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Abstract

Given an instruction in a natural language, the
vision-and-language navigation (VLN) task re-
quires a navigation model to match the instruc-
tion to its visual surroundings and then move to
the correct destination. It has been difficult to
build VLN models that can generalize as well
as humans. In this paper, we provide a new
perspective that accommodates the potential
variety of interpretations of verbal instructions.
We discovered that snapshots of a VLN model,
i.e., model versions based on parameters saved
at various intervals during its training, behave
significantly differently even when their naviga-
tion success rates are almost the same. We thus
propose a snapshot-based ensemble solution
that leverages predictions provided by multi-
ple snapshots. Our approach is effective and
generalizable, and can be applied to ensemble
snapshots from different models. Constructed
on the mixed snapshots of the existing state-of-
the-art (SOTA) RecBERT and HAMT models,
our proposed ensemble achieves new SOTA
performance in the R2R Dataset Challenge in
the single-run setting !.

1 Introduction

With a set of movement instructions provided at the
beginning of an agent’s navigation task, a Vision-
and-Language Navigation (VLN) model guides
the agent through an environment that is revealed
through visual input one step at a time. Build-
ing an effective VLN model is difficult because
it needs to understand and coordinate both types
of information, vision and language inputs. Re-
cent advancements in computer vision and natu-
ral language processing and the advent of better
vision-and-language models (Sundermeyer et al.
(2012); Vaswani et al. (2017); Lu et al. (2019);

'"The leaderboard can be found at https:
//eval.ai/web/challenges/challenge-page/
97/leaderboard/270, and our result is named "SE-
Mixed (HAMT+RecBERT) (Single-run)."
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Figure 1: VLN task on R2R data: An agent receives
textual navigation instructions at a start node (green
cloud) and surrounding views (beige cloud). Controlled
by a VLN model, it decides where to go next (correct
nodes shown in red, other navigable positions in cyan).

Tan and Bansal (2019)) along with the effort to
prepare large scale realistic datasets (Chang et al.,
2017) have enabled rapid development of VLN sys-
tems. Benchmarking VLN models using the R2R
dataset (Anderson et al., 2018) that is based on real
photos of indoor environments, has been popular,
due to its simple-form task, which at the same time
requires a complex understanding of both images
and text (see Fig. 1). Various studies have dis-
cussed how to improve benchmark performance by
adjusting model structure (Anderson et al., 2018;
Majumdar et al., 2020; Wang et al., 2020; Hong
et al., 2021) or adding more complicated mecha-
nisms to the models (Ma et al., 2019b; Zhu et al.,
2020; Chen et al., 2021b). Previous studies have
also made efforts to prevent overfitting to training
data (Daniel Fried et al., 2018; Liu et al., 2021; Li
et al., 2019; Hao et al., 2020).

In this paper, we offer a new VLN solution that
focuses on the by-products of the model training
process: snapshots. Snapshots are versions of a
model that are defined by the saved parameters of
the model at various intervals during its training.
Although all snapshots have the same goal as the
model, their trained parameters are different due to
the ongoing optimization process. We discovered
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that some of the best snapshots at various intervals
saved during training shared similar navigation suc-
cess rates while making significantly diverse errors.
Based on this observation, we constructed our VLN
system with an ensemble of snapshots instead of
just one. Our experiments revealed that such an en-
semble can take advantage of its members and thus
exploit the potential variety of interpretations of
verbal instructions and their matches to the visual
surroundings. As a result, the ensemble signifi-
cantly improves the navigation performance. We
also found that ensembles of snapshots can be fur-
ther optimized by adding a meta-learner to decide
which snapshots should be included in the ensem-
ble. In our case, we set up a beam-search mecha-
nism to do so.

To produce even more variant candidate snap-
shots to construct the ensemble, we built an ensem-
ble from snapshots of more than one VLN base
model. Our experimental results show that snap-
shots from the different models are supplementary
to each other and thus lead to an even better result
than snapshot ensembles from only one model.

To conclude, our contributions are as follows:

* We discovered that the best snapshots of a
model interpret verbal and visual input differ-
ently while having similar navigation success
rates. We thus propose a snapshot ensemble
method to take advantage of the different snap-
shots.

* Since not all of the many potential snapshots
are beneficial to the ensemble, we proposed a
beam-search-based meta-learner that decides
the best combination of snapshots to be in-
cluded in the ensemble in an efficient manner.

* By combining the snapshots from exist-
ing VLN models: Recurrent-VLN-BERT
(RecBERT) and History Aware Multimodal
Transformer (HAMT), our ensemble achieves
a new SOTA performance on the R2R chal-
lenge leaderboard in the single-run setting.

* Additional experiments with three model ar-
chitectures and two datasets with different lev-
els of task difficulty show the efficacy and
generality of our snapshot ensemble method.

We suggest that our proposed snapshot ensemble
process could be applied to other tasks that use
natural language, for example, to "navigate" digital
domains such as websites (Pasupat et al., 2018)
and mobile apps (Li et al., 2020b) or for addressing
visual goal-step inference task (Yang et al., 2021).

2 Related Works

Vision-and-language Navigation task and
datasets. Teaching a robot to complete instruc-
tions is a long-existing goal in the Al community
(Winograd, 1971). Different from GPS-based
navigation, a VLN system accepts instructions
in natural language and matches them to visual
inputs from its surrounding environments. Most
VLN datasets in the past consist of synthesized 3D
scenes (Kolve et al., 2017; Brodeur et al., 2017,
Wuetal., 2018; Yan et al., 2018; Song et al., 2017).
Recently, the emergence of datasets based on real
3D scenes allows VLN systems to be developed
and tested in realistic environments. Specifically,
3D views from Google Street View and Matter-
port3D datasets (Chang et al., 2017) allow people
to build simulators that generate navigation data
from photos taken in real life. Different from
the previous 3D-synthesized datasets, the R2R
dataset (Anderson et al., 2018) that we use consists
of navigation task in real indoor environments.
Concretely, the R2R dataset provides ~15,000
instructions and ~5,000 navigation paths in 90
indoor scenes. Since its publication, researchers
have proposed variants of the R2R dataset to
address some of its shortcomings (Ku et al., 2020;
Jain et al., 2019; Hong et al., 2020b; Krantz et al.,
2020). However, the community still considers the
R2R dataset to be fundamental in benchmarking
indoor VLN systems.

VLN systems using the R2R dataset. To im-
prove navigation performance of the R2R baseline
system (Anderson et al., 2018), various models and
techniques have been proposed, including using
LSTM (Daniel Fried et al., 2018) and soft-attention
(Tan et al., 2019). Previous work closest so ours
is by Hu et al. (2019), who proposed a mixture
of VLN models, each trained with different inputs.
Majumdar et al. (2020) proposed a VLN system
based on a pre-trained vision and language model
VilBERT (Lu et al., 2019). Recently, Chen et al.
(2021a); Wang et al. (2021); Hong et al. (2020a)
proposed VLN systems based on graph models.
Liu et al. (2021) provided data augmentation by
splitting and mixing scenes. Ma et al. (2019b,a)
introduced regularization loss and back-tracking.
Tan et al. (2019) improved the dropout mechanism
in their VLN model. Li et al. (2019); Hao et al.
(2020) improved the model’s initial states by pre-
training it on large-scale datasets.

A significant improvement in SOTA perfor-



mance was achieved by the RecBERT model (Hong
et al., 2021), which utilizes the CLS token, a spe-
cial token added in front of every input sequence in
BERT-like models (Jacob Devlin et al., 2019), as a
recurrent state. We adopted RecBERT as the basic
model to illustrate our snapshot ensemble solution
due to RecBERT’s high performance and easy-to-
reproduce code structure.” Another high perform-
ing model, HAMT (Chen et al., 2021b), uses pre-
training based on proxy tasks such as masked word
prediction and instruction-trajectory matching and
allows an agent’s previous actions to be involved
in the prediction of the current action. We tested
ensembles of HAMT snapshots and also combined
it with RecBERT in a mixed-model ensemble.

Ensemble Models. An ensemble of models ex-
pands the solution space and has a better chance to
avoid local minima (Hansen and Salamon, 1990).
It can be created in different ways. Most relevant
to our work is the idea of bagging (Breiman, 1996,
2001) which trains the same model with different
input data, and stacking (Wolpert, 1992), which
focuses on building a meta-learner by optimizing
the predictions given by different models in the
ensemble.

Our work is inspired by the idea of a “snapshot
ensemble” by Huang et al. (2017), which is con-
structed from a set of snapshots collected at local
minima. Zhang et al. (2020) further developed the
idea of a snapshot ensemble for classification with
boosting and stacking. Different from previous
works, we collect snapshots based on training in-
tervals and performance. We apply beam-search
as the meta-learner that optimizes the choices of
snapshots to be included in the ensemble.

3 Method

3.1 Vision-and-language Navigation in R2R

Navigation in R2R consists of three parts: instruc-
tion I, scene S, and path P. The instruction [
is a sequence of L words in the vocabulary W
I = {wy,we,..,wy |lw; C W,1 <i < L}. The
instructions are all manually labeled with a We-
bGL interface that displays 3D scenes constructed
from the Matterport3D dataset (Chang et al., 2017).
The instruction I describes the navigation path P
based on the surrounding views along the path,
without aligning specific words to a particular view-
point, making the task even more challenging. The

“https://github.com/YicongHong/Recurrent-VLN-BERT

scene S = {V, E'} is a connected graph of view-
points V' and the edges E that connect viewpoints.
The path P is a sequence of viewpoints in S i.e.,
P = {v1,v9,...,upJv € V} from start v; to des-
tination v,. At any time during navigation, an
agent is placed in a certain viewpoint v; € V.
For each viewpoint v;, there is a corresponding
panoramic view O; to describe the visual surround-
ings of v;. For the RecBERT model, views in O;
are converted to image features by a pre-trained
ResNet-152 model.

To complete a single-run R2R navigation task, a
VLN model controls the agent’s movements in S
from v; to v, in one pass with as few steps as
possible. The model works as a policy function
with the instruction I and the panoramic view O;
of viewpoint v; as inputs. At each time step ¢, the
policy function predicts an action a; < (I, O;)
that moves the agent to a navigable viewpoint or
stop the navigation. If the last viewpoint veyq is
within a certain distance (3 m) to the endpoint v,, of
the ground-truth path P, the navigation is consid-
ered to be successful, otherwise it is considered as
failed. The performance of a VLN model is mainly
based on how many successful navigations it rec-
ommends during evaluation, namely the “success
rate" (additional metrics in Section 5.1).

3.2 Snapshots of the Same Model

When designing a supervised learning model, we
usually choose the most accurate snapshot found
in the validation process to represent the trained
model and discard the other snapshots. We dis-
covered, however, such discarded snapshots are
valuable in improving the task performance of the
model. In this section, we adopt the RecBERT
model as an example to illustrate how we discover
the uses of snapshots saved during training.? A
more detailed explanation of the RecBERT model
is given in Appendix A.

We first trained RecBERT and measured its vali-
dation success rates on navigations in environments
that it had never seen before, called “val_unseen
split.” We noticed that the success rates fluctuate
drastically over time (Fig. 2). We also observed that
both imitation and reinforcement learning losses
drop consistently with time (and equally, success
rates on seen environments increase consistently
with time). These interesting discoveries led us to

*Here, we call RecBERT initialized by PREVALENT (Hao

et al., 2020) simply “RecBERT,” and the model initialized by
OSCAR (Li et al., 2020a) “OSCAR-initialized RecBERT.”
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Figure 2: The curve of validation success rate over time
during training. We can observe a drastic fluctuation
throughout the training.

Snapshot Period | Success Rate in val_unseen Split
90K - 120K 62.32%
240K - 270K 61.60%
210K - 240K 61.56%
60K - 90K 61.52%
180K - 210K 61.30%

Table 1: Navigation success rates for the top-5 snap-
shots of RecBERT in 10 periods of a 300,000-iteration
training cycle.

further investigate whether snapshots that perform
similarly in terms of success rates might behave
differently with respect to the errors that they make.

We set up an experiment designed as follows: we
trained the RecBERT model for 300,000 iterations
and saved the best snapshot in the validation split
for every 30,000 iterations ( Table 1). We chose the
best two snapshots (62.32% and 61.60% success
rates) and counted the navigations for which only
one of the snapshots failed, both of the snapshots
failed, or none failed. Our results show that 563
navigations ended with different results between
the best and the second-best snapshots, approxi-
mately 24% of the validation data. In comparison,
the difference in their success rates is only 0.72%.
The massive difference between 24% and 0.72%
suggests that different navigation recommendations
occur even though success rates are almost equal.

We also discovered that different snapshots may
pay attention to different words in the instruction
at the same time step even though their predicted
paths may be identical. To study this, we added an
attention regularization loss on RecBERT during
training (details in Appendix B) that encourages
the model to pay attention to the sub-instruction
that corresponds to the ground-truth path viewpoint
at each step (the ground-truth sub-instruction in-
formation is provided by the “Fine-grained R2R"
dataset (Hong et al., 2020b)). We found that the at-
tention regularization does not bring significant in-
crease or decrease of performance to the model, but
the attention scores enable us to see which words
the model focuses on in each step. The different

Snapshot 1

Snapshot 2.

andwalk through the
srchway onthe left !

Figure 3: (a) Scene with current position of agent (red).
(b) Attention scores for words by two snapshot models
from different training periods (high attention in red, low
in green). (c) Panoramic view of the agent at the current
position. Interestingly, both snapshots make the same
movement recommendation (red arrow in (a) and (c)),
although the attention scores visualized in (b) suggest
that the two snapshots focused on different words.

distributions of high attention words between the
two snapshots of the same model suggest these
snapshots look at different words when facing an
identical instruction and surroundings (Fig. 3). We
next describe how we can leverage the behaviors of
multiple snapshots in an ensemble and thus create
a better agent.

4 Proposed Snapshot Ensemble Method

Our proposed method consists of three algorithms,
a snapshot builder (Algorithm 1), a procedure to
use the ensemble to decide on the next naviga-
tion step (Algorithm 2), and a method to select
an ensemble (Algorithm 3). The snapshot builder
ensures that M snapshots are evenly selected dur-
ing model training on the validation data. Algo-
rithm 2 computes the textual and visual embed-
dings x;, y; per snapshot s; of the basic model (e.g.,
RecBERT or HAMT) and the action recommen-
dation s;(z;,y;) at a given step of the navigation
process, i.e., for a given viewpoint v. The action
recommendation is a vector of scores, where each
entry corresponds to a particular action available
at viewpoint v. Algorithm 2 then computes a cu-
mulative score p(a;) for each action a; by adding
the recommendations of all ensemble snapshots
for that action. Finally, Algorithm 2 returns the
action Gepsemble With the highest cumulative score
as the action recommended by the ensemble.
Running a single RecBERT model at inference
time costs a certain amount of time and memory
that scales up quickly when the number of snap-
shots included in the ensemble increases. Further-
more, some resources may not be used effectively



Algorithm 1 Building Snapshots for the Ensemble

1: procedure SNAPSHOT BUILDER(Model,Validation-
Split)
2: Divide a training process of [N epochs evenly into M
periods {m1, ma, ..., ma }, assuming N is divisible
by M.
while Training the model for N epochs do
for i from 1 to M do
During each period m;, save the snapshot s;
with the highest success rate

6: return {s1,...Sn},

W

Algorithm 2 Navigation with Ensemble

procedure NAVIGATION NEXT STEP(Viewpoint v, in-

struction x, snapshots s1, ..., Sa)
2: if viewpoint v = ven,q then Exit
for each s; do
4: Compute textual feature x;
Compute visual feature y; at v
6: for each action a; available at v do
Compute score p(a;) = Ei” si(Tiyyi)
8: Gensemble = arg max{Va; | p(a;)}

return Qensemble

since not all snapshots are contributing equivalently
to the improvement of the ensemble performance.
We therefore needed to find an efficient and effec-
tive method to build an ensemble. We propose a
beam search procedure (Algorithm 3) as a “meta-
learner" to select only a subset of the saved snap-
shots to be included in the ensemble. There are
several benefits of applying beam search as a meta
learner: It does not need training. The search only
takes time at evaluation, which is much less costly
than training a meta-learner. Also, to set up an
ensemble of size k, with beam size [, the approxi-
mate number of evaluations needed for our beam
search strategy is O(M k) when M > k, which is
much smaller than the cost of an exhaustive search
O(min(M*, MM=k),

An alternative way to set up an ensemble without
searching is to choose the top-k saved snapshots.
Our investigation shows that an ensemble of top-
3 snapshots only achieves 63.5% success rate on
val_unseen split, while the best ensemble of size 3
found by the beam search process achieved 65.4%,
almost 2 pp better. We suggest that our proposed
beam search process has a good balance between
efficiency and performance.

5 Experiments

We ran the following experiments to evaluate the
performances of snapshot ensembles in different
models and datasets:

(1) We evaluated the performance of snapshot

Algorithm 3 Select Snapshots to Build an Ensem-
ble

procedure META-LEARNING ENSEMBLE SELEC-
TOR(Model Snapshots s1,...,Sar)
Let Scandidatﬁ = {517 ey SJW}-
3: Let B < [] > B keeps track of the top-l ensembles.
Add S1, Sz, ..., 81 = {} to B. > lis the beam size
Set k + 1.
6: while £ < K do > K is max size of ensemble.
for S; € Scandidate do
for S; € Bdo
9: if s; notin S; then
Evaluate {s;} + .5;
B < the top-l ensembles from all {s;} + S;.
12: k+—k+1
return Best ensemble ever saved in B. > It is not
necessarily in the most recently updated B.

ensembles on the R2R dataset, including ensem-
bles built from RecBERT model snapshots, HAMT
model snapshots, and from both. A detailed expla-
nation of the HAMT model is given in Appendix C.

(2) We created snapshot ensembles with other
VLN models, namely the OSCAR-initialized
RecBERT (Li et al., 2020a) and Env-Drop (Tan
et al., 2019). We compared their ensemble perfor-
mances on R2R against their best single snapshot.

(3) We evaluated the performance of the
RecBERT snapshot ensemble on the R4R dataset,
which is a larger VLN dataset than R2R and con-
tains more complicated navigation paths.

5.1 Dataset Setting and Evaluation Metrics
We used the R2R train split as training data,
val_unseen split as validation data, and test split
to evaluate the ensemble. For the R4R dataset, we
also used the train split as the training data. As
there is no test split in the R4R dataset, we divided
its val_unseen split into two halves that do not share
scenes. We constructed the snapshot ensemble on
one half and evaluated it on the other half.

We adopted four metrics for evaluation: Success
Rate (SR), Trajectory Length (TL), Navigation-
Error (NE), and Success weighted by Path Length
(SPL). SR is the ratio of successful navigation num-
bers to all navigations (higher is better). TL is
the average length of the model’s navigation path
(lower is better). NE is the average distance be-
tween the last viewpoint in the predicted path and
the ground truth destination viewpoint (lower is
better); SPL is the path-length weighted success
rate compared to SR (higher is better).

5.2 Training Setting and Hard/Software Setup

We trained the RecBERT and the OSCAR-
initialized RecBERT with a default 300,000 iter-



Model R2R val_unseen R2R test
TLd) NE@) SR SPL() [ TL@) NEJ) SR SPL()
Random Anderson et al. (2018) 9.77 9.23 16 - 9.89 9.79 13 12
Human Anderson et al. (2018) - - - - 11.85 1.61 86 76
Seq2Seq-SF Anderson et al. (2018) 8.39 7.81 22 - 8.13 7.85 20 18
Speaker-Follower Daniel Fried et al. (2018) - 6.62 35 - 14.82 6.62 35 28
PRESS Li et al. (2019) 10.36 5.28 49 45 10.77 5.49 49 45
EnvDrop Tan et al. (2019) 10.7 5.22 52 48 11.66 5.23 51 47
AuxRN Zhu et al. (2020) - 5.28 55 50 - 5.15 55 51
PREVALENT Hao et al. (2020) 10.19 4.71 58 53 10.51 53 54 51
RelGraph Hong et al. (2020a) 9.99 4.73 57 53 10.29 475 55 52
RecBERT Hong et al. (2021) 12.01 3.93 63 57 12.35 4.09 63 57
OSCAR-init. RecBERT Hong et al. (2021) 11.86 4.29 59 53 12.34 4.59 57 53
RecBERT + REM Liu et al. (2021) 12.44 3.89 63.6 57.9 13.11 3.87 65.2 59.1
HAMT Chen et al. (2021b) 11.46 2.29 66 61 12.27 3.93 65 60
Ours:
EnvDrop Snapshot Ensemble 11.74 4.9 53.34 49.49 11.9 4.98 53.58 50.01
RecBERT Snapshot Ensemble 11.79 3.75 65.55 59.2 12.41 4 64.22 58.96
OSCAR-init. RecBERT Snapshot Ensemble 11.22 4.21 59.73 54.76 11.74 4.36 59.72 55.35
HAMT Snapshot Ensemble 11.67 3.44 67.82 62.27 12.47 3.77 66.45 61.07
RecBERT + HAMT Mixed Snapshot Ensemble 10.96 3.20 70.58 65.24 11.79 3.52 69.82 64.66

Table 2: Evaluation results (best performance bolded). Our mixed snapshot ensemble achieved the new SOTA performance in

NE, SR, and SPL.

ations. We ran an ablation study to decide M =
10, k = 4 and [ = 3 for constructing the ensemble
(we fixed [ to be 3 and fine-tuned M and k, de-
tailed in Appendix D). When mixing the RecBERT
and HAMT models, the candidate number becomes
2M accordingly. In R4R, we set k = 3 to shorten
the evaluation time. For other parameters, we used
the default given by the authors.* As for the train-
ing of the HAMT model, the model is initialized
from the end-to-end, with the proxy-task-finetuned
states provided by their source code. >

We ran the training code under Ubuntu 20.04.1
LTS operating system, GeForce RTX 3090 Graph-
ics Card with 24GB memory. It takes around
10,000 MB of graphics card memory to evaluate
an ensemble of 4 snapshots with batch size 8 in-
puts. The code was developed in Pytorch 1.7.1, and
CUDA 11.2. The training takes approximately 30—
40 hours. The beam search evaluation was done in
3-5 hours for R2R and twice that time for R4R.

6 Results

Results on R2R. We evaluated the snapshot ensem-
ble of the RecBERT model, the HAMT models, and
a mix of them on the R2R test split (Table 2). All
snapshot ensembles show improved performance
NE, SR, and SPL metrics over single snapshots.
The mixed snapshot ensemble (last row) improved

“We do not adopt the cyclic learning rate schedule (Ilya
Loshchilov and Frank Hutter, 2017) suggested by Huang et al.
(2017) that forces the model to generate local minima because
we found no significant improvement in a trial.

Shitps://github.com/cshizhe/VLN-HAMT

the performance by almost 5 percent points (pp) in
SR and SPL, showing that snapshots across models
have a good synergy with each other.

In our second set of experiments that evaluated
whether other VLN models can be improved with a
snapshot ensemble, we found that both ensembles
(based on OSCAR-init RecBERT and EnvDropout)
consistently gained more than 2 pp increase in SR
and SPL compared to the best snapshot of the re-
spective models (Table 2). That suggests the snap-
shot ensemble is also able to improve the perfor-
mances of VLN models with different structures.

Results on R4R. The more challenging dataset
R4R (Jain et al., 2019) contains more data and
more complicated paths of variant lengths. We saw
a more than 1 pp increase in SR and SPL after
applying the snapshot ensemble (Table 3).

7 Discussion

We now discuss why a snapshot ensemble works
well for VLN. We use a RecBERT ensemble of size
3 as an example for investigation.

7.1 Ensemble Balances Snapshot Predictions

Linguistic understanding errors made by one or
more snapshots of the ensemble can be corrected
by the others because the ensemble predicts actions
based on a weighted voting mechanism, whose vot-
ers are the snapshot scores (s;(x;, y;) in line 7 of
Algorithm 2) as the weights. We give an example
in Fig. 4. At the second step of the navigation, two
of the snapshots falsely misinterpreted the words




Model R4R val_unseen_half R4R val_unseen_full
TLl NEJ SRt SPLt | TL] NEJ SRt SPLt
Speaker-Follower - - - - 199 847 238 12.2
EnvDrop - - - - - 9.18 347 21
RecBERT 1376 7.05 3729 2738 | 13.92 6.55 43.11 32.13
RecBERT Snapshot Ensemble (ours) | 15.09  7.03 39 28.66 | 1471 6.44 44.55 3345

Table 3: Results on R4R with half and full splits. The ensemble gains in all metrics over RecBERT.

"Go through the
large wooden

} doors and

. Pass the

model go left
and pass
the second set
of wooden
doors. Continue
going straight
and stop at the

snapshot1| 2.8

snapshot2 | -2.1 6.6

snapshot 3 | 1.1 0.1 chair at the end

of the table."

ensemble | 1.8 73

Figure 4: The ensemble makes the correct decision de-
spite linguistic misunderstandings by some snapshots.
The correct path from @ to is recommended by a
high-confidence snapshot 2 (cyan) that focuses on “turn
right," while snapshots 1 and 3 (green, gray) misinter-
pret “photos on the left" to mean “turn left."

“photos on the left" as a signal for turning left. Due
to the weighted voting mechanism, the one snap-
shot that correctly understood “turn right" in the
previous sentence prevents the ensemble from mak-
ing a mistake. A detailed case study of this correc-
tion process is given in Appendix E.

We also observe that the ensemble makes
more similar decisions to its snapshots than the
snapshots to each other showing its robustness to
the differing opinions of its snapshots. To illustrate
this observation, we studied its failed navigations
compared to the failed navigations of its snapshots.
Let s1, s2, 83, Sens represent snapshots 1-3, and
the ensemble. Let E be the counts of failed
navigations (in val_unseen split). We compute
E517 E827 E33’ Eslﬂsm Eslr‘|537 E52053a Eslﬂszﬂs;g’
as shown in the Venn diagram in Fig. 5. Then
we repeat this process, replacing sy with Seps.
The ensemble shares more navigations with
both snapshots 1 and 3 than snapshot 2 in both
successful and failed navigations (i.e., 529 + 1086
shared navigations for the ensemble v.s. 477 + 988
shared navigations for snapshot 2). Meanwhile,
the number of navigations that are only failed
by the ensemble is less than that of snapshot 2
(34 < 132). These numbers suggest that the
ensemble behaves more similarly to its snapshot
members than the replaced snapshot. We repeated
this process by replacing snapshots 1 and 3 with
the ensemble (one at a time) and also found that
the ensemble makes more similar decisions to its

RecBERT: 988 Snapshot 1
(1086) 177

0
Snapshot 2 @ Snapshot 3

(Ensemble) 192

132
59) (193)

Figure 5: A Venn diagram of the number of failed navi-
gations by RecBERT snapshots. The numbers not in any
circle are successful navigations by all 3 snapshots. The
numbers in parenthesis are the counts when snapshot 2
is replaced by the ensemble, showing that the ensemble
share more similar navigations to those of its members
than the members’ navigations are to each other.
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Figure 6: A failed navigation. The ensemble (in orange)
is misled by one (in blue) of its three snapshots. The
ensemble chose to go left and ignored the correct deci-
sions by the other snapshots (in yellow and green).

snapshots than the snapshots to each other. We
also observed this when we used a size-3 mixed
snapshot ensemble with RecBERT and HAMT
models (see Fig. 9 in Appendix).

However, there are cases where the weighted
voting mechanism may lead to an incorrect deci-
sion (Fig. 6). When a snapshot makes a wrong
decision with high confidence, the prediction may
override the recommendations of the rest of the
snapshots and lead the ensemble to an incorrect
decision. Fortunately, this number of failed ensem-
ble navigations caused by a single snapshot is only
about a quarter of all failed navigations and about
10% of the total number of navigations.

To show the advantage of applying an ensemble,
we also counted the successful navigations of the
ensemble/snapshots in each scene of the dataset
(Table 4). We found that different snapshots are



Scene | Ensemble | Snap 1 | Snap2 | Snap3
1 178 165 169 159
2 32 33 32 29
3 140 131 131 144
4 208 189 199 185
5 10 11 8 9
6 169 161 170 152
7 203 198 200 196
8 217 205 204 212
9 93 80 89 84
10 102 95 89 89
11 185 177 173 181

Table 4: The count of successful navigations for the
ensemble and its snapshots (snaps) in each scene on
val_unseen split. Best snapshot performances are in
bold. We can see that different snapshots are good at dif-
ferent scenes and that the ensemble either outperforms
i.e., has more successful navigations than the best snap-
shot or is comparable to it.

good at different scenes. The ensemble either out-
performs its snapshots or is comparable to the best
snapshot, suggesting that the ensemble leverages
the advantages of snapshots in different scenes to
achieve better performance.

7.2 Ensemble Avoids More Long Navigations

Ambiguity always exists in human language. We
found that another benefit of an ensemble is that,
as long as there is one snapshot that is able to con-
fidently disambiguate, e.g., focus on a keyword
not being paid attention to by the others, its pre-
diction can override those almost-tie predictions
from other snapshots. For the example in Fig. 7,
the instruction “walk straight down kitchen into
hallway" can lead to two different paths. If acting
individually, two of the three snapshots will recom-
mend an infinite-loop path in the living room (in
green and blue). One high-scoring snapshot (in or-
ange) focused more on the word “kitchen" than the
phrases “walk straight down" and “into hallway."
The ensemble is thus able to recognize the correct
path (in red) leading through the kitchen instead
of the living room. Generally, we observe that lin-
guistic ambiguity often causes agents to become
lost or stuck in infinite loops, and navigation needs
to be cut off after a certain number of steps. We
use 15 as the default cut-off threshold and call any
sequence of recommended actions that is longer
than 15 a Long Navigation (LN). To quantitatively
show how an ensemble prevents more LNs than a
single snapshot, we count the LNs for snapshots
of the size-3 RecBERT ensemble, and compute the
success rates when their navigation is an LN (Table
5). We discovered that an average of 8.13% of the

"Walk into
hallway, turn left
and enter
kitchen, walk
straight down
into
hallway. Stop
facing
bathroom. "

Figure 7: A snapshot ensemble prevents long naviga-
tions by disambiguating instructions. The ground truth
path (in red) from @ to @ is recommended by a high-
confidence snapshot (orange) that focuses on the word
“kitchen." In the ensemble, this snapshot overrides the
recommendations of the other two snapshots (green and
blue) that focus on “walk straight down" and would lead
the agent into an infinite loop (nodes with cross).

SR LN Count | LN that fail (%)
Snapshot 1 | 61.5 172 159 (92.%)
Snapshot2 | 62.3 155 141 (91%)
Snapshot3 | 61.3 246 223 (91%)
Ensemble 65.4 131 123 (94%)

Table 5: Long navigation (LN) count and success ratio
(SR). The ensemble is more successful with fewer long
navigations than individual snapshots.

navigations from the snapshots are LNs. The situa-
tion is improved in the size-3 RecBERT ensemble,
with only 5.5% of its navigations being LNs. Since
LN has a high likelihood (> 90%) of failing and
the ensemble has significantly fewer LNs than its
snapshots (131 vs. up to 246), we consider avoiding
more LNs as one of the reasons why the ensemble
outperforms single snapshots.

8 Conclusion

In this work, we discovered and utilized differences
in snapshots of models that make movement rec-
ommendations for vision-language navigation. We
proposed a snapshot ensemble method that lever-
ages these differences. By combining snapshots
of the RecBERT and HAMT models, our method
achieves a new SOTA performance on the R2R
benchmark dataset. Additional experiments show
the generality of our method when applied to other
model architectures or data. In future work, we
will adapt our snapshot ensemble method to ad-
dress related navigation tasks that combine vision
and language input. We will consider the task of
following natural language instructions for navi-
gating digital domains such as websites (Pasupat
et al., 2018) or mobile apps (Li et al., 2020b). Snap-
shot ensembles may also be effective in solving the
visual goal-step inference task (Yang et al., 2021).
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A RecBERT Model

Recurrent-VLN-BERT (RecBERT) model by Hong
et al. (2021) takes as input in each time step textual,
visual, and previous state tokens and output action
scores using a cross-model self-attention mecha-
nism. A visualization of the RecBERT model struc-
ture is given in Figure 8.

When a BERT model converts text inputs into
word embeddings for computation, a cls token is
added to the beginning of the embedding vector and
a sep token is added to its end to indicate the text
sequence is over. The cls token will later interact
with the words of the instruction, visual features
by the attention mechanism in BERT. In RecBERT,
the text-and-visual encoded cls token is used to
decide what action to take at the current time step.
Concretely, an instruction is converted to word em-
beddings pre-trained by the PREVALENT model
(Hao et al., 2020).

Before computing the prediction of actions, the
model selects a set of candidate views from O;.
Each candidate view contains a unique naviga-
ble viewpoint that leads to the next viewpoint:
Ocand = [0017 0027 e ] - Oz The Ocand
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Figure 8: A visualization of the RecBERT model. The
instruction feature first passes through a self-attention
module and then attends to a candidate feature vector
through a cross-self-attention module. The candidate
feature then performs self-attention in the same module.
After four layers of computation, the last layer outputs
the probabilities of each action and sends the cls feature
to a cross-modal matching module. The output replaces
the cls feature in the instruction vector of the next time
step.

will be converted to the ResNet-152 features pre-
trained on Place365 dataset with an all-zero vec-
tor that represents the ‘stop’ action: F,fan d
ResNet-152(Ocana) + [Ostop)®-

After that, the RecBERT model projects the can-
didate views and the instruction into the same fea-
ture space Finstructions Feandidate- Eventually, we
have a vector of instruction features

F-tzl = [fcls,fwla"afwufé‘@p}

instruction

and a vector of candidate action features
Ftol = [fars > fan> fastop)

candidate
as inputs of the action prediction.
. t—=1 .

At the first time step, F;...ction 1S SENt t0 a 9-
layer self-attended module. Thus the féfsl feature
is encoded with the information from words of the
instruction.

The model then appends randidate
from F/—1 .. . After that, a cross-attention
sub-module attends to the remaining elements in

t=1 : t=1 t=1

instruction> 1-€+ both Fcandidate and cls *

Lastly, another sub-module computes the
self-attention of the instruction-attended
[Ft=L e [, Such cross and self sub-
modules build up the ‘cross + self-attention’
module in Figure 8. The process repeats for four
layers and the attention scores between Ctljl and
each elements in Fcta:nldi date Of the last layer are the

prediction scores of each action py, . ..

t=1 t=1
fus o F

y Dstop-

®In practice, the values for heading and elevation angles of
the camera are also concatenated with the image features to
encode the relative position of the view in the viewpoint.
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Additionally, the f!,, in the output is sent to a
cross-modal-matching module. The output of the
module is used as fct;gl in the next time step while
other features in F/--} . .. remain unchanged.
The ‘cross + self-attention’ computation will be
repeated to compute action predictions for the re-
maining time steps.

The RecBERT model minimizes two losses, the
imitation learning loss and the reinforcement learn-

ing loss:

T T

Eoriginal =-A Z Gt IOg(pt)_Z Qg lOg(pt)A(t)v
t=1 t=1

(1

where a; is the teacher action (one-hot encoded
action that gets closest to the destination), p; is
the probability of the taken action, as is the ac-
tion taken, and A(t) is the advantage value at time
step t, computed by the A2C algorithm Mnih et al.
(2016). To balance the contributions of the imi-
tation and reinforcement learning loss values in
the computation of the total loss, hyper-parameter
A = 0.5 1is used.

B Our Inclusion of Attention
Regularization in RecBERT

In this section, we describe how we added an at-
tention regularization mechanism to the RecBERT
model. The benefit of our approach is that it en-
ables us to monitor which words in the VLN in-
struction the model pays attention to.

During the computation of the cross-attention
that encodes the Fctandidate and f(fls with the in-
formation from F}, . . .. . the attention scores
between the cls token and each word in the in-
struction are also computed. Hong et al. (2021)
observed that the OSCAR-initialized RecBERT
model maintains high attention scores on words
that correspond to the current navigation step, im-
plying that those words are important to the current
decision. Inspired by this observation, we wanted
the RecBERT model to have such a feature as well,
so that it will be clearer for us to know which words
mostly affect the decision of the model.

Concretely, at time step 1, for each set of atten-
tion scores X; = [z1,...,xz] from f to each
word in the instruction wy, .., wy,, to force such a
pattern to be trained, which is defined as follows:

»Cattentioni = MSE(tanh(Xz)a Gz)a ()

where “MSE" stands for Mean-Squared-Error and
Gi = [gi1, .-, 9i1] is the “ground truth" values
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for the normalized attention scores tanh(X;). G;
is computed based on the sub-instruction annota-
tion from the Fine-Grained R2R dataset (FGR2R)
(Hong et al., 2020b). The FGR2R dataset divides
the instructions in the R2R dataset into a set of or-
dered sub-instructions: I = [Lsup,, Lsuby, -+ Lsub,]
where ¢ is the number of sub-instructions the orig-
inal instruction consists of. Each sub-instruction
corresponds to one or a sequence of viewpoints in
the ground truth path P = {v1,v2, ..., Vend}-

To compute G;, we first build a map from each
viewpoint v; in P to a specific sub-instruction
in I. The map function is very straightforward:
we choose the first sub-instruction Ig,, in I that
corresponds to v; as the mapped sub-instruction.
By doing so, each viewpoint v in P now has their
own related sub-instruction I, in I. We then
compute G; = [g1, ..., g1], by the following steps:

* Find the viewpoint v; where the agent stands
at time step ¢. If v; ¢ P, choose the viewpoint
in P that is closest to v; as the new v; € P.

» Compute each g; € G| by:

1 if w; € Ly,
-1 otherwise,

since every v; has its mapped I3,

We compute each £;?tention and the total loss be-
comes:
T
L= ﬁoriginal + Z ﬁattention(t)’ 4)
t=1

where v = (.5 is a hyper-parameter and 7' is the
total number of time steps.

C HAMT Model

The HAMT model is based on a large cross-modal
transformer encoder on three types of features: text
features X = [cls, w1, ...,wr], history features
H; = |hes, b1, ..., hy—1] and observation features
Oy = [01, ..., Ok, Ostop).-

The text features are similar to the ones in
the RecBERT model. The difference is that the
word embedding features are pre-trained by several
proxy tasks (Chen et al., 2021b) instead of by the
PREVALENT model.

The history features H; are obtained from the
panoramic views in the previous steps which keep



track of the visual and action information in the
past. In general, the [hs, 1, ..., hy—1] represents
the visual and action history information of the
navigation in the previous steps.

Different from the candidate features fo in
RecBERT, the observation features O; contain fea-
tures of all views from the current viewpoint v;.
To indicate whether there is a navigable viewpoint
in the particular view, a “navigable embedding" is
added to the observation features to tell the model
that such a view leads to a navigable viewpoint.

At time step t, the instruction [ is converted to
the pre-trained word embeddings X by a multi-
layer transformer (which could also be loaded from
the last step, if possible). The panoramic view
is passed to a vision transformer that outputs the
observation feature O;. History features H; are
computed based on the panoramic views from the
previous time steps using transformers. Before
features are sent to the cross-modal transformer en-
coder, H; and Oy are first concatenated as [Hy; Oy].
Inside the cross-modal transformer encoder, the
cross-attention and self-attention are computed se-
quentially on X and [H}; O;]. In the end, the model
produces the encoded results H; and O;.

To decide which action to take, the HAMT
model computes the element-wise product between
the cls token in X', which is X/, and those view
features that contain navigable viewpoints from
Onav = [0}, ..., 0] € 012 X!, ® Opgn. Two fully-
connected layers are used after the element-wise
product, and a softmax computation is performed
to obtain the probability of each available action:

_exp(fes(fea(of © 77y)))
S me exp(fey (fea (0] © 2

cls

p(0;)

)

The loss function used by HAMT is similar to
the RecBERT loss, except the A2C algorithm for
reinforcement learning loss is replaced by the A3C
algorithm Mnih et al. (2016).

D Ablation Study for M and k of
Snapshot Ensemble

To find out the influence of period parameter M
and ensemble size parameter &k on the performance
of snapshot ensemble, we evaluated the perfor-
mance of snapshot ensembles with different values
for M and k using the R2R val_unseen split data.
We fixed £ = 3 and M = 10 as the initial set-
ting for the ablation study experiments. We tested
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M € {5,10,15} and k € {3,4,5}. The results are
shown in Tables 6 and 7.

M | TL] NE/ SR SPL{
5| 12 387 6458 5832
10 | 11.79 3.77 65.18 58.88
15 | 12.08 373 653 58.88

Table 6: The ablation study experiment for the number
of snapshots to save M. Here we fixed k = 3. We
saw an improvement when M increases from 5 to 10
(0.40 pp in SR) but a minor improvement from 10 to 15
(0.12 pp in SR).

M| TL] NE| SRt SPL{
31179 377 65.18 58.88
4 1 118 375 6556 592
501188 38 6569 59.36

Table 7: The ablation study experiment for the maxi-
mum number of snapshots to be in the ensemble k. Here
we fixed M = 10. We saw an increase of SR when k
increases from 3 to 4 (0.38 pp) but not that much from
410 5 (0.13 pp).

According to the results, we see an increase of
0.4 pp in SR from M = 5 to M = 10, while not
that much (0.12 pp) from M = 10to M = 15.
Considering M = 15 takes 50% more ensembles
to evaluate, we chose M = 10 to be our number of
snapshots to save during training.

After fixing M = 10, we discovered that the en-
semble performance improves by 0.38 pp when k
increases from 3 to 4. A much less improvement is
seen when k increases from 4 to 5 (0.13%). Since
setting k = 5 requires another 3,000 MB graphics
card memory and extra sets of ensembles for eval-
uation but with seemingly little improvement, we
decided to use k£ = 4 as our number of maximum
snapshots in the ensemble during beam search.

E Case Study for RecBERT Snapshot
Ensemble

We consider the case of our snapshot ensemble
agent navigating in a museum-like environment.
The panoramic views and model scores are given
in Figure 10

The instruction is “Go through the large wooden
doors and turn right. Pass the photos on the left
and pass the second set of wooden doors. Continue
going straight and stop at the chair at the end of
the table." In most time steps, we can see that all
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Figure 9: The Venn diagram on val_unseen for the
mixed snapshot ensemble of the RecBERT and HAMT
models. The pattern is similar to the one in figure 5,
showing that the ensemble makes recommendations that
are more often equal to those of its members than the
members’ recommendations are to each other.

snapshots contribute to deciding what the ensemble
should act next. However, exceptions exist. In time
step t = 2, snapshots 1 and 3 both ignored “turn
right" and voted to take action 1. As the only cor-
rect snapshot among three, snapshot 2 “forced" the
ensemble to take action 2 by predicting the action
with a much higher prediction score. This observa-
tion suggests that the weighted voting mechanism
helps improve the ensemble performance compared
to that of its member snapshots.

F Additional Analysis

We here show the Venn diagram for the size-3
mixed snapshot ensemble of the RecBERT and
HAMT models in Figure 9. The ensemble agent un-
derstands and reacts to the instructions in a “more
robust way," making less diverse decisions to its
snapshots than its snapshots to each other.
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t=1 action 1 action 2 action3  stop
ensemble  2.30 9.70 7.58  -21.79
snapshot 1 0.99 2.47 2.01 -6.28
snapshot2 0.05 272 3.00 -6.07
snapshot3 1.26 4.51 2.56 -9.44
t=2 action 1 action 2 action3  stop
ensemble  1.80 7.28 -26.59 -31.37
snapshot 1 2.80 0.78 -8.30 -8.22
snapshot2 -2.07 6.56 -7.84 -9.43
snapshot3  1.06 -0.06 -10.47 -13.73
t=3 action 1 action 2 action3  stop
ensemble -15.10 -16.91 13.90 -26.29
snapshot 1 -3.94 -4.77 4.19 -8.01
snapshot2 -9.26 -10.11 7.49 -9.46
snapshot 3  -1.89 -2.02 2.22 -8.81
t=4 action 1 action2 action3  stop
ensemble -1530 5.16 11.18 -15.64
snapshot 1 -4.28 1.51 3.07 -5.26
snapshot2 -10.33  3.02 7.03 -7.53
shapshot 3 -0.69 0.63 1.08 -2.85
t=5 action 1 action2 action3  stop
ensemble 12.22 -17.47 -7.45 222
snapshot 1 2.48 -4.08 -1.67 0.03
snapshot2 7.17 -9.66 -3.18 1.90
snapshot 3  2.58 -3.72 -2.60 0.29
t=6 action 1 action2 action3  stop
ensemble 11.56 -17.18 -16.52 -1.10
snapshot 1 3.64 -4.83 -4.50 -0.56
snapshot2 6.65 -9.24 -8.48 1.25
snapshot3 1.28 -3.12 -3.54 -1.79
t=7 action 1 action2 action3  stop
ensemble  5.98 -0.92 -9.70 17.39
snapshot 1 0.25 -1.11 -1.54 3.48
shapshot2 4.91 1.01 -8.19 5.47
snapshot 3  0.82 -0.83 0.03 8.43

Figure 10: The navigation instruction of this case study is “Go through the large wooden doors and turn right. Pass
the photos on the left and pass the second set of wooden doors. Continue going straight and stop at the chair at
the end of the table." Left: Panoramic views at each viewpoint. Right: Prediction scores of the ensemble and each
snapshot taking action 1, 2, 3, or stop in the current time step. The arrows below the panoramic views point out the

directions of the recommended actions with the ensemble action in bold.




