasks require
the full set of parameters to be loaded once. Therefore, SD gains acceleration through fewer forward

T Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

rounds of the target model and shorter decoding time of the draft model. However, this acceleration
has been demonstrated to diminish in MoEs [7, 18], as the multiple draft tokens in verification activate
more experts than a single token, leading to larger memory access and significantly longer verification
time compared to a standard decoding step.

In this work, we challenge the conventional belief and demonstrate that, under a moderate batch
size, SD can be more effective for MoEs than for dense models. Our key insight is that when the
batch size is moderate such that all experts are already activated in a single decoding step, verifying
multiple draft tokens will not incur additional expert parameter loading costs. Furthermore, as the
MoE becomes sparser, each expert processes fewer tokens per parameter loading, leading to lower
utilization of arithmetic units and thereby creating greater acceleration opportunities for SD.

The insight above is supported by comprehensive theoretical analyses, through which we identify a
new metric target efficiency to quantify how systemic factors (such as workload and target model
architecture) affect SD speedup. In contrast to existing SD works that use acceptance rate [9L[10,[7,[11],
an algorithmic metric to evaluate how accurately the draft model speculates the target model, our
proposed target efficiency isolates extrinsic factors like algorithm selection and focuses on intrinsic
system bottlenecks caused by the target model’s computational and memory access requirements.
As demonstrated in the following sections, even with similar acceptance rates, systemic factors can
greatly impact SD effectiveness, making our metric target efficiency necessary for a comprehensive
understanding of SD acceleration.

As a further step, we build a quantitative modeling of SD speedup for MoE based on these theoretical
analyses. The consistent matching between our modeling and experiment results confirms the
reliability of our analyses. Additionally, the modeling itself provides an approach for analyzing
the execution time of different components, making the end-to-end SD acceleration results more
transparent and explainable.

Our work offers a new perspective for lossless MoE acceleration, particularly well-suited for private
serving scenarios [[12, [13} [14]]. Private serving has gained popularity among enterprises seeking
to safeguard data and model security, with typical applications such as in-house chatbots. These
environments typically process moderate batches containing tens of requests. Additionally, our
findings can be applied to latency-critical scenarios where large batch sizes are infeasible, or memory-
restricted environments where MoEs exceed GPU capacity.

In Summary, the main contributions of our work are:

» We refine the conventional belief that speculative decoding cannot effectively accelerate MoEs,
demonstrating that under moderate batch sizes, SD is actually more effective in a wider range
of batch sizes for sparser MoEs than dense models.

* Based on theoretical analysis, we developed a reliable modeling for SD speedup, thus making
the acceleration process transparent and explainable. Existing metrics only assess algorithmic
optimization efficiency and cannot fully explain SD speedup, so we introduce a new systemic
metric target efficiency that reveals speedup opportunities inherent in the target model.

* Our findings can be applied to accelerate scenarios like private serving. Experiments on various
GPUs with the Qwen2-57B-14A-Instruct model demonstrate that SD achieves the highest
speedup at the moderate batch size, reaching 2.29x. These experiments also validate our
theoretical prediction that SD is more favorable for sparser MoEs.

2 Related Work

MOoE acceleration. MoE has emerged as a promising LLM architecture, and many techniques
optimize its inference. Model compression methods, including pruning [[15} 16, quantization [[17, 18],
distillation [19, 20], and decomposition [21} 22]], have been applied to MoEs and achieved great
acceleration. They sacrifice model quality for speedup, as in dense models. When MoEs are too large
to fit in GPU memories and offloading becomes a necessity, several system-level approaches have
emerged to optimize inference latency through improved scheduling techniques. Expert prefetch-
ing [23} 24] predicts and pre-loads experts for upcoming layers based on previous activation patterns,
thus overlapping expert loading with current layer computation. Expert caching [25. [26] caches
most frequently activated experts in GPU memory, leveraging expert locality to reduce expensive

offloading. Compared to them, our work unveils a new perspective for MoE acceleration that is
lossless and doesn’t depend on expert imbalance.

Speculative Decoding. Speculative decoding (SD), initially proposed by [10] and [9], has emerged
as a widely adopted technique for accelerating LLM inference without sacrificing generation quality.
Basic SD employs a smaller model to rapidly generate draft tokens, which are then verified in parallel
by the target model that needs to be accelerated. Afterwards, more algorithms are developed to lift the
acceptance rate of draft tokens. [27, [11} 28 29} 7} 130} 31]] adopt tree-structured generation patterns
rather than chains to explore a broader range of potential completions. [1} 11} 7,30} 31] propose to
replace draft models with specifically trained speculative heads integrated in the target model.

Despite advances in SD algorithms, it has long been considered ineffective for large batches 32,133,
27 or MoE [, 18], since the verification time in these cases significantly increases. Until recently,
MagicDec [34] first challenged that in long-sequence regimes, SD can effectively accelerate large
batches, primarily due to the significantly increased KV cache altering the computation-to-memory
access ratio of the model. However, SD research for MoE remains unexplored. In response, our work
fills this gap, unveiling that under certain conditions, SD can effectively accelerate MoE models.

3 Theoretical Analysis

In this section, we present the theoretical analyses supporting our conclusion that SD can be more
effective for MoE than dense models at moderate batch sizes. We begin by formalizing general
SD speedup and introducing our new metric target efficiency (Sec.[3.1I). Then, we focus on MoEs,
analyzing how workload and MoE sparsity collectively affect the number of activated experts and SD
speedup (Sec. [3.2). Based on these analyses, we develop a performance model that aligns with GPU
results (Sec. [3.3). We further discuss the practical value of our theoretical findings (Sec. [3.4).

Preliminaries. LLM inference time is collaboratively determined by computation and memory
access. When an operator is processed on a GPU, memory access and computation operations are
pipelined and overlapped, causing the more time-consuming operation to become the bottleneck and
determine the overall processing time, as depicted by the roofline model [35,136]. The roofline model
ridge point (RP) of hardware and the arithmetic intensity (AI) of software are defined as Eq.[I] When
Al < RP, the system is memory-bound, and adding more computation will not significantly increase
processing time. When Al > RP, the system is compute-bound, and increases in computation will

directly reflect in processing time. In this paper, when we describe a system as "more memory-bound",
Al

we mean gp is smaller.
RP — peak computation power (unit: Flops) AL = computation operation (unit: times))
N peak memory bandwidth (unit: bytes/second) N memory access volume (unit: bytes)

3.1 Formulation of Speculative Decoding Speedup and Target Efficiency

We first formalize the processing time of speculative decoding, denoted as Tsp. To generate a
sequence of length S, SD goes through R rounds, each containing three stages: @ the draft model
proposes -y tokens as specified by the speculation strategy; @ the target model verifies these tokens;
@ rejection sampling [9] discards incorrectly predicted tokens based on logits from target and draft
models. We use Tr(b, s) and Tp (b, s) to represent the time for once forwarding of the target and
draft model, respectively, where b and s are the formal arguments for batch size and the number of
tokens to process]| Therefore, the time for processing a batch containing B requests is given by:

TSD =R x (Tpropose + T’uerify + Treject) =R x (’Y . TD (B> 1) + TT(37 7) + Treject) (2)

Then the speedup of SD to normal auto-regression decoding T4 is given by:

Since we work with typical sequence lengths and moderate batch sizes, the impact of KV-cache on
performance is limited, allowing us to omit the already generated sequence length from our analysis. For cases
where KV-cache becomes the dominant factor, see [34].

TAR S - TT(Bv 1)

Speedup = Tor = 3)
SD R (’YTD(B,l) +TT(B7’7)+Treject)
S 1
=2 4)
Tp(B,1 Tr(B, Treject
Ry 208+ oD + mss

% represents the average length of accepted tokens per SD round, which can be further expressed
as o X (7 + 1). Here, o is the ratio of actually generated tokens to the theoretical maximum if all
draft tokens were accepted. We note that ¢ differs from the acceptance rate « commonly referenced
in previous works [10} 9} [7], which represents the probability of the target model accepting a new
draft token given the prefix. o can be computed from « as shown in Eq.[5] The numerator follows
from [10], and the denominator accounts for all -y draft tokens accepted, plus a bonus token generated
during the forward verification pass.

1—at!
expected generated tokens T—a)
g = =
maximal possible accepted tokens v+1
The denominator of Eq. consists of three terms. ;;’Eg .71; is the ratio of draft-model forward time

over target-model forward time, reflecting the relative volume of draft and target models. It is also
kept small (usually less than 1/10 [27,[7,10]) to ensure the speculation is efficient. TTTZ}BLf) is even

smaller, since Tj.¢jcc; only involves sampling rather than model inference. g%g'{g , which is the ratio

of multi-token forward time over single-token forward time, has the biggest value among these three
items and significantly affects the final speedup. As indicated by Eq.[4] its increase causes speedup
reduction. Two different factors drive its increase, explaining SD’s ineffectiveness under (1) large
batches for both dense models and MoE, and (2) MoE with small batches, respectively:

(1) The compute-boundness. The model’s gggz; approaches 1 when more memory-bound

(smaller batch size B) but increases to v when more compute-bound (larger batch size B).

(2) The extra memory loads. For small Bs, Trr(B,) is notably greater than T (B, 1) as more
experts are activated and need to be loaded. Since the system is still memory-bound at small
Bs, memory load profoundly determines the processing time.

Therefore, we define target efficiency as ;}FEE}Y% , which helps understand the systemic causes of SD

acceleration degradation as listed above. Our experiments shown in Fig. 2] demonstrate that target
efficiency consistently reflects the trend of SD speedup variations. Despite the importance of this
value, previous works have rarely noticed it, primarily due to differences in research focus. Previous
SD research mainly addresses the question by lifting the acceptance rate:

Given the target model, which draft model or algorithm achieve better speedups?
In contrast, our work focuses on the following question by examining target efficiency:

Under the same level of algorithmic optimization, which types of target models or
workloads are more favorable for SD?

We believe target efficiency help researchers understand SD more comprehensively. Even when
target-draft pairs have the same acceptance rate «, changes in the target model’s architecture and
the workload can significantly affect overall speedup. By introducing target efficiency, we can
decouple algorithmic optimization from systemic optimization, thus helping to identify the systemic
acceleration bottlenecks and assess potential speedup.

3.2 Moderate Batch Size Enables Speculative Decoding Speedup for MoE

Although SD is ineffective for MoE under small batches, we demonstrate in this subsection that at
moderate batch sizes—an overlooked regime in previous studies—SD speedup increases and benefits
more from MoE with higher sparsity. Essentially, when the batch size falls within ranges where

Number of Activated Experts (N(t))

o
S

o
o

IS
)

w
S

N
o

-
=)

—+— Theoretical
Humankval
»— MT-Bench

o
=3

u
=3

IS
S

N
=3

-
=)

—+— Theoretical
HumanEval
»— MT-Bench

oA

50 100 150 200 250
Number of Tokens (t)

(a)

Number of Activated Experts (N(t))
w
S

0

50

100 150 200 250
Number of Tokens (t)

(b)

P)

Normalized tokens per expert (Tex(T;

I o o
ES o ©

o
N

g
=}

I
o

— T=1

T=2
— T=4
— T=8
— T=16
— T=32

T=64

00 02 04 06
MOoE sparsity (p)

©

08 10

Figure 1: Activation status and workload of experts. (a) and (b): Comparison between theoretical
and actual number of activated experts N (¢) on different datasets. (a) is for Deepseek-V2-Lite-Chat
(p = 6/62) and (b) is for Qwenl.5-MoE-Chat (p = 4/60). (c): Normalized number of tokens to

process per expert (T¢,,,) versus MoE sparsity (p) for given input token count 7T'.

all experts are activated but remain far from being assigned adequate workloads, FFNs become
memory-bound, presenting an opportunity to leverage computational power almost for free through
SD. To demonstrate this, we first formalize the expected number of activated experts, and then show
MoE FFNs become more memory-bound as the model becomes sparser.

We use the Bernoulli random variable X to indicate the activation for experts: X; = 1 for expert ¢
being activated, 0 otherwise. For simplicity, we assume Xs are i.i.d. Then, the expected number of
activated experts N can be expressed as Eq. @ where E denotes the total expert count and Pr(X;)
represents the probability that the i* expert is activated.

N=>E[X;]=) Pr(X;)=E-Pr(X)

Given t tokens passed through the MoE gate, then Pr(X) is expressed as Eq.[/| K denotes the
number of activated experts per token, which is an architectural hyperparameter for MoE:
E-K,,
) o
Therefore, the overall expression of N (t) is given by Eq. [8] Our derivation assumes uniformly
activated experts, which is reasonable for well-trained MoE models. Load imbalance among experts
can lead to routing collapse [3]] and decrease computational efficiency in expert-parallel deploy-
ment [6], so state-of-the-art MoE models are typically trained with methods like incorporating
auxiliary loss [37, 6] to ensure that experts have balanced loads. The experiment results also verified

our theoretical derivation of N (t), as shown in Fig.|laland
Ny =B (1- (25

(6)

Pr(X) =1 — Pr(None of the ¢ tokens activates the expert) = 1 — (

®)

We then solve how many tokens can lead to full activation. Since N (t) asymptotically approaches
E when ¢ tends to infinity, and in practice N (¢) should be a finite integer, we deem N (t) > TE as
almost full activation, where 7 is usually a large ratio such as 0.95. We further express K = pE,
where p is the sparsity of MoE, then the token threshold T}, can be solve by:

N(Tires) = B+ (1= (1=)"0) 2 7B = Tinges = Nloga_p(1=7)1 ()

Therefore, when B exceeds Ty, the number of activated experts saturates, causing the B~y tokens
in verification to incur only marginally larger memory access. Having addressed the second factor
(namely, extra memory loads) for gg((g"{)) ’s increase analyzed in Sec. we now turn to the potential
limitations caused by the first factor of compute-boundness. If such 5s make the system compute-
bound, SD would also fail to accelerate MoE effectively. Our answer to this concern is: Sparser

MokEs delay the transition from memory-bound to compute-bound when input tokens count increases.

We have obtained that given ¢ tokens, N (t) experts are activated. Since each token activates K
experts, the number of tokens each expert needs to process on average T, can be computed as:

t-K t-(pE) _ pt
N E-(l—(lfp)t) 1—(1-p)

Texp (t;p) =

(10)

Algorithm 1 The Modeling of SD Speedup and Corresponding Fitting Method

1: Measurement Input: A total of m measurements denoted as M. Each M;,7 = 1,2, ..., m contains the
attributes including batch size B, draft length ~, number of activated experts per token K, total number of
experts F, the ratio of accepted token counts to the maximal possible accepted tokens o, Speedup for the
actual speedup achieved.

2: Output: The optimal fitting parameter params*.

3: def ComputeSpeedup(params, B, v, K, E, 0): > Compute the SD Speedup
4: bias, k1, k2, ks, draft_bias, draft_k, reject_bias, reject_k, \, s = params > Unpack parameters
5: Nup=E-(1 - ((F=K)/E)?), Tor = B-K/N,» > Compute AR forward time
6: ar_time = bias +k1 - G(B; ARP, s) + k2 - Nor + k3 - G(Tur; ARP, s)

7: Na=E -(1-((E—-K)/E)?"), Tea=B-~v-K/Ny > Compute SD forward time
8: verify_time = bias +k1 - G(Bv; ARP, s) + ka2 - Neq + k3 - G(Tsqa; ARP, s)

9: draft_time = draft_bias + draft_k - G(B; ARP, s) > Compute draft model forward time
10: reject_time = reject_bias + reject_k -B > Compute rejection sampling time
11: Speedup = o - (y+1)- T e nme‘i—";’:i; e Trectme Compute the speedup as formalized in Eq.

12: return Speedup

m 2
13: params*= argmin% Z (ComputeSpeedup(params, M,;.B, M;.v, M;. K, M;.E, Mi.a)—Mi.Speedup)

arams :
p i=1

> Decide the optimal params* by fitting the model to the measured inputs using the least squares criterion.

As proven in Appendix and shown in Figure givent =T > 1, T.,,(T; p) decreases with p,
indicating that as MoE becomes sparser, each expert processes fewer tokens per parameter loading.
Consequently, the system running sparser MoEs is more memory-bound, leading to lower utilization
of arithmetic units. The verification stage can therefore leverage these spare resources without notably
increasing processing time. In contrast, dense models are extreme cases with p = 1, where the FFN
consistently approaches the maximal possible arithmetic intensity of 7, and the system transitions
rapidly to the compute-bound regime as 7" increases.

We should note that our conclusion is based on a relatively large MoE FFN portion in the whole
model, which holds true for current MoE models whose most parameters are experts. In a hypothetical
extreme case where Attention dominates and the MoE FFN is negligible, MoE’s sparsity would have
only a limited impact on overall system performance as indicated by Amdahl’s Law.

3.3 A Modeling Method for Speculative Decoding Speedup

Given the numerous factors affecting final speedup, quantitatively understanding each factor’s impact
is challenging. Therefore, we developed a modeling method that makes SD speedup results more
explainable and transparent. As demonstrated by Eq.[d] the core of modeling SD speedup lies in
characterizing the model’s forward pass time. Based on theoretical analysis in previous sections, we
identified three primary factors affecting forward execution: (1) the roofline model effect, (2) the
number of active experts, and (3) expert load. Since GPU execution is dynamic in practice, and not
all operators are optimized to their theoretical limits, we introduced several parameters for relaxation.
The values of these parameters are then automatically determined by fitting GPU measurements.
These factors and their impacts on execution time are examined as follows.

(1) The roofline model effect. It manifests as execution time increases with token counts ¢, with
a growth rate that starts slow, then accelerates, and finally stabilizes. The underlying reasons are
as follows. When ¢ is small, parameter loading time exceeds computation time, creating a memory
bottleneck. Therefore, given the parameter volume, the memory access time is stable (memory-
bound regime). As t increases, computation time exceeds parameter loading time and becomes
the bottleneck. With fixed arithmetic units in the hardware, computation time scales linearly with
computational load (compute-bound regime). To characterize this trend, we design G(t; ARP, s) as
shown in Eq. where ARP represents the transition point between regimes, and s controls the
increasing rate of execution time. Here, R P follows Eq.[1} and A is a constant less than 1 that accounts
for practical limitations in memory bandwidth utilization. G(t) exhibits a gradually increasing slope
before the transition point, then shifts to a linear function afterwards, maintaining first-order gradient

continuity at the transition.

Gt \RP st t <ARP
(EARP.5) = pnr (G2 limar) (t = ARP) = $*% (14 In(s) - (= ARP)), ¢ > ARP
an

(2) The number of activated experts. When it increases, the memory access volume increases,
thus adding to the final processing time. We use the derived Eq.[§|of IV to characterize how workload
and model architecture affects the number of activated experts.

(3) Expert load. This refers to the fact that after token distribution through the MoE gating,
each expert processes only a subset of tokens T, (¢; p) rather than the entire input token count
t. Therefore, we should use G(T.,,) rather than G(t) when applying the roofline model to MoE
experts. This corroborates our theoretical conclusion that sparser MoEs delay the transition from
memory-bound to compute-bound when input tokens count increases.

For the MoE target model, factors (1), (2), and (3) are all involved. We combine them in a first-order
style and introduce parameters bias, k1, k2, and k3 to adjust for non-ideal factors in actual GPU
execution, with the full expression shown in lines 6 and 8 of Alg.[I] These parameters have clear
practical meanings: bias represents the time required to load fixed parameters; ko - N represents the
time needed to load IV activated experts; k1 - G(t) and k3 - G(T¢,p) describe the incremental trend in
execution time as the number of tokens increases. For the draft model, only factor (1) is involved
since it is usually dense, with the modeling form shown in line 9 of Alg.[I]

With the expression of SD speedup determined, we fit the measurement inputs to automatically
determine the relaxation parameter values, with the optimization criterion being the minimization of
Mean Squared Error (MSE) between the model outputs and the ground truth, as shown in line 13 of
Alg.[T] By applying these optimized parameters in our model (i.e., the ComputeSpeedup function in
line 3), we obtain the complete modeling for SD speedup. An illustrative diagram of this process and
more fitting details are provided in Appendix [C]

Since our theoretical analyses capture the primary tradeoffs and provide a solid foundation for the
modeling, the fitting is very efficient. The fitting results with 21 measurements are displayed in
Fig.[] which show consistent trends with GPU results under various cases. These results validate the
reliability of our modeling, thereby establishing it as an effective tool for analyzing the components
of the model’s forward pass and quantitatively understanding the tradeoffs between different factors.
As shown in Sec.[d.2] we explain some unexpected results with the help of the model.

3.4 Practical Values of Theoretical Findings

While previous sections focuses on theoretical analysis, this section demonstrates how these findings
translate to practical speedups. Our theoretical analysis has already revealed that SD speedup for
MOoE is most effective at moderate batch sizes, with its trend initially increasing and then decreasing.
We discuss their practical values considering both basic deployment and extended configurations.

Basic deployment. (1) Moderate batch sizes are common in private serving, which are increasingly
adopted for data security, with representative applications like enterprise in-house chatbots. (2) When
latency requirements are strict, large batch sizes are often not feasible. LLM serving must satisfy
multiple service level objectives (SLOs) [38], including time-to-first-token (TTFT) and time-per-
output-token (TPOT). Large batches reduce per-request computational resources, causing latency
violations. In such cases, moderate batch sizes are common. (3) Our work actually reveals that SD on
MOoE relaxes the traditional latency-throughput trade-off. Specifically, MoE models exhibit a regime
where SD speedup increases (lower latency) alongside larger batch sizes (higher throughput).

From the model’s perspective, moderate batch sizes represent an "efficiency gap" in MoEs. At this
scale, all parameters must be loaded (unlike small batches with selective expert activation), yet GPU
FLOPs are not fully utilized (unlike large batches). Our findings provide a novel perspective to
address this efficiency challenge without compromising model quality.

Extended configurations. We consider typical system optimizations on MoE like offloading and
expert parallelism (EP). When MoE models exceed GPU memory capacity, FFN parameters are
offloaded to CPU memory [39]]. This degrades parameter loading bandwidth from GPU memory
bandwidth to much lower PCle bandwidth, making the system more memory-bound. Consequently,

A800, humaneval, temp=0, y = 4, Qwen2 24 H800, humaneval, temp=0, y = 4, Qwen2 AB00, humaneval, temp=0, y = 4, Mixtral

—— GPU results 0.80 . —— GPU results —— GPU results 0.9

Target Efficiency 16 Target Efficiency

Target Efficiency

o
®

S
Target Efficiency

1.4

Speedup
B

o
o

S
>
Target Efficiency

1.0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 80 100

40 60
Batch size B Batch size B Batch size B

(@ (b) ©
Figure 2: SD speedup (left y-axis) as a function of batch size and corresponding target efficiency
values (right y-axis). Across different hardware platforms and MoE models, SD speedup first
increases and then decreases, verifying our theoretical predictions. The target efficiency shows
consistent trends with final speedup, validating its effectiveness.

Table 1: The peak speedup (x) of SD across different datasets, temperatures, s and models on 2xA800

Device Dataset Temp y=2 y=3 v =4
TaAr Tsp o x TaAr Tsp o x TARr Tsp o x
humaneval 0.0 18.89 11.61 0.94 1.63 15.93 8.11 0.93 1.96 15.93 7.31 091 2.18
Qwen2 humaneval 1.0 19.13 12.93 0.83 1.48 21.20 14.09 0.73 1.50 19.13 11.14 0.67 1.72
mtbench 0.0 20.92 16.70 0.71 1.25 16.00 12.43 0.62 129 20.92 17.53 0.55 1.19
mtbench 1.0 21.15 17.33 0.68 1.22 19.09 14.83 0.57 1.29 19.09 15.93 0.48 1.20
humaneval 0.0 20.86 12.47 0.78 1.67 21.00 12.46 0.66 1.69 20.86 11.69 0.58 1.79
Mixtral humaneval 1.0 21.52 15.58 0.61 1.38 21.39 16.03 0.46 1.33 21.48 16.23 0.39 1.32
mtbench 0.0 21.61 16.10 0.61 1.34 21.61 16.43 0.46 1.32 21.36 16.89 0.39 1.26
mtbench 1.0 21.33 17.70 0.53 1.21 21.33 17.84 0.43 1.20 21.33 18.05 0.35 1.18

additional computation does not significantly increase processing time, creating favorable conditions
for SD. Notably, existing optimizations like expert prefetching [23}24] and caching [25) [26] lose
efficiency under moderate batch sizes since nearly all experts are activated.

Our findings are also compatible with EP. In EP, experts are distributed across multiple GPUs, which
affects neither N (¢) nor T.,,, making our previous analyses remain valid. Since components besides
MoE FFN are also parallelized, MoE FFN continues to constitute a significant portion of processing
time, allowing memory-boundness effects to remain observable in end-to-end performance. Notably,
under extensive EP configurations, the inefficiency of SD for MoE at a small batch size may vanish,
considering the additional memory bandwidth offered by large amounts of EP GPUs.

4 Experiments

Models and datasets. We evaluated two MoE configurations with SD: Qwen2-57B-A14B-Instruct
with Qwen2-0.5B-Instruct [40], representing same-family drafting, and Mixtral-8x7B-Instruct-
v0.1 [41]] with Eagle [[7], representing specialized speculation heads. When we need to examine
MokEs with different sparsity, we modify the num_experts_per_token in the model’s config.json
file. For comparison with dense models, we use Opt-30b and Opt-350m [42] as the target and draft
models. Models are evaluated on HumanEval [43]] and MT-bench [44]] datasets for code generation
and conversation tasks, following previous works [[7, 145, [11]. The tokenized prompt lengths range
from 38 to 391 tokens for HumanEval and 5 to 356 tokens for MT-bench.

Frameworks and hardware. We used the existing vllm [46] framework for our experiments to
verify theoretical predictions. V1llm supports batched speculative decoding, cudagraph optimization,
and reports comprehensive data such as Tp, T, Ti¢ject and o, thus being suitable for our experiments.
To prevent unstable performance at the beginning, all data were obtained by averaging the results
from the last five of the total ten runs. We conducted experiments on different hardware platforms
including 2xA800, 2xH800, 4xA800, 4xL40.

4.1 Speedup Trend of Speculative Decoding for MoE

Figure 2] plots the end-to-end SD speedup (left y-axis) for MoE across various settings, validating our
theoretical prediction about acceleration behavior. As batch size grows, speedup initially increases

Table 2: The peak speedup (x) of SD across different datasets, temperatures, s and hardware on Qwen2

Device Dataset Temp r=2 r=3 v=4
TaAr Tsp o x TaAr Tsp o x TaAr Tsp o x
humaneval 0.0 15.96 9.34 0.95 1.71 15.96 7.95 0.93 2.01 15.96 6.96 0.90 2.29
2xH800 humaneval 1.0 17.39 12.82 0.82 1.36 13.20 8.98 0.74 1.47 13.20 717 0.75 1.84
mtbench 0.0 24.42 16.74 0.71 1.46 24.42 16.84 0.62 1.45 24.42 17.05 0.54 1.43
mtbench 1.0 18.24 14.38 0.67 1.27 16.25 13.28 0.56 1.22 16.25 13.76 0.48 1.18
humaneval 0.0 11.20 6.77 0.95 1.65 11.20 5.89 0.93 1.90 11.20 5.38 0.90 2.08
4xAS00 humaneval 1.0 11.72 8.51 0.81 1.38 12.05 8.30 0.73 1.45 11.23 7.70 0.67 1.46
mtbench 0.0 11.26 8.92 0.72 1.26 11.26 9.10 0.61 1.24 11.26 9.82 0.52 1.15
mtbench 1.0 11.78 10.32 0.67 1.14 11.30 9.42 0.58 1.20 11.78 11.25 0.47 1.05
humaneval 0.0 17.84 10.00 0.95 1.79 17.84 8.33 0.93 2.14 17.84 7.94 0.90 2.25
4x140 humaneval 1.0 17.89 12.27 0.80 1.46 17.89 11.07 0.74 1.62 17.89 10.91 0.65 1.64
mtbench 0.0 20.40 15.87 0.71 1.29 20.40 16.22 0.62 1.26 20.40 16.33 0.54 1.25
mtbench 1.0 20.58 16.02 0.68 1.28 18.11 14.75 0.54 1.23 18.11 15.54 0.48 1.17

due to expert loading saturation, and then decreases due to compute-boundness. We denote the
maximal speedup across batch sizes as x and summarize the results in Table[I} For both models,
SD achieves higher acceleration with longer ~ for tasks with more predictable patterns (e.g., code
generation) or less randomness (e.g., lower temperature), aligning with conclusions from previous
research. Figure[5]in Appendix further presents SD speedup trends under more settings, including
individual runs and their mean to show the statistical significance of our findings.

We further evaluate Qwen2-57B-A14B-Instruct on multiple hardware platforms (Table[2) to verify
the generality of our conclusions. Combined with results of Qwen2 in Table[I] two observations can
be made: (1) GPUs with higher ridge points yield larger SD speedups (e.g., 2xA800 vs. 2xH800,
4xA800 vs. 4xL40), since they provide more arithmetic units for verification. (2) Scaling from
2xA800 to 4xA800 reduces absolute runtimes (74 and Tsp), but the SD speedups slightly degrade.
This is because the large model benefits from inter-GPU parallelization, whereas the small draft
model remains single-GPU, making its relative forward cost higher.

Figure 2] also highlights the effectiveness of our metric target
humaneval, temp=0, y = 4 efficiency. It is computed as % as explained in Sec.
i o |- bemsomena ez | where both Tr(B,1) and Tr(B,) are obtained from vIim
50 X,I,: A runtime logs. Target efficiency values are annotated on the
go71 ANy 3N right y-axis, showing a consistent trend with the end-to-end
EUG ~,’ o N speedup. In contrast, the acceptance rate across batch sizes
7 oS X, el merely fluctuates within a small range, unable to effectively

04 X = explain the dramatic changes in speedup.

‘x xx-—\\~ .
0.3 —e—

We further compare MoE and dense models via target efficiency
(whose validity is established above) to avoid interference from
acceptance rate. As shown in Figure |3} the target efficiency
for MOoE first increases and then decreases, while that for the
dense model decreases continuously. Consequently, although
SD for MoE is less effective with small batches, it exhibits
stronger potential across a wider range of larger batch sizes.
Regarding end-to-end performance, SD speedups become more pronounced for MoE when the batch
size exceeds 16, as supplemented in Figure[6]in Appendix

0 20 40 60 80 100
Batch size B

Figure 3: Comparison of target effi-
ciency: MoE vs dense model.

4.2 TImpact of MoE Sparsity and Validation of Modeling Method

To evaluate MoE sparsity’s impact on SD acceleration, we varied the number of activated experts
per token (K) of Qwen2-57B-A14B-Instruct. Directly changing K without training affects the
target model’s performance and speculation accuracy, so we adjust the speedup by multiplying the
raw speedup with ‘”(KS whose rationale is exhibited by Eq I Flg !shows the adjusted speedup
along51de our modeling results for comparison. The parameters used in the modeling are decided
using 21 GPU measurements, as explained in Section[3.3] The impact of measurement selection for
parameter fitting on the modeling’s reliability is supplemented in Appendix

Draft length y = 2 Draft length y = 4

K=1p=1/64y=2 K=2,p=2/64,y=2 H K=1,p=164y=4 K=2,p=2/64y=4
—— GPU results ! — GPUresults | L7517 —— GPU results 18 —— GPU results
14 &~ Modeling L4 o Modeling |5 o~ Modeling) o~ Modeling
3 E B
%12 3 815
o 012 fo ™
& & o
10 7100
y 10 . |3 075 5
0 20 40 6 8 100 0 20 40 60 8 100: 0 20 40 60 8 100 0 20 40 6 8 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8p=8/64,y=2 : K=4,p=4/64,y=4 K=8p=8/64y=4
18 : ;
— GPU results — GPuresuls |} o — GPU results 20 — GPU results
o~ Modeling 16 = Modeling o Modeling : o~ Modeling
a4 a a a
S S S1e E]
° T 14 T b=}
g g g A LS. N A
Q R bt Andententrnin ~ . et bt g 14 gt
a12 a1 @ @
1o === R = = —
________________ 1 10 :
3 . A 1.0
0 20 40 60 8 100 0 20 40 60 80 100: 0 20 40 60 8 100 0 20 40 6 8 100
Batch size (B) Batch size (B) : Batch size (B) Batch size (B)
K=16,p=16/64,y =2 K=32,p=32/64y=2 K=16,p=16/64,y=4 o K=32,p=32/64,y=4
2.00 — GPU results 20 — GPUresults |} 55 — GPUresults) — GPU results
o i - e H . 25 - i
g 175 Modeling . Modeling . Modeling . Modeling
2 S R 17, VNS A 520 T 2.0 {P-— A ¥g——Tm——]
guso b N\ %15 I J). NG R A A 4 4
& & &1s &1s
125
1.0 1.0
1.00 . T
0 20 40 60 80 100 0 20 40 60 80 100: 0 20 40 60 8 100 0 20 40 60 8 100

Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 4: Comparison between GPU results and our modeling for Qwen2-57B-A14B-Instruct with
varying sparsity p and draft length ~.

There are three key observations. First, the modeling consistently aligns with experiment results
across varying sparsity (p) and draft length (vy), validating our modeling’s reliability.

Second, while the SD speedup in most MoEs exhibits an initial increase followed by a decrease,
very sparse MoEs (K = 1, 2) show continuously decreasing speedup. This appears to conflict with
the theoretical analysis, but after examining the components of our modeling, we identified the
reason as follows. These very sparse MoEs have a disproportionately low ratio of FFN, thus making
the memory-boundness of MoE FFN hard to manifest systematically as indicated by Amdahl’s
Law. The Qwen2-57B-A14B model is designed based on K = 8, but by reducing K to 1 or 2, we
actually artificially synthesize a model where Attention dominates. In practice, however, sparser
MoEs typically incorporate more FFN parameters to maintain a balanced ratio between FFN and
Attention components, resulting in acceleration patterns more similar to K = § cases.

Finally, as MoE models become sparser, the system’s transition from memory-bound to compute-
bound is delayed. This is evidenced by two phenomena in Fig.[d With smaller p, (1) the batch size
for the maximal speedup (x) becomes larger; (2) the range of batch sizes that maintain speedup above
a certain decay threshold (annotated by the brown dashed line in Fig. 4| for x/1/2) is wider. These
validate our theoretical analysis and indicate that SD has broader applicability in sparser MoEs.

5 Conclusion and Limitation

This work challenges the conventional wisdom that speculative decoding (SD) cannot effectively
accelerate MoE models. We demonstrate that under moderate batch sizes, sparser MoEs gain greater
speedup from SD due to their memory-bound FFNs, a conclusion supported by both theoretical
and experimental analysis. To navigate the complex factors influencing speedup, we develop a
reliable, interpretable SD model and introduce target efficiency to elucidate the impact of model
architecture and workload. Our work offers a new perspective for accelerating MoEs, particularly in
memory-constrained or moderate-batch serving. While our analysis assumes the KV-cache is smaller
than parameters, the behavior when it dominates is analyzed by MagicDec [34]; these two works
combine to give a more comprehensive view of SD across batch sizes.

Acknowledgments and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 92267203).

10

References

[1] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[2] Qwen Team. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[3] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[4] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

[5] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[6] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[7] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling
requires rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

[8] Anish Saxena, Po-An Tsai, Hritvik Taneja, Aamer Jaleel, and Moinuddin Qureshi. Utility-driven
speculative decoding for mixture-of-experts, 2025.

[9] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

[10] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274—19286.
PMLR, 2023.

[11] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads,
2024. URL https://arxiv. org/abs/2401.10774, 2024.

[12] Rahul. What are private llms? running large language models privately - privategpt and beyond,
2024. https://zilliz.com/learn/what-are-private-1lms|

[13] Esther Julie. What is a private llm and why should you build one?, 2024. https://www.inoru.
com/blog/what-is-a-private-1lm-and-why-should-you-build-one/\

[14] Hanbo Huang, Yihan Li, Bowen Jiang, Lin Liu, Bo Jiang, Ruoyu Sun, Zhuotao Liu, and Shiyu
Liang. Position: On-premises llm deployment demands a middle path: Preserving privacy
without sacrificing model confidentiality, 2025.

[15] Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin,
and An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from
its router. arXiv preprint arXiv:2410.12013, 2024.

[16] Jaeseong Lee, Aurick Qiao, Daniel F Campos, Zhewei Yao, Yuxiong He, et al. Stun: Structured-
then-unstructured pruning for scalable moe pruning. arXiv preprint arXiv:2409.06211, 2024.

[17] Elias Frantar and Dan Alistarh. Qmoe: Practical sub-1-bit compression of trillion-parameter
models. arXiv preprint arXiv:2310.16795, 2023.

[18] HamidReza Imani, Abdolah Amirany, and Tarek El-Ghazawi. Mixture of experts with mixture
of precisions for tuning quality of service. arXiv preprint arXiv:2407.14417, 2024.

11

https://zilliz.com/learn/what-are-private-llms
https://www.inoru.com/blog/what-is-a-private-llm-and-why-should-you-build-one/
https://www.inoru.com/blog/what-is-a-private-llm-and-why-should-you-build-one/

[19] Felipe Cruz Salinas, Kenichi Kumatani, Robert Gmyr, Linquan Liu, and Yu Shi. Knowledge
distillation for mixture of experts models in speech recognition. Technical report, Technical
Report MSR-TR-2022-6, Microsoft Research, May 2022. https://www ..., 2022.

[20] Fangxun Shu, Yue Liao, Le Zhuo, Chenning Xu, Lei Zhang, Guanghao Zhang, Haonan Shi,
Long Chen, Tao Zhong, Wanggui He, et al. Llava-mod: Making llava tiny via moe knowledge
distillation. arXiv preprint arXiv:2408.15881, 2024.

[21] Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqji Jia, Miao Yin,
Yu Cheng, and Bo Yuan. Moe-i?: Compressing mixture of experts models through inter-expert
pruning and intra-expert low-rank decomposition. arXiv preprint arXiv:2411.01016, 2024.

[22] Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023.

[23] Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware
expert offloading for efficient moe serving. arXiv e-prints, pages arXiv—2401, 2024.

[24] Shuzhang Zhong, Ling Liang, Yuan Wang, Runsheng Wang, Ru Huang, and Meng Li. Adapmoe:
Adaptive sensitivity-based expert gating and management for efficient moe inference. In
Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design,
pages 1-9, 2024.

[25] Xin He, Shunkang Zhang, Yuxin Wang, Haiyan Yin, Zihao Zeng, Shaohuai Shi, Zhenheng Tang,
Xiaowen Chu, Ivor Tsang, and Ong Yew Soon. Expertflow: Optimized expert activation and
token allocation for efficient mixture-of-experts inference. arXiv preprint arXiv:2410.17954,
2024.

[26] Peng Tang, Jiacheng Liu, Xiaofeng Hou, Yifei Pu, Jing Wang, Pheng-Ann Heng, Chao Li, and
Minyi Guo. Hobbit: A mixed precision expert offloading system for fast moe inference. arXiv
preprint arXiv:2411.01433, 2024.

[27] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 932-949, 2024.

[28] Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based
speculative decoding. arXiv preprint arXiv:2311.08252, 2023.

[29] Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive llm inference on consumer
devices. Advances in Neural Information Processing Systems, 37:16342-16368, 2024.

[30] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of
language models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024.

[31] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference
acceleration of large language models via training-time test. arXiv preprint arXiv:2503.01840,
2025.

[32] Xiaoxuan Liu, Jongseok Park, Langxiang Hu, Woosuk Kwon, Zhuohan Li, Chen Zhang, Kuntai
Du, Xiangxi Mo, Kaichao You, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Turbospec: Closed-loop speculation control system for optimizing 1lm serving goodput, 2025.

[33] Qidong Su, Christina Giannoula, and Gennady Pekhimenko. The synergy of speculative
decoding and batching in serving large language models, 2023.

[34] Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi,
Ian En-Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. Magicdec: Breaking the latency-
throughput tradeoff for long context generation with speculative decoding. arXiv preprint
arXiv:2408.11049, 2024.

12

[35] Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,
Zhikai Li, Qingyi Gu, Yong Jae Lee, Yan Yan, Beidi Chen, Guangyu Sun, and Kurt Keutzer.
Llm inference unveiled: Survey and roofline model insights, 2024.

[36] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G Spampinato, and Markus
Piischel. Applying the roofline model. In 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 76-85. IEEE, 2014.

[37] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2022.

[38] Zhibin Wang, Shipeng Li, Yuhang Zhou, Xue Li, Rong Gu, Nguyen Cam-Tu, Chen Tian, and
Sheng Zhong. Revisiting slo and goodput metrics in Ilm serving, 2024.

[39] kvcache ai. Ktransfromers: A flexible framework for experiencing cutting-edge 1lm inference
optimizations, 2025. https://github.com/kvcache-ai/ktransformers/tree/main.

[40] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, et al. Qwen?2 technical
report, 2024.

[41] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[42] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[43] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, et al.
Evaluating large language models trained on code, 2021.

[44] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[45] Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized represen-
tations for speculative sampling, 2025.

[46] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[47] NVIDIA Docs Hub. Matrix multiplication background user’s guide. https://docs.nvidial
com/deeplearning/performance/dl-performance-matrix-multiplication/index,
html.

[48] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024.

[49] Kan Zhu, Yufei Gao, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie, Tian Tang,
Qinyu Xu, Zihao Ye, Keisuke Kamahori, Chien-Yu Lin, Ziren Wang, Stephanie Wang, Arvind
Krishnamurthy, and Baris Kasikci. Nanoflow: Towards optimal large language model serving
throughput, 2025.

13

https://github.com/kvcache-ai/ktransformers/tree/main
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Abstract and Introduction. The three items in the contribution
list are explained in detail in Section [3|and [

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 3l The last several sentences discuss our limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: Please refer to Section [3|and Appendix in the supplementary materials. We
provide the meaning of all variables and assumptions with the proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sectiond]for experiment settings. Besides, we provide complete
codes as the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the complete codes and data as supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section] and Appendix in supplementary materials. The
experiment details can also be found in supplementary codes.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not include error bars. However, all results are averaged
over 5 runs to avoid randomness as mentioned in Section 4] Besides, the Appendix in
supplementary materials further discusses the impact of data selection on model fitting.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section[d] Besides, the readme file in supplementary codes also
describes the computer resources needed for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research focuses on speculative for MoE, conforming with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Sectiond] We cite the vllm framework as its GitHub main page
suggests.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

18

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

(a) humaneval, temp=0, Qwen2-57B-A14B-Instruct (b) humaneval, temp=1, Qwen2-57B-A14B-Instruct

2.25 1.8
Iﬂ\ ® Average) ® Average
2.00 A | S e Runl 16l & 1 e Runl
I‘ ‘Q,’L.\ /¢ v e Run2 0‘ ,’ \ e Run2
21751 ¢ “ % Run3 | S1af 4 | JL N Run 3
3) \ Run4 |3 v] Run 4
2 1.50 b,'\‘ e Runs 012 ‘51’ ‘e e Run5
) \ L a e
1.25 . KA X
H ~~_ o 1.0 D s
1.00 T Tteeem
e 0.8 =4
0 20 40 60 80 100 0 20 40 60 80 100
Batch size B Batch size B
(c) mtbench, temp=0, Qwen2-57B-A14B-Instruct (d) mtbench, temp=1, Qwen2-57B-A14B-Instruct
13 N ® Average Q\ ® Average
1
1.2 TR) e Runl 1.2 -\ e Runl
H ﬁ»’:) V\ ° e Run2 " @'A\.’A\. e Run2
211 ! L BN 3 RN3 | 2 7 ® Run 3
g % ‘® e, 07 Run 4 8 1.0 ? Y Run 4
Q 1.0 ‘ Q&y-.g&ﬁ \\ e Run5 g ",' ° ‘:3\ e Runs
0.0 hd AN &) §~
) »] 0.8 (S s N
N // S~<
0.8 S $ee P
0 20 40 60 80 100 0 20 40 60 80 100
Batch size B Batch size B
(e) humaneval, temp=0, Mixtral-8x7B-Instruct-v0.1 (f) humaneval, temp=1, Mixtral-8x7B-Instruct-v0.1
18 “‘ ® Average 1.4 ¢\. ® Average
16 A e Runl [e Runl
! \ e Run2 12 ! ‘% e Run2
214 [N Rn3 | o [LAY Run 3
3 Ry Rna | Baol M wATER Run 4
012 « @ e A&
4 ,'“'l Taothy e Runs | o . AN ag VI e Runs
10 " 9-6-69-__\ 0.8 . O
0.8 Y ~\$\\~ 3 06 [\\\\\ -
0 20 40 60 80 100 0 20 40 60 80 100
Batch size B Batch size B
(g) 14 mtbench, temp=0, Mixtral-8x7B-Instruct-v0.1 (h) mtbench, temp=1, Mixtral-8x7B-Instruct-v0.1
- 1.2
[] ® Average ". 24 ® Average
I'Q P e Runl 1.1 H \@ e Runl
1.2 i 2 ‘l\ e Run2 ! ~® e Run2
s ! S-o_ Run 3 21.0 1 wy Run 3
3 1 L8 Run 4 3 ,.% \K - Run 4
1.0 ﬁ,’ ﬁ~9-§ e Run5 2 0.9 ! >y e Run5
o L o 1 1 -~
! \ A L2 LN
n ! LN) ! \ ! N
é VS e Toe R
081 v » v B -
0.7 v o
° ¥
0 20 40 60 80 100 0 20 40 60 80 100
Batch size B Batch size B

Figure 5: SD speedup trends across more settings with individual runs and averages shown.

A Supplementary Experimental Results

This section presents additional experimental results referenced in Section 4] which are included here
due to space limitations.

A.1 Trends of SD speedup under more configurations

Figure 5] presents additional trends of SD speedup across different datasets, temperatures, and model
types, serving as a supplement to Figure 2] The results demonstrate that SD speedup exhibits a
consistent first-increase-then-decrease pattern, which aligns well with our theoretical analysis.

To confirm the statistical significance of our findings, we also present the five individual runs that
constitute the averages in Figure[5] The variance across different runs is minimal, which is expected
since the random seed is fixed across all runs to ensure identical workloads.

While the overall trend follows the first-increase-then-decrease pattern, local fluctuations are ob-
servable in the curves. For instance, Figure [5]c) exhibits a sawtooth-like decreasing trend. This
phenomenon can be attributed to GPU quantization effects, as documented in NVIDIA’s documenta-
tion [47]. When dimensions are not evenly divisible by the GPU’s native tile sizes, computational
performance degrades. AR decoding is more sensitive to this effect than SD, making the time ratio of

21

Temperature: 0.0, Draft length: 2 Temperature: 0.0, Draft length: 3 Temperature: 0.0, Draft length: 4

2.2 —— Opt-30b 2.75 —— Opt-30b —— Opt-30b

—— Qwen2-57B-A14B-Instruct —— Qwen2-57B-A14B-Instruct 3.0 —— Qwen2-57B-A14B-Instruct
250
225

S 2.00

2

$175

g

Y 150
1.25
1.00

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size B Batch size B Batch size B
Temperature: 1.0, Draft length: 2 Temperature: 1.0, Draft length: 3 Temperature: 1.0, Draft length: 4

—— Opt-30b —— Opt-30b 1.8 — Opt-30b
—— Qwen2-57B-A14B-Instruct —— Qwen2-57B-A14B-Instruct —— Qwen2-57B-A14B-Instruct

0 20 40 60 80 100 0 20 40 60 80 100 [20 40 60 80 100
Batch size B Batch size B Batch size B

Figure 6: End-to-end speedup comparison of MoE and dense models under various settings.

AR to SD (namely, SD speedup) fluctuate. Despite these local variations, the overall speedup trend
follows our theoretical predictions, confirming the validity of our conclusions.

A.2 End-to-end speedup comparison between MoE and dense models

To isolate the effects of acceptance rate variations and enable a clearer focus on system bottlenecks,
we have compared MoE and dense models using target efficiency in Section[d.1] In this section, we
further compare their end-to-end speedup across various settings in Figure[6|as a supplement.

Two key observations emerge from the experiment results. First, while SD speedups for MoE models
initially increase before declining, SD speedups for dense models continue to decrease. Consequently,
SD achieves more substantial end-to-end speedups for MoE models at moderate batch sizes, which
aligns with the trend in Figure [3]in Section[4.1] Second, the extent to which SD favors MoE over
dense models varies across different configurations. For instance, at temperature = 1 (second row), SD
demonstrates greater relative benefits for MoE compared to temperature = O (first row). This variation
stems from diverse acceptance rates under different settings, which can obscure the observation of
systemic bottlenecks. In summary, target efficiency serves as a reliable comparison metric while
controlling for the confounding effects of algorithmic optimizations.

B Proof of T,,,(T; p)’s Trend with Varying p

In Section 3.2, Fig. 1(c) demonstrates that: Given input token count ¢ = 7" > 1, the number of tokens
each expert processes on average Tex, (1 p) = ﬁ decreases as p decreases. We prove this by

showing %&TW) > 0whenT > 1.

ATep(T;p)) _ AGEGm) _ T(—pT(1—p)"' — (1= p)T +1)

— - 12)
dp dp (1-(1—=p)T)?
Since p represents MoE sparsity € (0, 1), the original proposition is equivalent to proving:
F(p;T)=(1—-p)" ' (pT +1-p) <1 (13)

Note that F(p; T') — 1 as p — 0. Therefore, if we can prove that F(p; T') decreases as p increases

from O to 1, then the original proposition is proven. We demonstrate this by computing %‘;T”:

. _ \T-1 —
UET) A=) gy .

22

Theory

Profiling

Theoretical analysis
(Section 3.1/3.2)

\ -
SD speedup expression with relaxation parameters | Runtime

Real Measurements
i (Workloads & SD speedup)]

Fitting under least square criteri Computing the SD speedup

(Section 3.3 / Appendix C.2 / C. (Section 3.3 / Appendix C.2 / C.3)

Figure 7: The overall diagram of the modeling method.

When T > 1, %Z;T)) < 0. This confirms that F(p; T') decreases as p increases, which proves our

original proposition: when T’ > 1, T¢,,(T'; p) decreases as p decreases.

C More details about the Modeling Method

The main design considerations and expressions of our modeling method have been presented in
Section [3.3] In this section, we provide additional content on the following topics to give a more
comprehensive view of the modeling method:

* Description and an illustrative diagram of the modeling process. (Appendix [C.I))
» Fitting Details of the modeling shown in Figure[d]in Section[4.1] (Appendix [C.2))
* How the modeling is affected by alternative measurement selection. (Appendix [C.3)

The value of our modeling is twofold. On one hand, it achieves alignment with real measurements
with only a small number of simple parameters, thus validating the correctness of our theoretical
analyses. On the other hand, it provides the decomposition of various factors in the end-to-end results,
making the entire SD acceleration process explainable and transparent.

C.1 Description and Overview of the Modeling Process

Figure [/] presents the overall diagram of our modeling method. Building upon the theoretical
analyses in Sections [3.1]and[3.2] we derive an expression for SD speedup as a function of workloads.
This expression contains several relaxation parameters to be determined for complete modeling.
We determine these parameters through empirical profiling. We first collect a small set of real
measurements comprising various workloads and their corresponding SD speedups. We then perform
parameter fitting using these measurements under the least squares criterion to obtain optimal
parameter values. Since our theoretically-derived SD speedup expression already captures the
fundamental performance tradeoffs, the fitting process is computationally lightweight and robust,
as will be demonstrated in Appendix [C.2]and [C.3] Once the optimal parameters are obtained, the
resulting expression can predict SD speedups for arbitrary workloads.

We now explain why profiling is necessary and why we cannot derive the complete SD speedup
expression purely through theoretical analysis, examining both software and hardware considerations.

Software considerations: Actual execution times can deviate significantly from theoretical pre-
dictions for complex operators with diverse implementations. On GPUs, GEMM operations are
indeed predictable due to their regular structure and highly optimized implementations. However,
prediction becomes challenging for operators such as Attention, which involve customized kernel
optimizations (e.g., FlashAttention1/2, eager attention, SDPA attention) and operator fusion strategies
(incorporating various nonlinear layers or positional encodings such as RoPE and its variants). To
illustrate this complexity, we examine profiling results from Qwen2-57B-A14B (hidden size 3584)
and Mixtral-8x7B (hidden size 4096). For FFN, Qwen takes a shorter time than Mixtral (143us vs
226us), aligning with their relative hidden sizes. However, for Attention, Qwen takes a longer time
than Mixtral (271us vs 115us), contradicting the theoretical expectation based on hidden size scaling.

Hardware considerations: GPU microarchitectures vary across different series, which can greatly
impact execution times. For instance, attention efficiency depends heavily on hardware-aware

23

programming optimizations, while different GPUs vary in cache configurations and thread-memory
interaction patterns across memory hierarchy levels. By taking advantage of new capabilities in
modern hardware, FlashAttention-3 successfully increases GPU utilization from 35% to 75% on
H100 GPUs [48]]. Moreover, many critical hardware details remain undisclosed by GPU vendors,
making theoretical predictions impractical.

Therefore, modeling speedup trends with pure analytical methods requires case-by-case analysis for
different operator implementations and GPU microarchitectures. In contrast, the hyperparameter
approach offers a more generalizable paradigm and is easy to use: all parameters possess clear
physical interpretations, only minimal profiling data are required, and the computational overhead is
low. Our method achieves a balance between effectiveness and practicality: on one hand, it captures
the primary performance drivers (i.e. the number of activated experts and roofline trends); on the
other hand, it avoids getting entangled in low-level implementation complexities. This approach is
also used by other system optimization frameworks such as NanoFlow [49]], which similarly adopt a
two-stage strategy of profiling followed by runtime execution.

C.2 Fitting Details of the Modeling shown in Figure {]

We first explain how we select the 21 measurements. Due to GPU resource and time constraints, we
obtained a total of 228 GPU measurements across varying experimental settings, including 6 different
numbers of activated experts per token (K), 2 draft lengths (), and 19 batch sizes (B). These
measurements are sorted first by K, then by within each K group, and finally by B within each
(K,) combination, forming the total dataframe (df). We then uniformly sampled measurements
from this sorted dataset with a fixed stride, namely M = df [begin:end:11]. This sampling strategy
enables our selected measurements to contain different settings, making the modeling more robust.

The SD speedup function (namely, ComputeSpeedup defined in line 3 of Algorithm 1) is nonlinear.
To optimize its MSE, we employed the scipy.optimize.least_squares function with the Trust
Region Reflective (TRR) algorithm. TRR is an optimization method for bound-constrained nonlinear
least squares problems that combines trust region methods with reflection techniques. It constructs
quadratic models within trust regions and uses reflection strategies near boundaries to maintain
feasibility while ensuring convergence. The fitting process for these 21 data points is efficient,
completing in approximately 0.114 seconds. Our modeling incorporates 10 parameters requiring
relaxation, with their search boundaries specified as follows:

* bias: It represents the time required to load the dense parameters of the target model. We de-
note the model’s non-FFN parameter count as Ve, s.. Consequently, the theoretical minimum

loading time can be calculated as bias,,;, = ea oy bandwidihi- For the upper bound of the

relaxation range, we set bias,,qx = 5 X biaSmin.

e klI: It adjusts the intensity of the roofline effect of dense components. It should be larger
than O to ensure the execution time increases as the token count increases. We don’t set a
definite upper limit for k1, as its value is affected by other parameters. Given the hardware
with fixed arithmetic units, the execution time grows linearly with the token count in the
compute-bound regime. As shown in line 6 of Algorithm 1, k1 appears as a coefficient in the
term k1 - G(t; A, s), whose gradient in the compute-bound regime is k1 - in(s) - s*7F. As s
approaches 1, k1 needs to continuously increase to counterbalance in(s) that approaches 0.

e k2: It represents the time required to load one expert. Given a target model, we denote the

parameter count per expert as V,,,. Consequently, the theoretical minimum loading time can
be calculated as kZpmin = peak memory bandwidth *

set k2,00 = 9 X komin-

For the upper bound of the relaxation range, we

* k3: It adjusts the intensity of the roofline effect of sparse components. Similar to kI, we set
k3min = 0 and k340 = inf.
* draft_bias: It represents the time required to load the dense draft model. We denote the draft

model’s parameter count as V., r¢. Consequently, the theoretical minimum loading time can

: _ Varage Xbitwidth
be calculated as draft_bias,,,;, = Ty e

range, we set draft_bias,,,,, = 5 X draft_bias,,,;,, .

For the upper bound of the relaxation

* draft_k: It adjusts the intensity of the roofline effect of the dense draft model. Similar to k7,
we set draft_k,,,;, = 0 and draft_k,, .. = inf.

min

24

* reject_bias: It represents the fixed overhead when performing rejection sampling. V1lm reports
its elapsed time during SD, and we denote the maximum across measurements as 1;..;. We
then set reject_bias,, ;,, = 0 and reject_bias,, ., = Trc;.

* reject_k: It represents the incremental processing time in rejection sampling as the input token
count increases. For simplicity, we set reject_k,,,;,, = 0 and reject_k,, ... = T,; just like
reject_bias.

e \: It represents the ratio of the empirical ridge point to the theoretical ridge point. Since
memory bandwidth is typically less utilized than arithmetic units, we set A,,;, = 0.2 and
Amaz = 1.

* s: It adjusts the growing rate of execution time as input token count increases. Since s serves
as the base of G(t), it must exceed 1 to ensure monotonic growth. However, s should not
be too large, as it would result in an excessively steep growth rate. In experiments, we set
Smin = 1 and S,,q0 = 2.

C.3 Exploration of Alternative Measurement Selection

In this section, we demonstrate the impact of varying the number (m) of measurements used for
fitting on the modeling results. Given that our model incorporates 10 parameters, a minimum of 10
profiling data points (mm > 10) are required to determine all parameters. We present the modeling
fitting with m ranging from 10 to 228. The data selection method follows the stride-based approach
described in the previous section, specifically M = df [begin:end: stride]. Measurement count m
and stride satisfy the following relation: m = [228/stride].

We present the MSE values of different s and their corresponding fitting figures in Table[3] We also
list the distinct batch sizes involved in the selected measurements, which helps explain why some
configurations show inferior model fit. Due to integer division constraints, ms are not continuous
at larger magnitudes. Generally, the modeling fits well with the real measurements, except for
m = 10,12, 13. The reasons are as follows. When m = 10, the number of measurements equals
the parameter count, resulting in insufficient data for robust fitting. When m = 12 and m = 13, the
distribution of the measurement data is biased. With stride-based selection, measurements at m = 12
and m = 13 demonstrate notable gaps in batch size coverage (specifically, m = 12 does not include
batch sizes greater than 40, while m = 13 does not include batch sizes within 1~24). Their MSE
values are larger than that of m = 11, despite the latter containing fewer data points for fitting. Based
on this analysis, we recommend prioritizing uniform data distribution when selecting measurements,
as this approach enables the development of more reliable models even with smaller datasets.

25

Table 3

m | stride ‘ MSE ‘ Figure ‘ Batch Size Involved

10 25 2.216 [1, 12, 16, 20, 36, 40, 44, 60, 80, 100]

11 22 1.764 g [1, 4,8, 16, 20, 28, 32, 40, 44, 56, 100]

12 20 4.288 m [1,2,4,8, 12, 16, 20, 24, 28, 32, 36, 40]

13 18 2.681 [1,24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

14 17 2.041 [1,2, 8,16, 24, 32, 40, 44, 48, 52, 56, 60, 80, 100]

15 16 1.668 [1,2,4,12, 16, 24, 28, 36, 40, 48, 52, 56, 60, 80, 100]

16 15 1.508 14 [1,2,4,8, 16,20, 24, 32, 36, 40, 48, 52, 56, 60, 80, 100]

17 14 1.563 [1,2,4,8, 12,20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 80, 100]

18 13 1.525 16 [1,2,4,8,12, 16, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

19 12 2.080 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

21 11 1.679 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

23 10 1.800 [1,2,4,8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

26 9 1.716 20 [1,2,4,8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

29 8 1.524 [1,2,4,8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

33 7 1.526 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

38 6 1.715 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

46 5 1.644 24 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

57 4 1.509 [1,2,4,8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

76 3 1.553 26 [1,2,4,8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

114 2 1.485 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

228 1 1.523 [1,2,4,8,12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100]

K=1p=1/64y=2 K=2,p=2/64,y=2 K=1p=1/64y=4 K=2,p=2/64,y=4

) —oee] ey Bare Bk] ISy
° * Ba‘t?:h SiZZO(B) o e ’ * Ba‘tgh sizgc’(EJ & e ° * BaAt?:h S\ZZO(B) 0 e ° * BaAtih sizzo(E) % e

16 K=4,p=4/64,y=2 s K=8,0=8/64y=2 K=4,p=4/64,y=4 v K:&p:&ﬁmy;zmwm
T s T st T nse T sz

K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 50 K=32,p=32/64,y=4
=] =] = =

40 60
Batch size (B)

40 60 40 60
Batch size (B) Batch size (B)

40 60
Batch size (B)

Figure 8: Comparison between GPU results and modeling with 10 measurements.

26

K=1p=1/64,y=2

K=2,p=2/64,y=2

K=1,p=1/64,y=4

K=2,p=2/64,y=4

15
— GPU results — GPU results 18 — GPU results 18 — GPU results
14 &~ Modeling 14 &~ Modeling o~ Modeling &~ Modeling
o
3
212
&
s
&
1.0
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64,y=2 K=4,p=4/64,y=4 K=8p=8/64,y=4
— GPU results —— GPU results — GPU results 22 — GPU results
15 &~ Modeling 16 &~ Modeling 18 -~ Modeling &~ Modeling
. a o 16
3 |14 =]
1.
g1 & $14
4 4 2
012 &2 &
12
11 10
’ 10
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=232/64,y=2 K=16,p=16/64,y=4 30 K=32,p=32/64,y=4
2.0 — GPU results 2.0 —— GPU results — GPU results ' —— GPU results
& Modeling & Modeling 25 o Modeling o Modeling
18
o o
ERNS 320
1 ?
214 g
o Y15
12
10 10
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
Figure 9: Comparison between GPU results and modeling with 11 measurements.
K=1p=1/64,y=2 K=2,p=2/64,y=2 K=1p=1/64,y=4 K=2,p=2/64,y=4
— GPU results 15 1814 — GPU results 1.8 —— GPU results
&~ Modelin; o~ Modelin, o~ Modelin;
14 2 1.4 e " E
s S13 S14
3 3 3
212] g
2 212 g12
& & &
11 10
o —— GPU results
107 o Modeling 0.8
0 20 40 60 80 100 0 20 40 60 8 100 0 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64,y=2 K=4,p=4/64,y=4 K=8p=8/64,y=4
. —— GPU results — GPU results 22 —— GPU results
15 : o~ Modeling 18 o~ Modeling o~ Modeling
1.4
] 214 216
3 3 3
$13 2 3
& &12 &14
12
— GPU results 10 12
111 o~ Modeling
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 30 K=32,p=32/64,y=4
2.0 — GPUresults 20 — GPU results — GPUresults ' — GPU results
&~ Modeling &~ Modeling o~ Modeling o~ Modeling
18
£
216
1
g
S14
12
1.0

20 40 60 80
Batch size (B)

0 20 40 60 80
Batch size (B)

0 20 40 60 80

Batch size (B)

20 40 60 80
Batch size (B)

Figure 10: Comparison between GPU results and modeling with 12 measurements.

27

K=1,p=1/64,y=2

K=2,p=2/64,y=2

K=1p=1/64,y=4

K=2p=2/64,y=4

— GPU results
&~ Modeling

— GPU results
&~ Modeling

— GPU results
&~ Modeling

— GPU resul
&~ Modeling

Its

20 40 60 80 100 0 20 40 60 100 20 40 60 100 20 40 60 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p0=4/64,y=2 K=8,p0=8/64y=2 K=4,p=4/64,y=4 225 K=8p=8/64,y=4
—— GPU results 18 —— GPU results —— GPU results ’ —— GPU results
&~ Modeling &~ Modeling 18 &~ Modeling &~ Modeling
1.6
a a 1.6
314 3
gt 214
2 2
Y12 V2
1.0 1.0
20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K =16, p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y=4 30 K=32,p=32/64,y=4
—— GPU results —— GPU results —— GPU results —— GPU results
& Modeling 2.0 & Modeling o Modeling & Modeling
18
a
216
3
214
&
1.2
1.0

20 40 60 80 100
Batch size (B)

0 20 40

60 80 100
Batch size (B)

20 40 60 80 100
Batch size (B)

20 40 60 80
Batch size (B)

Figure 11: Comparison between GPU results and modeling with 13 measurements.

K=1p=1/64,y=2

K=2,p=2/64,y=2

K=1,p=1/64,y=4

K=2,p=2/64,y=4

100

—— GPU results
o~ Modeling 14

—— GPU results
©— Modeling

—— GPU results
©— Modeling

—— GPU resul
©— Modeling

Its

20 40 60 80 100
Batch size (B)

K=14,p=4/64,y=2

0 20 40 60 80 100

Batch size (B)

K=8p=8/64y=2

20 40 60 80 100
Batch size (B)

K=4,p=4/64,y=4

20 40 60 80
Batch size (B)

K=8,0=8/64y=4

100

1.8
—— GPU results — GPU results —— GPU results 22 —— GPU results
@ Modeling 16 @~ Modeling 18 @~ Modeling & Modeling
S 216
314 3
1 1
a 214
w1 [
1.2
1.0
20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K =16, p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y=4 K=32,p=32/64,y=4
— GPU results 225 — GPU results — GPU results 3.0 — GPU results
®— Modeling -~ Modeling -~ Modeling -~ Modeling

20 40 60 80 100
Batch size (B)

0 20 60 80 100

40
Batch size (B)

60 80 100

20 40
Batch size (B)

20 60 80

40
Batch size (B)

Figure 12: Comparison between GPU results and modeling with 14 measurements.

28

100

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,0=1/64,y=4 K=2,p=2/64,y=4

1675 16 187]
® —— GPU results 'Y —— GPU results < —— GPU results 18 —— GPU results
1 & Modeling 151 & Modeling 1612 &~ Modeling & Modeling
14 14
a =
§ § 1.3
12
4 812
o o
1.0 11
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
18
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 o~ Modeling 16 o~ Modeling 1.8 e Modeling o~ Modeling
o l4 . a16
§ § 14 §
13
2 g &14
v w12 2
12
1.2
11 1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y =4 10 K=32,p=32/64,y=4
20 —— GPU results 2.0 —— GPU results —— GPU results ’ —— GPU results
i & Modeling . &~ Modeling : &~ Modeling &~ Modeling

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 13: Comparison between GPU results and modeling with 15 measurements.

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,p=1/64y=4 K=2,p=2/64,y=4
161 % —— GPU results 1615 —— GPU results 18 —— GPU results 1.8 —— GPU results
3 @~ Modeling @~ Modeling 16 -~ Modeling @~ Modeling
14
14
s £ S14
B 3 K]
l% 1.2 L% 1 ;": 12
10
1.0
1.0 0.8
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8p=8/64,y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
1674 —— GPU results —— GPU results —— GPU results 22 —— GPU results
s o~ Modeling 16 o~ Modeling 18 =~ Modeling o~ Modeling
294 =3 216
El | 214 El
$13 - 8 &
& 512 G
1.2
12
11 1.0
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,0=16/64,y=4 50 K=32,p=32/64,y=4
2.0 — GPUresults 50 — GPU results — GPUresults ' — GPU results
o~ Modeling : o~ Modeling 25 & Modeling o~ Modeling
1.8
S a
216 %20
b1 ?
g 4
S14 &
1.2
1.0 1.0 »
4 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 14: Comparison between GPU results and modeling with 16 measurements.

29

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,0=1/64,y=4 K=2,p=2/64,y=4

161 % —— GPU results 16475 —— GPU results 18 —— GPU results 18 —— GPU results
k1 &~ Modeling 8 &~ Modeling 1648 &~ Modeling &~ Modeling
14 1.4
S 1 S14
3 3]
812 b ¢ 12
& &12 &
1.0
1.0
1.0 0.8
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64y=4
1678 — GPU results —— GPU results — GPU results 22 — GPU results
15l & Modeling 16 &~ Modeling 18 &~ Modeling . o~ Modeling
14 =3 o1e
2 | 214 2
2 2 2
813 4 214
& w12 v
1.2
11 1.0 12
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 0 K=32,p=32/64,y=4
2.0 —— GPU results 20 —— GPU results —— GPU results ' —— GPU results
& Modeling g & Modeling 2.5 & Modeling & Modeling
18
=y o
216 320
@ 3
214 L
@ &
12 15
1.0
1.0 .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 15: Comparison between GPU results and modeling with 17 measurements.

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,p=1/64y=4 K=2,p=2/64,y=4
f —— GPU results I —— GPU results 1814 —— GPU results 1.8 —— GPU results
1418 &~ Modeling 14 &~ Modeling & Modeling &~ Modeling
a
S
212
3
g
&
1.0
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8p=8/64,y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
— GPU results —— GPU results — GPU results 22 —— GPU results
15 & Modeling 1.6 &~ Modeling 1.8 & Modeling ¥ & Modeling
g 14 214 216
3 3 3
%13 9 &
2 2 214
12
D12 v v
11 1.0 12
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,0=16/64,y=4 50 K=32,p=32/64,y=4
2.0 — GPUresults 20 — GPU results — GPUresults ' — GPU results
o~ Modeling o~ Modeling 25 & Modeling o~ Modeling
1.8 -
S a
216 %20
b1 ?
b b
S14 &
15
1.2
1.0 1.0 <
4 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 16: Comparison between GPU results and modeling with 18 measurements.

30

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,0=1/64,y=4 K=2,p=2/64,y=4

1.6 " 1.8 L
—— GPU results —— GPU results < —— GPU results 1.8 —— GPU results
1 & Modeling 1514 & Modeling 1618 & Modeling & Modeling
14
§ g1
B2 3
g g1z
o o
1.0
1.0
0.8
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
18
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 @~ Modeling 16 &~ Modeling 18 -~ Modeling X &~ Modeling
e 14 s g 16
3 H 14 3
§13] 814
& &1 &
12 12
11 1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y =4 10 K=32,p=32/64,y=4
20 —— GPU results 2.0 —— GPU results 25 —— GPU results ’ —— GPU results
& Modeling & Modeling &~ Modeling &~ Modeling
$20
o
1
1
-3
vis
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 17: Comparison between GPU results and modeling with 19 measurements.

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1p=1/64,y=4 K=2,p=2/64,y=4
d — GPU results 1548 — GPU results 1814 — GPU results 18] — GPU results
3 @~ Modeling f o~ Modeling 1610 o~ Modeling o~ Modeling
14 1.4 At
s S13 S14
3 3 3
912 1 ?
2 212 212
& & &
10 11 10
10 0.8
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8p=8/64,y=4
18
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 o~ Modeling 16 &~ Modeling 18 o~ Modeling o~ Modeling
14
o o 216
§ 15 § 14 §
g 3 214
12 12
1.2
11 1.0
10
0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 30 K=32,p=32/64,y=4
2.0 —— GPU results —— GPU results — GPU results —— GPU results
&~ Modeling 2.00 o~ Modeling 25 o~ Modeling o~ Modeling
1.8 -
o o 175 o
_g 1.6 g % 2.0
g 8 1.50 3
b gL b
H14 & &
1.25 15
1.2
1.00
1.0 10
0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 18: Comparison between GPU results and modeling with 21 measurements.

31

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,0=1/64,y=4 K=2,p=2/64,y=4

1.6 !
L61% —— GPU results |3 —— GPU results 1814 —— GPU results 1.8 —— GPU results
[&~ Modeling I &~ Modeling 1614 e~ Modeling I &~ Modeling
14 14 !
g 5 g1
3 3]
2 0 12 0
1.0
1.0
1.0 0.8
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
16 K=4,p=4/64,y=2 K=8p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64y=4
¥ 1.8
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 &~ Modeling 16 &~ Modeling 18 & Modeling o~ Modeling
g 14 o 216
o 5 14 =]
g13 9]
a a 214
a W12 0
1.2
12
11 1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 0 K=32,p=32/64,y=4
2.0 —— GPU results 20 —— GPU results —— GPU results ' —— GPU results
&~ Modeling ’ &~ Modeling : 4~ Modeling & Modeling

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 19: Comparison between GPU results and modeling with 23 measurements.

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,p=1/64,y=4 K=2,p=2/64,y=4
& — GPU results 1518 — GPU results 1814 — GPU results 18+ — GPU results
o~ Modeling =7 o~ Modeling 1618 o Modeling ©— Modeling
14 !
a
S
T2
3
g
&
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8p0=8/64,y=2 K=4,p=4/64,y=4 K=8,p=864,y=4
1.8
— GPU results —— GPU results — GPU results 22 —— GPU results
15 -~ Modeling 16 &~ Modeling 18 @~ Modeling @~ Modeling
ald o 216
§ § 1.4 é
13
a g 214
v v 1.2 v
12
12
11 1.0
10
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 50 K=32,p=32/64,y=4
2.0 — GPUresults 20 — GPU results — GPUresults ' — GPU results
o~ Modeling : o~ Modeling 25 & Modeling o~ Modeling
1.8 -
S a
216 220
b1 ?
b b
H14 &
15
1.2
1.0 10
4 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 20: Comparison between GPU results and modeling with 26 measurements.

32

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,0=1/64,y=4 K=2,p=2/64,y=4

% —— GPU results 15 ‘@ —— GPU results 187 —— GPU results 1.8 —— GPU results
14 & Modeling & Modeling 1618 &~ Modeling &~ Modeling
H ™
@ 1.2 [
H g1z
o o
10 1.0
0.8
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 o~ Modeling 16 o~ Modeling 1.8 e Modeling o~ Modeling
e 14 o 216
2 3 14 3
013 k] o
=3 aQ o l4
[w12 2
12
1.2
1.1 1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y =4 10 K=32,p=32/64,y=4
20 —— GPU results 2.0 —— GPU results —— GPU results ’ —— GPU results
& Modeling & Modeling : &~ Modeling &~ Modeling

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 21: Comparison between GPU results and modeling with 29 measurements.

K=1,p=1/64,y=2 K=2,p=2/64y=2 K=1,p=1/64,y=4 K=2,p=2/64,y=4
1.6 a I’
o1 —— GPU results T —— GPU results L8714 —— GPU results 1.8 —— GPU results
1 o~ Modeling | o~ Modeling 164 %) o Modeling ©— Modeling
14 14 1
S 3 214
° ° °
1 1 1
e 12 2 Q12
o &1 o
1.0
1.0
1.0 0.8
0 20 40 60 80 100 [20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
. K=4,p=4/64,y=2 s K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64y=4
1.
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 #— Modeling 16 #— Modeling 18 @~ Modeling ®— Modeling
al4 o 216
3 314 3
o w12 &14
12
1.2
1.1 1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 2o K=32,p=32/64,y=4
2.0 — GPUresuls | — GPU results — GPU results ' — GPU results
o Modeling . o~ Modeling & Modeling o~ Modeling
18 1.8 .
o =y
216 216
] 8
14
H14 &
12
12
1.0
1.0 -
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 22: Comparison between GPU results and modeling with 33 measurements.

33

K=1p=1/64,y=2

K=2,p=2/64,y=2

K=1,p=1/64,y=4

K=2,p=2/64,y=4

1.6
13 — GPU results R — GPU results 1818 — GPU results 1.8 —— GPU results
= & Modeling 1.5, & Modeling 1644 & Modeling & Modeling
14
=
313
]
Q12
o
11
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 . K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
1.
—— GPU results —— GPU results —— GPU results 22 —— GPU results
o Modeling 16 o~ Modeling 18 e Modeling o~ Modeling
a 216
314 3
© 1
2 &14
w12 2
1.2
1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y =4 10 K=32,p=32/64,y=4
—— GPU results 2 —— GPU results —— GPU results ’ —— GPU results
& Modeling -0 &~ Modeling &~ Modeling &~ Modeling
18
o
216
o
214
@
1.2
1.0

20 40 60 80 100
Batch size (B)

K=1,p=1/64,y=2

0 20 40 60 80 100
Batch size (B)

K=2,p=2/64,y=2

0 20 40 60 80 100
Batch size (B)

K=1,p=1/64,y=4

0 20 40 60 80 100

Batch size (B)

Figure 23: Comparison between GPU results and modeling with 38 measurements.

K=2,p=2/64,y=4

® 161% 1814 [
—— GPU results — GPU results — GPU results 18 — GPU results
1 &~ Modeling \ &~ Modeling 16118 -~ Modeling &~ Modeling
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 s K=8p=8/64,y=2 K=4,p=4/64,y=4 K=8,p=8/64y=4
— GPU results ' —— GPU results — GPU results 22 — GPU results
&~ Modeling 16 & Modeling 1.8 @~ Modeling ®— Modeling
3 216
214 El
o 1
& 214
w12 [
1.2
1.0

20 40 60 80 100
Batch size (B)

K=16,p=16/64,y=2

0 20 40 60 80 100
Batch size (B)

K=32,p=32/64,y=2

0 20 40 60 80 100
Batch size (B)

K=16,p=16/64,y=4

0 20 40 60 80 100

Batch size (B)

K=32,p=32/64,y=4

—— GPU results
o~ Modeling

—— GPU results
®— Modeling

—— GPU results
©~ Modeling

—— GPU results
o~ Modeling

20 40 60 80 100
Batch size (B)

0 20 40 60 80 100
Batch size (B)

0 20 40 60 80 100
Batch size (B)

0 20 40 60 80 100
Batch size (B)

Figure 24: Comparison between GPU results and modeling with 46 measurements.

34

K=1,p=1/64,y=2 K=2,p=2/64y=2 K=1p=1/64,y=4 K=2,p=2/64,y=4
% — GPU results 151 % — GPU results 181 — GPU results 18 — GPU results
&~ Modeling 1 &~ Modeling 161 &1 e~ Modeling &~ Modeling

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
—— GPU results —— GPU results —— GPU results 22 —— GPU results
-~ Modeling 16 ©— Modeling 18 -~ Modeling -~ Modeling

a 216
214 2
© 1

g 214
w12 0

12

1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y =4 10 K=32,p=32/64,y=4
—— GPU results 2.0 —— GPU results —— GPU results ’ —— GPU results
& Modeling & Modeling 2.5 & Modeling & Modeling

o

320
o
1
1
-3
o

15

1.0

20 40 60
Batch size (B)

0 20 40 60 80 100
Batch size (B)

0 20 40 60 80 100
Batch size (B)

0 20 40 60 80 100

Batch size (B)

Figure 25: Comparison between GPU results and modeling with 57 measurements.

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1p=1/64,y=4 K=2,p=2/64,y=4
R’ — GPU results 1} —— GPU results 1814 — GPU results 1.87] —— GPU results
f o~ Modeling 1575 o~ Modeling 1610 o Modeling ©— Modeling

0 20 40 60 80 100

0 20 40 60 80 100 [20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64y=4
—— GPU results —— GPU results —— GPU results 22 —— GPU results
& Modeling 16 &~ Modeling 1.8 e~ Modeling & Modeling
a 216
314 3
& &
o 214
w12 o
1.2
1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 2o K=32,p=32/64,y=4
— GPU results 20 —— GPU results — GPU results ’ —— GPU results
o Modeling o~ Modeling & Modeling o~ Modeling

20 40 60
Batch size (B)

80

0 20 40 60 80 100
Batch size (B)

0 20 40 60 80 100
Batch size (B)

0 20 40 60 80 100
Batch size (B)

Figure 26: Comparison between GPU results and modeling with 76 measurements.

35

K=1,p=1/64,y=2 K=2,p=2/64,y=2 K=1,0=1/64,y=4 K=2,p=2/64,y=4

2 — GPU results 151 % — GPU results 187 — GPU results 187] — GPU results
s &~ Modeling 1 &~ Modeling 161 % e~ Modeling &~ Modeling
a
3
9 12
a
o
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64y=2 K=4,p=4/64,y=4 K=8,p=8/64,y=4
—— GPU results —— GPU results —— GPU results 22 —— GPU results
15 o~ Modeling 16 &~ Modeling 18 e Modeling y o~ Modeling
o l4 a a16
§ _ng, 1.4 g
013 k] o
Q a 2 l.4
o w12 0
12
1.2
11 1.0
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K =16, p=16/64,y =4 10 K=32,p=32/64,y=4
2.0 —— GPU results 20 —— GPU results — GPU results ' —— GPU results
& Modeling & Modeling 2.5 & Modeling & Modeling
o
El 2.0
1
1
-3
o
15
1.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 27: Comparison between GPU results and modeling with 114 measurements.

e K=1p=1/64,y=2 K=2,p=2/64,y=2 K=1,p=1/64,y=4 K=2,p=2/64,y=4
TR — GPU results ’ —— GPU results 18 A — GPU results 1.87] —— GPU results
) &~ Modeling 1577 &~ Modeling 16l o~ Modeling o~ Modeling
14 14 ’
s £
3, 313
- 212
& &
1o 11
1.0
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=4,p=4/64,y=2 K=8,p=8/64,y=2 K=4,p=4/64,y=4 K=8,p=864,y=4
— GPU results —— GPU results — GPU results 22 —— GPU results
15 &~ Modeling 16 o~ Modeling 18 o~ Modeling . o~ Modeling
o l4 o a1
£ g E
13
g g 214
& 012 0
12
12
11 1.0
10
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)
K=16,p=16/64,y=2 K=32,p=32/64,y=2 K=16,p=16/64,y=4 30 K=32,p=32/64,y=4
20 — GPU results 2.0 —— GPU results — GPU results ’ —— GPU results
&~ Modeling &~ Modeling o~ Modeling o~ Modeling
18
£
216
1
g
S14
12
1.0
0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Batch size (B) Batch size (B) Batch size (B) Batch size (B)

Figure 28: Comparison between GPU results and modeling with 228 measurements.

36

	Introduction
	Related Work
	Theoretical Analysis
	Formulation of Speculative Decoding Speedup and Target Efficiency
	Moderate Batch Size Enables Speculative Decoding Speedup for MoE
	A Modeling Method for Speculative Decoding Speedup
	Practical Values of Theoretical Findings

	Experiments
	Speedup Trend of Speculative Decoding for MoE
	Impact of MoE Sparsity and Validation of Modeling Method

	Conclusion and Limitation
	Supplementary Experimental Results
	Trends of SD speedup under more configurations
	End-to-end speedup comparison between MoE and dense models

	Proof of Texp(T;)'s Trend with Varying
	More details about the Modeling Method
	Description and Overview of the Modeling Process
	Fitting Details of the Modeling shown in Figure 4
	Exploration of Alternative Measurement Selection

