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Abstract001

Building upon advancements in Large Lan-002
guage Models (LLMs), the field of audio pro-003
cessing has seen increased interest in training004
speech generation tasks with discrete speech005
token sequences. However, directly discretiz-006
ing speech by neural audio codecs often results007
in sequences that fundamentally differ from008
text sequences. Unlike text, where text token009
sequences are deterministic, discrete speech to-010
kens can exhibit significant variability based on011
contextual factors, while still producing percep-012
tually identical audio segments. We refer to this013
phenomenon as Discrete Representation In-014
consistency (DRI). This inconsistency can lead015
to a single speech segment being represented016
by multiple divergent sequences, which creates017
confusion in neural codec language models and018
results in poor generated speech. In this paper,019
we quantitatively analyze the DRI phenomenon020
within popular audio tokenizers such as En-021
Codec. Our approach effectively mitigates the022
DRI phenomenon of the neural audio codec.023
Furthermore, extensive experiments on the neu-024
ral codec language model over LibriTTS and025
large-scale MLS dataset (44,000 hours) demon-026
strate the effectiveness and generality of our027
method. The demo of audio samples is avail-028
able online 1.029

1 Introduction030

Recently, speech Large Language Models031

(LLMs) (Zhan et al., 2024; Anastassiou et al.,032

2024; Du et al., 2024b) have demonstrated sig-033

nificant strides in generating high-quality speech,034

largely due to the contributions of neural audio035

codecs in high-fidelity audio reconstruction (Zeghi-036

dour et al., 2021; Défossez et al., 2022; Yang et al.,037

2023). The neural codec language model (Wang038

et al., 2023; Yang et al., 2024; Zhang et al., 2024)039

employs the neural audio codec as the audio040

tokenizer to quantize continuous audio signals041

1https://consistencyinneuralcodec.github.io

into discrete tokens, and it can generate discrete 042

tokens autoregressively (Zhang et al., 2023a; Yang 043

et al., 2024), and then detokenize them back to 044

audio signals by the neural audio codec. Despite 045

the advantages of autoregressive modeling can 046

assist those works to achieve better zero-shot 047

performance and naturalness, the synthesized 048

speech frequently yields higher Word Error Rate 049

(WER) due to the issue of instability in discrete 050

token generation (Song et al., 2024; Xin et al., 051

2024; Du et al., 2024a). 052

The discrete sequence of text is context- 053

independent. In contrast, acoustic discrete repre- 054

sentations are encoded by integrating the contex- 055

tual information. The advantage of this approach is 056

that discrete speech tokens consider a larger recep- 057

tive field of information, thus achieving a higher 058

compression ratio of information. However, the 059

drawback is that the representation itself becomes 060

more fragile, sensitive, and easily affected by mi- 061

nor signal changes, leading to drastic drifts in the 062

entire sequence as demonstrated in Figure 1. 063

The previous work (Yang et al., 2024) has no- 064

ticed that audio segments containing the same 065

sound events aren’t encoded into completely con- 066

sistent discrete acoustic tokens by the neural audio 067

codec. In this paper, we call this phenomenon Dis- 068

crete Representation Inconsistency (DRI), and 069

further dig into the problem with Vector Quantiza- 070

tion (VQ) (Défossez et al., 2022) based acoustic 071

tokens due to its popularity as an audio tokenizer 072

and its high-quality reconstruction capabilities. We 073

compare the consistency of the discrete sequences 074

of audio segments with and without context on 075

a large amount of audio. Our quantitative analy- 076

ses reveal that the existing audio tokenizers suffer 077

from low consistency. In particular, we find that 078

for Residual Vector Quantization (RVQ) (Défos- 079

sez et al., 2022) approaches, consistency declines 080

significantly with deeper layers of codebooks. 081

Although audio with or without contextual audio 082
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Figure 1: Discrete Representation Inconsistency (DRI) phenomenon. Subfigure (a) shows that text, whether it
includes contextual information or not, can be encoded by the text tokenizer into identical text tokens. In contrast,
Subfigure (b) illustrates that audio, with or without contextual information, is encoded by the audio tokenizer
into different speech tokens. The DRI phenomenon within the audio tokenizer poses a many-to-one mapping
problem, and the complexity of this many-to-one mapping raises the uncertainty for neural codec language models
in predicting the next token.

is encoded into different discrete speech token se-083

quences, both sequences can be used to reconstruct084

the original audio information, which leads to a085

many-to-one mapping problem that becomes more086

complex as the sequence length increases. This087

complexity results in increased uncertainty for neu-088

ral codec language models in predicting the next089

token.090

To resolve the many-to-one problem while main-091

taining speech reconstruction quality, we introduce092

the slice-consistency method, wherein a segment093

of audio is randomly sliced, and the encoded rep-094

resentation from this sliced segment is required095

to closely approximate the corresponding repre-096

sentation obtained from the entire audio. In addi-097

tion, in order to further alleviate the issue of many-098

to-one mapping, we propose the perturbation-099

consistency method, whereby the representation100

of an audio and its representation after applying101

slight spectral perturbation should closely align.102

Our contributions are summarized as below:103

• We shed light on the Discrete Representation104

Inconsistency (DRI) phenomenon and con-105

duct quantitative analyses for various neural 106

audio codecs. We find that the existing speech 107

tokenizers suffer from low consistency. 108

• Inspired by our analyses, we propose two 109

methods, the slice-consistency method and the 110

perturbation-consistency method, to enhance 111

the consistency of the neural audio codec from 112

two particular perspectives and mitigate the 113

many-to-one problem. 114

• Experiments show that our method achieves 115

an average consistency improvement of 116

21.47%, 29.17%, and 36.29% in the first layer, 117

the first 3 layers, and the first 8 layers, respec- 118

tively. Additionally, we conduct extensive ex- 119

periments on VALL-E on the LibriTTS dataset 120

(960 hours) and further expand the training 121

dataset to the large-scale MLS dataset (44,000 122

hours), resulting in 1.98% WER reduction and 123

5.52% speaker similarity improvement. These 124

findings confirm that enhancing consistency 125

leads to improved performance. 126
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2 Analysis on consistency of neural audio127

codecs128

In this section, we extract discrete speech tokens129

from speech segments with and without context130

using popular neural audio codecs (Défossez et al.,131

2022; Yang et al., 2023; Zhang et al., 2023b; Du132

et al., 2024c; Kumar et al., 2024; Ju et al., 2024) to133

analyze the DRI phenomenon. First, we introduce134

the overall experiment design. Then we propose135

using consistency accuracy as an evaluation met-136

ric to conduct quantitative analyses. Finally, we137

analyze the results and discuss the potential impli-138

cations of the DRI phenomenon.139

2.1 Experimental Design On DRI140

Phenomenon141

Recent advancements on neural audio codecs have142

adopted an encoder-decoder architecture combined143

with the RVQ module to effectively compress144

continuous audio signals into discrete speech to-145

kens (Défossez et al., 2022; Yang et al., 2023;146

Zhang et al., 2023b; Du et al., 2024c; Kumar et al.,147

2024; Ju et al., 2024), which is typically composed148

of 3 components: (1) An encoder, composed of con-149

volutional layers to capture contextual information,150

maps the audio signal into a latent representation151

Z. (2) An RVQ module contains N quantization152

layers to quantize the latent representation Z into153

the discrete speech tokens at each time step. (3) A154

decoder reconstructs the quantized latent represen-155

tation back to the audio signal.156

To analyze the DRI phenomenon, we use pop-157

ular neural audio codecs (Défossez et al., 2022;158

Yang et al., 2023; Zhang et al., 2023b; Du et al.,159

2024c; Kumar et al., 2024; Ju et al., 2024) as au-160

dio tokenizers to quantize both the entire audio161

and an audio segment within that audio, and then162

compare the results of their corresponding discrete163

speech tokens. Obviously, these two audio seg-164

ments are exactly identical with the only difference165

being whether there is context, and we expect that166

both discrete speech tokens should be identical af-167

ter quantization. But the encoders in current neural168

audio codecs introduce the contextual information169

that gives rise to the DRI phenomenon, leading170

to both discrete speech token sequences showing171

significant differences.172

2.2 Consistency Accuracy173

To quantitatively analyze the degree of the DRI phe-174

nomenon in neural audio codecs, we propose using175

consistency accuracy as an evaluation metric: 176

Accconsistency =
1

T

1

N

T∑
t=1

N∑
i=1

I(RVQ(Zslice)[t, i] = RVQ(Z)[t, i]),
(1) 177

where Z is the latent representation of the orig- 178

inal audio after encoding by the encoder, and N 179

represents the number of codebooks in the RVQ 180

module. We randomly extract an audio segment of 181

length T from the original audio, and encode it by 182

the encoder to obtain Zslice. 183

2.3 Results And Analysis 184

Audio tokenizer vs. text tokenizer. As shown 185

in Figure 1 (a), regardless of whether the context 186

is included, the same text is tokenized into the 187

same text tokens, indicating that the text tokenizer 188

is context-independent. In contrast, Figure 1 (b) 189

demonstrates that using a neural audio codec as the 190

audio tokenizer produces different discrete speech 191

token sequences for identical audio segments. Al- 192

though it is difficult for human auditory perception 193

to distinguish the reconstructed audio from both 194

sequences, the many-to-one mapping caused by 195

the DRI phenomenon still increases the difficulty 196

for model training, leading to a decline in speech 197

reconstruction and generation performance. 198

The results of consistency accuracy. To quanti- 199

tatively analyze the DRI phenomenon, we calculate 200

the consistency accuracy for popular neural audio 201

codecs under different layers and slice lengths. The 202

results are shown in Figure 2 and the low consis- 203

tency accuracy reveals that the DRI phenomenon 204

is present in the current neural audio codecs (Dé- 205

fossez et al., 2022; Yang et al., 2023; Zhang et al., 206

2023b; Du et al., 2024c; Kumar et al., 2024; Ju 207

et al., 2024). Furthermore, we find that with deeper 208

layers of codebooks, neural audio codecs demon- 209

strate lower consistency. This may be attributed 210

to the fact that speech tokens in shallow layers ex- 211

hibit a high alignment with context-independent 212

semantic information, resulting in better consis- 213

tency. In contrast, deeper layers focus on more 214

fragile and sensitive acoustic information that can 215

easily change due to minor perturbations, leading 216

to a decrease in consistency accuracy (Zhang et al., 217

2023b). 218

The potential implications of the DRI phe- 219

nomenon. There are many minor perturbations that 220
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Figure 2: Results of consistency accuracy for popular neural audio codecs under different layers and slice lengths.
Subfigure (a), (b) and (c) shows slice lengths across 0.2s, 0.3s and 0.4s, respectively, and all of them exhibit similar
conclusions that consistency accuracy declines significantly in the deeper layers of codebooks, indicating that the
DRI phenomenon becomes more pronounced with layers in neural audio codecs increasing.

can cause the DRI phenomenon, such as contex-221

tual information and phase perturbation (Lee et al.,222

2023) that do not alter the auditory perception of223

the reconstructed audio but can lead to changes224

in the discrete speech token sequences, which can225

greatly confuse models. Especially when neural226

codec language models need to predict different227

speech tokens due to the DRI phenomenon, this228

confusion can cause the predicted probability dis-229

tributions of the next token to converge towards230

uniformity, resulting in inaccurate predictions and231

negatively impacting overall performance. There-232

fore, it is necessary to ease the many-to-one map-233

ping problem to improve the consistency of neural234

audio codecs, which in turn enhances the perfor-235

mance of downstream speech generation.236

3 Method237

According to the analysis in Section 2, we can238

draw a conclusion that an ideal neural audio239

codec should balance the trade-offs between high240

audio reconstruction quality and addressing the241

many-to-one problem. To achieve this objective,242

we introduce two consistency constraint methods:243

the slice-consistency method and perturbation-244

consistency method, which enhance the consis-245

tency of the neural audio codec from two particular246

perspectives. Since these methods can be integrated247

into any neural audio codec, we demonstrate their248

application using a neural audio codec based on249

RVQ which utilizes an encoder to transform the250

audio signal into the latent representation Z and re-251

constructs the waveform from the quantized latent 252

representation. 253

3.1 Consistency Constraint Methods 254

Slice-consistency requests that audio segments 255

with and without context should be encoded into 256

consistent latent representations. To achieve this 257

object, as shown in Figure 3, we slice a segment of 258

audio from the original audio, and then encode it 259

using the encoder in the neural audio codec to ob- 260

tain the latent representation Zslice. Compared with 261

the latent representation Z from the entire audio, 262

Zslice is not influenced by contextual information. 263

To reduce the influence of context on the latent rep- 264

resentation Z, we use Mean Squared Error (MSE) 265

as a constraint to enhance the consistency between 266

Zslice and the corresponding latent representation 267

in Z: 268

Lslice =
1

T

T∑
t=1

MSE(Zslice[t], Z[t]). (2) 269

As analyzed in Appendix .1 about the recep- 270

tive field, the convolutional layers in the encoder 271

of neural audio codecs introduce contextual infor- 272

mation, leading to identical audio segments being 273

tokenized into different discrete speech token se- 274

quences. It is clear that reducing the kernel size 275

of the convolutional layers in the encoder can en- 276

hance consistency, but this can also result in a de- 277

cline in both reconstruction efficiency and quality. 278

Therefore, applying the slice-consistency method 279
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Figure 3: The overview of the proposed consistency constraint method. For the slice-consistency method, a segment
of audio is randomly sliced, and its encoded representation must closely match the representation derived from the
entire audio. For the perturbation-consistency method, the representation of an audio and its representation after
slight spectral perturbation should be closely aligned.

is necessary to maintain the original receptive field280

while enabling models to balance the trade-offs be-281

tween audio reconstruction quality and alleviating282

the DRI phenomenon.283

Perturbation-Consistency refers to the latent284

representations of audio, which should remain con-285

sistent before and after being applied imperceptible286

perturbations to human ears. Specifically, as shown287

in Figure 3, we slightly adjust the phase of the288

the original audio without significantly altering the289

waveform structure, and encode it using the en-290

coder in the neural audio codec to obtain the latent291

representation Zperception. Since human ears have a292

limited ability to directly perceive phase changes,293

we hope that the robustness of the model can also294

eliminate inconsistency caused by such slight per-295

turbations. Therefore, we utilize MSE to maintain296

consistency of both latent representations with and297

without phase perturbation (Lee et al., 2023):298

Lperception = MSE(Zperception, Z). (3)299

It is evident that the perturbation-consistency300

method differs from audio-based data augmenta-301

tion methods. Data augmentation methods such302

as SpecAugment (Park et al., 2019) and environ-303

ment noise (Snyder et al., 2015) significantly alter304

the original audio to create new audio. The newly305

generated audio has a considerable difference in306

perception compared to the original audio, which307

aims to expand the training data and increase the308

robustness of models. In contrast, the perception-309

consistency method requires that changes to audio310

should be imperceptible to human ears to avoid se-311

vere perturbations that disrupt the audio reconstruc-312

tion quality. Since the phase is difficult to be per-313

ceived by human, we apply phase perturbation (Lee 314

et al., 2023) as a slight perturbation method, which 315

can enhance the perturbation-consistency without 316

expanding the training data. 317

3.2 Implementation Details 318

In order to satisfy both methods and enhance 319

training efficiency, we align the latent represen- 320

tation Zperception obtained by the slice-consistency 321

method and the latent representation Zperception 322

obtained by the perturbation-consistency method: 323

Lconsistency =
1

T

T∑
t=1

MSE(Zslice[t], Zperception[t]).

(4) 324

By introducing consistency constraint Lconsistency, 325

our method can be applied to any neural audio 326

codec and we build our method on RVQ-GAN 327

framework (Kumar et al., 2024) that also includes 328

reconstruction loss Lrec, adversarial loss Ladv, fea- 329

ture matching loss Lfm, and commit loss Lrvq: 330

L = Lrec + λadvLadv + λfmLfm+

λrvqLrvq + λconLconsistency.
(5) 331

4 Experiment Setting 332

4.1 Experimental Configuration 333

Datasets. We train the neural audio codec and 334

neural codec language model using LibriTTS (Zen 335

et al., 2019) (960 hours), validating performance 336

with a subset of its test set for speech reconstruc- 337

tion and generation. To assess data scaling, we 338

expand the training data to 44,000 hours by adding 339

MLS (Pratap et al., 2020) for both tasks. 340
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Table 1: The speech reconstruction results on LibriTTS test set. Bold means the best result, and underline means
the second-best result. Ours denotes the neural audio codec with consistency constraint. The subscripts of the
neural audio codecs denote the training data scale.

Neural
Audio Codec

Bandwidth
Sampling

Rate
Number of
Codebooks

Consistency↑ First 3 Layers’
Consistency↑ ViSQOL↑ PESQ↑

EnCodec2690h
4.5 kbps

24kHz
6 47.43% 61.49% 4.25 2.41

6.0 kbps 8 40.46% 61.49% 4.35 2.73
8.25 kbps 11 32.77% 61.49% 4.44 3.02

HiFiCodec1122h 3.0 kbps 24kHz 4 40.77% 46.92% 4.32 2.76

SpeechTokenizer960h 4.0 kbps 16kHz 8 14.70% 26.91% 4.36 2.62

DAC2740h 4.0 kbps 16kHz 8 39.14% 48.43% 4.44 2.68

FunCodec960h
4.0 kbps

16kHz
8 6.86% 16.39% 4.47 3.26

8.0 kbps 16 3.58% 15.49% 4.57 3.62

Ours960h
4.0 kbps

16kHz
8 71.03% 88.82% 4.45 3.25

8.0 kbps 16 56.32% 90.66% 4.64 3.59

Training settings. To validate effectiveness of341

consistency constraint in speech reconstruction, we342

apply it on the RVQ-based neural audio codec (de-343

noted as Ours, reproduced by FunCodec (Du et al.,344

2024c)) that uses the Adam optimizer (Diederik,345

2014), with an initial learning rate of 3e-4 and beta346

parameters set to (0.5, 0.9), to train for 350,000 it-347

erations. All audio samples are truncated to a fixed348

length of 1.28 seconds and resampled to 16 kHz349

with the batch size of 384. In the loss function 5,350

the weights are set as λadv = 0.11, λfm = 11.11,351

λrvq = 1.0, and λcon = 10.0 when consistency352

constraint is applied.353

To validate our method’s effectiveness for down-354

stream speech generation, we use our neural audio355

codec as the speech tokenizer for VALL-E (Wang356

et al., 2023), which predicts the first layer of speech357

tokens autoregressively and the remaining tokens358

non-autoregressively. The reproduced VALL-E is359

trained for 1.3M steps with a batch size of 56, opti-360

mized by Adam (Diederik, 2014).361

Baseline models. For speech reconstruction, we362

use the official open-source checkpoints from En-363

Codec (Défossez et al., 2022), HiFiCodec (Yang364

et al., 2023), SpeechTokenizer (Zhang et al.,365

2023b), DAC (Kumar et al., 2024), and Fun-366

Codec (Du et al., 2024c) as baseline models. To367

ensure fair comparison, we set the bandwidth368

of different neural audio codecs closely to 4.0369

kbps or 8.0 kbps. For speech generation, we370

employ various neural codec language models371

as baselines, including SpeechGPT (Zhang et al.,372

2023a), SpeechTokenizer-based USLM (Zhang373

et al., 2023b), AnyGPT (Zhan et al., 2024), Voice-374

Craft (Peng et al., 2024) and XTTS v2 (Casanova375

et al., 2024). 376

4.2 Evaluation Metrics 377

4.2.1 Evaluation of Speech Reconstruction 378

We measure the DRI phenomenon using consis- 379

tency accuracy across all layers of neural audio 380

codecs. As the codewords in the initial layers store 381

most information, their consistency notably im- 382

pacts the performance of downstream neural codec 383

language model. Thus, we highlight the consis- 384

tency accuracy of the first 3 layers. Since the con- 385

clusions obtained from different lengths are gen- 386

erally consistent, we set T to 0.2. Additionally, 387

we assess the quality of reconstructed speech using 388

ViSQOL (Chinen et al., 2020) and PESQ (Rix et al., 389

2001), where higher scores indicates better speech 390

quality. 391

4.2.2 Evaluation of Speech Generation 392

Objective evaluation. We use Whisper (Rad- 393

ford et al., 2023) model to transcribe the gener- 394

ated speech and calculate the WER. To evaluate 395

speaker similarity, we firstly use 3D-speaker (Chen 396

et al., 2024) toolkit to extract speaker embeddings 397

from the generated speech and reference speech, 398

and then compute the cosine similarity between 399

the normalized embeddings. We also employ UT- 400

MOS (Saeki et al., 2022) as an automatic Mean 401

Opinion Score (MOS) prediction system to assess 402

the naturalness of the speech. 403

Subjective evaluation. We randomly select 50 404

audio samples from the LibriTTS (Zen et al., 2019) 405

test set to conduct MOS (Chu and Peng, 2006) and 406

Similarity Mean Opinion Score (SMOS) (Chu and 407

Peng, 2006) test. MOS assesses the naturalness of 408
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Table 2: The speech generation results on LibriTTS test set. Bold means the best result, and underline means the
second-best result. Ours and Ours w/o consistency constraint denote the same neural audio codecs with and
without consistency constraint. The subscripts of the neural codec language models (e.g., 330M, 44Kh) denote the
model size and data scale.

Neural
Audio Codec

Bandwidth
Neural Codec

Language Model
Objective Subjective

WER↓ SIM↑ UTMOS↑ MOS↑ SMOS↑

Ground Truth / / 2.13 69.72% 4.15 4.43 4.23

mHuBERT 0.5 kbps SpeechGPT72Kh 13.39 14.73% 4.15 3.08 1.63

EnCodec 2.2 kbps
VoiceCraft330M,9Kh 8.26 51.10% 3.54 3.58 3.47
VoiceCraft830M,9Kh 4.72 55.78% 3.73 3.72 3.43

Mel VQ-VAE / XTTS_v227Kh 3.50 60.06% 3.95 3.58 3.85

SpeechTokenizer 4.0 kbps
USLM960h 7.15 56.93% 3.12 3.07 2.90

AnyGPT57Kh 25.75 25.66% 3.19 2.77 2.63

Ours w/o
consistency constraint

4.0 kbps
VALL-E960h 8.51 55.90% 4.08 3.73 3.50
VALL-E44Kh 5.11 56.20% 4.12 3.92 3.40

Ours 4.0 kbps
VALL-E960h 3.51 60.97% 4.32 3.97 3.73
VALL-E44Kh 3.13 61.72% 4.34 4.02 3.95

the generated speech, while SMOS measures the409

similarity between the generated speech and the410

original speaker’s voice.411

5 Result412

5.1 Speech Reconstruction Results413

We evaluate the effectiveness of our method from414

the perspectives of consistency and reconstructed415

speech quality. First, we compare the consistency416

accuracy between the neural audio codec with con-417

sistency constraint and baseline models. The re-418

sults presented in Table 1 demonstrate that the neu-419

ral audio codec based on our method can recon-420

struct speech with superior consistency accuracy421

compared to baseline models, achieving 71.03%422

across all layers at the bandwidth setting of 4.0423

kbps and 90.66% across the first 3 layers at the424

bandwidth setting of 8.0 kbps. In contrast, the425

baseline models suffer from low consistency ac-426

curacy, indicating that the same audio segments427

are encoded into different discrete speech token428

sequences.429

We evaluate ViSQOL (Chinen et al., 2020) and430

PESQ (Rix et al., 2001) to evaluate the recon-431

structed speech quality. The results in Table 1 show432

that the ViSQOL (Chinen et al., 2020) of the neu-433

ral audio codec based on our method surpasses all434

baseline models, achieving the score of 4.64. Addi-435

tionally, its PESQ (Rix et al., 2001) is also compa-436

rable to that of the baseline models, with only 0.03437

lower than the best result. This suggests that our438

method can be confidently applied to neural audio 439

codecs without negatively impacting reconstruction 440

performance. 441

5.2 Speech Generation Results 442

Objective Evaluation. According to Table 2, 443

we have the following observations: (1) VALL- 444

E (Wang et al., 2023), which is based on our 445

method and trained by large-scale MLS (Pratap 446

et al., 2020) dataset, outperforms all other base- 447

line models on WER, SIM and UTMOS, indicat- 448

ing that our method can help speech generation 449

models synthesize speech with better intelligibility, 450

similarity and naturalness. (2) Compared to the 451

VALL-E model without the consistency constraint, 452

our method can help VALL-E achieve significant 453

improvement in intelligibility and similarity, with 454

1.98% WER reduction and 5.52% SIM improve- 455

ment. This indicates that improving the consistency 456

of the neural audio codec can reduce the complex- 457

ity of predicting discrete speech tokens and result 458

in better performance. (3) The results show that 459

VALL-E (Wang et al., 2023), which is based on our 460

method and trained by 44,000 hours, shows supe- 461

rior speech generation results than that trained on 462

960 hours, illustrating the scalability of our method 463

across different dataset scales. 464

Subjective Evaluation. The results of MOS 465

and SMOS show similar outcomes to objective 466

evaluations, indicating that VALL-E (Wang et al., 467

2023) based on our method achieves higher speech 468

quality and speaker similarity. The experiment 469
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Table 3: Ablation study on the slice-consistency method and perturbation-consistency method. In the Slice column,
the percentage (e.g., 20%) represents the proportion of the sliced audio segments to the entire audio. In the
Perturbation column, phase perturb means whether to use perturbation-consistency method.

Neural Audio Codec Neural Codec Language Model

Slice Perturbation Consistency↑ First 3 Layers’
Consistency↑

Objective
WER↓ SIM↑ UTMOS↑

20% phase perturb 74.31% 89.77% 3.51 60.97% 4.32

/ phase perturb 6.92% 15.14% 7.03 56.57% 4.13
20% / 73.93% 88.24% 4.12 59.51% 4.13

/ / 6.31% 14.98% 8.51 55.90% 4.08

40% phase perturb 62.53% 83.07% 4.07 60.17% 4.25
60% phase perturb 28.70% 57.37% 5.22 59.74% 4.23

results on different codecs and language models470

are shown in Table 6.471

5.3 Ablation Study472

As shown in Table 3, we use the case of slic-473

ing the audio at 20% and applying perturbation-474

consistency method as a reference, which achieves475

the best results in both speech reconstruction476

and speech generation. Then we remove the de-477

sign of slice-consistency method or perturbation-478

consistency method. The drop in all evaluation479

metrics demonstrates that both slice-consistency480

method and perturbation-consistency method are481

beneficial for speech reconstruction and genera-482

tion. Finally, we conduct ablation studies on the483

proportion of slicing audio segments, and the re-484

sults show that the slice percentage of 20% out-485

performs the model with the slice percentages of486

40% and 60%. This suggests that shorter audio487

segments containing less contextual information488

can effectively alleviate the contextual dependence489

of original audio representation during the align-490

ment process, thereby enhancing its consistency491

and ultimately leading to better performance in the492

downstream speech generation model.493

6 Related Work494

Discrete speech representations. Discrete speech495

representations can be categorized into semantic496

and acoustic tokens. Discrete semantic tokens497

are extracted from HuBERT (Hsu et al., 2021),498

WavLM (Chen et al., 2022), or ASR models like499

SenseVoice (SpeechTeam, 2024). K-means or VQ500

models serve as information bottlenecks, filtering501

out paralinguistic information while retaining se-502

mantic information. Discrete acoustic tokens are503

encoded by neural audio codecs (Zeghidour et al.,504

2021; Défossez et al., 2022), preserving acoustic505

information and aiming to reconstruct audio. 506

Audio tokenizers and neural codec language 507

models. After tokenizing continuous audio sig- 508

nals into discrete tokens by a neural audio codec, 509

a neural codec language model can be trained on 510

these discrete audio tokens. VALL-E (Wang et al., 511

2023) employs EnCodec (Défossez et al., 2022) as 512

audio tokenizers to extract discrete acoustic tokens, 513

aiming to retain all acoustic information. Voice- 514

Craft (Peng et al., 2024) rearrange audio tokens 515

through an autoregressive way to perform speech 516

generation and editing tasks. LLM-Codec (Yang 517

et al., 2024) represents audio tokens with words 518

or subwords from the vocabulary of LLMs, align- 519

ing audio modality with text modality. Although 520

LLM-Codec (Yang et al., 2024) has noticed that 521

even when audio segments contain the same sound 522

events, the discrete tokens generated by the audio 523

tokenizer may still exhibit inconsistency. There- 524

fore, to address this DRI phenomenon, we propose 525

the consistency-constraint methods to enhance the 526

consistency within neural audio codecs, thereby 527

improving the performance of downstream speech 528

generation. 529

7 Conclusion 530

We conduct a detailed analysis on the consistency 531

of the discrete audio token sequences, and shed 532

light on the Discrete Representation Inconsistency 533

(DRI) phenomenon within the existing neural au- 534

dio codecs. To mitigate the DRI phenomenon, we 535

propose slice-consistency method and perturbation- 536

consistency method. Experimental results indi- 537

cate that our proposed methods can successfully 538

increase the consistency of discrete audio token 539

sequences, thereby enabling the neural codec lan- 540

guage model based on these audio tokens to en- 541

hance the quality of generated speech. 542
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Limitations543

This paper explores the DRI phenomenon in speech544

generation task and proposes consistency constraint545

methods. The proposed methods can also be further546

validated on image or video tokenizers and may547

prove to be useful.548

References549

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe550
Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng,551
Chuang Ding, Lu Gao, et al. 2024. Seed-tts: A family552
of high-quality versatile speech generation models.553
arXiv preprint arXiv:2406.02430.554

Edresson Casanova, Kelly Davis, Eren Gölge, Görkem555
Göknar, Iulian Gulea, Logan Hart, Aya Aljafari,556
Joshua Meyer, Reuben Morais, Samuel Olayemi,557
et al. 2024. Xtts: a massively multilingual558
zero-shot text-to-speech model. arXiv preprint559
arXiv:2406.04904.560

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,561
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki562
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022.563
Wavlm: Large-scale self-supervised pre-training for564
full stack speech processing. IEEE Journal of Se-565
lected Topics in Signal Processing, 16(6):1505–1518.566

Yafeng Chen, Siqi Zheng, Hui Wang, Luyao Cheng,567
et al. 2024. 3d-speaker-toolkit: An open source568
toolkit for multi-modal speaker verification and di-569
arization.570

Michael Chinen, Felicia SC Lim, Jan Skoglund, Nikita571
Gureev, Feargus O’Gorman, and Andrew Hines.572
2020. Visqol v3: An open source production ready573
objective speech and audio metric. In 2020 twelfth574
international conference on quality of multimedia575
experience (QoMEX), pages 1–6. IEEE.576

Min Chu and Hu Peng. 2006. Objective measure for577
estimating mean opinion score of synthesized speech.578
US Patent 7,024,362.579

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and580
Yossi Adi. 2022. High fidelity neural audio compres-581
sion. arXiv preprint arXiv:2210.13438.582

P Kingma Diederik. 2014. Adam: A method for stochas-583
tic optimization. (No Title).584

Chenpeng Du, Yiwei Guo, Hankun Wang, Yifan Yang,585
Zhikang Niu, Shuai Wang, Hui Zhang, Xie Chen,586
and Kai Yu. 2024a. Vall-t: Decoder-only generative587
transducer for robust and decoding-controllable text-588
to-speech. arXiv preprint arXiv:2401.14321.589

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng590
Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue591
Gu, Ziyang Ma, Zhifu Gao, and Zhijie Yan. 2024b.592
Cosyvoice: A scalable multilingual zero-shot text-593
to-speech synthesizer based on supervised semantic594
tokens. Preprint, arXiv:2407.05407.595

Zhihao Du, Shiliang Zhang, Kai Hu, and Siqi Zheng. 596
2024c. Funcodec: A fundamental, reproducible 597
and integrable open-source toolkit for neural speech 598
codec. In ICASSP 2024-2024 IEEE International 599
Conference on Acoustics, Speech and Signal Process- 600
ing (ICASSP), pages 591–595. IEEE. 601

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, 602
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel- 603
rahman Mohamed. 2021. Hubert: Self-supervised 604
speech representation learning by masked prediction 605
of hidden units. IEEE/ACM transactions on audio, 606
speech, and language processing, 29:3451–3460. 607

Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai 608
Xin, Dongchao Yang, Yanqing Liu, Yichong Leng, 609
Kaitao Song, Siliang Tang, et al. 2024. Natural- 610
speech 3: Zero-shot speech synthesis with factor- 611
ized codec and diffusion models. arXiv preprint 612
arXiv:2403.03100. 613

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, 614
Ishaan Kumar, and Kundan Kumar. 2024. High- 615
fidelity audio compression with improved rvqgan. 616
Advances in Neural Information Processing Systems, 617
36. 618

Junhyeok Lee, Seungu Han, Hyunjae Cho, and Wonbin 619
Jung. 2023. Phaseaug: A differentiable augmenta- 620
tion for speech synthesis to simulate one-to-many 621
mapping. In ICASSP 2023 - 2023 IEEE Interna- 622
tional Conference on Acoustics, Speech and Signal 623
Processing (ICASSP), pages 1–5. 624

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng 625
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le. 626
2019. Specaugment: A simple data augmentation 627
method for automatic speech recognition. arXiv 628
preprint arXiv:1904.08779. 629

Puyuan Peng, Po-Yao Huang, Daniel Li, Abdelrahman 630
Mohamed, and David Harwath. 2024. Voicecraft: 631
Zero-shot speech editing and text-to-speech in the 632
wild. arXiv preprint arXiv:2403.16973. 633

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel 634
Synnaeve, and Ronan Collobert. 2020. Mls: A large- 635
scale multilingual dataset for speech research. arXiv 636
preprint arXiv:2012.03411. 637

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock- 638
man, Christine McLeavey, and Ilya Sutskever. 2023. 639
Robust speech recognition via large-scale weak su- 640
pervision. In International conference on machine 641
learning, pages 28492–28518. PMLR. 642

Antony W Rix, John G Beerends, Michael P Hollier, 643
and Andries P Hekstra. 2001. Perceptual evaluation 644
of speech quality (pesq)-a new method for speech 645
quality assessment of telephone networks and codecs. 646
In 2001 IEEE international conference on acoustics, 647
speech, and signal processing. Proceedings (Cat. No. 648
01CH37221), volume 2, pages 749–752. IEEE. 649

Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki 650
Koriyama, Shinnosuke Takamichi, and Hiroshi 651

9

https://arxiv.org/pdf/2403.19971
https://arxiv.org/pdf/2403.19971
https://arxiv.org/pdf/2403.19971
https://arxiv.org/pdf/2403.19971
https://arxiv.org/pdf/2403.19971
https://arxiv.org/abs/2407.05407
https://arxiv.org/abs/2407.05407
https://arxiv.org/abs/2407.05407
https://arxiv.org/abs/2407.05407
https://arxiv.org/abs/2407.05407
https://doi.org/10.1109/ICASSP49357.2023.10096374
https://doi.org/10.1109/ICASSP49357.2023.10096374
https://doi.org/10.1109/ICASSP49357.2023.10096374
https://doi.org/10.1109/ICASSP49357.2023.10096374
https://doi.org/10.1109/ICASSP49357.2023.10096374


Saruwatari. 2022. Utmos: Utokyo-sarulab sys-652
tem for voicemos challenge 2022. arXiv preprint653
arXiv:2204.02152.654

David Snyder, Guoguo Chen, and Daniel Povey. 2015.655
Musan: A music, speech, and noise corpus. arXiv656
preprint arXiv:1510.08484.657

Yakun Song, Zhuo Chen, Xiaofei Wang, Ziyang Ma,658
and Xie Chen. 2024. Ella-v: Stable neural codec659
language modeling with alignment-guided sequence660
reordering. arXiv preprint arXiv:2401.07333.661

Tongyi SpeechTeam. 2024. Funaudiollm: Voice un-662
derstanding and generation foundation models for663
natural interaction between humans and llms. arXiv664
preprint arXiv:2407.04051.665

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural666
discrete representation learning. Advances in neural667
information processing systems, 30.668

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang,669
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,670
Huaming Wang, Jinyu Li, et al. 2023. Neural codec671
language models are zero-shot text to speech synthe-672
sizers. arXiv preprint arXiv:2301.02111.673

Detai Xin, Xu Tan, Kai Shen, Zeqian Ju, Dongchao674
Yang, Yuancheng Wang, Shinnosuke Takamichi, Hi-675
roshi Saruwatari, Shujie Liu, Jinyu Li, et al. 2024.676
Rall-e: Robust codec language modeling with chain-677
of-thought prompting for text-to-speech synthesis.678
arXiv preprint arXiv:2404.03204.679

Dongchao Yang, Haohan Guo, Yuanyuan Wang,680
Rongjie Huang, Xiang Li, Xu Tan, Xixin Wu, and681
Helen Meng. 2024. Uniaudio 1.5: Large language682
model-driven audio codec is a few-shot audio task683
learner. arXiv preprint arXiv:2406.10056.684

Dongchao Yang, Songxiang Liu, Rongjie Huang,685
Jinchuan Tian, Chao Weng, and Yuexian Zou.686
2023. Hifi-codec: Group-residual vector quantiza-687
tion for high fidelity audio codec. arXiv preprint688
arXiv:2305.02765.689

Neil Zeghidour, Alejandro Luebs, Ahmed Omran,690
Jan Skoglund, and Marco Tagliasacchi. 2021.691
Soundstream: An end-to-end neural audio codec.692
IEEE/ACM Transactions on Audio, Speech, and Lan-693
guage Processing, 30:495–507.694

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J.695
Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. 2019.696
Libritts: A corpus derived from librispeech for text-697
to-speech. Preprint, arXiv:1904.02882.698

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou,699
Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,700
Ge Zhang, Linyang Li, et al. 2024. Anygpt: Uni-701
fied multimodal llm with discrete sequence modeling.702
arXiv preprint arXiv:2402.12226.703

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, 704
Pengyu Wang, Yaqian Zhou, and Xipeng Qiu. 2023a. 705
Speechgpt: Empowering large language models with 706
intrinsic cross-modal conversational abilities. arXiv 707
preprint arXiv:2305.11000. 708

Dong Zhang, Xin Zhang, Jun Zhan, Shimin Li, Yaqian 709
Zhou, and Xipeng Qiu. 2024. Speechgpt-gen: Scal- 710
ing chain-of-information speech generation. arXiv 711
preprint arXiv:2401.13527. 712

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, 713
and Xipeng Qiu. 2023b. Speechtokenizer: Unified 714
speech tokenizer for speech large language models. 715
arXiv preprint arXiv:2308.16692. 716

.1 Analysis of Inconsistency Caused by 717

Receptive Field Sizes 718

Table 4: The parameters of the convolutional layers
and the receptive field size in the neural audio codec’s
encoder.

Layer ID Kernel Size Stride Dilation
Strides of

Previous Layers
Receptive Field Size

1 7 1 1 0 7

2 3 1 1 1 7 + (3− 1)× 1 = 9

3 1 1 1 1 9 + (1− 1)× 1 = 9

4 1 1 1 1 9 + (1− 1)× 1 = 9

5 4 2 1 1 9 + (4− 1)× 1 = 12

6 3 1 1 2 12 + (3− 1)× 2 = 16

7 1 1 1 2 16 + (1− 1)× 2 = 16

8 1 1 1 2 16 + (1− 1)× 2 = 16

9 8 4 1 2 16 + (8− 1)× 2 = 30

10 3 1 1 8 30 + (3− 1)× 8 = 46

11 1 1 1 8 46 + (1− 1)× 8 = 46

12 1 1 1 8 46 + (1− 1)× 8 = 46

13 10 5 1 8 46 + (10− 1)× 8 = 118

14 3 1 1 40 118 + (3− 1)× 40 = 198

15 1 1 1 40 198 + (1− 1)× 40 = 198

16 1 1 1 40 198 + (1− 1)× 40 = 198

17 16 8 1 40 198 + (16− 1)× 40 = 798

18 7 1 1 320 798 + (7− 1)× 320 = 2718

The size of the receptive field is related to the
number of convolutional layers and pooling layers:

RFi = RFi−1 + (k − 1)× Si,

where RFi represents the receptive field size of the
current layer, and RFi−1 denotes the receptive field
size of the previous layer. Si represents the product
of the strides of all previous layers (excluding the
current layer), and is given by:

Si =

Li∏
i=1

stridei.

As shown in Table 4, a larger receptive field in the 719

encoder of neural audio codec brings more contex- 720

tual information. Although this can enhance audio 721

quality and improve encoding efficiency, it also 722
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leads to a significant decline in consistency and723

gives rise to the DRI phenomenon. Therefore, it is724

crucial to preserve the original receptive field while725

allowing the model to balance the trade-offs be-726

tween audio reconstruction quality and addressing727

the many-to-one problem.728

.2 Evaluation baselines729

SpeechGPT 2 (Zhang et al., 2023a) is a neural730

codec language model based on HuBERT (Hsu731

et al., 2021) with conversational abilities, capable732

of providing various styles of speech responses733

based on context and human instructions.734

USLM 3 (Zhang et al., 2023b) is built upon735

SpeechTokenizer (Zhang et al., 2023b) and consists736

of both autoregressive and non-autoregressive mod-737

els to hierarchically model information in speech.738

The autoregressive model captures the content in-739

formation, while the non-autoregressive model740

complements it by adding paralinguistic informa-741

tion.742

AnyGPT 4 (Zhan et al., 2024) is an any-to-any743

multimodal neural codec language model that uti-744

lizes discrete representations for various modali-745

ties, including speech, text, images, and music. It746

also uses SpeechTokenizer (Zhang et al., 2023b) to747

quantize speech.748

VoiceCraft 5 6 (Peng et al., 2024) is a token-749

infilling neural codec language model. It introduces750

a token rearrangement procedure that combines751

causal masking and delayed stacking to enhance752

voice cloning ability.753

XTTS v2 7 (Casanova et al., 2024) is a multi-754

lingual speech generation model and employs a755

VQ-VAE (Van Den Oord et al., 2017) module to756

discretize the mel-spectrogram.757

.3 Consistency accuracy of each layer758

As shown in Table 5, we provide a detailed display759

of the consistency accuracy at each layer for all760

neural audio codecs, and the accuracy of the neural761

audio codec with consistency constraint surpasses762

that of the baseline models at every layer. Specifi-763

cally, compared to EnCodec (Défossez et al., 2022),764

2https://huggingface.co/fnlp/SpeechGPT-7B-com
3https://huggingface.co/fnlp/USLM
4https://huggingface.co/fnlp/AnyGPT-chat
5https://huggingface.co/pyp1/VoiceCraft_

giga330M
6https://huggingface.co/pyp1/VoiceCraft_830M_

TTSEnhanced
7https://huggingface.co/coqui/XTTS-v2

Figure 4: The impact of neural audio codec’s consis-
tency accuracy on the downstream VALL-E’s WER.
The plot demonstrates a clear trend where increasing
consistency leads to lower WER.

our method has shown an average consistency im- 765

provement of 21.47%, 29.17%, and 36.29% in the 766

first layer, the first 3 layers, and the first 8 layers, 767

respectively. We can observe that consistency ac- 768

curacy significantly decreases as the number of 769

layers increases, particularly in baseline models. 770

This may suggest that the semantic information 771

in the shallow layers of codebooks is more rel- 772

evant to context-independent text, which results 773

in higher consistency accuracy. In contrast, the 774

acoustic information in the deeper layers is more 775

fragile and sensitive, making it more influenced by 776

context (Zhang et al., 2023b). This could create 777

challenges for downstream neural codec language 778

models when predicting audio tokens from these 779

deeper layers. 780

.4 Correlation between Consistency accuracy 781

and WER 782

As shown in Figure 4, there is a positive correlation 783

between consistency accuracy and WER improve- 784

ment. Specifically, as the consistency accuracy 785

increases, the WER correspondingly decreases. 786

.5 Experiments on other neural codec 787

language models 788
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Table 5: Detailed results of consistency accuracy of each layer in neural audio codecs. Ours denotes the neural
audio codec with consistency constraint.

Neural Audio Codec
Every Layer’s Consistency

1 2 3 4 5 6 7 8

EnCodec 74.66% 61.20% 48.62% 41.30% 32.47% 26.30% 21.25% 17.89%
HiFiCodec 61.87% 55.73% 23.15% 22.34% / / / /

SpeechTokenizer 41.52% 23.13% 16.09% 11.64% 8.59% 6.21% 5.08% 5.31%
DAC 63.44% 46.17% 36.88% 32.77% 33.75% 34.92% 34.26% 30.90%

FunCodec 29.34% 10.12% 7.03% 4.10% 2.54% 1.02% 0.78% 0.59%
Ours 96.13% 91.09% 84.77% 79.57% 73.44% 68.71% 63.13% 57.19%

Neural Audio Codec Neural Codec Language Model WER↓ SIM↑ UTMOS↑
ours w/o consistency constraint UniAudio960h 5.90 54.20% 3.91
ours w consistency constraint UniAudio960h 2.39 59.09% 4.15

EnCodec VALL-E960h 9.02 51.47% 3.27
EnCodec w consistency constraint VALL-E960h 5.13 55.59% 3.27

Table 6: Comparison of neural audio codec performance with and without consistency constraint on UniAudio.
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