DesignX: Human-Competitive Algorithm Designer
for Black-Box Optimization

Hongshu Guo', Zeyuan Ma', Yining Ma?,
Xinglin Zhang'!, Wei-Neng Chen', Yue-Jiao Gong' *
'South China University of Technology
2Massachusetts Institute of Technology
{guohongshu369, scut.crazynicolas}Ogmail.com, yiningma®@mit.edu
{csxlzhang, cschenwn}@scut.edu.cn, gongyuejiao@gmail.com

Abstract

Designing effective black-box optimizers is hampered by limited problem-specific
knowledge and manual control that spans months for almost every detail. In this
paper, we present DesignX, the first automated algorithm design framework that
generates an effective optimizer specific to a given black-box optimization problem
within seconds. Rooted in the first principles, we identify two key sub-tasks: 1)
algorithm structure generation and 2) hyperparameter control. To enable systematic
construction, a comprehensive modular algorithmic space is first built, embracing
hundreds of algorithm components collected from decades of research. We then
introduce a dual-agent reinforcement learning system that collaborates on structural
and parametric design through a novel cooperative training objective, enabling
large-scale meta-training across 10k diverse instances. Remarkably, through days
of autonomous learning, the DesignX-generated optimizers continuously surpass
human-crafted optimizers by orders of magnitude, either on synthetic testbed or
on realistic optimization scenarios such as Protein-docking, AutoML and UAV
path planning. Further in-depth analysis reveals DesignX’s capability to discover
non-trivial algorithm patterns beyond expert intuition, which, conversely, provides
valuable design insights for the optimization community. We provide DesignX’s
Python project at https://github.com/MetaEvo/DesignX.

1 Introduction

Black-box optimization (BBO) lies at the core of scientific and industrial advances, such as electronic
design automation [1], molecular design [2] and AutoML [3]. Yet, BBO is challenging due to
unavailable objectives and derivatives, and complex, diverse properties that demand extensive expert
knowledge. Evolutionary Computation (EC) is widely recognized as a robust derivative-free paradigm
for BBO [4]. Since the 1990s, numerous EC variants such as genetic algorithms[5], differential
evolution [6], particle swarm optimization [7], and evolution strategies [8] have emerged. Despite
shared core paradigm, they rely on expert-designed adaptive operators [9] and hyperparameter
control [10] to achieve the best performance on a particular BBO class or instance.

However, manually redesigning optimizers for each new BBO problem is neither scalable nor practical.
Recently, an emerging research avenue termed as Meta-Black-Box-Optimization (MetaBBO) [1] has
emerged, which automates algorithm design (AAD) through a bi-level paradigm: a meta-level learns
a policy to guide low-level BBO optimizer. By meta-training [12] over a distribution of problems,
MetaBBO can generate customized algorithms for both seen and unseen instances.

*Yue-Jiao Gong is the corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MetaEvo/DesignX

Design Process of Human Experts Human-crafted Optimizers after 2020
MadDE, NL-SHADE-LBC, MMES..

= ﬂ @ 0.86

workflow initial parameter suggested —————— = = = — =
design workflow tuning algorithm

O

problem DesignX discovers better
optimizers during training Human-crafted Optimizers between

2010-2020: SHADE, GLPSO, ..

Design Process of DesignX

LR EA Y4 X3

problem DesignX‘s generated DesignX’s suggested
Agent-1 workflow Agent-2 algorithm 0 1 2 3 4 Training Horizon (days

Human-crafted Optimizers between
2000-2010: CMA-ES, JADE, FIPSO..

Optimization Performance
|
I
I

Human-crafted Optimizers
before 2000: DE, PSO..

©—O>

Figure 1: Left: Compared to manual design process, DesignX replaces human experts by two learn-
able agents. Right: Four dashed lines denote average performances of well-known human-crafted
optimizers in decades. During pre-training, DesignX surprisingly discovers powerful optimizers
superior to the ones crafted by human experts.

Despite the success, existing MetaBBO approaches merely focus on learning specific sub-tasks of
AAD for EC. Specifically, optimizer design involves two sequential sub-tasks (see Figure ', top left):
(1) determining the algorithm workflow, and (2) (dynamic) algorithm configuration. Existing work
addresses the former via algorithm selectors [13—15] or workflow generators [16—19], and the latter
through reinforcement learning (RL) [20] for online control [21-24]. While learning a single sub-task
eases training, it often results in sub-optimal designs and limits potential performance gains.

In this paper, we advance MetaBBO research by proposing the first unified framework that jointly
learns both sub-tasks of algorithm design: workflow generation and (dynamic) algorithm configura-
tion, so as to enable the discovery of human-competitive optimizers in an end-to-end fashion.

This is achieved through several key innovations. Firstly, we extend and enrich the Modular-BBO
modularization system in [24], resulting in a more comprehensive system: Modular-EC. Specifically,
since Modular-BBO is primarily constructed for Differential Evolution (DE) optimizer, Modular-
EC integrates more diverse sub-modules in Evolutionary Strategy (ES), Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) algorithms into its sub-module library. Modular-EC now
supports representing different optimizer types, enhancing the capacity of Modular-BBO. Building
on the upgraded Modular-EC, we develop a dual-agent reinforcement learning system (see Figure |,
bottom left), where both agents are Transformer-based [25]: 1) Agent-1 autoregressively samples
valid optimizer workflows conditioned on the problem instance; 2) Agent-2 dynamically adjusts
hyperparameters during optimization by incorporating real-time feedback. A novel cooperative
reward scheme encourages both agents to make mutually conditioned decisions, jointly optimizing
for maximum performance. We train this dual-agent system on a large-scale problem set of 10k
synthetic instances, and observe it consistently discovering optimizers that outperform expert-crafted
baselines (see Figure |, right). Remarkably, through days of autonomous learning, the DesignX-
generated optimizers continuously surpass human-crafted optimizers by orders of magnitude, either
on synthetic testbed or on realistic optimization scenarios such as Protein-docking, AutoML and UAV.
Furthermore, the testing results clearly demonstrate the novelty and superiority of DesignX against
up-to-date MetaBBO baselines. To summarize, the contributions of this paper are in three folds:

* To the best of our knowledge, this paper the first deep learning-based framework that jointly
learns workflow generation and dynamic algorithm configuration in an end-to-end fashion.

* We obtain a well-performing model (DesignX) through large-scale training, capable of
designing powerful optimizers for diverse, unseen, realistic problems.

* Further in-depth analysis reveals the importance of the proposed novel designs, providing
first-hand insights on non-trivial algorithm patterns beyond expert intuition.

2 Related Works

We review the development of Automated Algorithm Design (AAD) over the past decades. Early
efforts by Schmidhuber et al. [26] applied Genetic Programming (GP) to recursively improve another
GP in a self-referential manner. Later, GP was applied to design full algorithm templates [27], but
difficulties in genotype design and expensive evaluations limited its scalability for BBO problems.
Recent MetaBBO approaches integrate machine learning techniques such as reinforcement learning

(RL) and large language models (LLMs) to develop more flexible and generalizable optimizers [|,

]. These RL-based methods like DEDQN [14] and DEDDQN [| 3] focused on operator selection and
hyperparameter control within fixed algorithm structures. More recent methods leverage Transformer
architectures for enhanced control [23, 29], including ConfigX [24] and Q-Mamba [30], which
implement online and offline RL, respectively. Other works explored Transformer-based generation
of algorithm components. SYMBOL [3 1] learned to compose new operators as symbolic sequences.
ALDes [17] tokenized common algorithmic modules and turned workflow design into sequence
generation. GLHF [32] simulated DE operators with trainable modules optimized through gradient
descent. Besides these works, the lifelong learning ability of MetaBBO and its adaptability for
expensive evaluation condition are also discussed in recent literature [33, 34], as well as the automatic
feature learning [35] and training distribution construction [36]. Though these MetaBBO approaches
use relatively small neural networks for meta-learning, they achieved tailored performance on specific
algorithm design tasks. With LLM-scale models, capabilities expand further. LLMs can search
reward functions [37], optimize neural architectures [38], act as optimizers based on previous search
trajectories [39], or generate algorithm code from problem descriptions [18, 19, 40]. However,
existing work focuses on only one sub-task of AAD: either generating workflows or controlling
parameters. No prior method jointly addresses both, which motivates our proposed DesignX to enable
end-to-end algorithm design.

3 Methodology

3.1 Modular-EC

Existing EC optimizers commonly comprise a series of algorithm modules. A massive array of
novel algorithm modules have been proposed in literature for specific optimization scenarios [9,

, 42]. Tt is a quite natural idea to “stand on the shoulder of giants” for designing new optimizers,
that is to say, construct a modular algorithmic space and search for well-performing optimizer
workflow in it [43, 44]. Following such idea, ConfigX [24] proposes a comprehensive modularization
system: Modular-BBO for learning universal hyper-parameter control policy in DE. It groups
commonly used sub-module variants in existing DE optimizers into 9 module types: 6 of which are
UNCONTROLLABLE without hyper-parameters: INITIALIZATION [45], BOUNDARY_CONTROL [46],
SELECTION [47], NICHING [48], RESTART_STRATEGY [49], POPULATION_REDUCTION [50], and
the rest 3 of which are CONTROLLABLE with hyper-parameters: MUTATION [51], CROSSOVER [52],
and INFORMATION_SHARING [53].

In Modular-EC, we have added a novel module type OTHER_UPDATE [54, 55] into Modular-BBO’s
module library, which belongs to CONTROLLABLE namespace. We integrate popular reproduction
operators of diverse ES, GA and PSO optimizers into OTHER_UPDATE and also update the other 9
module types by adding corresponding sub-modules in ES, GA and PSO. To summarize, Modular-EC
supports 10 module types with 116 module variants in total. This results in millions of possible
algorithm workflows, significantly enhancing the expressiveness of Modular-BBO.

For a concrete module variant, Modular-EC assigns it an unique 16-bit binary code id for identify. A
topology_rule list is built within each module variant to indicate which module types are allowed
to be placed right after this module variant, ensuring legal generation of optimizer workflow in
auto-regressive fashion. We list some examples here: 1) Any EC optimizer must start with INITIAL-
IZATION; 2) BOUNDARY_CONTROL is not allowed placed between two subsequent reproduction
modules (e.g., MUTATION and CROSSOVER); 3) RESTART_STRATEGY is only allowed to be placed
at the end of a EC optimizer. We provide more details of the hierarchical architecture, module variants
information of Modular-EC in Appendix

3.2 Dual-agent Algorithm Design System

We propose a dual-agent algorithm design system for DesignX to operate on Modular-EC. As shown
in Figure ~, the system consists of two Transformer-based RL agents: Agent-1 (74) and Agent-2
(mg), each addressing a core sub-task in automated algorithm design. 1) Algorithm workflow
generation: Agent-1 constructs a customized optimizer workflow based on the given problem. 2)
Hyperparameter control: Agent-2 dynamically adjusts the hyperparameters during the optimization
process to enhance performance. By jointly addressing both sub-tasks, DesignX offers a more
complete and effective solution than methods focusing on only one aspect (see Section).

Program Structure Tree

Initialization

Agent-1: Auto-regressive Workflow Generation

Problem Pre-order Traversal

[[
features [Masked Softmax| [Masked Softmax [Masked Softmax Ooooooo
Samplin; Samplin; Samplin;
L1l

GPT2 GPT2 GPT2 PST
i Blocks Blocks Blocks
- problem
| DE-Mutation | | GA-Crossover | start 1 1 \ | 1) . L)
okon OO eeed D;D"’D DDQ"'D
| DE-Crossover | | GA-Mutation |

Agent-2: Dynamic Hyper-parameter Control decoded
hyper-

: 0+=

! 0+ GPT2
| O+ Blocks
|

|

El El El oplzatln

progress
Pre-order Traversal information

O+
o+
o+

000000

generated workflow

Figure 2: Left: The dual-agent system in DesignX processes an optimizer workflow by the pre-order
traversal of its program structure tree. Top Right: Agent-1 generates legal optimizer workflow in an
auto-regressive fashion. Bottom Right: Agent-2 controls hyperparameters of the generated optimizer
workflow by conditioning on the optimization progress information.

Before we get into further technical details, we first explain the Program Structure Tree (PST) [56]
of an algorithm workflow and pre-order traversal of PST. We illustrate a simple example in the
left of Figure ', where a two-population niching-based EC optimizer is represented by PST and
corresponding pre-order traversal respectively. The pre-order traversal representation of an optimizer
workflow is primarily used in Agent-1 and Agent-2 to align with information processing logic of
Transformer architecture, where each module in the traversal is regarded as a token.

3.2.1 Agent-1: Workflow Generation

Agent-1’s workflow is shown in the top right of Figure '. Given the feature vector F, of an
optimization problem p, Agent-1 auto-regressively samples module variants from Modular-EC to
construct a complete optimizer workflow Ap = m,(Fp). The architecture of 7,4 consists of four
components: 1) a problem feature embedder Wyeqture € R13%7 where 13 is Fp’s dimension and h
denotes the token embedding dimension; 2) a Tokenizer Woren, € R16*", where 16 denotes the 16
bits module id; 3) L sequential GPT-2 [57] blocks with k heads and hidden dimension h. We use
M S A; to denote these attention blocks; 4) a masked Softmax module Wsampie € R"*117, where
117 is the numbers of tokens (116 modules in Modular-EC and an additional end token).

Problem Feature Embedding. The raw feature F,, for a given optimization problem p is a 13-
dimensional vector, which is further divided into two parts: 1) 4 basic properties: the dimension,
allowed maximum function evaluations, upperbound and lowerbound of searching range; 2) 9
statistical properties: we use a well-known optimization problem statistical analysis framework,
Exploratory Landscape Analysis (ELA) [58], which provides many statistical low-level features for
profiling high-level optimization properties such as multi-modality, separability, global structure, etc.
Specifically, we select 9 ELA features with both significant independence and efficient computation
according to the sensitivity analysis of ELA features in [59, 60]. We provide a detailed elaboration
on these ELA features in Appendix . Once F, is obtained, we use Wyeqture to map it to a
h-dimensional token, which we denote as start for subsequent optimizer workflow generation.

Auto-regressive Generation. Starting from the start token for problem p, Agent-1 auto-regressively

generates the pre-order traversal of an optimizer workflow A,,. Suppose Agent-1 has generated m

modules { A}, A2..., A}, then the sampling distribution of (m + 1)-th module A7 ! is:
P(Agb+1|start, A}g, ey AYY) ~ Softmax(mask(A;”) ® (VVSTMM,Ie . H("L)))a 0

H = MSA;(Pos + {start, Wy, - A} .get _id(), ... Wi e - A .get_id()})

where we first get each sampled module’s id and use the tokenizer to map them to tokens with
h-dimension. Then all tokens including start are added with Cosine Position Encoding Pos. After
going through the GPT-2 blocks MSA;, we use Wyampie to map the output embedding H (m)
for m-th module as the prediction head. Recall that we have to ensure the generated workflow is
legal. To achieve this, we propose a masked Softmax sampling procedure. A boolean mask vector
mask(A}') € R!'17 is obtained by checking AJs topology rule A} .get_rule(). Hadamard product

between the mask and prediction head squeezes the sampling probability of illegal modules to O.
We note that the dimension of prediction head and the mask is 117, which corresponds to the 116
modules in Modular-EC and the end token. Without the end token, Agent-1 has risks of generating
infinite trajectory. Refer to Appendix ', Table ' to check which modules could be placed right
before end. In the rest of this paper, we use 74(.A,) to denote the sampling probability of a concrete
workflow A4, which is the successive multiplication of all generation steps:

74(Ap) = P(Ay|start) P(A2|start, AL)...P(end|start, A}, ..., AM) (2)

P
3.2.2 Agent-2: Dynamic Algorithm Configuration

Agent-2’s workflow is shown in the bottom right of Figure . Once A, is generated by Agent-
1, it is used to optimize p. During the optimization process, given some observed optimization
progress information O, at t-th optimization step, Agent-2 dynamically adjusts hyper-parameter
values C; = mg(O;) for all CONTROLLABLE modules in .4,,. The motivation behind Agent-2 is that:
a common observation in EC domain reveals that hyperparameter values in an optimizer more or less
impact the exploration/exploitation tradeoff [9]. An effective parameter control policy could further
enhance the optimization performance of the optimizer generated by Agent-1.

To suggest per optimization step hyperparameter values for CONTROLLABLE modules in .A,, an
informative optimization progress feature vector O; is first computed following the common idea of
up-to-date MetaBBO approaches [23, 24, 31]. O, is a 9-dimensional vector of which each dimension
is a statistical feature indicating the local/global distribution in solution/objective space, convergence
progress and optimization budget usage information. We provide detailed description of these features
in Appendix . Agent-2 then embeds O; into each module in A, to get all module’s embeddings:

Emb(AT) = Pos + W), - [AT .get_id(), 0] m =1,2... M 3)

where WT € R?5*" maps the concat of module id and O, to h-dimensional embeddings. The
final embedding for each module is obtained by adding the h-dimensional embeddings with Cosine
Positional Embedding codes, which inject relative order information, to let Agent-2 grasps the overall
optimizer workflow structure. The suggested hyperparameter values at optimization step ¢ is decoded
by first feeding the embeddings of all modules into L sequential GPT-2 [57] blocks with k heads and
hidden dimension h (denoted as M S As). Then the output decision embeddings H .. are further
decoded into normal distribution parameters:

=W, Hieey, S=Wg Hice, Haee =MSAy(Emb(A}),...,Emb(A))) 4)

where Wi € R'Nmas and W € RMNmas are network parameters of the hyperparameter
value head. They map H.. to the mean parameters y € RM*Nmas and covariance parameters
Y € RM*Nmaz where u(™) e RNmae and £(™) ¢ RNme= denotes distribution parameters for
m-th module in .A,,. At last, the hyperparameter values C; are sampled from the predicted normal
distributions for all A/ modules:

Cr={C}, ., CM} ~ (N (D, 5D), N (D), 50D})

We have to note that since different modules in Modular-EC might hold different number of hyperpa-
rameter values, we predefine a maximum configuration size N, 4, to cover them. If the number of
hyper-parameters in a module is less then V.., we use the first few sampled values and ignore the
rest. Suppose the optimization horizon for problem p is T steps, Agent-2 will be asked 7" times for
deciding the per-step hyper-parameter values. In the rest of this paper, we use 79 (Cy|Ap) to denote
the associate probability of the hyperparameters for .A,, at optimization step ¢ :

M
mo(ColAp) = [T M(ut™, ™) ©)
m=1
3.3 Cooperative Large Scale Training
We propose a large scale meta-reinforcement-learning paradigm to ensure the pre-trained DesignX

model could benefit from the harmonious cooperation between Agent-1 & 2, and is capable of being
generalized towards unseen problems.

2We only consider sampling for modules with at least one hyperparameter.

Large Scale Synthetic Problem Set. We construct a large scale synthetic problem set containing
12800 diverse problem instances for the ease of training generalizable DesignX model. 32 representa-
tive basic problems are first collected from popular BBO benchmarks [61, 62], including Rastrigin,
Schwefel, Rosenbrock, etc. We follow the steps below to generate 12800 diverse problem instances:

9% th)

1) We first define three problem construction modes, “single”, “composition” and “hybrid”. “single
mode randomly selects one basic problem. “composition” mode randomly aggregates 2-5 basic prob-
lems by weighted summation of their objective functions. “hybrid” mode divides decision variables
into some subcomponents and then randomly selects a group of basic functions, which are used for
different subcomponents. 2) By randomly selecting the construction modes and determining the
searching range, dimension (5-50d), maximum allowed optimization budget (10000-50000 maxFEs)
and rotation/shift in solution space, we construct 12800 problem instances with diverse optimization
properties, which aligns with the intricate problem distribution in real world. We further randomly
split them into a training problem set D;,4i, (9600 instances) and a testing set Dy (3200 instances).
A more detailed elaboration is provided in Appendix

Cooperative Training Objective. We formulate the automated algorithm design task of DesignX
as a dual-agent Markov Decision Process (MDP). For each problem instance p € Dy,q;r, Agent-1
first generates a legal optimizer workflow .A;, with probability 74(.A,) in Eq. (7). A, is then used
to optimize p until its allowed optimization budget is used up. For each optimization step ¢ along
this optimization process (7" steps in total), Agent-2 continuously dictates hyperparameters C; with
f;),fl,*_f;,*

=ty
where f;’* denotes the optimal objective value found until ¢-th step (w.l.o.g., p is assumed as a
minimization problem), f; denotes the optimal objective value of p. Then the training objective of
DesignX’s MDP can be formulated as:

probability 7 (Cy|A,) in Eq. (7). We record the reward obtained at ¢-th step as r, =

‘Dt7'ui7zl T
1
T(¢,0) = Epap,rain [Z] = W Z ZTt)
t=1 ramiloo—1 ¢=1

which is the expected optimization performance if we use DesignX’s Agent-1 & 2 to design optimizers
for solving problem instances in Di,q;,. For Agent-1, there is no intermediate reward (delayed-
reinforcement task), hence we train it by episodic reinforcement learning method REINFORCE [63].
For Agent-2, the per-step reward r; can be used hence we train it by the popular PPO method [64].
We provide the pseudo code of the training procedure in Appendix ', Alg.

4 Experimental Analysis

In this section, we discuss the following research questions: RQ1: Can DesignX automatically design
human-competitive BBO optimizers that excel at both synthetic and realistic scenarios? RQ2: What
design skills has DesignX learned? RQ3: How do the core components in DesignX contribute?
RQ4: How is the scalability of DesignX in terms of the scaling law? Below, we first introduce the
experimental setup and then address RQ1~RQ4 respectively.

Experiments Setup. The baselines in experiments include: 1) a DesignX model trained after 6
days; 2) up-to-date MetaBBO approaches GLHF [32], DEDQN [14] and GLEET [23] that excel
at workflow learning or hyper-parameter control; 3) representative human-crafted optimizers: a)
those before 2000, GA [5], PSO [7] and DE [6]. b) those in 2000-2010, CMAES [65], FIPSO [66],
SaDE [67], CLPSO [68] and JADE [69]. ¢) those in 2010-2020, CoDE [70], IPSO [71], SHADE [72],
LM-CMA-ES [73] and GLPSO [74]. d) those after 2020, MadDE [75], jDE21 [76], MMES [77] and
NL-SHADE-LBC [78]. For evaluation fairness, we train DesignX and other MetaBBO baselines on
the same Dy,.q;n (see Section). We leave detailed training settings and other hyper-parameter
settings of all baselines at Appendix & . To simplify presentation, we use following tags:
“MetaBBO”, “’before 00’, “00s”, “10s” and “after 20” to tag these baselines.

4.1 Performance Comparison (RQ1)

In-distribution Generalization. All baselines are tested on our proposed D;.s; (see Section =),
with 51 independent runs for each problem instance. Due to the space limitation, we present the
absolute optimization performance of all baselines on 20 of the 3200 tested instances in Table

These 20 instances are randomly selected to showcase their diversity in: a) optimization properties,

Table 1: The in-distribution generalization performance in terms of absolute optimization performance

results on D;.,:. The best is labeled in and the second best is labeled in red.

before 00 00s 10s after 20 MetaBBO DesignX
FI 6.60E-+00 T.64E+00 T27E+00 _— 5.32E+00 280E+00 2.89E-01

MAH, 50D, 30000 FEs | £3.74E+00 7 +£1.64E+00 " +441E01 T +370E+00 T +0.00E+00 © +3.93E-01
F79 298E+00 _ 3J0E+00 _ 538E+00 _ LSIEX00 _ 995E-0I _ 5.68E-02

UAH, 5D, 50000 FEs | +9.95E-01 T £1.71E+00 T +4.05B-01 +1.83E01 T £0.00E+00 T +1.17E+00
FI25 T39E-03 3.50B-06 T48E-04 T.69E-05 T.08E-04 4.81E-07

UAH, 10D, 40000 FEs | +1.38E-03 T £3.50E-06 © =£1.33E-04 7 +7.99E06 " =+0.00E+00 " +2.66E-07
Fi154 [35E+03 [44E+03 I38E+03 T46E+03 SATEH02 _ GOOE+02

UAH, 50D, 10000 FEs | +2.26E+02 7 +345E+02 7 4240E+02 7 £6.17E+02 7 +£0.00E+00 ~ -£7.45E+01
211 6.55E-01 8.04E-01 2.64E-01 1.28E-01 1.59E-01 7.28E-02

MAH, 5D, 40000 FEs | +£2.92E-01 T +6.99E-01 7 +996E-02 " = +243E-02 7 +0.00E+00 7 +6.56E-02
F240 G3OE+00 _— 872E+00 _ S24EX00 _ 3.07EH00 205E+00 1.27E-01

MWL, 20D, 20000 FEs | +4.25E+00 T +1.71E+00 T +2.19E+00 T +331E+00 T +0.00E+00 T +2.99E+00
F326 TTOE+00 — TISE+00 — 247E+00 7.66E-01 T22E+00 — 5.84E-01

UAL, 10D, 40000 FEs | -£1.22E-01 +453E-01 T +4.64B-01 T £5.10E-02T +0.00E+00 T +1.66E+00
F4T1 2.50E-01 Z.07E-01 2.68E-01 128E-01 1.87E-01 791E-02

UAL, 10D, 50000 FEs | +£9.51E-02 7 49278027 4741027 £1.11E02 7 +0.00E+00 " +4.83E-02
F545 2.98E+00 TA9E+00 3.36E+00 S4TE01 T.99E+00 2.61E-08

UWL, 5D, 40000 FEs | +£9.94E-01 T +4.97E-01 T +623E-01 T £1.54E-01 T +0.00E+00 = +6.48E-01
F1045 7 53E+02 Z20E+02 2.29E+02 1.71E+02 921E+02 1.67E+02

MWH, 10D, 40000 FEs | £1.68E+00 T +£147E+02 " +6.06E+01 T +£141E+01 T +0.00E+00 7 +1.06E+02
FI1139 LT6E+0T _ 395E+00 _ 890E+0D 267E+00 _ LI9E+0I _ 1.39E-04

MAH, 10D, 50000 FEs | +1.00E+01 T +1.67E+00 7 +1.54E+00 T £1.15E400 7 +0.00E+00 T +1.47E+00
F1200 74TE+00 T.T4E+00 T.15E+00 T33E+01 T27E+00 T.09E+00

MAL, 50D, 40000 FEs | +£6.29E+00 T +7.00E-03 T £2.56E-02 7 £122E+01 T +0.00E+00 " £2.12E-02
F1556 SO0EF02 _ 2.03E+02 273E+01 _— TABEX0 _ 9.4SE+00 101E+01

MAH, 10D, 40000 FEs | +3.75E+02 7 +1.76E+02 T +7.63E+00 T £7.13E-01 T +£0.00E+00 ~ +1.13E+02
F1653 2.55E+01 2.53E+01 2.72E+01 1.85E+01 T.69E+01 1.54E+01

MAH, 20D, 10000 FEs | +1.53E+00 7 +7.11E-01 7 +7.28E-01 T £2.56E+00 T £0.00E+00 © -+3.47E+00
F1687 8.98E+00 2.07E+01 Z49E-01 2.94E+01 T.94E+00 2.24E-02

MAL, 50D, 40000 FEs | +6.60E+00 T +1.07E+01 T £238E-01 = +2.81E+01 T £0.00E+00 T -£9.09E+00
F2068 3.79E+01 232E+00 T46E+01 T.65E+01 3.72E+01 5.16E-01

MWH, 20D, 20000 FEs | £6.53E+00 7 +1.13E:01 T +1.40E+01 7 +1.41E+01 T +0.00E+00 T +1.06E+01
F2390 393E+00 _ 278E+00 634E+00 LSAE+00 2.04E+01 L8SE-03

MAL, 10D, 30000 FEs | +£2.15E+00 7 +0.00E+00 7 +9.03E-01 T +1.10E+00 T +0.00E+00 T +2.45E+00
2473 T.T0E+00 3.98E-01 872501 6.69E-01 T42E-01 T.63E-01

MAL, 10D, 20000 FEs | +9.06E-02 7 +6.88E-02 7 +1.80E-02 7 +2.53E-01 7 +£0.00E+00 ~ £1.59E-01
F2895 T.90E+01 Z34E+00 T.I8E+01 4.23E+00 4.98E+00 T.99E+00

MWL, 10D, 50000 FEs | +3.88E+00 +1.66E+00 7 £535E+00 " £526E-01 T £0.00E+00 T -£3.34E+00
F2986 437E+02 493E+02 1.60E+02 2.51E+03 T.01E+02 8.90E+01

MAL, 50D, 10000 FEs | +1.71E+02 7 +3.74E+02 7 +645B+01 7 +£242E+03 7 +£0.00E+00 T +2.65E+01
Normalized Averaged | 204E-01 _ LOGE-0I _ TS#E0I _ TA6E0T _ L32B-01 826802

Objective +1.01E+00 T +1.62E+00 T +2.61E-01 +2.35E-01 +7.36E-01 +1.75E-01

—+— DesignX -+~ before 00 —+— 00s 10s —a— after 20 --=- MetaBBO
Protein-Docking HPO-B UAV

0.976
0.6
k 0.20

1
1
1
1
I
1
1
|

0.5

\
0.15 ey ey

T Sl ST SRRy

A N N

0.4

Normalized Objective
e o e
o v o
I 3 32
S

il Tt ot S S G

0.10

0.968 03

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
FEs FEs FEs

Figure 3: The generalization performance of baselines on realistic scenarios.

“U/M” for unimodal/multi-modal, “A/W” for adequate or weak global structures and “L/H” for low or
high conditioning; b) problem dimensions, 5D-50D; c) allowed optimization budget in terms of the
number function evaluations (FEs). We additionally average the baselines in each tag (“before 007,
“00s” and etc.) for the ease of presentation.

The results in Table | reveal that: 1) The human-crafted BBO optimizers achieve progressive
advancement through the expert-level designs proposed over the past decades. However, they are sill
restricted by no-free-lunch theorem. 2) By incorporating learning paradigm into BBO optimizers,
MetaBBO approaches are capable of boosting the low-level optimizers on some problem instances. 3)
The optimization performance of DesignX surpasses both MetaBBO and hand-crafted BBO baselines,
ranking the first place on almost all tested instances with diverse properties. Through learning the
bi-agent system across a large scale problem distribution (D;,4ir), DesignX intelligently designs
powerful and customized optimizers for different problems. To the best of our knowledge, this is the
first time a RL system successfully learns how to automatically design BBO optimizers.

Out-of-distribution Generalization. For learning-assisted optimization techniques, the problem
shifts in realistic scenarios might challenge their generalization ability in practice. To this end, we

test DesignX and MetaBBO baselines trained on synthetic Dy, on three diverse realistic BBO
testsuites: a) Protein-Docking [79], a collection of 280 protein-docking instances, featured by intricate
landscapes; b) HPO-B [80], which comprises 86 ill-conditioning AutoML instances; ¢) UAV [81],
56 diverse conflict-free UAV path planning scenarios featured by implicit constraints multiplier in
objective space (see Appendix for detail). We illustrate in Figure = the average optimization
curves of all baselines, which is averaged within each tag and across 51 independent runs. The results
show that: 1) DesignX generally shows superior optimization behavior to human-crafted optimizers
from different decades, designing desirable optimizers robustly for diverse realistic problems it never
saw during training; 2) DesignX consistently outperforms MetaBBO approaches, which demonstrates
the novelty of our proposed bi-agent algorithm design system. By integrating two RL agents for
both algorithmic workflow generation and hyper-parameter control, DesignX achieves better superior
generalization performance to those MetaBBO baselines for single sub-task.

4.2 What has DesignX Learned?

Dimension | . Q
0.6 0.6,
maxFEs . o Zz
y=Unimodal

1
1
1
1
1
1
@ T
| 1 00 =—— i
Search Range 1 B random
1 -
1
1
1
1
1
1
1
1
1
1

1.0,
08

@
Modality 1 ® 1.0 10

1.0
08 08 08

Global Structure 06 06 06 06
0.4 04 04 Q 04
Conditioning { 02 N 02 — 02 — 02 _
. . - 0.0"Search Range=[-5, 5] -0 [-10, 10] 00 120, 20] 00 [-50, 50]
1 N M C OU BC S PR RS IS W lincar B non-linear no-reduction

Figure 4: Left: Normalized importance factors of different module types for various problem
characteristics. Right: Two look-into cases for interpreting design pattern learned by DesignX.

Insightful Design Skills (RQ2). Before delving into the analysis, we first abbreviate the 10 module
types in Modular-EC to simplify the presentation: INITIALIZATION (“T”), NICHING (“N”), MU-
TATION (“M”), CROSSOVER (“C”), OTHER_UPDATE (“OU”), BOUNDARY_CONTROL (“BC”),
SELECTION (“S”’), POPULATION_REDUCTION (“PR”), RESTART_STRATEGY (“RS”) and INFOR-
MATION_SHARING (“IS”). The following analysis aims to investigate design principles DesignX has
learned based on statistics gathered from the optimizer workflows generated for the 3200 problem
instances in Dy.5;. We list several key observations we found as below:

1) In the left of Figure ', we summarize the relative importance of different module types in Modular-
EC when considering various optimization problem characteristics: Dimension, maxFEs, Search
Range, Modality, Global Structure, Conditioning. To compute the relative importance, we provide
a example here. Suppose we consider the relative importance of “M” (mutation) for Modality, we
first divide problem instances in D;.g; into those unimodal ones and those multimodal ones. Then
based on the optimizer workflows generated by DesignX for these problem instances, the relative
importance can be calculated as the KL-divergence of the sub-module occurence distributions of
“M” in unimodal problems and multimodal problems (see Appendix for more clarification). The
relative importance factor reflects how DesignX thinks when designing an optimizer for a problem
with certain property. As shown in Figure : a) for problems with different modalities, DesignX
leans to design different DE mutation strategies for the generated workflow; b) for problem with
different search ranges, DesignX leans to focus more on the selection of “PR” (population reduction
mechanism). ¢) DesignX thinks designing initialization strategies has very limited impact on the final
performance! These unique findings are non-trivial and deserve further analysis.

2) To investigate the above novel design principles interpreted from DesignX, we further look
into the concrete sub-module occurence distributions in the first two cases. We illustrate them in
the right of Figure . The results could clearly demonstrate DesignX’s intelligent design policy:
a) for unimodal problem, it smartly choose greedy-fashion mutation operators to reinforce the
optimizer’s exploitation, and dictates a composite mutation strategy for multimodal problems to
address exploration and exploitation tradeoff. b) population reduction is an effective mechanism
to upgrade an optimizer’s local search ability. DesignX thinks for problems with relatively smaller
searching range, population reduction should be applied to accelerate the convergence. ¢) we examine
the finding of DesignX on Initialization by replacing the designs in existing optimizers with different
ones. The results validate the correctness of DesignX and is shown in Appendix

="

Reversed Objective

—+— | layer GPT-2
0.6 —— 6 layer GPT-2
—+— 12 layer GPT-2

Accumulated Reward

CMA’&@ Sgs by, [%42 O(.S/. 0.5

4 i, %4, ny 500 2k sk 10k 20k

BN ES [N GA BN PSO EEM DE Training Problem Set Size

Figure 5: Ratios of se- Figure 6: Averaged perfor- Figure 7: Performance comparison
lected module types. mance of ablation baselines. across model sizes and training sizes.

3) Another interesting design principle of DesignX is its unique taste on different optimizer types (DE,
PSO, GA, ES). To illustrate this, we count the number of optimizers generated by DesignX which
contain module variants derived from these four optimizer types, and then present their distribution
in Figure . The results indicate that the DE-related algorithm sub-modules is primarily considered
by DesignX to achieve aforementioned robust optimization performance. We provide several novel
and very competitive DE optimizers discovered by DesignX in Appendix

4.3 In-depth Analysis

Ablation Study (RQ3). DesignX automates BBO optimizer design through the cooperation between
Agent-1 and Agent-2. We hence investigate to what extent the two agents contribute to DesignX’s
final performance. Concretely, we introduce three ablations: 1) w/o A1+A2: randomized Agent-1
& 2 without training; 2) w/o Al: only Agent-2 is trained; and 3) w/o A2: only Agent-1 is trained.
We also include two additional baselines for systematic analysis: 1) SBS: retrain DesignX without
instance/observation features (set as zero vector), making Agent-1 learn a static algorithm workflow;
2) CMA-ES. We present the reversed normalized objective values (higher is better) of the ablations
and DesignX on D4 and three realistic problem sets in Figure ©. Detailed results for each problem
set are provided in Appendix = . The results reveal following insights: 1) we could at least conclude
that generating a correct optimizer workflow might be more important than controlling the hyper-
parameters (w/o A2 v.s. w/o Al); 2) By training DesignX via our proposed cooperative learning
objective, it achieves better performance than sub-task agent, which further validates the effectiveness
of our method. 3) The static optimizer workflow found by SBS cannot perform very well, validating
the necessity of generating customized workflows for each problem.

Scaling Law (RQ4). We further investigate the scalability of DesignX in terms of model capacity
and training data scale. Due to our limited computational resources, a preliminary study is conducted
here. Specifically, we investigate three different model sizes: 1,6 and 12 layers GPT-2 blocks for
both Agent-1 and Agent-2, and five training problem set sizes: 500, 2000, 5000, 10000 and 20000.
We train DesignX under the corresponding 15 combinations and report their testing performance on
D,est in Figure /. y-axis denoted the average learning objective across all tested problem instances
and 51 independent runs. In general, we observe that when problem set scale is small, lager model
might encounter overfitting issues hence underperforms on unseen problems. In contrast, for training-
instance-rich scenario, larger model’s learning ability continuously scales, while smaller ones might
suffer from low capacity. However, in practice, it might consumes exponentially more resources for
stable training in large models and training scales, hence in this paper, we select DesignX with 1
layer and 10k training scale as the final model. We additionally provide a comparison of DesignX
and popular LLMs in terms of their design ability in Appendix

4.4 Additional Discussion

Position of DesignX. We discuss the differences of our DesignX with several related AAD fields:
1) Learning to Optimize (L20) [82]: L20 commonly addresses gradient-based optimization,
while MetaBBO such as DesignX addresses gradient-free ones; 2) Programming by Optimisa-
tion (PbO) [83]: PbO is tailored for a specific target scenario while DesignX aims at generalization
ability for diverse optimization problems; 3) Combined Algorithm Selection and Hyperparameter
optimization (CASH) [84]: CASH is a more general AutoML concept which focuses on selecting
ML algorithms and determining static algorithm configuration. DesignX is capable of “creating” new
ones and provides DAC capability.

Table 2: The detailed breakdown of DesignX’s training time per training step.

Agent Agent-1 (7.5K steps) Agent-2 (2.2M steps)
Problem feature ~ Workflow BBO Learning | Optimization progress Parameter values BBO Learning
Process
computation generation process update feature computation inference process update
Runtime 2s 0.95s 20.01s 0.03s 0.001s 0.02s 0.04s 0.09s

Computational Overhead. We present a running time decomposition analysis of DesignX’s training
in Table ', where the per-learning-step running time for each sub-process in the two agents’ training
is provided. To summarize, the true computational bottleneck of DesignX is not its deep learning
framework, instead, is the inherent simulation cost in BBO optimization loop. This is also one of the
major reason we train DesignX with CPUs, since BBO optimizers comprises many sequential logics
that can not benefit from GPU’s matrix and parallel acceleration support. Besides, if we put agents on
GPU and the BBO process in CPU, the CPU-GPU communication overhead is also too much. When
being used to solve a problem instance, DesignX consumes 5.5s on average and existing advanced
optimizer such as CMA-ES consumes 5.0s, which indicates our DesignX would not increase the
actual inference overhead. We also note that DesignX automatically “design” algorithm for users.
Considering for a user with limited optimization knowledge, this could save much more time and
lower the development difficulty.

Rank-based Comparison. In our major comparison ex-
periment (Table '), to showcase the evolution path of our s b
DesignX during its days of training and also to provide oune ﬂ
an intuitive perspective on its generalization performance e -

under knotty problem distribution, we use average perfor- o ————— Tienrs ¢
mance as a major evaluation factor to show that DesignX s S I | ESS—
has superior performance to those advanced optimizers in s —————— L G

DE

history. The conclusion may vary a little bit if we concen- s
trate on the rank-based performance significance testing
among all baselines. In Figure -, we illustrate such per- Figure 8: The rank-based comparison.
spective, where the critical difference diagram based on

the same rollout data of Table ' is provided. We can observe that when considering relative ranks
across baselines, CMA-ES and DesignX performs almost equally and outperform the others signifi-
cantly. This on the one hand demonstrates DesignX has learned robust policy, on the other hand, also
outlines further improvement is still required.

Potential Limitations. While DesignX serves as an effective end-to-end learning framework for
AAD, it holds certain limitations and anticipates more future research efforts. In this paper, the
primary optimization domain is restricted within single-objective optimization. However, optimiza-
tion domains such as multi-objective optimization requires more complex algorithm modules and
corresponding training problems, which challenges the extensibility of DesignX. Thanks to the
uniform interfaces we have developed in Modular-EC system, complex modules in such optimization
domain can be integrated, and life-long learning/continual learning techniques might be a promising
way to make DesignX embrace diverse optimization domains. Besides, we have to note that the
training efficiency of DesignX is not very ideal. It still takes us 6 days to train DesignX on high-
performance PC. Further improvement such as Multi-GPU parallel mechanism, proximal training
objective, architecture simplification/distillation could be regarded as important future works.

5 Conclusion

In this paper, we propose DesignX as the first end-to-end MetaBBO approach which presents human-
competitive end-to-end designing ability for BBO problems. We propose a novel dual-agent system
with two RL agents for optimizer workflow generation and hyper-parameters control respectively. To
effectively train DesignX, we construct a large scale synthetic problem set with 10k optimization
problems with diverse characteristics. A cooperative learning objective is used to harmoniously
learn optimal design policies for the two RL agents. Surprisingly, a DesignX model with merely
two simple GPT-2 blocks continuously surpass popular human-crafted designs along the training.
We have validated the generalization ability of DesignX on both synthetic and challenging realistic
scenarios. More importantly, non-trivial design principles learned by DesignX are interpreted, which
provides valuable design insights back to the community. We believe DesignX could serve as a
pivotal step towards fully end-to-end foundation models for automated algorithm design.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by National Natural Science Foundation of China (Grant No.
62276100), in part by Guangzhou Science and Technology Elite Talent Leading Program for Basic and
Applied Basic Research (Grant No. SL.2024A04J01361), in part by the Guangdong Provincial Natural
Science Foundation for Outstanding Youth Team Project (Grant No. 2024B1515040010), and in part
by the Fundamental Research Funds for the Central Universities (Grant No. 2025ZYGXZR027).

References

[1] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian
Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design
automation: A survey. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 2021.

[2] Kei Terayama, Masato Sumita, Ryo Tamura, and Koji Tsuda. Black-box optimization for
automated discovery. Accounts of Chemical Research, 2021.

[3] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art.
Knowledge-Based Systems, 2021.

[4] Thomas Back, Ulrich Hammel, and H-P Schwefel. Evolutionary computation: Comments on
the history and current state. IEEE Transactions on Evolutionary Computation, 1997.

[5] John H Holland. Genetic algorithms. Scientific American, 1992.

[6] Rainer Storn and Kenneth Price. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 1997.

[7] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95-International Conference on Neural Networks, 1995.

[8] Andreas Ostermeier, Andreas Gawelczyk, and Nikolaus Hansen. A derandomized approach to
self-adaptation of evolution strategies. Evolutionary Computation, 1994.

[9] Matej Crepin3ek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in evolution-
ary algorithms: A survey. ACM Computing Surveys (CSUR), 2013.

[10] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. Advances in Neural Information Processing Systems, 2011.

[11] Zeyuan Ma, Hongshu Guo, Yue-Jiao Gong, Jun Zhang, and Kay Chen Tan. Toward auto-
mated algorithm design: A survey and practical guide to meta-black-box-optimization. IEEE
Transactions on Evolutionary Computation, 2025.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, 2017.

[13] Mudita Sharma, Alexandros Komninos, Manuel Lépez-Ibafiez, and Dimitar Kazakov. Deep
reinforcement learning based parameter control in differential evolution. In Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, 2019.

[14] Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation strategy based on
deep reinforcement learning. Applied Soft Computing, 2021.

[15] Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang, Zhiguang Cao, Jun
Zhang, and Yue-Jiao Gong. Deep reinforcement learning for dynamic algorithm selection: A
proof-of-principle study on differential evolution. /EEE Transactions on Systems, Man, and
Cybernetics: Systems, 2024.

[16] Wenjie Yi, Rong Qu, Licheng Jiao, and Ben Niu. Automated design of metaheuristics using
reinforcement learning within a novel general search framework. IEEE Transactions on
Evolutionary Computation, 2022.

11

[17] Qi Zhao, Tengfei Liu, Bai Yan, Qiqi Duan, Jian Yang, and Yuhui Shi. Automated meta-
heuristic algorithm design with autoregressive learning. IEEE Transactions on Evolutionary
Computation, 2024.

[18] Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and
Yue-Jiao Gong. LLaMoCo: Instruction tuning of large language models for optimization code
generation. arXiv preprint, 2024.

[19] Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using
large language model. In International Conference on Machine Learning, 2024.

[20] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. 1998.

[21] Jianyong Sun, Xin Liu, Thomas Bick, and Zongben Xu. Learning adaptive differential
evolution algorithm from optimization experiences by policy gradient. IEEE Transactions on
Evolutionary Computation, 2021.

[22] Ke Xue, Jiacheng Xu, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, and Yang Yu.
Multi-agent dynamic algorithm configuration. Advances in Neural Information Processing
Systems, 2022.

[23] Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, and Yue-Jiao Gong. Auto-configuring
exploration-exploitation tradeoff in evolutionary computation via deep reinforcement learning.
In Proceedings of the Companion Conference on Genetic and Evolutionary Computation,
2024.

[24] Hongshu Guo, Zeyuan Ma, Jiacheng Chen, Yining Ma, Zhiguang Cao, Xinglin Zhang, and
Yue-Jiao Gong. Configx: Modular configuration for evolutionary algorithms via multitask
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
2025.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[26] Jirgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: the meta-meta-... hook. PhD thesis, Technische Universitit Miinchen, 1987.

[27] Rebecca Rivers and Daniel R Tauritz. Evolving black-box search algorithms employing genetic
programming. In Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, 2013.

[28] Ke Tang and Xin Yao. Learn to optimize—a brief overview. National Science Review, 2024.

[29] Hongshu Guo, Sijie Ma, Zechuan Huang, Yuzhi Hu, Zeyuan Ma, Xinglin Zhang, and Yue-Jiao
Gong. Reinforcement learning-based self-adaptive differential evolution through automated
landscape feature learning. In Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, 2023.

[30] Zeyuan Ma, Zhiguang Cao, Zhou Jiang, Hongshu Guo, and Yue-Jiao Gong. Meta-black-box-
optimization through offline g-function learning. In International Conference on Machine
Learning, 2025.

[31] Jiacheng Chen, Zeyuan Ma, Hongshu Guo, Yining Ma, Jie Zhang, and Yue-Jiao Gong. Symbol:
Generating flexible black-box optimizers through symbolic equation learning. In The Twelfth
International Conference on Learning Representations, 2024.

[32] Xiaobin Li, Kai Wu, Yujian Betterest Li, Xiaoyu Zhang, Handing Wang, and Jing Liu. GLHF:
General learned evolutionary algorithm via hyper functions. arXiv preprint, 2024.

[33] Jiyuan Pei, Yi Mei, Jialin Liu, and Mengjie Zhang. Libog: Lifelong learning for black-box
optimizer generation. arXiv preprint arXiv:2505.13025, 2025.

12

[34] Zeyuan Ma, Zhiyang Huang, Jiacheng Chen, Zhiguang Cao, and Yue-Jiao Gong. Surrogate
learning in meta-black-box optimization: A preliminary study. In Proceedings of the Genetic
and Evolutionary Computation Conference, 2025.

[35] Zeyuan Ma, Jiacheng Chen, Hongshu Guo, and Yue-Jiao Gong. Neural exploratory landscape
analysis for meta-black-box-optimization. In The Thirteenth International Conference on
Learning Representations, 2025.

[36] Chen Wang, Zeyuan Ma, Zhiguang Cao, and Yue-Jiao Gong. Instance generation for
meta-black-box optimization through latent space reverse engineering. arXiv preprint
arXiv:2509.15810, 2025.

[37] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward
design via coding large language models. In The Twelfth International Conference on Learning
Representations, 2024.

[38] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 2024.

[39] Xiaobin Li, Kai Wu, Xiaoyu Zhang, and Handing Wang. B2opt: Learning to optimize black-
box optimization with little budget. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2025.

[40] Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu.
Llmopt: Learning to define and solve general optimization problems from scratch. arXiv
preprint arXiv:2410.13213, 2024.

[41] Jun Zhang, Zhi-hui Zhan, Ying Lin, Ni Chen, Yue-jiao Gong, Jing-hui Zhong, Henry SH
Chung, Yun Li, and Yu-hui Shi. Evolutionary computation meets machine learning: A survey.
IEEE Computational Intelligence Magazine, 2011.

[42] Zhi-Hui Zhan, Lin Shi, Kay Chen Tan, and Jun Zhang. A survey on evolutionary computation
for complex continuous optimization. Artificial Intelligence Review, 2022.

[43] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bick. Evolving the structure
of evolution strategies. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
2016.

[44] Christian L Camacho-Villalén, Marco Dorigo, and Thomas Stiitzle. Pso-x: A component-
based framework for the automatic design of particle swarm optimization algorithms. IEEE
Transactions on Evolutionary Computation, 2021.

[45] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. A review of population initialization
techniques for evolutionary algorithms. In IEEE Congress on Evolutionary Computation
(CEC), 2014.

[46] Tomas Kadavy, Adam Viktorin, Anezka Kazikova, Michal Pluhacek, and Roman Senkerik.
Impact of boundary control methods on bound-constrained optimization benchmarking. In
Proceedings of the Companion Conference on Genetic and Evolutionary Computation, 2023.

[47] Anupriya Shukla, Hari Mohan Pandey, and Deepti Mehrotra. Comparative review of selection
techniques in genetic algorithm. In 2015 International Conference on Futuristic Trends on
Computational Analysis and Knowledge Management (ABLAZE), 2015.

[48] Haiping Ma, Shigen Shen, Mei Yu, Zhile Yang, Minrui Fei, and Huiyu Zhou. Multi-population
techniques in nature inspired optimization algorithms: A comprehensive survey. Swarm and
Evolutionary Computation, 2019.

[49] Thomas Jansen. On the analysis of dynamic restart strategies for evolutionary algorithms. In
International Conference on Parallel Problem Solving from Nature, 2002.

13

[50] John E Pool and Rasmus Nielsen. Population size changes reshape genomic patterns of
diversity. Evolution, 2007.

[51] Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N Suganthan. Recent advances in
differential evolution—an updated survey. Swarm and Evolutionary Computation, 2016.

[52] William M Spears. Adapting crossover in evolutionary algorithms. In Evolutionary Pro-
gramming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming,
1995.

[53] Michel Toulouse, Teodor G Crainic, and Michel Gendreau. Communication issues in designing
cooperative multi-thread parallel searches. 1996.

[54] Tareq M Shami, Ayman A El-Saleh, Mohammed Alswaitti, Qasem Al-Tashi, Mhd Amen
Summakieh, and Seyedali Mirjalili. Particle swarm optimization: A comprehensive survey.
IEEE Access, 2022.

[55] Zhenhua Li, Xi Lin, Qingfu Zhang, and Hailin Liu. Evolution strategies for continuous
optimization: A survey of the state-of-the-art. Swarm and Evolutionary Computation, 2020.

[56] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Computing
control regions in linear time. In Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, 1994.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 2019.

[58] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Giinter
Rudolph. Exploratory landscape analysis. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, 2011.

[59] Quentin Renau, Carola Doerr, Johann Dreo, and Benjamin Doerr. Exploratory landscape
analysis is strongly sensitive to the sampling strategy. In Parallel Problem Solving from
Nature—PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands,
September 5-9, 2020, Proceedings, Part II 16, 2020.

[60] Mario Andrés Muifioz, Michael Kirley, and Kate Smith-Miles. Analyzing randomness effects
on the reliability of exploratory landscape analysis. Natural Computing, 2022.

[61] Ali Wagdy Mohamed, Anas A Hadi, Ali Khater Mohamed, Prachi Agrawal, Abhishek Kumar,
and P. N. Suganthan. Problem definitions and evaluation criteria for the CEC 2021 special ses-
sion and competition on single objective bound constrained numerical optimization. Technical
report, 2021.

[62] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tusar, and Dimo Brock-
hoff. COCO: A platform for comparing continuous optimizers in a black-box setting. Opti-
mization Methods and Software, 2021.

[63] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 1992.

[64] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[65] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 2001.

[66] Rui Mendes, James Kennedy, and José Neves. The fully informed particle swarm: simpler,
maybe better. IEEE transactions on evolutionary computation, 2004.

[67] A Kai Qin and Ponnuthurai N Suganthan. Self-adaptive differential evolution algorithm for
numerical optimization. In 2005 IEEE Congress on Evolutionary Computation, 2005.

14

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]
[84]

Jing J Liang, A Kai Qin, Ponnuthurai N Suganthan, and S Baskar. Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions
on Evolutionary Computation, 2006.

Jinggiao Zhang and Arthur C Sanderson. Jade: adaptive differential evolution with optional
external archive. IEEE Transactions on Evolutionary Computation, 2009.

Yong Wang, Zixing Cai, and Qingfu Zhang. Differential evolution with composite trial vector
generation strategies and control parameters. IEEE Transactions on Evolutionary Computation,
2011.

Marco A Montes De Oca, Thomas Stutzle, Ken Van den Enden, and Marco Dorigo. Incremental
social learning in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 2010.

Ryoji Tanabe and Alex Fukunaga. Success-history based parameter adaptation for differential
evolution. In IEEE Congress on Evolutionary Computation (CEC), 2013.

Ilya Loshchilov. A computationally efficient limited memory cma-es for large scale optimiza-
tion. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
2014.

Yue-Jiao Gong, Jing-Jing Li, Yicong Zhou, Yun Li, Henry Shu-Hung Chung, Yu-Hui Shi, and
Jun Zhang. Genetic learning particle swarm optimization. IEEE Transactions on Cybernetics,
2015.

Subhodip Biswas, Debanjan Saha, Shuvodeep De, Adam D Cobb, Swagatam Das, and Brian A
Jalaian. Improving differential evolution through bayesian hyperparameter optimization. In
IEEE Congress on Evolutionary Computation (CEC), 2021.

Janez Brest, Mirjam Sepesy Maucec, and Borko Boskovi¢. Self-adaptive differential evolution
algorithm with population size reduction for single objective bound-constrained optimization:
Algorithm j21. In 2021 IEEE Congress on Evolutionary Computation (CEC), 2021.

Xiaoyu He, Zibin Zheng, and Yuren Zhou. Mmes: Mixture model-based evolution strategy for
large-scale optimization. IEEE Transactions on Evolutionary Computation, 2020.

Vladimir Stanovov, Shakhnaz Akhmedova, and Eugene Semenkin. Nl-shade-Ibc algorithm
with linear parameter adaptation bias change for cec 2022 numerical optimization. In /EEE
Congress on Evolutionary Computation (CEC), 2022.

Howook Hwang, Thom Vreven, Joél Janin, and Zhiping Weng. Protein—protein docking
benchmark version 4.0. Proteins: Structure, Function, and Bioinformatics, 2010.

Sebastian Pineda Arango, Hadi Samer Jomaa, Martin Wistuba, and Josif Grabocka. HPO-b: A
large-scale reproducible benchmark for black-box HPO based on openML. In Proceedings of
the 35th Conference on Neural Information Processing Systems, 2021.

Mhd Ali Shehadeh and Jakub Kudela. Benchmarking global optimization techniques for
unmanned aerial vehicle path planning. arXiv preprint arXiv:2501.14503, 2025.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang,
and Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine
Learning Research, 2022.

Holger H Hoos. Programming by optimization. Communications of the ACM, 2012.
Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-weka: Com-
bined selection and hyperparameter optimization of classification algorithms. In Proceedings

of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,
2013.

15

[85] Andrej Dobnikar, Nigel C Steele, David W Pearson, Rudolf F Albrecht, Kalyanmoy Deb, and
Samir Agrawal. A niched-penalty approach for constraint handling in genetic algorithms. In
Artificial Neural Nets and Genetic Algorithms: Proceedings of the International Conference in
Portoroz, Slovenia, 1999, 1999.

[86] Rammohan Mallipeddi, Ponnuthurai N Suganthan, Quan-Ke Pan, and Mehmet Fatih Tasgetiren.
Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied
Soft Computing, 2011.

[87] Sk Minhazul Islam, Swagatam Das, Saurav Ghosh, Subhrajit Roy, and Ponnuthurai Na-
garatnam Suganthan. An adaptive differential evolution algorithm with novel mutation and
crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 2011.

[88] Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary crossover for continuous
search space. Complex systems, 1995.

[89] Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution programs. 2013.

[90] Hu Peng, Yupeng Han, Changshou Deng, Jing Wang, and Zhijian Wu. Multi-strategy co-
evolutionary differential evolution for mixed-variable optimization. Knowledge-Based Systems,
2021.

[91] Thanmaya Peram, Kalyan Veeramachaneni, and Chilukuri K Mohan. Fitness-distance-ratio
based particle swarm optimization. In Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS’03 (Cat. No. 03EX706), 2003.

[92] Raymond Ros and Nikolaus Hansen. A simple modification in cma-es achieving linear time
and space complexity. In International conference on parallel problem solving from nature,
2008.

[93] Nandar Lynn and Ponnuthurai Nagaratnam Suganthan. Ensemble particle swarm optimizer.
Applied Soft Computing, 2017.

[94] T Sobol. The distribution of points in a cube and the accurate evaluation of integrals (in russian)
zh. Vychisl. Mat. i Mater. Phys, 1967.

[95] Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three
methods for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 2000.

[96] Jane-Jing Liang and Ponnuthurai Nagaratnam Suganthan. Dynamic multi-swarm particle
swarm optimizer. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005.,
2005.

[97] Ldcia VR Arruda, MCS Swiech, MRB Delgado, and Flavio Neves-Jr. Pid control of mimo
process based on rank niching genetic algorithm. Applied Intelligence, 2008.

[98] Qingxue Liu, Shengzhi Du, Barend Jacobus Van Wyk, and Yanxia Sun. Niching particle
swarm optimization based on euclidean distance and hierarchical clustering for multimodal
optimization. Nonlinear Dynamics, 2020.

[99] Fei Peng, Ke Tang, Guoliang Chen, and Xin Yao. Multi-start jade with knowledge transfer for
numerical optimization. In 2009 IEEE Congress on Evolutionary Computation, 2009.

[100] Ryoji Tanabe and Alex S Fukunaga. Improving the search performance of shade using linear
population size reduction. In 2014 IEEE Congress on Evolutionary Computation (CEC), 2014.

[101] Vladimir Stanovov, Shakhnaz Akhmedova, and Eugene Semenkin. Nl-shade-rsp algorithm
with adaptive archive and selective pressure for cec 2021 numerical optimization. In 2021
IEEE Congress on Evolutionary Computation (CEC), 2021.

[102] Stephen Joe and Frances Y Kuo. Constructing sobol sequences with better two-dimensional
projections. SIAM Journal on Scientific Computing, 2008.

16

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

John H Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik, 1960.

Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. Center-based initialization
of cooperative co-evolutionary algorithm for large-scale optimization. In 2016 IEEE Congress
on Evolutionary Computation (CEC), 2016.

James Edward Baker. Adaptive selection methods for genetic algorithms. In Proceedings of
the first international conference on genetic algorithms and their applications, 2014.

David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in
genetic algorithms. In Foundations of genetic algorithms. 1991.

Evgeniya Zhabitskaya and Mikhail Zhabitsky. Asynchronous differential evolution with restart.
In Numerical Analysis and Its Applications: 5th International Conference, NAA 2012, Lozenetz,
Bulgaria, June 15-20, 2012, Revised Selected Papers 5, 2013.

Radka Poldkov4, Josef Tvrdik, and Petr Bujok. Controlled restart in differential evolution
applied to cec2014 benchmark functions. In 2014 IEEE Congress on Evolutionary Computation
(CEC), 2014.

Mario A Muifioz, Michael Kirley, and Saman K Halgamuge. Exploratory landscape analysis of
continuous space optimization problems using information content. IEEE Transactions on
Eevolutionary Computation, 2014.

Monte Lunacek and Darrell Whitley. The dispersion metric and the cma evolution strategy. In
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, 20006.

Marco Tomassini, Leonardo Vanneschi, Philippe Collard, and Manuel Clergue. A study of
fitness distance correlation as a difficulty measure in genetic programming. Evolutionary
Computation, 2005.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint, 2023.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint, 2024.

17

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly reflect the paper’s contributions and
scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

18

Justification: We include the discussion about the limitations of the work in Section 4.4.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we provide experimental setup in Section 4.1, inference code is provided in
this link.

Guidelines:

19

https://anonymous.4open.science/r/DesignX-AF70/

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the inference code and complete experimental results of Table 1 in
this link.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

20

https://anonymous.4open.science/r/DesignX-AF70/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided all training and test details in our paper. Specifically, we explain
how we split problem set in Section 3.3 and Appendix C. We provide detailed experimental
setting in Section 4.1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations and error bars of main experimental results
which is calculated from 19 runs in test set. In ablation study, we leverage box-plot to
present the results to show statistical significance of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

21

9.

10.

Justification: We claim in Section 4.1 that all experiments are run on two Intel(R) Xeon(R)
6458Q CPUs with 488G RAM.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We want to state that our work stritly conform with the NeurIPS Code of
Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: In this work, we focus on automatic algorithm design in BBO, we mainly
conduct the experiments in synthetic problems and realistic benchmark without directly
applying to reality scenes.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

22

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks. Our trained model do not have such risk for
misuse either.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We list assets used in our work and their licenses in Appendix.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

23

paperswithcode.com/datasets

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use LLMs as optimizer generation baselines in Appendix.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

A Modular-EC

Legal algorithm

1 1
Module High-level Inheritance Key properties & methods | workflow |
Cid: It Add Property [config_space T - !
Fgetid) +exec() of a module \ |
Add Methods | get_config() | set_config() legal | \
T topology rule &% H |
of a module ' |
.................................. - ique identi |
o il unique identifier H :
1 1
[1
exec() i luti ! |
Add Methods | get_rule() 0 process solutions L !

~id: Int - topology_rule: Lis - id: Int- topology._rule: L ;‘l . worflow

0 +get_rule()

!
L
Selection Niching Low-level Inheritance
None] A pace: None| —
- €O1 space
oo Ll ® o/ Specify 8P
+ +o et id) + exec() + get rule() id
+ get config) -+ s conig0) + st conf gt config) + set configl)

Uniform LHS DE.Binomial

+getid) +exec() +get id) +exec()
+ get_rule()

1
1
1
1
1
1
1
1
1
1
Uncontrollable Controllable i levi i 5
= Middle-level Inheritance in ModularEC :
- id: In i one|
Add&Specify P ty topology_rule i i !
+get id) +exec() & pecify Property {{0POIOgY unique logic \
1
1
1
1
1
1
1
1
1
1
1
1
1

I

I

I

I

I

I

I

I

I

I

i =
! — v ¥ Y
I lone’ - id: Tnt n
I

I

I

I

I

I

I

I

Random Similarity

- id: Int- opology_rule: Lis| o g @ | ~id: Int- topology nie: Lisi o o o

+getid) +execl) +getid) +excc)
+ get_rule() +get_nule()

Femmmmm———— e

Figure 9: Left: The hierarchical Python inheritance in Modular-EC to support intricate polymorphism
in EC modules. Right: Legal/Illegal algorithm workflow examples in Modular-EC.

Hierarchical Inheritance. As illustrated in the left of Figure =, Modular-EC is designed as a Polymor-
phism system via multiple levels of Python inheritance. Such design allows maintaining diverse EC
modules (the bottom ones in Figure ') via universal interface encapsulation. In specific, Modular-EC
holds three levels of inheritances: 1) High-level: All modules in Modular-EC stem from the abstract
base class MODULE, which declares properties and methods shared by all modules. In high-level
inheritance, two sub-classes inherit from MODULE: UNCONTROLLABLE and CONTROLLABLE.
These two sub-classes divide all possible EC modules into those without/with hyper-parameters. For
CONTROLLABLE, we add a config_space property as its hyper-parameter space, which for now is
void until a concrete EC module is created at the low-level inheritance; 2) Middle-level: We have
summarized several major EC module types from existing literature, which are widely adopted in
many EC optimizers. In this inheritance level, UNCONTROLLABLE and CONTROLLABLE are further
divided into these EC module types. Considering that a legal (or rational) EC optimizer workflow
should comprises correctly ordered modules, we add and specify a fopology_rule property for each
module type to indicate which module types could be placed right after it. fopology_rule plays a
key role in DesignX’s dual-agent algorithm design system to ensure legal generation of optimizer
workflow in auto-regressive fashion. 3) Low-level: In low-level inheritance, the concrete variants
of each EC module types are created, which are collected by us from existing EC literature where
they serve as common choices for many EC optimizers. For a concrete low-level module variant, we
assign it a unique id property as its identifier in Modular-EC, specify config_space as a dictionary of
its all hyper-parameters (if it inherits from CONTROLLABLE), and re-write exec() method by how it
processes the solutions during optimization.

Summary of Maintained EC Modules. There are 6 UNCONTROLLABLE module types without
hyper-parameters grouped in Modular-EC:

1. INITIALIZATION [45], which initialize a population of solutions to kick start a EC opti-
mizer. We have maintained 5 initialization variants in the low-level inheritance (e.g., Sobol
sampling [94], LHS sampling [95]).

2. NICHING [48], which divides the population into several sub-populations. We have main-
tained 3 niching variants in the low-level inheritance (Random [96], Ranking [97] and
Distance [98]).

3. BOUNDARY_CONTROL [46], which ensures that the values of solutions in the population
are all controlled in the bound. We have maintained 5 boundary control variants in the
low-level inheritance (e.g., Clip [46], Reflect [46]).

4. SELECTION [47], which selects better solutions from parents/offsprings. We have main-
tained 6 variants of this type in the low-level inheritance (e.g., DE-Crowding [76], GA-
Roulette [5]).

25

Table 3: The list of the practical variants of CONTROLLABLE and UNCONTROLLABLE modules.

(a) The CONTROLLABLE modules.

b modue

ype Name ¥ 10 FonctomT Description Topolog Rule
DEfrand/T T Genert souon s laion = 771+ FT o7 = 73] I —
1000001 - 000000001 ollonery DEsole Crossove
MUTATION T [EReErm)
1 Legal followers: DE-style CROSSOVER
T To] T2 e ¥ s cgal followers: DE-style v
., b FLE [0,1), default 00 Legal followers: DE-style CROSSOVER

DEMesT2 [T
- 000001 - 000000100

2+ T2 (o = ra]

Whers . are rdonly \(u(dm\ulmmmd e s ol
T

DEcurent o besuT [1]
1- 000001 - 000000101

FIF2 £ 0,1), default 10 05

Legal followers:

DE-style CROSSOVER

Generte Soltion 7. xmn\ olution by

DEfcurrent o rand/T [T
1000001000000t 10

F1F2 € 0,1), default 10 0.5,

Legal followers:

DE-style CROSSOVER

DEfand-o-besuT 1T
1000001 - 0000001 1

FILF2e

0,1, default 10 0.5,

Legal followers:

DE-style CROSSOVER

2T

e
dmlulmm ani 2

DE/curtent-to-phest/1 [1°]
1- 000001 - 000001000

F1€[0,1], default 10 05

Legal followers:

DE-siyle CROSSOVER

T =7
is the best solution,
T

dony Selcted soutons and

ed from the

0.1 default 10055
D0, et 008

Legal followers:

DE-style CROSSOVER

DEeurtent-to-phest/Lyarchive |
oo < oninoroo!

Generate solution .S Tl SOTRTOn By 7, = T
here ., is arandomly

indoy selee
ihe poplation and the archive whichconsins infeiorsolutons.

s a randomly

FLEC it 0s:
€ [0.1],default 10 005,

Legal followers:

DEstyle CROSSOVER

el rand-To-phesT T
1- 000001 - 000001010

DE/curtent-to-rand/Lrarchive [
000001 - 00000101 1

FTE0 T Gl 6 05
2 o], et 008

Legal followers:

DE-syle CROSSOVER

=TT)
Pelutions, 1, s tandomi wclcted from the on
infrior Solutons

wssian_mutation [£]
o 00 100

FLF2 € [0,1], defalt 1005,

Legal followers:

DE-style CROSSOVER

upper and lower bounds of the

scarch space

7 €[0,1], default 10 0.1

BOUNDARY_CONTROL

Polynomial_mutation [<5]
1000001 - 000001101

it (e — Do) it < 05
o+ (1= (2= 20) 7)) (ub —), if u > 05
where € (0,1 rundom number, i s te pper an e bounts o the
search spuce.

(@

Generate a mutated solution of 7, as v, =

o € [20,100], default 0,20

Legal followers:

BOUNDARY_CONTROL

Muli_ Mutation_I [15]
17003100 - 000000001

c e and
three DE n s st confguraion 0 selectone of the
configurations are o configured the selected operator:

nutations and the rest

on sub

TO-PREST/TTARCHIVE
DEICURRENT-TO-RANDI 1+ ARCHIVE
DE/WEIGHTED-RAND-TO-BEST/1).

o in default,
£ [0,1],default 10 0.5;
» €101 deait 0015

Legal followers:

DE-style CROSSOVER

Multi_Mutation 2 [10]
1-000100 - 000000010

Contains DE/rand/!, DE/rand/2 and DE/current-to-rand/! three DE mutation sub-modules

7T, DETRANDT,
0 RaND/1).

Legal followers:

DE-style CROSSOVER

Multi_Mutation 3 [56]
1-000100 - 00000001

‘Contains DEfrand/1, DEbest2 and DEfeurrent-to-rand/| three DE mutation sub-modules.

FIeFs £ 01 i .5

Legal followers:

DE-style CROSSOVER

T more Muraion 5 are o0 Ty
o presenting them one by one.

1000100 - 000000100

~1- 000100 - 0001 10001

Crossover

Binomial |
12000010 000000001

TG g s et et a2 e T o W SoTuion:
v i rand; < Cr or j = jra
= -1
0= 4o e i
andom b, and 1, D] i andomly selcted index befoe crossove and D s the
solution dimension.

D where rand; € [0,1]isa

Cr & [0,1] defaul 009

Legal followers:

BOUNDARY_CONTROL

Exponential (6]
1-000010 - 000000010

Exchange a random SOTUTon SSgment Berwaen 7, nd 7, 1 0T & hew SoTuTon,
v, i rande; < Crandk < <

u therwins J =1 Dwhere k€ [1,D)]is arandonly
selected start point for exchanging, L € [1, D) — k] is a andomly determined exchange length,

randj., € (0.1 is the random numbers from index to j and) is the solution dimension.

abest Binomial 7]
12000010 - 000000011

Cr & [0,1]. default 00,9,

Legal followers:

BOUNDARY_CONTROL

Randorily < Berween & solurion =, Selectel Trom The Top 7 popuTation and the ra
Solution v, to get a new solution

oy = [t irendy <Crorj=jrand |0

o1, otherwise
jrand € [1, D] isa

solution dimension.

Randomly exchin:

index and Dis the

abest_Binomialsarchive [
1000010 - 000000100

fault 10 0.9
ultto 0.5

Creol.
pe0.1], b

Legal followers:

BOUNDARY_CONTROL

T el Tom The
o get new solution:

and the trail solution ¢
SCrong=drand D where rand, € [0.1]is2

rand < [1,D]isara
Solution dimension.

index and Dis the

Cr € [0,1], default 009,
P € [0.1], default 00,18

Legal followers:

BOUNDARY_CONTROL

enerate Chd SoTaton(S) 7 By 77 = 05 T BT ¥ (TE 7

SBX [54] ere = {20 Lifusos o . . - » . o
- where 8 € [0.1) i andom number, 1 nd 2,2 are o € [20,100], default 10 20 Legal followers: GA-style MUTATION
randomly sel
e ST SO =TT 55, W By I W o e [0.1), default 1005

Fhmeie [T
1000010 - 0000001 10

randomly

Legal followers:

GA-style MUTATION

i_Crossover_1 [15]
T iaro0. aoriooid

Contains Binomisl and qbest_Binomsial tarchive two DE crossover sub-modules

BOUNDARY_CONTROL

Mulii_Crossover 2 [00]
1000100 - 000110011

Contains Binomil and Exponential o DE crossover sub-modules

o TBivo)w T EXPORETLT
andom selection in default
e et 0 05:

Legal followers:

BOUNDARY_CONTROL

ore Crossover They are to0 many
o presenting them one by one

1000100 000110100

~1-000100- 0001 1101

OTHER_UPDATE

fanilla_PSO [7]
1000011~ 000000001

Dt sl generaion i
velt = w el -rand

um,/ e m u e random v
obal bes

T e et oy i
2. randy - (gbest! —).
e, phent 5 (he e solaion v achieved, et i the

(pbest

e 03] et 007
1,2 € [0,2], default o 140445,

Legal followers:

BOUNDARY_CONTROL

FDR_PSO[01]
1000011 - 000000010

Lvdm wlu\mnn ar
vell = w- velt

rand. € (0, 1] a
Solution and nbe

iy e
)+ 3 randy - (nbest! — z,

ved, ghest? i the global best

e st i e Funes Disne Koo st x5, which

By =gl =1, s and D s solution dimension.

D, f denotes the object

)

e 04,09} et 100229
1,2 € [0,2], default o 1:
5502 ddti 0.

Legal followers:

BOUNDARY_CONTROL

w wluu(mn e i 7 ok ecor
cursole well = w-vel! ™)+ cl -rand, - (phest] - (ghest! — x1), W el04 09 a0
1-000011 -00000001 1 random values, ghest" isthe global best solution, et , = {/‘” i ron, D €10.2] defuult 0 149445, Legal followers: BOUNDARY._CONTROL
5= \pbest!. otherwis
achieved bestsouton of . o, whih s randonty selecid with s b o
A
CMAES 5] o€ [0.1,1] defaultio 1: el followers: Bo I
1-000011 - 000000100 ex € (0.1, 1] defult o 1 Legal fllowers: BOUNDARY._CONTROL
p-CMA-ES (2] f i 5 | e 01, defitionn:
mean . digonal clement or lhrw\m'\ matrix e sve o olowng 1) - ‘ Legal followers: BOUNDARY_CONTROL
1000011 - 000000101 e st o s poplton e o N {oneod D) es € 0.11] default o 1
5 i s N, Saring (ST g 7 VTS e oo, .
MMES (7] ? r e 0.1,1] default o | s Bo» I
1o oto1 10 is sampled by 7 = where , is the Gaussian mean, o is the mutation szength, and = s a Legal followers: BOUNDARY_CONTROL

mutaion vectorsampled by FMS.

es € [0.1,1] defuult to |

Mulii_PSO_L [9°]
1000100 - 000001010

Contains FDR_PSO and CLPSO two PSO update sub-modules

7 E[FDR_PSO_CLPSOT
random selcetion in def

w e [0.4,0.9], default 0.0.729;
€12 € [0,2], default o 1
3¢ [0.2] defuult t0 2.

Legal followers:

BOUNDARY_CONTROL

s are omied
o prscing hemone by o
12000100 - 00000101 1
-1~ 000100 000001101

Tmore

INFORMATION_SHARING

Sharing
1- 000101 - 000000001

Receive The best soTatfon Trom The target sub-population nd repTace The worst soTaton i
current sub-population.

Larget € (1 Ny andom selection in default

Legal followers:

POPULATION_REDUCTION, cnd

5. RESTART_STRATEGY [49], which re-initializes the population when
stagnates. We have maintained 4 restart strategy variants in the low-level inheritance (e.g.,
Stagnation [99], Obj_Convergence [76]).

it converges or

6. POPULATION_REDUCTION [50], which reduces the population size to perform exploitative
optimization. We have maintained 2 variants of this type in the low-level inheritance (Lin-

For CONTROLLABLE modules, we introduce four type

ear [10(

)] and Non-Linear [101]).

1. MUTATION [51], which introduces stochastic local search for each solution. We have
maintained 49 mutation variants in the low-level inheritance (e.g., GA-gaussian [5],

DE/rand/1 [6]).

26

(b) The UNCONTROLLABLE modules.

type] _ Sub-module
Name + Id Functional Description Topology Rule
Uniform [15] Uniformly sample solutions in the search range x ~ U(Ib, ub) Legal followers: DE-style MUTATION, PSO_UPDATE,
0 - 000001 - 000000001 where ub and b are the upper and lower bounds of the search space. GA-style CROSSOVER
Sobol |] Sampl lation in Sobol’ s e Legal followers: DE-style MUTATION, PSO_UPDATE,
0- 000001 - 000000010 ample population in Sobol” sequences. GA-style CROSSOVER
LHST Legal followers: DE-style MUTATION, PSO_UPDATE,

INITIALIZATION

0- 000001 - 000000011

Sample population in Latin hypercube sampling.

GA-style CROSSOVER

Halton [103]
0- 000001 - 000000100

Sample population in Halton sequence.

Legal followers: DE-style MUTATION, PSO_UPDATE,
GA-style CROSSOVER

Normal [101]
0-000001 - 000000101

Sample solutions in Normal distribution @ ~ N ((ub + 10)/2, £ (ub — 16))
where ub and (b are the upper and lower bounds of the scarch space.

Legal followers: DE-style MUTATION, PSO_UPDATE,
GA-style CROSSOVER

NICHING

Rand [
0-000010 - 000000001

Randomly partition the overall population into Ny,;.;, € [2, 4] same size
sub-populations.

Legal followers: DE-style MUTATION, PSO_UPDATE,
GA-style CROSSOVER

Ranking [07]
0-000010 - 000000010

Sort the population according to their fitness and partition them into
Nuicn € [2,4] same size sub-population:

Legal followers: DE-style MUTATION, PSO_UPDATE,
GA-style CRC ER

Distance [’
0- 000010 - 000000011

Randomly select a solution and assign its N P//N,,;c;, — 1 nearest solutions
to a new sub- until all solutions are assigned.

Legal followers: DE-style MUTATION, PSO_UPDATE,

GA-style CROSSOVER

BOUNDARY_CONTROL

Clip [40]
0-000011 - 000000001

Clip the solutions out of bounds at the bound x; = clip(x;, Ib, ub)

Legal followers: SELECTION

Rand [10]
0-000011 - 000000010

Tigy 01b; < w1 < uby,

Randomly regenerate those out of bounds z; ; = {W’ 52, ofherwise
by, ubj), v

Legal followers: SELECTION

Periodic [46]
0-000011 - 000000011

Consider the search range as a closed 100p
(i, if by < @iy < ubj,
“ 7 b, + ((w;,; — ub;) mod (ub; — b)), otherwise

Legal followers: SELECTION

Reflect [
0-000011 - 000000100

2ubj — x5, if ubj < x5,
20b; — a5, if iy < Ibj,
i j, Otherwise

Reflect the values that hit the bound ;|

Legal followers: SELECTION

Halving [46]
0-000011 - 000000101

Halve the distance between the z; and the crossed bound
{;m., 0.5 (i — uby), ifub; < @,
Tij =

Tij+ 05 (@ — Iby). ifwg; < by,
; 4, otherwise

Legal followers: SELECTION

SELECTION

DE-like [6]
0-000100 - 000000001

Select the better one from the parent solution and its trail solution.

Legal followers: RESTART_STRATEGY,
POPULATION_REDUCTION, end,
INFORMATION_SHARING (If NICHING is used)

Crowding [76]
0-000100 - 000000010

The trail solution complete against its closest solution
and the better one survives.

Legal followers: RESTART_STRATEGY,
POPULATION_REDUCTION, end,
INFORMATION_SHARING (If NICHING is used)

PSO-like 7]
0-000100 - 000000011

Replace the old population with the new solutions
without objective value comparisons.

Legal followers: RESTART_STRATEGY,
POPULATION_REDUCTION, end,
INFORMATION_SHARING (If NICHING is used)

Ranking [
0- 000100 - 000000100

Select solutions for the next generation according to the ranking based
probabilities, with the worst one ranking 1, the probability of the solution
rank iis p; = 55 (0™ + (pt — p~) §iiy) where N P is the population
size, p* is the probability of selecting the best solution and p~ is the
probability of selecting the worst one.

Legal followers: RESTART_STRATEGY,
POPULATION_REDUCTION, end,
INFORMATION_SHARING (If NICHING is used)

Tournament [106]
0-000100 - 000000101

Randomly pair solutions and select the better
one in each pair for the next generation.

Legal followers: RESTART_STRATEGY,
POPULATION_REDUCTION, end,
INFORMATION_SHARING (If NICHING is used)

Roulette [5]
0-000100 - 000000110

Select solutions according to the fitness based probabilities p; =

Legal followers: RESTART_STRATEGY,
POPULATION_REDUCTION, end,
INFORMATION_SHARING (If NICHING is used)

RESTART_STRATEGY

Stagnation [00]
0-000101 - 000000001

PRt
where f} is the fitness of the j-th solution and N P is population size.
nitialize the fon if the imp of the best objective
value is equal to or less than a threshold 1020 for 100 i

Legal followers: end

Obj_Convergence [76]
0-000101 - 000000010

Reinitialize the population if the maximal difference of the objective

Legal followers: end

values of the top 20% solutions is less than a threshold 10~16.

Solution_C = [107] the ion if the maximal difference of the solutions Legal followers: end
0-000101 - 000000011 on all ions are less than a threshold 10~16 search space diameter. & :
. initi; the ion if the maximal difference of the objective

Obj

_C [
0-000101 - 000000100

values is less than threshold 10~ and the maximal distance among
solutions is less than 0.005 search space diameter.

Legal followers: end

POPULATION_REDUCTION

Linear [100]
0-000110 - 000000001

Tincarly reduce the population size from the inftial $ize N Py (0 the
minimal population size N P,;,.. The size at generation g + 1 is
NPyi1 = round((NPuin — NPpaa) -) + NPaq

where g iis the generation number and A is the optimization horizon.

Legal followers: Restart_Strategy, end

Non-Linear [101]
0-000110 - 000000010

Non-TinearTy theg + 1 size as
NPyi1 = round((NPpin = N Prag)' =" + NPya)

where N P,in and N Pyq; are the minimal and maximal population
sizes, g is the number and H is the optimization horizon.

Legal followers: Restart_Strategy, end

end

na

end
0-000111 - 000000001

A token indicating the completion of algorithm structure generation
which has no practical function.

2. CROSSOVER [

], which encourages global optimization by exchanging two solution’s

information. We have maintained 17 crossover variants in the low-level inheritance (e.g.,
GA-SBX [5], DE-binomial [6]).

3. OTHER_UPDATE, which denotes other population update paradigm in PSO/ES variants.

We have maintained 10 variants of this type in the low-level inheritance (e.g., ES-CMA [

ES-Diagonal [92], PSO-normal [7]).

4. INFORMATION_SHARING [

I,

], which takes the best solution in the target sub-population

to replace the worst solution in current sub-population to perform information sharing
between sub-populations.

Additionally, advanced evolutionary computation (EC) methods often integrate multiple candidate
operators to dynamically select operators during optimization. To accommodate such scenarios, we
introduce MULTI_STRATEGY modules, which contains 2-5 candidate sub-modules of the same type
(e.g., mutation operators) and expose an additional operator selection parameter in their configuration
space (config_space). For categorization, Multi-Strategy modules inherit the type of their constituent
sub-modules. For example, a MULTI_STRATEGY module containing DE mutation operators is
classified under the MUTATION category.

Module’s ID. The unique identifier id of a module variant is a 16-bit binary code of which: 1) the
first bit is 0 or 1 to denote if this variant is UNCONTROLLABLE or CONTROLLABLE; 2) the 2-nd to

27

7-th bits denote which one of the 11 module types this variant belongs to; 3) the last 9 bits denotes its
id within that module type.

Module’s Topology Rule. A key property in a module variant is its topology_rule, which is a list of
module types indicating which module types are allowed to be placed right after this module variant.
A very simple example is illustrated in the right of Figure *, where in a EC optimizer, selection
modules are not allowed to be placed before crossover modules. We list some other examples
here: 1) Any EC optimizer must start with INITIALIZATION; 2) BOUNDARY_CONTROL is not
allowed placed between two subsequent reproduction modules (e.g., MUTATION and CROSSOVER);
3) RESTART_STRATEGY is only allowed to be placed at the end of a EC optimizer.

In total, we have created 116 module variants in the low-level inheritance to cover commonly used
techniques in existing EC literature. Besides, an end token is included to indicate the end of the algo-
rithm generation. We provide a complete information table about these module variants in Table
and Table ', including their names, types, original papers and hyper-parameters (config_space).
Such a comprehensive module space in Modular-EC could express BBO optimizers with diverse
workflow structures, hence allows learning for effective (even optimal) algorithm design policies.

B Feature Design

B.1 ELA Features for Agent-1

In this paper for each problem we introduce a 13-dimensional feature vector J,, comprising two
components: the 4-dimensional basic problem information and the 9-dimensional ELA features.
The basic information includes the problem dimension (D), maxFEs (mazF E's), upper bound
(ub) and lower bound (Ib). Since the scale of these values could vary, we normalize the feature
of problem dimension Fp = i log;o D and the feature of maxFEs Fpp, = - log;omazFEs.
For the upper and lower bounds we use F,;, = ub/100 and Fy;, = 1b/100 respectively. For the
9-dimensional ELA features which are significant independence and efficient computation according
to the sensitivity analysis of ELA features in [59, 60], we present them in Table . These features
profile the optimization properties of the problem such as modality, Skewness, global structures, etc.

Table 4: The list of the ELA features for Agent-1.

Features Description
ela_meta.lin_simple.intercept | The intercept of the linear regression model approximating the problem.
ela_meta.quad_simple.adj_r2 | Adjusted coefficient of determination of the quadratic regression model without variable interactions.
ela_meta.lin_w_interact.adj_r2 | Adjusted coefficient of determination of the linear regression model with variable interactions.

ic.m0 The initial partial information from the Information Content of Fitness Sequences (ICoFiS) approach [109].
ic.h_max The maximum information content from ICoFiS.
ic.eps_ratio The half partial information sensitivity from ICoFiS.
nbc.nn_nb.mean_ratio The ratio of arithmetic mean based on the distances among the nearest neighbors and the nearest better neighbors.
nbc.dist_ratio.coeff_var The coefficient of variation of the distance ratios.
ela_distr.number_of_peaks The estimation of the number of peaks in the distribution of the function values.

B.2 Statistical Features for Agent-2
The statistical feature O, € R%is summarized below:

1. The first feature is the minimum objective value in the current (sub-)population indicating
the achieved best performance of the current (sub-)population:

Oin1 = min{ﬁ}ie[lwﬂmz] ®)

It is normalized by the difference between the best objective value at initial optimization
f%* step and the global optimal objective value of the optimization problem f*, so that the
scales of the features from different tasks are in the same level. which hence stabilizes the
training. N Py, is the (sub-)population size.

2. The second one is the averaged normalized objective values in the current (sub-)population,
indicating the average performance of the (sub-)population:

Oi2 = meaﬂ{L}ieu,NP,m,] 9)

fO,* _ f*

28

3. The variance of the normalized objective values in the current (sub-)population, indicating
the variance and convergence of the (sub-)population:

Oi = std{ﬁ}ie[wamﬂ (10)

4. The next feature is the maximal distance between the solutions in (sub-)population, normal-
ized by the diameter of the search space, measuring the convergence:
|z — (|2

O;j4= max —— 3= 11
A LN Procar] [[ub — 1b]]5 an

where ub and [b are the upper and lower bounds of the search space.

5. The dispersion difference [110] feature is calculated as the difference of the maximal
distance between the top 10% solutions and the maximal distance between all solutions in
(sub-)population:

||z; — zl]2

O' =
"0 €M 10%N Procar] |[ub — ID]|2

)

(12)
||zi — 2|2

iGN N Procar] [[ub — 1]
It measures the funnelity of the problem landscape: a single funnel problem has a smaller
dispersion difference while the multi-funnel landscape has larger value.

6. The fitness distance correlation (FDC) [111] describes the complexity of the problem by
evaluating the relationship between fitness value and the distance of the solution from the

optimum.
Orq = WP Yoot ™ (i = D — &) 03
© var({d] Yen N pea)) - Var({fitie N penl)
where the f is the averaged objective value in (sub-)population, d} = ||z; — z*||5 is the
distance between x; and the best solution *, d* = mean{d; },c;1 N p,,..,] is the averaged
distance,

var(-) is the variance.

7. The found global best objective among all (sub-)populations, indicating the achieved best
performance of the overall optimization:

Oi,7 = min{ﬁ}ie[l,NP] (14)

8. This feature is the FDC feature for the overall population:

=5 S (i = Pld; — d)
var({d} }ier,np)) - var({ fi}iep,np))

15)

i,8 =

9. The last feature is the remaining optimization budget, indicating the optimization progress:

maxFEs — FFEs
maxrFEs

where maxF'E's is maximum allowed function evaluations and F'E's is the number of
consumed function evaluations.

Oio = (16)

C Synthetic Problem Set Generation

To construct the large scale synthetic problem set, we first collect 32 representative basic problem
functions from popular benchmarks [61, 62], which are listed in Table ~. Given a solution x € RP,
a shift vector o € R? and a rotation matrix M € RP*D the objective value of a D-dimensional
basic problem with problem function f; is formulated as Fy,(z) = f,(M (2 — 0)). Then to enhance
problem diversity, we borrow the idea from CEC benchmarks [61] and construct the “composition”
and “hybrid” problems.

29

Table 5: Overview of the basic problem functions.

D Functions Modality | Global Structure | Conditioning
fi Sphere Unimodal Adequate Low
fa Schwefel F12 Unimodal Adequate Low
f3 Ellipsoidal Unimodal Adequate Low
fa Ellipsoidal high condition Unimodal Adequate High
fs Bent cigar Unimodal Adequate High
fe Discus Unimodal Adequate High
f7 Different Powers Unimodal Adequate High
fs Rosenbrock Unimodal Adequate Low
fo Ackley Multimodal Adequate High
f1o0 Weierstrass Multimodal Weak High
f11 Griewank Multimodal Weak Low
fi2 Rastrigin Multimodal Weak High
fi3 Buche-Rastrigin Unimodal Adequate High
f1a Modified Schwefel Multimodal Weak High
fis Katsuura Multimodal Weak High
f16 | Composite Griewank-Rosenbrock Function F8F2 | Unimodal Adequate Low
fi7 Escaffer’s F6 Multimodal Adequate High
fis Happycat Multimodal Weak Low
f19 Hgbat Unimodal Adequate Low
f20 Lunacek bi-Rastrigin Multimodal Weak High
fo1 Zakharov Unimodal Adequate Low
fo2 Levy Multimodal Weak High
fo3 Scaffer’s F7 Multimodal Weak Low
foa Step-Rastrigin Multimodal Weak Low
fos Linear Slope Unimodal Adequate Low
fos Attractive Sector Unimodal Adequate High
for Step-Ellipsoidal Multimodal Weak Low
fos Sharp Ridge Unimodal Adequate High
f29 Rastrigin’s F15 Unimodal Weak Low
T30 Schwefel Multimodal Weak Low
31 Gallagher’s Gaussian 101-me Peaks Multimodal Weak Low
f32 Gallagher’s Gaussian 21-hi Peaks Multimodal Weak Low

“composition” problems aggregate basic problems using weighted sum. It first randomly select n
basic problem functions as the sub-problems {f!,--- , f"} where n € [2,5]. Then for the i-th
sub-problem we generate a weight w® € (0, 1]. Finally, the composition problem F is calculated as
the weighted sum of objective values of its sub-problems F,(z) = >, w' f*(M*(z — 0)) where =
is the solution, o is the shift vector and M is the rotation matrix.

“hybrid” problems decomposition solutions into several segments and evaluate these segments with
different sub-problems. It first randomly decomposes D problem dimensions into n € [2, 5] segments
with each segment s* = {d*°,--- ,d"P"} where d" € [1, D] is the index of the j-th dimension
in the segment, D" is the length of the i-th segment satisfying) . ; D* = D. Then n basic
problem functions are selected as the sub-problems { f1,--- , f"} with dimensions {D*,--- , D"}

respectively. The evaluation of hybrid problem F}, is defined as Fy,(z) = >, f/((M™(z —0))[s%)).

To construct the 12800 problem instances, for each problem, the problem type is randomly selected
from “single” (basic problem), “composition” and “hybrid”. The problem dimension is chosen from
{5, 10, 20, 50}, the search range is sampled from {[—5, 5], [-10, 10], [-20, 20], [-50, 50] } and the
maxFEs is selected from {10000, 20000, 30000, 40000, 50000} . If the problem type is “‘single”, its
problem function is randomly selected from the 32 basic problem functions. If the problem type is
“composition” or “hybrid”, 2-5 sub-problems as well as their weights or dimension decompositions
are determined. After the construction of 12800 problems, we then randomly split them into a training
problem set Dy,.qi,, With 9600 problems and a testing problem set D, with 3200 problems.

D Pseudo Code of Training

The cooperative training of DesignX is two-stage. Started by three initial models, the Agent-1 model
4, Agent-2 actor g and critic vy, we firstly train Agent-1 and freeze Agent-2 models. For each
epoch and each problem p € Dy, With dimension D, 100 - D solutions are sampled, evaluated and
then used to calculate the ELA features F g, 4 of problem p. Given the feature vector ,, concatenated
by basic problem information and Frr 4, Agent-1 auto-regressively generates the modules .A;, using

30

F, as mentioned in Section in the main paper. Controlled by the frozen Agent-2, A,, optimizes
problem p using p.max I’ E's function evaluations and obtains the accumulated reward Iz, which is
then used to update 74 in REINFORCE [63] manner. After training Agent-1, the well-trained model
is frozen and its Agent-2’s turn. For each epoch and each problem p € Dy,.4iy, Agent-1 generates an
effective algorithm with modules .A,,. For each optimization step, the Agent-2 actor my determines
the hyper-parameters of the CONTROLLABLE modules in A, according to the current state OJ;. The
controlled .A;, optimizes p for one step and obtains the next state O, and reward ;. For each nstep
optimization, the actor 7y and critic vy, are updated for kepoch learning steps in a PPO [64] manner.
The pseudo code is shown in Alg. '. We omit the batch processing for better readability.

Algorithm 1: The pseudo code of the training of DesignX

Input: Training problem set Dy,qir, Modular-EC M, initial Agent-1 model 74, Agent-2 actor
g and critic vy,.

Output: Well trained 7y, mg and vy,.

/l Training for Agent-1;

Freeze my;

for epoch = 1 to Epoch do

for each p € Dyyqin do

Sample solutions X1, 4 € R100P-DXP-D and evaluate them Yer4 = p(Xpra);

Obtain the ELA features Fpr4 = ELA(Xgra,Yera);

Get the feature vector F,, =Concat(p.D, p.maxFEs,p.ub,p.lb, FEra);

Auto-regressively generate the optimizer A, = m,(F,, M) following Section ;

Initial state O;=1 = A,.optimize(p), R, = 0;

while Termination condition is not met do

ar = m9(O4);
Opy1, e = Ap.optimize(as, p);
Rp = Rp + Tts
end
Update 7y by in REINFORCE [63] manner;
end
end
/l Training for Agent-2;
Freeze my;

for epoch = 1 to Epoch do
for each p € Dyyqin do
Generate the optimizer A, as Lines 7~10;
Initial state O;=1 = A,.optimize(p);
while Termination condition is not met do
for step = 1 to nstep do
a; = mp(O4);
Opy1, 1 = Ap.optimize(as, p);
Record transition < s, a¢, S¢41,7¢ >3
end
for k = 1 to kepoch do
\ Update actor 7y and critic v, in PPO [64] manner;
end

end
end

end

E Experimental Setup

E.1 Training Setup

In this paper, we set the embedding dimension ~ = 64 and the number of attention head k& = 4 for
both Agent-1 & 2. The number of blocks L is 1 for Agent-1 and 3 for Agent-2. The maximum number

31

of modules M is 64 and the predefined maximum configuration size NV,,4,; = 12. The training of
both agents on Dy, 4y, lasts for Epoch = 100 epochs with a fixed learning rate 0.0001. Agent-1 is
trained with a batch size of 128. During the training of Agent-2, for a batch of 64 problems, PPO [64]
method is used to update the policy and critic nets for kepoch = 3 times for every nstep = 10 rollout
optimization steps. All experiments are run on two Intel(R) Xeon(R) 6458Q CPUs with 488G RAM.
All baseline configurations align with their original papers.

E.2 Objective Value Normalization

Since the objective value scales of different problems can vary, averaging them directly is not fair,
it cannot reflect the true performance of baselines. To normalize the values to the same scale, we
use the best objective value found by random search f, p ¢ on problem p. Concretely, for problem p

we randomly sample p.maxz F'E's solutions in the search range [p.lb, p.ub] and take the best sampled
objective value as f, . In the experiment, for the found best objective value f;’ p,; Of baseline b in
*/ _ f;,h,i
p,bi T f; RS

values of baseline b on all problem and all runs as the normalized averaged objective value in Table 1

- ; e 1 51 g . .
in the main paper: f, = 5,151 > peDyons 2vim1 Jp,i- The similar procedure is conducted on the

three realistic benchmarks. We also use a reversed normalized averaged objective value formulated
as 1 — f; in the ablation study in Section

test run ¢ on problem p, we normalize it by

. Then we average the normalized objective

E.3 Realistic Benchmark

1. Protein-Docking Benchmark [79], where the objective is to minimize the Gibbs free
energy resulting from protein-protein interaction between a given complex and any other
conformation. We select 28 protein complexes and randomly initialize 10 starting points for
each complex, resulting in 280 problem instances. To simplify the problem structure, we
only optimize 12 interaction points in a complex instance (12D problem).

2. HPO-B Benchmark [80] is an AutoML hyper-parameter optimization benchmark which
includes a wide range of hyperparameter optimization tasks for 16 different model types
(e.g., SVM, XGBoost, etc.), resulting in a total of 935 problem instances. The dimension
of these problem instances range from 2 to 16. To save evaluation time, we adopt the
continuous version of HPO-B, which provides surrogate evaluation functions for time-
consuming machine learning tasks. We also note that HPO-B represents problems with
ill-conditioned landscape such as huge flatten.

3. UAV Path Planning Benchmark [81] provides 56 terrain-based landscapes as realistic
Unmanned Aerial Vehicle (UAV) path planning problems, each of which is 30D. The
objective is to select given number of path nodes (x,y,z coordinates) from the 3D space, so
the the UAV could fly as shortly as possible in a collision-free way.

E.4 Relative Importance Calculation

Taking the relative importance of mutation (“M”) modules on modality as an example, we first
divide problem instances in D;.s; into those unimodal ones and those multimodal ones. Next we
collect the mutation modules used in optimizers generated for unimodal and multimodal problems
respectively. We count the occurence of each mutation sub-modules in the two mutation module
collections as the histogram shown in the top right of Figure 4 in the main paper. Considering the
occurence probabilities of different sub-modules in the two collections for unimodal and multimodal
as two distributions, we then measure the relative importance of mutation modules to modality as
the KL-divergence between the two distributions. For characteristics with more than two properties
such as dimension, maxFEs and search range, we use the maximum KL-divergence among the
distributions. Finally, to highlight the relative importance of different modules to the same problem
characteristic, we conduct the mean-std standardization. Given the importance Z,, , of module w € €

Lo o z . .
wo—Meweo(Tw.p) which is shown in the
StdwEQ(Iw,P

to characteristic p, the standardized importance is I[u, o=
left of Figure ' in the main paper.

32

0.030 10
g 0.025
B £ Do ., 08
£ 2 o] <
20 3 0.020 2 5
P06 & T 0.6 206
3 - § 0.015 'El'g 2 04
E g 504 2 0.
504 S0.010 o 5
3 2 K 4
&02 0.005 02 02
0.000- 0.0 0.0

0.0
U
i

(7%
e
O,

U Sop Lty Hay, Mo
Z) 0, Ky Hag, Vo,
oy ot S oy gy

Sop L Sop. <. &, o Sop <L
b0y A %/fo,,/\/o%a/ b0y A /Y.;/[O'] 017,,0/ '7'/,‘)/7;] b0, A %/r%/vor,ha/

Figure 10: The performance of optimizers with 5 different initialization modules on D;.; and three
realistic benchmarks.

Halton
Initialization
current-to-rand-+Archive
Mutation ¥

Multi-Strategy Multi-Strategy
rand2 current-to-best | current-to-rand rand2 current-to-best | current-to-rand
Mutation Mutation Mutation Mutation Mutation Mutation

Halton
Initialization

Distance
Niching

v

Binomial
Crossover

Binomial
Crossover

Binomial
Crossover

Clip
Boundary Control

Clip
Boundary Control

Clip
Boundary Control

DE _like

DE _like Selection
Selection

Linear
Population Reduction

DE_like
Selection

Linear
Population Reduction

Terminate?
No

Terminate?

(a) (b)

Figure 11: Two examples of DesignX generated DE optimizers.

F Additional Experimental Results

F.1 Insightful Design Skills in Initialization

In Section 4.2 of the main paper, we observed that certain modules (e.g., Initialization) contribute
minimally to optimizer performance. To validate this finding, we replace the Initialization modules
in existing optimizers with five sampling methods: Uniform sampling [45], Sobol sampling [94],
Latin-hypercube sampling (LHS) [95], Halton sampling [103] and Normal sampling [104]. The per-
formance of optimizers with different Initialization modules on D;.; and three realistic benchmarks
are demonstrated in Figure (. The results show that different Initialization modules have limited
impact on the optimization performance, which validates the correctness of DesignX: The influence
of different initialization methods might be diminished by subsequence more important optimization
modules such as mutation modules.

F.2 Examples of Generated DE Optimizers

In this section we provide two examples of the competitive DE optimizers discovered by DesignX
in Figure ' |. Figure is a simple DE/current-to-rand/1/binomial optimizer with an archive for
eliminated individuals. It could perform efficiency exploitative optimization on unimodal problems.
Figure is a relatively complex DE optimizer with two sub-populations split by a Distance-based
Niching module which enhances the population diversity. The two sub-populations both use a
mutation multi-strategy module containing 3 DE mutations: rand2, current-to-rand and current-
to-best, followed by the Binomial crossover. The composite mutation modules not only address
exploration and exploitation tradeoff but also provide Agent-2 more decision flexibility. Besides,
linear population reduction modules are introduced to accelerate the convergence at the end of
optimization. These designs make the optimizer superior in solving multimodal problems. The two
examples validate the intelligence and effectiveness of DesignX.

33

F.3 Additional Results of Ablation baselines

In this section we demonstrate the detailed ablation study results for D,.s; and the three realistic
benchmarks in Figure . The results validate that generating optimizer workflow (w/o A2) is
more important than hyper-parameter control (w/o Al) in general cases. On the other hand, it is
quite obvious that training Agent-1 and Agent-2 in a cooperative way results in better optimization
performance. We also observe that the ablated models and the final DesignX model perform equally
in HPO-B tasks, this might reveal that the generalization of DesignX on extremely ill-conditioned
BBO scenarios is still limited. This might be addressed by some RL-based fine-tuning on specifically
constructed ill-conditioned problem set.

== .
0.030 15 0.90 %
=
50025 !
3 10
hy, D,
24

o
=

<
4
%
73

|

)
4
%
S

2 0.010
= 0.005 -05

Reversed Synthetic
|
Reversed HPO-B
s
[
Reversed UAV

|
w
e
9
%

0.000 -1.0

o
& 0.020 %
by

)
20015
4
L Doy, L L7 e,
() 0 5, 0 0 sy,
A7 L ey 4&42 A7 > ey

"o Vo, o, Dy, "5 Vo, o, D
7, 5, (4
4 /*‘12 47 e 5 Cny 4 /*43 47 A €y 4 /&12

Figure 12: Detailed performance of ablation baselines on D;.,; and three realistic benchmarks.

Table 6: Normalized averaged performance of DesignX and LLMs on synthetic and realistic problems.
GPT-4 Turbo Gemini-1.5 Deepseek-R1 DesignX
D 2.21E-01 2.08E-01 2.31E-01 8.26E-02
test +7.68E-02 +1.22E-01 +7.26E-02 +1.75E-01
Protein 9.72E-01 9.72E-01 9.71E-01 9.69E-01
Docking | +2.57E-06 +244E-06 +2.51E-06 +2.43E-06
HPO-B 3.78E-01 3.95E-01 4.36E-01 3.44E-01
+1.89E-02 +2.10E-02 +1.98E-02 +1.85E-02
1.28E-01 1.31E-01 1.25E-01 1.17E-01
+1.20E-02 +1.79E-02 £1.23E-02 +2.30E-02

UAV

F.4 Comparison to LLMs

We would like to note that Large Language Models (LLMs) is also capable of designing algorithms
for diverse tasks [18, 19]. In the context of Optimization, however, the potential and expertise level
of existing general LLMs may not be very ideal. To demonstrate this, in this section, we consider
three LLM baselines: GPT-4 Turbo [112], Gemini-1.5 [113] and Deepseek-R1 [1 4], and compare
their algorithm design ability with our DesignX model on D,.4; and three realistic problem sets. For
each tested problem instance we prompt the LLMs with a design requirement: “You are an expert in
Black-Box Optimization, given a problem instance with following mathematical form: xxx, and given
its dimension as 10D, search range as [-10, 10], optimization budget as 10000 function evaluations.
Please generate an optimizer with executable code for this problem. Do not generate explanations!".
Then we execute their generated optimizer code to optimize the problem. The averaged results are
shown in Table . DesignX significantly outperforms LLMs across all benchmarks. While LLMs is
demonstrated with powerful general-task-solving capability, the results here clearly indicate their
lacks of optimization-domain-specific knowledge. By checking the codes these LLMs generated,
we found that these general LLMs are only capable of recognizing current task is an optimization
task, while ignoring the specific problem characteristics behind. A direct demonstration is that they
lean to generate a specific kind of optimizer: Vanilla DE, for almost all tested problem instances.
In contrast, DesignX is trained specifically to tailor desired optimizers for diverse optimization
problems. Through its learning from Modular-EC, valuable expert-level knowledge from human
experts are effectively injected into the two agents. The cooperative large-scale training enables
DesignX’s Agent-1 and Agent-2 learn optimal workflow generation policy and parameter control
policy respectively, resulting in state-of-the-art performance.

34

	Introduction
	Related Works
	Methodology
	Modular-EC
	Dual-agent Algorithm Design System
	Agent-1: Workflow Generation
	Agent-2: Dynamic Algorithm Configuration

	Cooperative Large Scale Training

	Experimental Analysis
	Performance Comparison (RQ1)
	What has DesignX Learned?
	In-depth Analysis
	Additional Discussion

	Conclusion
	Modular-EC
	Feature Design
	ELA Features for Agent-1
	Statistical Features for Agent-2

	Synthetic Problem Set Generation
	Pseudo Code of Training
	Experimental Setup
	Training Setup
	Objective Value Normalization
	Realistic Benchmark
	Relative Importance Calculation

	Additional Experimental Results
	Insightful Design Skills in Initialization
	Examples of Generated DE Optimizers
	Additional Results of Ablation baselines
	Comparison to LLMs

