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ABSTRACT

Region captioning models often struggle to generate descriptions unique to a spe-
cific area of interest, instead producing generic labels that could also apply to
other regions within the same image. This ambiguity limits their effectiveness in
downstream applications and prevents them from capturing the fine-grained de-
tails that distinguish objects. To address this, we introduce the Unique Region
Caption Anything (URECA) dataset, a new large-scale benchmark designed to
enforce caption uniqueness for multi-granularity regions. URECA dataset is con-
structed using a novel four-stage automated data pipeline that establishes a one-
to-one mapping between a region and a descriptive caption, ensuring that each
description uniquely identifies its target. We also propose the URECA model, an
architecture built on two innovations for generating unique region captions: a de-
coupled processing strategy that preserves global context by separating region and
image inputs, and dynamic mask modeling to capture fine-grained details regard-
less of any input image scale. Code and weights will be publicly released.

” Describe this region 
in the image. ”

” Describe this region 
in the image. ”

”A red octagonal stop sign with the 
word "STOP" in white letters is mounted 
above a circular no left turn sign on a 
pole. The no left turn sign features a 
white background with a red circle and 
a black arrow curving to the left, 
indicating that left turns are 
prohibited. Both signs ... includes a 
parking payment machine and a building 
with an arched entrance.”

” A red octagonal stop sign with the 
word "STOP" in white letters is 
mounted above a circular no left turn 
sign on a pole. The stop sign is 
prominently positioned in the 
foreground, clearly visible against 
the blurred background of a street 
scene, ...”

” A commercial airplane with a sleek white fuselage and a maroon 
stripe is parked on the tarmac during sunset. The aircraft 
features a large jet engine attached to its wing, showcasing a 
metallic exterior with a visible front turbine ... The fuselage 
displays a smooth, glossy surface with a distinctive maroon 
stripe, adding to the aircraft's polished appearance. The 
landing gear is visible, emphasizing the plane's readiness on 
the ground. ”

” A large jet engine is attached to the wing of a commercial airplane, 
prominently positioned on the tarmac during sunset. The engine features 
a sleek, metallic exterior with a visible front turbine, characterized 
by its circular, fan-like blades ... The scene captures the engine's 
robust design and intricate details, emphasizing its crucial role in 
the aircraft's operation. ”

” The front turbine of the jet engine attached to the wing of a 
commercial airplane. ”

” A red no left turn sign is mounted 
below a stop sign on a pole. The no 
left turn sign features a white 
background with a red circle and a 
black arrow curving to the left, 
indicating ...”

Figure 1: We introduce the Unique Region Caption Anything (URECA) dataset, a novel region-
level captioning benchmark designed to ensure caption uniqueness and support multi-granularity
regions. Each caption is uniquely mapped to its corresponding region, capturing distinctive attributes
that differentiate it from surrounding areas. Furthermore, we propose the URECA model, trained
on our dataset, which effectively generates unique captions for regions at any level of granularity.
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1 INTRODUCTION

Image captioning is a long-standing task at the intersection of computer vision and natural language
processing, requiring both a deep understanding of visual content and the ability to generate fluent
descriptive text. Success hinges on the synergy between accurate visual perception and coherent
language generation. Building upon this foundation, region captioning presents a more granular and
complex challenge, where even state-of-the-art Vision-Language Models (VLMs) (ModelScope,
2024; Wang et al., 2025; OpenAI, 2024; Team et al., 2023) face significant open problems. Unlike
image captioning, which provides a holistic but often shallow description of an entire scene, region
captioning (Yu et al., 2016; Krishna et al., 2016; Sun et al., 2024; Yuan et al., 2024; Wu et al., 2022;
Fanelli et al., 2024; Lai et al., 2024) demands that a model describe all relevant elements within a
specific, user-defined area of interest.

x

Previous Dataset: Instructor wears red jacket.

URECA Dataset: Instructor wearing red 
beanie with red pants in the back.

URECA Dataset: Instructor wearing 
black beanie with black pants in front.

Previous Dataset: Child lined up.

URECA Dataset: Child girl lined up 
wearing black pants wearing beanie.

URECA Dataset: Child boy lined up 
wearing helmet with black and blue 
padding.

Figure 2: Limitations of existing datasets. This
figure shows examples of region–caption pairs
from widely used datasets (Krishna et al., 2016),
where a single caption often applies semantically
to multiple bounding boxes, resulting in a one-to-
many mapping. In contrast, our URECA dataset
provides unique captions for regions.

Prevailing research in region captioning has
largely focused on improving the fidelity
of descriptions by using precise localization
inputs, such as 2D coordinates, bounding
boxes (Huang et al., 2024; Wang et al., 2023;
Wu et al., 2022; Zhao et al., 2025), and
masks (Rasheed et al., 2024), to capture fine-
grained details. While these methods have
achieved impressive results in generating de-
tailed text, they often overlook a critical re-
quirement: caption uniqueness within a single
image. We formally define a caption as unique
if it only refers to its designated region unam-
biguously within the context of the image, such
that the description cannot be correctly applied
to any other region in the same image. For ex-
ample, as illustrated in Figure 2, distinct regions containing different instances of the same object
class (e.g., two different women in an image) may be assigned identical, generic captions.

This failure to generate unique descriptions introduces significant ambiguity. It can cause errors in
downstream applications like referring segmentation (Ding et al., 2025), which relies on a descrip-
tion to uniquely identify a target object. Moreover, it can confuse the model during training, as it
is forced to map visually distinct inputs to identical ground-truth captions. We identify three key
obstacles hindering progress:

1. Lack of uniqueness-driven datasets. Existing datasets (Krishna et al., 2016; Yu et al., 2016;
Rasheed et al., 2024; Zhou et al., 2024) are not explicitly designed to enforce a one-to-one map-
ping between a region and its description. Their captions are often generic and can be reused
across different instances of the same object class, thus failing to capture distinguishing visual
characteristics.

2. Poor granularity in annotations. High-quality annotations are scarce, especially for non-salient
or complex regions. Many datasets focus only on prominent objects, neglecting parts of objects,
object-to-object relationships, and background elements that are crucial for comprehensive and
unique descriptions.

3. Lossy region encoding. Despite their strong generative capabilities, many VLMs (Chen et al.,
2023; Heo et al., 2025; Lian et al., 2025) process regional inputs in a lossy manner. Their archi-
tectures often downsample or simplify region masks, discarding the fine-grained spatial details
crucial for distinguishing between similar instances. This problem is particularly severe for multi-
granularity regions (e.g., small objects, thin parts), fundamentally limiting the model’s ability to
perceive the visual cues required for a unique caption.

To address these fundamental challenges, we introduce the Unique Region Caption Anything
(URECA) dataset. URECA dataset is large-scale resource specifically designed to provide unique
captions for multi-granularity regions, a contribution largely absent from previous research. To
achieve this, we developed a meticulous four-stage data pipeline that enforces a one-to-one mapping
between textual descriptions and their corresponding visual areas. Unlike existing datasets that are
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often limited to salient objects and generic phrases, URECA dataset encompasses a diverse range of
subjects including objects, parts, and backgrounds, ensuring that every caption uniquely identifies
its region.

To properly evaluate a model’s ability to generate captions that are both unique and accurate, we cre-
ated a specialized test set with an additional verification stage to ensure data quality. Furthermore,
we challenge the reliance on traditional metrics (e.g., BLEU (Papineni et al., 2002), CIDEr (Vedan-
tam et al., 2015)), arguing that for uniqueness, semantic equivalence is more critical than the exact
lexical overlap they reward. We therefore demonstrate that LLM-based evaluation metrics (Lian
et al., 2025) can effectively assess semantic quality while maintaining a high correlation with tradi-
tional scores.

To leverage the fine-grained knowledge within our dataset, we propose the URECA model. Its
architecture is founded on two key technical innovations. First, we introduce a decoupled processing
strategy, where a dedicated mask encoder processes the region prompt into spatial tokens while the
full image features remain unaltered. This preserves the global context by avoiding destructive
modifications to the input and precisely locate the prompt region. Second, to handle these region
prompts with high fidelity across all scales, we employ a dynamic mask modeling technique that
systematically tiles the mask, overcoming the fixed-input resolution limitations of visual encoders.

Experiments validate the effectiveness of our approach, demonstrating that URECA successfully
interprets region prompts to generate detailed, unique captions that are precisely grounded in the
target area. We believe that our model, dataset, and insights will significantly advance research in
this domain and broadly benefit the vision–language community.

2 RELATED WORK

Although MLLMs have demonstrated impressive image understanding capabilities, generating cap-
tions for specified regions remains a challenging task. LLaVA (Liu et al., 2023) and MiniGPT-
2 (Chen et al., 2023) have explored conditioning on regions by translating bounding box coordinates
into natural language tokens. However, this approach relies heavily on the MLLM’s abstract ability
to map textual coordinates to spatial locations. Other methods attempt to overlay region masks or
contours directly onto the image (Cai et al., 2024; Yang et al., 2023c; Shtedritski et al., 2023). While
intuitive, this permanently alters the original image, obscuring valuable contextual information.

To avoid modifying the image, another line of work performs feature pooling directly from the vision
backbone’s feature maps, conditioned on either bounding boxes (Wu et al., 2022; Dwibedi et al.,
2025; Ma et al., 2024; Zhang et al., 2024a) or masks (Guo et al., 2024; Heo et al., 2025). While
masks provide more precise localization than ambiguous bounding boxes, the pooling operation
itself introduces significant drawbacks. It is typically performed on low-resolution feature maps
and aggressively aggregates spatial information, leading to a loss of fine-grained details such as
shape and boundaries. In extreme cases, features for small regions can vanish entirely. Critically,
all feature pooling methods share a more fundamental limitation: by extracting features only from
the target region, they discard the surrounding global context. This loss of contextual information
makes it nearly impossible for the model to capture the distinctiveness required for unique caption.

In summary, prior works have not adequately addressed the challenge of generating captions that
are simultaneously unique, precisely localized, and applicable across multiple granularities. This
gap stems from two primary factors: the lack of a large-scale dataset designed to enforce caption
uniqueness, and architectures that struggle to process regional prompts without sacrificing either
fine-grained detail or global context. To bridge this gap,we first propose an automated pipeline
for generating a multi-granularity dataset with unique captions. We then present a novel model
architecture specifically designed to leverage this data, which preserves both local attributes and
global relationships, enabling it to generate truly distinctive descriptions.

3 URECA DATASET

In order to generate unique caption from VLMs, high quality dataset with unique caption pair with
region are crucial. To this end, we propose URECA dataset pipeline, that made with four-stage
approach, enabling to build a large and diverse granularity levels with high quality unique captions.

3
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Stage 1: Mask Tree Generation Stage 2: Top-down Short Caption Generation

“Generate a detailed caption 
focusing on the main object’s 
attributes in the images.”

“Generate a detailed caption 
focusing on the main object’s 
attributes in the images.”

“A silver Mitsubishi Lancer Evolution
GTS parked on a grassy field.”

Root

“The passenger door of a silver
Mitsubishi Lancer Evolution GTS.”

cap 7

“The passenger door of a silver
Mitsubishi Lancer Evolution GTS,
featuring a curved shape and
reflective surface ”

cap 11

Stage 3: Bottom-up Detailed Caption Generation 

…

…

…

“Refine caption considering its 
contextual information to clearly 
identify it from other objects.”

“Generate a detailed caption 
focusing on the main object’s 
attributes in the images.”

cap 4

“Describe main object 
including sub-parts 

descriptions.”

cap 4 cap 6 cap 9…+

cap 4
“A silver Mitsubishi Lancer Evolution GTS
is parked on a grassy field, showcasing its
sporty design ... The rear trunk panel
displays the Mitsubishi logo, while the
rear bumper has a smooth, curved design.
The vehicle is equipped with black multi-
spoke wheels and a prominent rear spoiler,
enhancing its dynamic appearance ...”

cap 7

“The passenger door of a silver Mitsubishi
Evolution RS is prominently displayed,
featuring a sleek design with a smooth
surface and a visible handle on the upper
left side ... door includes a side window
with a reflective surface, hinting at a
reflective interior ... ”

Stage 4: Uniqueness Refinement

cap 7 cap 11 cap 13+ +

“Describe main object 
including sub-parts 

descriptions.”

Similarity score

1 2 3 4

5

6 7 8 9

1011 13

. . .

7

9

cap 7
“The rear passenger door of a silver Mitsubishi

Lancer Evolution GTS features a sleek handle and smooth
surface, complemented by a curved, reflective window ...”

cap 7

cap 9

cap 9
“The driver's door of a silver Mitsubishi

Lancer Evolution GTS is highlighted, showcasing its sleek
handle and smooth, metallic surface ...”

Figure 3: Automated data curation pipeline of URECA dataset. Our pipeline consists of four key
stages to generate unique captions for multi-granularity regions. In Stage 1, we construct a mask
tree that captures hierarchical relationships between regions. Stage 2 generates short captions based
on the parent node. Stage 3 aggregates captions from child nodes, and Stage 4 ensures that each
node is assigned a unique caption. Best viewed in zoomed-in.

Previous research has made significant progress in generating dense region captions; however, ap-
proaches focusing on multi-granularity regions remain scarce. When considering the granularity
of regions, distinguishing their unique attributes becomes crucial (Park & Paik, 2023; Wang et al.,
2020b; Liu et al., 2019; Wang et al., 2020a), as visually similar regions frequently appear within
an image. Existing approaches have struggled to generate truly unique captions for regions, often
producing generic descriptions despite clear visual differences.

This tendency to generate generic captions contradicts human perception, as humans naturally rec-
ognize and describe regions based on distinctive attributes like color, position, and shape. However,
existing captioning datasets often lack such specificity, and training models on such generic captions
that do not emphasize regional uniqueness can contribute to the mode collapse problem (Wang et al.,
2020b), where models fail to generate diverse and informative captions.

To address this lack of specificity in existing datasets, we propose URECA dataset, a dataset de-
signed to enhance models’ ability to generate unique captions for given multi-granularity regions.
Our dataset is generated through an automated data pipeline that creates and verifies captions in a
stage-wise manner. Specifically, we build our dataset using the publicly available SA-1B dataset,
which offers high-resolution images and multi-granularity regions. To further ensure caption qual-
ity in the test set, we incorporate a verification step using GPT-4o (OpenAI, 2024) as part of the
pipeline.

Data annotation pipeline. To generate unique captions that effectively capture multi-granularity,
it is crucial to consider both target and non-target regions. Captions that focus solely on the target
region often become overly localized and repetitive, making it difficult to distinguish between sim-
ilar regions. To address this, we structure hierarchical relationships between regions, ensuring that
captions incorporate broader contextual information.

At the core of our approach is a mask tree, constructed based on Intersection-over-Union (IoU).
This hierarchical structure organizes regions into subset-superset relationships, allowing us to sys-
tematically capture dependencies between different regions. This hierarchical structure enables a
comprehensive understanding of region dependencies at both global and local levels, ensuring the
generation of unique captions. Full implementation details for our data pipeline, including the spe-
cific prompts and parameters used to guide the annotation MLLM at each stage, are provided in the
Appendix.

This process follows a structured sequence of four stages, as illustrated in Figure 3:
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Dataset Simple caption Dense caption Region caption Multi-granularity Unique caption

RefCOCOg (Yu et al., 2016) ✓ ✗ ✓ ✗ ✗
Visual Genome (Krishna et al., 2016) ✓ ✗ ✓ ✗ ✗
PACO (Ramanathan et al., 2023) ✓ ✗ ✓ ✗ ✗
Partimagenet (Chen et al., 2014) ✓ ✗ ✓ ✗ ✗
PRIMA (Wahed et al., 2024) ✓ ✓ ✗ ✗ ✗
LLaVA-115K (Liu et al., 2023) ✓ ✓ ✗ ✗ ✗
Arcana (Sun et al., 2024) ✓ ✓ ✓ ✗ ✗
Osprey (Yuan et al., 2024) ✓ ✓ ✓ ✗ ✗
I Dream My Painting (Fanelli et al., 2024) ✓ ✓ ✓ ✗ ✗
GRIT (Peng et al., 2023) ✓ ✓ ✓ ✗ ✗
LiSA (Lai et al., 2024) ✓ ✓ ✓ ✗ ✗
USE (Wang et al., 2024b) ✓ ✓ ✗ ✓ ✗
SegCAP (Zhou et al., 2024) ✓ ✓ ✓ ✓ ✗
GranD (Rasheed et al., 2024) ✓ ✓ ✓ ✓ ✗
DAM (Lian et al., 2025) ✓ ✓ ✓ ✓ ✗

URECA dataset (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Statistical comparison of previous captioning datasets and URECA dataset in region-
level captioning. The comparison covers different types of captions, including simple captions
(e.g., (Ramanathan et al., 2023; He et al., 2022)), dense captions (e.g., (Wahed et al., 2024; Liu
et al., 2023)), region captions (e.g., (Yu et al., 2016; Krishna et al., 2016; Sun et al., 2024; Yuan
et al., 2024; Wu et al., 2022; Fanelli et al., 2024; Lai et al., 2024)), and multi-granularity captions
(e.g., (Wang et al., 2024b; Zhou et al., 2024; Rasheed et al., 2024)). While these datasets provide
varying levels of detail, URECA dataset is the only dataset that offers distinctive dense captions and
handles multi-granularity regions effectively.

1. Mask tree generation. We first construct a mask tree to represent the hierarchical relationships
among masks in an image. By comparing the IoU between masks, we can determine their rela-
tionships (i.e., superset or subset) within the hierarchy.

2. Top-down generation. To ensure that contextual information is effectively incorporated into
each node’s caption, we generate captions in a top-down manner. In this process, each node refers
to its parent node to maintain hierarchical consistency. Specifically, we generate short captions
using our annotation MLLM, InternVL2.5-38B (Chen et al., 2024), for each node by referring to
captions from the parent node and two types of images that represent the target region: a cropped
image of the target region with non-target areas blurred based on the mask (Yang et al., 2023b),
and a cropped image of the parent region, where the target region is contoured while non-target
areas within the parent region are blurred.

3. Bottom-up generation. To ensure that parent nodes have unique captions incorporating relevant
details from their child nodes while maintaining contextual coherence, we generate captions in a
bottom-up manner. In this process, the parent node refers to its children’s captions to generate a
more informative and unique caption. Specifically, we aggregate the captions of all child nodes
and use our annotation MLLM to generate a refined caption based on the aggregated captions,
the parent node’s short caption, and an image where the target region is contoured within the full
image to preserve its spatial context.

4. Uniqueness refinement. To further ensure visually similar regions have distinguishable cap-
tions, we introduce a uniqueness refinement process based on image feature similarity using
DINOv2 (Oquab et al., 2023). In this stage, similar-looking regions are identified using im-
age features and marked in the image with contours and indexed bounding boxes (Yang et al.,
2023a). Our annotation MLLM then generates a unique caption by explicitly differentiating the
target region from other visually similar regions.

Evaluation set. To ensure the quality of the test dataset when evaluating unique captioning on
multi-granularity regions, we additionally implemented a verification stage during the test set gen-
eration process. As state-of-the-art MLLMs have demonstrated performance comparable to human
annotators’ preferences (Lee et al., 2024; Xiong et al., 2024; Ge et al., 2023), we utilized GPT1,
which is widely adopted to simulate human annotators for data generation tasks. Further details
about the dataset pipeline can be found in Appendix.

Data statistics. We conducted a statistical comparison between previous captioning datasets and
URECA dataset. Table 1 highlights their capabilities in region-level captioning. Simple caption

1gpt-4o-mini-2024-07-18
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refers to datasets (Ramanathan et al., 2023; He et al., 2022) that provide basic descriptions, often
incorporating object classes in the captions. Dense caption represents datasets (Wahed et al., 2024;
Liu et al., 2023) that include multiple attributes, offering more detailed descriptions of the region.
Additionally, datasets (Yu et al., 2016; Krishna et al., 2016; Sun et al., 2024; Yuan et al., 2024;
Wu et al., 2022; Fanelli et al., 2024; Lai et al., 2024) where captions are explicitly aligned with
specific regions fall under the region caption category. As multi-granularity captioning becomes
increasingly relevant for real-world applications, recent datasets (Wang et al., 2024b; Zhou et al.,
2024; Rasheed et al., 2024) have started to incorporate this aspect. However, none of the existing
datasets fully capture all these aspects with captions that describe distinctive attributes of the region
while maintaining multi-granularity. Among them, URECA dataset stands out as a unique dataset
providing distinct dense captions while effectively handling multi-granularity regions.

4 URECA MODEL

Image
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M
LP

Mask
Encoder

🔥
🔥

LLM

🔥
❄

❄

“ Running white 
horse located near 
the center next to 
dark brown horse. ”

Query Text Token

Mask Token
Image Token 🔥 Learnable

❄ Frozen

Image

Target Region

Figure 4: Architecture of URECA model.
URECA models enables users to generate unique
captions that describe distinctive attributes of any
region. The mask encoder effectively encodes
multi-granularity regions while preserving their
identity. The mask token serves as a localizer,
guiding the LLM to generate region-specific cap-
tions based on the image and query token.

The overall architecture of our URECA model
is illustrated in Figure 4. Its design is motivated
by a central challenge in region-level under-
standing: how to provide a VLM with a high-
fidelity representation of a specific region with-
out compromising the global context of the full
image. Existing methods for this task fall short
in ways that fundamentally limit their ability to
generate unique, multi-granularity captions.

Previous approaches can be broadly catego-
rized. Some encode regions using coordinate-
based representations (Liu et al., 2023; Chen
et al., 2023), translating bounding boxes into
textual tokens. This forces the language model
to learn a non-trivial mapping from text to spa-
tial locations and struggles to represent irreg-
ularly shaped objects. Other methods rely on
image modification, such as overlaying contours (Cai et al., 2024; Shtedritski et al., 2023) or pro-
viding a cropped view of the region (Cai et al., 2024). While intuitive, this alters the original visual
input, potentially obscuring other objects or contextual cues that are essential for differentiating the
target region from similar instances. Recent researches uses feature-level pooling (e.g., RoIAlign) to
extract features directly from the visual backbone’s feature maps (Wu et al., 2022; Ma et al., 2024;
Rasheed et al., 2024). The critical limitation here is that pooling operates on low-resolution fea-
ture maps, leading to a significant loss of the fine-grained spatial details, such as precise boundaries
and texture that are necessary to distinguish between similar objects and describe regions at varying
levels of granularity.

To overcome these limitations, we introduce an architecture founded on the principle of decoupling
the region’s geometric information from the image’s rich visual context. This approach ensures that
both data streams are preserved with high fidelity. The core components of our method, which we
detail in the following subsections, are a novel processing strategy and a dynamic input mechanism
designed for multi-granularity.

4.1 DECOUPLED PROCESSING OF REGION AND IMAGE FEATURES

To generate a caption that is not just accurate but also unique, a model must understand both the
specific features of a target region and its broader context within the image. Previous approaches al-
ter the image or pooled only for corresponding region features, which irreversibly discards valuable
global information and can harm the integrity of the visual features. This loss of context limits the
model’s ability to reason about object relationships and scene dynamics.

To overcome this limitation, we propose a decoupled processing strategy that preserves the integrity
of both the image and the region prompt. Our key insight is to process the region mask and the
full image in separate, parallel streams. We introduce a lightweight mask encoder that exclusively

6
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encodes the binary mask into a sequence of feature tokens. These mask tokens act as precise spatial
localizers, directing the model’s attention without modifying the original image.

The resulting mask tokens are then prepended to the unharmed image tokens from the vision encoder.
This simple yet effective approach allows the model to leverage two complementary information
sources: the mask tokens provide an unambiguous geometric cue for where to look, while the full
image tokens provide the rich contextual information for what to describe. By doing so, our model
effectively utilizes both local and global details to generate captions that are both spatially precise
and contextually aware.

Formally, the mask encoding process is:

F = ϕ(M) ∈ RN×D, (1)
where M ∈ {0, 1}H×W is the input binary mask of height H and width W . The mask encoder
ϕ(·) maps M to a feature representation F , which consists of N spatial tokens in a D-dimensional
embedding space. Unlike traditional feature pooling, our tokenization approach preserves spatial
details, allowing the mask tokens to carry rich information about the region’s structure. Full archi-
tectural details are provided in the Appendix.

4.2 DYNAMIC MASK MODELING FOR MULTI-GRANULARITY

A key challenge for any fixed-input encoder is handling the diverse scales inherent in multi-
granularity region captioning. Resizing a large, high-resolution mask down to a small, fixed input
size would inevitably lead to the loss of fine-grained details, defeating the purpose of our high-
fidelity approach.

To address this, we propose a dynamic mask modeling, an adaptive tiling strategy that splits the
original high-resolution mask into a grid of multiple sub-masks before encoding. Critically, the grid
size (e.g., 2x2, 3x3) is adapted based on the original mask’s resolution, ensuring that each sub-mask
maintains a relatively consistent and high level of detail. This prevents excessive downsampling for
large regions and avoids unnecessary padding for small ones. Each sub-mask is then processed by
the encoder, and the resulting sequences of tokens are concatenated.

This process splits the original mask M ∈ {0, 1}H×W into multiple sub-masks Msplit:

Msplit = Split(M) ∈ {0, 1}Ns×H′×W ′
. (2)

Here, Ns is the number of sub-masks in the grid. This dynamic approach allows the final mask
token sequence length to scale with the input resolution, ensuring a consistently rich and detailed
representation. This is particularly crucial for capturing the subtle features that distinguish small
or complex objects, making it a cornerstone of URECA model’s ability to handle multi-granularity
captioning.

5 EXPERIMENTS

5.1 QUANTITATIVE RESULTS

We report the performance of our URECA model model on URECA dataset as well as previous
benchmark datasets (Krishna et al., 2016; Yu et al., 2016). All results are evaluated using an 8B
language model trained exclusively on the URECA dataset.

Unique multi-granularity region captioning. In Table 2, we present the performance compari-
son on URECA dataset, a dataset specifically designed to evaluate unique multi-granularity region
captions, alongside previous methods. To demonstrate the effectiveness of our approach, we imple-
mented a baseline by running a naı̈ve MLLM (Chen et al., 2024) on URECA dataset. “None” refers
to providing the MLLM with only the image, without any explicit region marking. “Contour” refers
to marking regions within the image, and “Crop” involves providing the MLLM with a cropped view
of the target region. The results indicate that conditioning the MLLM solely on the image or natural
language fails to localize regions effectively and generate unique captions.

While previous region-level captioning models (Ma et al., 2024; Huang et al., 2024; Peng et al.,
2023; Zhang et al., 2024a;b; Cai et al., 2024) have demonstrated improved performance in generating
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Table 2: Performance comparison of URECA model with baseline methods and previous mod-
els on various evaluation metrics, including BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
METEOR (Banerjee & Lavie, 2005), and BERTScore (Zhang et al., 2019). The results show that
URECA model outperforms other methods across all metrics on URECA testset, demonstrating its
superior ability to generate unique captions for multi-granularity regions. Note that comparison
methods are all trained on URECA dataset.

Models BLEU@1 BLEU@2 BLEU@3 BLEU@4 ROUGE METEOR BERTScore CLAIR

None 17.06 7.63 3.14 1.20 17.86 27.72 62.68 47.50
Contour 17.10 7.13 2.63 1.01 19.95 25.49 63.29 49.47
Crop 18.43 7.53 2.45 0.85 19.73 26.45 63.63 47.75

GPT-4o 20.38 9.01 3.62 1.53 20.44 29.87 65.44 58.62

SCA 22.76 13.58 6.97 3.88 30.76 24.87 70.67 30.82
KOSMOS-2 30.31 18.12 9.96 5.55 34.19 32.94 72.64 50.66
Osprey 31.82 20.30 12.06 7.07 36.37 34.29 73.42 53.51
OMG-LLaVA 34.01 21.88 13.51 8.46 38.14 37.29 74.68 29.09
ViP-LLaVA (7B) 34.17 22.07 13.96 9.00 38.17 37.68 74.62 55.94
ViP-LLaVA (13B) 35.35 23.52 15.07 9.96 38.97 39.29 74.99 55.94

URECA (Ours) 39.29 23.84 15.42 9.98 38.95 41.25 75.11 66.96

unique captions when trained on URECA dataset, they lag behind URECA model either because
they struggle to localize multi-granularity regions, alter the original image, or overly constrain the
target region without considering the global context.

This underscores that fine-tuning existing captioning models on the URECA dataset enhances
their ability to handle multi-granularity captioning. However, URECA model surpasses these ap-
proaches by not only generating unique captions across an image but also effectively capturing
multi-granularity regions, demonstrating its capability to accurately represent regional information.

Evaluation of unique captions. Traditional n-gram-based metrics are not fully equipped to eval-
uate caption uniqueness. A description’s uniqueness can hinge on a single discriminative word, yet
conventional metrics treat all words with equal weight, failing to capture this semantic importance.
To address this, recent studies have begun to adopt model-based metrics that better assess seman-
tic meaning (Lin et al., 2025; Lian et al., 2025). We therefore provide a comprehensive evaluation
using both traditional and semantic-aware metrics (Zhang et al., 2019; Chan et al., 2023), demon-
strating that our model achieves state-of-the-art performance in both categories, validating its ability
to generate captions that are not only accurate but also uniquely descriptive.

5.2 QUALITATIVE RESULTS

Figure 5 provides a qualitative comparison between URECA model and baseline methods, illustrat-
ing its superior performance in handling both multi-granularity and uniqueness. In the top example,
which tests multi-granularity, baseline models fail to describe the specified region, either describe
it as a generic “metal bar” or hallucinating a different scene entirely. In contrast, URECA model
accurately describes both the whole object (“pommel horse”) and its fine-grained parts (“maroon
and metallic legs”), demonstrating its precise localization and descriptive capabilities.

Similarly, in the bottom example focused on multi-granularity, where other baselines failed to locate
region. URECA model, however, generates a unique caption by identifying the specific object (“the
brown leather boot”) and its distinguishing location (“on the man’s right foot”). This highlights our
model’s ability to ground descriptions in the unique visual attributes required by the task. Additional
qualitative results are provided in the Appendix.

5.3 ABLATION STUDIES

Table 3: Ablation study of our proposed
methods on URECA dataset.

Method ROUGE METEOR BERTScore
Baseline 17.86 27.72 62.68
+ Mask Encoder 38.46 40.72 74.73
+ Dynamic Mask 38.95 41.25 75.11

Effectiveness of mask encoding and dynamic m
asking. To evaluate the effectiveness of our pro-
posed methods, we conduct an ablation study by sep-
arately implementing each component and assessing
their impact on model performance. As presented in
Table 3, the baseline MLLM without conditioning

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

x

Uniqueness

Multi-Granularity

Ours: The brown leather boot on the man's right foot, featuring a smooth texture 
and slightly worn appearance.

OMG-LLaVA: A man is seen wearing a gray uniform, … His outfit suggests he might 
be a military man.

KOSMOS-2: The man is wearing a military uniform and carrying a gun.

Ours: The brown leather boot on the soldier's left leg, worn with a gray 
military uniform.

OMG-LLaVA: A man is seen wearing a gray coat and black pants. … His outfit 
suggests he might be a military man.

KOSMOS-2: A man is walking in a field, wearing a uniform and carrying a gun.

Ours: … The pommel horse features a padded body with a handle on top, supported 
by maroon and metallic legs with a chain and hook for stability. …

OMG-LLaVA: A man is standing on a podium, holding a video camera. He appears to 
be… , and his posture suggests he is in the middle of a high jump.

KOSMOS-2: The object in the image is a metal bar.

Ours: The red and metallic base of the pommel horse

OMG-LLaVA: A television is mounted on a stand, displaying a man in a red shirt. 
The screen is positioned in front of a flag, …

KOSMOS-2: The object in the image is a metal bar.

“Describe this region in the image.”

“Describe this region in the image.”

Figure 5: Qualitative results of the URECA model and comparison models (Peng et al., 2023;
Zhang et al., 2024b). Our model generates unique caption conditioned on multi-granularity regions.

performs poorly. Incorporating our mask encoder, which effectively encodes the target region while
preserving its identity, significantly enhances the model’s ability to localize regions and generate
more descriptive captions. Furthermore, employing our dynamic masking strategy, which divides
the original resolution into smaller sub-images, enables the mask encoder to capture finer details of
target regions, further improving performance.

Table 4: Ablation study on model size.
Model Size ROUGE METEOR BERTScore

1B 32.00 33.99 71.77
2B 36.64 39.00 73.92
4B 36.58 38.75 73.97
8B 38.95 41.25 75.11

MLLM size. It is well established that perfor-
mance improves with larger foundation models (Li
et al., 2024; Chen et al., 2024; Zhang et al., 2022; Bai
et al., 2025), as their knowledge capacity scales with
model size. Our URECA model follows this trend,
achieving better performance as its size increases, as
shown in Table 4. While the 1B model records the
lowest performance, the largest model (8B) achieves the highest.

Table 5: Ablation study on mask token
length.

Token Length ROUGE METEOR BERTScore
4 35.44 38.01 73.51
8 37.06 38.50 74.21
16 38.95 41.25 75.11

Mask token length. We demonstrated that our
mask encoder effectively captures regions while pre-
serving their identity. To analyze the impact of the
number of tokens generated by the mask encoder,
we conduct an ablation study, as shown in Table 5.
We investigate the effect of increasing the number
of mask tokens. As the number of tokens increases,
the representation becomes more detailed, allowing for finer details to be captured, particularly in
smaller regions.

6 CONCLUSION

We present URECA dataset, a regional captioning dataset that includes multi-granularity regions.
Our primary objective is to annotate regions with unique captions that exclusively describe the tar-
get region. To achieve this, we propose an automated data pipeline that generates distinctive cap-
tions using a mask tree, which captures the hierarchical relationships between regions. To ensure
high-quality evaluation, we introduce a verification stage to validate the test set. Furthermore, we
introduce URECA model, which encodes masked regions while effectively preserving their identity.
To retain finer details, we propose dynamic masking, leveraging the LLM’s flexible input length to
encode masks even in high-resolution views.

9
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REPRODUCIBILITY STATEMENT

We detail the training configurations in Appendix A. We will also release our code and model check-
points to ensure reproducibility.
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APPENDIX

A IMPLEMENTATION DETAILS

We leverage InternVL-2.5 (Chen et al., 2024) along with our mask encoder, which consists of con-
volutional layers followed by a two-layer MLP as the projection layer for mask tokens. For our
experiments, we set the mask token length to 8. While our ablation study (Table 6) indicates that
performance continues to improve with 16 tokens, we selected a length of 8 to maintain a favorable
balance between descriptive performance and the computational cost associated with longer token
sequences during training. The input to the mask encoder is resized to 448x448, and the dimension
of the mask tokens matches the feature dimension of the MLLM.

We train our model on four Tesla A100 GPUs (40GB) using LoRA (Hu et al., 2021). Specifically,
training is conducted in two stages: first, we train the mask encoder and projection layer, followed
by LoRA fine-tuning of the MLLM. We use a batch size of 16 for LoRA tuning.

For evaluation, we adopt standard metrics from prior work, including BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005). While these metrics allow for direct
comparison, they are not designed to measure descriptive uniqueness, which is the primary goal of
our research. A more detailed discussion on these limitations is provided in the Appendix H. To
better assess semantic quality, we supplement these scores with BERTScore (Zhang et al., 2019)
and the CLAIR score (Chan et al., 2023).

A.1 MASK ENCODER ARCHITECTURE

Our mask encoder is a lightweight convolutional network designed to transform a binary region
mask into a sequence of feature tokens. The architecture is intentionally kept simple to ensure ef-
ficiency and reproducibility. As detailed in Algorithm 1, the encoder consists of two sequential
2D convolutional layers. Each layer uses a 3x3 kernel, a stride of 2, and padding of 1, effectively
downsampling the input by a factor of 2 at each step. A ReLU activation function follows each con-
volution. The resulting feature map is flattened and then projected to the MLLM’s hidden dimension
using a two-layer MLP, which serves as the projection head. All convolutional and linear layers in
the mask encoder are initialized using the Xavier normal initialization method.

Algorithm 1 Mask Encoder Pseudo-Code

Require: Binary mask M of size H ×W
Ensure: Mask tokens F of size N ×D (where N = 8 is the number of tokens and D is the LLM

hidden size)
1: function ENCODEMASK(M )
2: x← reshape(M, [1, 1, H,W ]) ▷ Reshape mask to have a channel dimension

3: x← Conv2d(x, in channels=1, out channels=C, kernel=3, stride=2, padding=1)
4: x← ReLU(x) ▷ First convolutional block

5: x← Conv2d(x, in channels=C, out channels=C, kernel=3, stride=2, padding=1)
6: x← ReLU(x) ▷ Second convolutional block

7: x← flatten(x) ▷ Flatten the spatial dimensions

8: x← MLP(x, out features=D) ▷ Project to LLM hidden dim via 2-layer MLP

9: return x
10: end function

B ADDITIONAL RELATED WORK

Large Language Models (LLMs) have demonstrated pioneering performance in instruction follow-
ing capabilities, integrating diverse knowledge from extensive datasets, and performing complex

1
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reasoning tasks. However, a significant limitation of LLMs is their reliance solely on natural lan-
guage inputs. To address this, LLaVA (Liu et al., 2023) was the first to explore the integration
of image and text modalities by representing visual features as visual tokens. Building upon this,
models such as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023) have further advanced
Multimodal Large Language Models (MLLMs) by incorporating powerful visual backbones. These
models effectively bridge the two modalities and have shown strong performance in tasks like im-
age captioning and visual question answering. Building on these advancements, recent efforts have
aimed to extend these models to handle more complex tasks, including reasoning over segmenta-
tion (Lai et al., 2024; Ren et al., 2024), optical character recognition (Wang et al., 2024a; Dong
et al., 2024), and grounding (Plummer et al., 2016; Rasheed et al., 2024; Wang et al., 2024b; Zhou
et al., 2024; Halbe et al., 2024).

C LIMITATIONS

While our mask encoder effectively encodes multi-granularity regions without losing details, local-
izing the region in a sequential manner may occasionally cause the MLLM to misidentify the target
region. Since we do not explicitly constrain target regions using image features or direct markers,
the localization signal provided to the MLLM may be weaker compared to previous methods. En-
hancing region encoding by incorporating both the mask and additional image features, rather than
relying solely on sequential conditioning, could improve the MLLM’s ability to accurately localize
the target region.

D REGION-LEVEL CAPTIONING

a sparrow is sitting along 
with two others

a truck in the road

Figure A: Qualitative examples from the RefCOCOg dataset. The green arrows indicate the
ground-truth annotation in the validation set, while the red arrow highlights another possible
candidate that can be mapped to the caption.

Table A: Quantitative results on region-level
captioning task. Performance comparison on
the METEOR for the RefCOCOg (Yu et al.,
2016) and Visual Genome (Krishna et al., 2016)
datasets.

Models RefCOCOg Visual Genome

ControlMLLM (Wu et al., 2024) 14.0 -
Kosmos-2 (Peng et al., 2023) 14.1 -
GRiT (Wu et al., 2022) 15.2 17.1
SLR (Yu et al., 2017) 15.9 -
GLaMM (Rasheed et al., 2024) 15.7 17.0
OMG-LLaVA (Zhang et al., 2024b) 15.3 -
ViP-LLaVA (Cai et al., 2024) 16.6 -
Groma (Ma et al., 2024) 16.8 16.8
RegionGPT (Guo et al., 2024) 16.9 17.0
Omni-RGPT (Heo et al., 2025) 17.0 17.0
Draw-and-Understand (Lin et al., 2024) 23.9 -

URECA (Zero-Shot) 16.1 18.4

In Table A, we present the zero-shot perfor-
mance of URECA model on RefCOCOg (Yu
et al., 2016) and Visual Genome (Krishna et al.,
2016). On RefCOCOg, URECA model demon-
strated competitive performance, while on Vi-
sual Genome, it achieved state-of-the-art results
compared to previous approaches.

Notably, unlike prior methods, URECA model
achieves these results without using the bench-
marks’ training sets, highlighting the strong
generalization ability of URECA dataset. This
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suggests that URECA dataset covers diverse re-
gion granularities with well-aligned captions,
enabling better regional understanding. By ef-
fectively learning from a dataset with varying
granularities, URECA model effectively local-
izes and generates captions across different scales, making it highly adaptable to region-level cap-
tioning even on the zero-shot tasks.

It is important, however, to acknowledge a fundamental distinction in the evaluation. As illustrated
in Figure A, datasets such as RefCOCOg and Visual Genome do not enforce unique annotations
for each region. A single area—like the truck shown—can be described with a general caption (’a
truck in the road’) or a more specific one. This inherent ambiguity means that evaluating on these
benchmarks cannot be seen as the same task as generating a single, uniquely identifying caption.
Despite this misalignment, the fact that URECA model achieves such a comparable performance
is particularly noteworthy. It underscores the model’s robustness, proving its ability to generate
high-quality, relevant descriptions even when the evaluation criteria are broader and less constrained
than our primary objective.

E MORE QUALITATIVE RESULTS

We visualize more qualitative results of URECA model with previous apporaches (Cai et al., 2024;
Zhang et al., 2024b) in Figure B.

F DATASET VISUALIZATION

We provide visual examples of our dataset to illustrate its diversity and complexity. Figure C show-
cases representative samples, highlighting key variations in object appearance, background context,
and challenging scenarios. For optimal viewing, we recommend zooming in and viewing the figures
in color to better observe fine details.

G DATA PIPELINE

To generate unique regional captions with multi-granularity, we propose a structured four-stage
process:

Stage 1: Mask Tree Construction. We first build a mask tree for each image using masks from
the SA-1B dataset (Kirillov et al., 2023). Intersection over Union (IoU) between masks is computed
to determine containment relationships. Each tree has a root node representing the entire image,
with subsequent nodes structured hierarchically based on these containment relationships.

Stage 2: Top-Down Caption Generation. In this stage, we identify primary nodes directly under
the root node, termed main objects, whose depth exceeds a predefined threshold. Short captions
are then hierarchically generated from these main objects downward through descendant nodes.
Each node creates concise captions using contextual information from parent and sibling nodes to
maintain coherence and uniqueness. Specific prompts used in this step are detailed in Table B.

Stage 3: Bottom-Up Caption Refinement. Short captions generated in Stage 2 are expanded into
detailed descriptions. Each node enriches its caption by incorporating information from child nodes,
ensuring hierarchical consistency and comprehensive context. Prompts for this refinement stage are
provided in Table C.

Stage 4: Uniqueness Refinement. Finally, captions are refined by evaluating visual similarity
between regions using DINO v2 (Oquab et al., 2023). Regions with high visual similarity have
their captions adjusted by emphasizing distinguishing features, maintaining semantic relevance and
uniqueness. Prompts for uniqueness refinement are described in Table D.
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Through these stages, we systematically generate multi-granularity captions that accurately describe
each region with clarity, context, and uniqueness in an automated manner.

H DISCUSSION

Evaluating unique caption generation for regional captioning tasks using traditional metrics such
as BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE (Lin, 2004), and
CIDEr (Vedantam et al., 2015) presents inherent limitations. These metrics primarily assess simi-
larity to reference captions based on n-gram overlap, without distinguishing between essential and
non-essential words. However, in unique captioning, it is crucial to generate descriptions that high-
light distinctive attributes, ensuring that the caption effectively differentiates the target region from
others. Existing evaluation methods treat all words equally, failing to account for the importance of
discriminative terms. As a result, captions that successfully emphasize key distinguishing features
may not receive high scores if their phrasing deviates from reference texts, even if they better serve
the task’s objective. This limitation suggests the need for alternative evaluation approaches that
better capture the quality and distinctiveness of unique captions.

I LIMITATION

Our work relies on a fully automated pipeline for dataset creation and evaluation, and as such,
does not include a large-scale human study to validate the perceived quality and uniqueness of the
captions. While we use GPT-4o for test set verification, which has shown strong correlation with
human preferences in prior work, we acknowledge that direct human evaluation remains the gold
standard. We believe this is a necessary trade-off for the scale of our dataset, and we identify rigorous
human studies as a critical direction for future work.

J METHODOLOGICAL JUSTIFICATION FOR DATASET CURATION

A potential concern regarding our dataset creation methodology is the use of two models from the
InternVL family (8B for the training set, 38B for the test set), which could be perceived as an unfair
evaluation setting. However, we argue that this approach is methodologically sound, does not confer
an unfair advantage to our model, and aligns with state-of-the-art practices. Our justification is
threefold: (1) the models are architecturally and functionally distinct, positioning the larger model
as a valid “annotation oracle”; (2) the capability gap between the models is substantial and supported
by established theoretical principles; and (3) the methodology aligns with broader trends in scalable,
model-driven data generation.

J.1 ARCHITECTURAL AND TRAINING HETEROGENEITY

The InternVL 8B and 38B models are not merely scaled versions of one another but are heteroge-
neous compositions featuring significant architectural and training divergences. This compositional
difference provides a strong argument against the notion of a homogenous model family.

• Distinct LLM Backbones: Models at different scales within the InternVL series often in-
corporate Large Language Model (LLM) backbones from entirely different developers. For
instance, the InternVL2.5-8B model utilizes the internlm2 5-7b-chat LLM,
whereas the InternVL2.5-38B model is built upon the Qwen2.5-32B-Instruct
LLM (ModelScope, 2024). These LLMs are developed by separate organizations with
unique architectures, training datasets, and alignment philosophies, resulting in fundamen-
tally different internal knowledge representations and inductive biases.

• Asymmetric Application of Advanced Training: The larger models in the InternVL fam-
ily are subjected to more advanced and qualitatively different training paradigms designed
to enhance reasoning and coherence. Techniques such as Mixed Preference Optimization
(MPO) and Cascade Reinforcement Learning (RL) are asymmetrically applied, creating a
significant capability gap (Wang et al., 2025; Zhu et al., 2025). For example, fine-tuning
with MPO yields a 4.5-point improvement on multimodal reasoning benchmarks for the
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InternVL3-38B model, a gain attributed primarily to the training algorithm itself rather
than the data (Zhu et al., 2025). This “specialized education” endows the 38B model with
a more robust and human-aligned reasoning process that is qualitatively distinct from the
8B model.

J.2 CAPABILITY GAP AND ORACLE-BASED ANNOTATION

The architectural and training differences result in a substantial capability gap, which is consistent
with established principles of AI scaling.

• Neural Scaling Laws: A large body of empirical research has demonstrated that model
performance improves predictably as a power-law function of model parameters, dataset
size, and compute (Kaplan et al., 2020; Hoffmann et al., 2022; Bahri et al., 2021). The
nearly five-fold increase in parameter count from 8B to 38B is expected to yield a signif-
icant, non-linear improvement in performance, justifying the use of the larger model as a
higher-quality source of ground-truth labels.

• Emergent Abilities: It is well-documented that capabilities can be absent in smaller-scale
models but appear abruptly in larger-scale models (Wei et al., 2022; Sciacca et al., 2025).
Complex, multi-step reasoning, a prerequisite for high-quality region captioning, is pre-
cisely the type of task where such emergent abilities manifest. It is therefore highly plausi-
ble that the 38B model possesses sophisticated compositional understanding and reasoning
skills that are fundamentally non-existent in the 8B model.

Due to this significant capability gap, our methodology should be understood as oracle-based an-
notation rather than a form of data contamination (Balloccu et al., 2025; Holistic AI, 2024). The
test set generated by the 38B “oracle” represents a target distribution of quality and complexity that
a model trained on data from the much weaker 8B model cannot trivially replicate. The evalua-
tion, therefore, remains a challenging and fair test of the model’s ability to generalize towards the
capabilities of a far more powerful system.

J.3 ALIGNMENT WITH STATE-OF-THE-ART METHODOLOGIES

Our approach follows established and peer-reviewed procedures for scalable data creation and eval-
uation in vision-language research.

• The “LLM-as-a-Judge” Paradigm: Our methodology is a logical extension of the widely
accepted “LLM-as-a-Judge” framework, where powerful models like GPT-4 are used as
scalable proxies for human evaluators (Zheng et al., 2023; Liu et al., 2024; Fu et al., 2024).
The principle that a more capable model can reliably assess the quality of a less capable one
has been validated in numerous studies, with LLM-human agreement rates often exceeding
80% (Zheng et al., 2023). If a model is trusted to judge quality, it can certainly be trusted
to generate high-quality annotations.

• Synthetic Data Generation: The use of generative models to create training and eval-
uation data is a rapidly growing trend across vision-language research to overcome the
bottleneck of manual annotation. Frameworks like SynGround have shown that training on
purely synthetic data can significantly improve visual grounding performance (He et al.,
2024). Similarly, projects like Cap3D use a pipeline of pretrained models to generate
high-quality descriptive text for 3D objects at a scale that would be infeasible with hu-
man annotation (Wu et al., 2023). Our approach fits squarely within this modern paradigm
of leveraging powerful foundation models for scalable dataset creation.

In summary, the significant architectural, training, and capability differences between the InternVL
8B and 38B models, combined with the alignment of our methodology with broader state-of-the-
art practices, provide a robust justification for our dataset curation strategy. This approach does
not create an unfair evaluation setting but rather employs a more powerful, distinct, and validated
annotation oracle to establish a high-quality and challenging benchmark.
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K USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 submission policy, we disclose that Large Language Models were
used to assist in grammar correction and polishing of the writing in this paper.
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x

Uniqueness

Multi-Granularity

Ours: The red bear plush toy's white snout and ears with red tips.

VIP-LLaVA: A white stuffed dog with a red collar.

OMG-LLaVA: The teddy bear on the far right of the image is a red plush toy. It's 
positioned on the right side of the image, slightly towards the bottom.

Ours: The blue bib on the white plush dog with blue ears.

VIP-LLaVA: A red stuffed bear with a white face and red paws.

OMG-LLaVA: The third teddy bear from the left is a white and blue dog. It is the 
third bear from the left and is positioned between two other teddy bears.

Ours: The rear right tire of the red Kubota tractor is prominently covered in 
mud, indicating recent use in muddy or agricultural conditions.

VIP-LLaVA: A tractor with a red wheel.

Ours: The right rear tire of the red Kubota tractor, covered in mud and 
featuring a rectangular mud guard.

VIP-LLaVA: A red tractor with a white canopy.
OMG-LLaVA: A large, rusty tractor is prominently featured in the image. It is a 
red tractor with a red wheel and is parked on a dirt road. The tractor appears 
to be in a state of disrepair, with rust and dirt covering its surface.

“Describe this region in the image.”

“Describe this region in the image.”

OMG-LLaVA: A large, rusty tractor is prominently featured in the image. It is a 
red tractor with a red wheel and is parked on a dirt road. The tractor appears 
to be in a state of disrepair, with rust and dirt covering its surface.

x

Uniqueness

Multi-Granularity

Ours: The rear left wheel of a white Ford van with a visible hubcap.

VIP-LLaVA: A white van is parked in front of a building.
OMG-LLaVA: A white van is parked on the right side of the image, occupying a 
significant portion of the scene. It's a large white truck, possibly a food 
truck, and it's parked in front of a building.

Ours: The front left wheel of a white Ford van with a black hubcap.

VIP-LLaVA: A white van is parked in front of a building.

OMG-LLaVA: A white van is parked on the side of the road, occupying a 
significant portion of the image. It appears to be a commercial van, possibly 
used for deliveries or transportation of goods.

Ours: The person's torso covered in colorful powder during a festive celebration.

VIP-LLaVA: A man in a red shirt with his hand raised.

Ours: A person covered in vibrant powders raises their hand amidst a festive 
celebration. They wear a white shirt splashed with hues of pink, blue, and purple. 

VIP-LLaVA: A man with a red mask on his face.
OMG-LLaVA: A man in a vibrant orange shirt is standing on the right side of the 
image. He is the closest to the camera and appears to be the first person to be 
completely covered in orange.

“Describe this region in the image.”

“Describe this region in the image.”

OMG-LLaVA: A man in a vibrant purple shirt is standing on the right side of the 
image. He is the closest to the camera and appears to be the first person to be 
completely covered in purple.

Figure B: Qualitative results of the URECA model and comparison models Cai et al. (2024);
Zhang et al. (2024b). Our model generates unique caption conditioned on multi-granularity regions.
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x

“ The orange T-shirt with a parachute design worn by the person in 
colorful shorts. ”

“ A central poster on the bus stop shelter features an aerial 
photograph of a large crowd gathered at a festival, with the 
prominent text "Orihuela historia del mediterráneo" displayed 
below the image. The poster is part of a series of advertisements 
on the shelter, which is situated on a paved sidewalk with a 
backdrop of white buildings and greenery. ”

“ The right-side advertisement on the bus stop shelter 
featuring a poem by Miguel Hernández. ”

“Describe this region in the image.”

“Describe this region in the image.”

“A bus stop shelter stands on a patterned pavement, featuring 
a sleek, transparent glass roof supported by a metal frame. 
The shelter includes a bench and displays several posters 
advertising local attractions and events, including a central 
poster with an aerial photograph of a festival crowd and the 
text "Orihuela historia del mediterráneo." Another poster on 
the right side showcases a poem by Miguel Hernández.”

“A young person stands outdoors, wearing a vibrant blue t-shirt 
adorned with a circular logo featuring playful cartoon characters. 
They complement their outfit with a matching blue cap, which also 
showcases a similar cartoon motif. The individual exudes a casual 
and friendly vibe, with one arm extended around another person. The 
person's black pants complete the ensemble, blending seamlessly with 
the overall look.”

“The black pants worn by the person standing outdoors, paired with a 
blue t-shirt featuring cartoon characters. ”

Figure C: Example data generated by our data curation pipeline.

A white toilet with a black seat in a bathroom with beige tiles.

a white toilet with a black seat

a man wearing a black shirt and red shorts jumping to catch a frisbee

The man in a black shirt and red shorts jumping to catch a frisbee.

Ours

GT

Ours

GT

Figure D: Qualitative results of our URECA model on the RefCOCOg Yu et al. (2016) dataset.

The brown horse pulling a cart along a dirt path.

horse pulling a cart along a dirt road

the left ear of the black cow

The left ear of the black cow with a yellow tag.

Ours

GT

Ours

GT

Figure E: Qualitative results of our URECA model on the Visual Genome Krishna et al. (2016)
dataset.
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The white van parked on the street beside a row of 
bicycles along the canal in a city.

Dynamic Mask

The rear section of the red car parked on the 
canal-side street.

w/o Dynamic Mask

Figure F: Ablation study on the effect of dynamic mask.

9



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

<task>
You are a detailed caption generator tasked with describing the main object
in images. Your goal is to create a simple phrase that accurately represents
the main object while avoiding hallucination.

</task>
<objectives>

1. The main object is a subpart of a larger object; therefore, the main
object alone may provide insufficient information.
2. The primary focus of the caption must be on the main object while also
considering its positional relationship or functional connection with the
larger object.
3. The primary focus of the caption must be on the main object, emphasizing
attributes like color, texture, shape, and action if visible.
4. The background is blurred to emphasize the main object. Focus solely on
describing the main object in detail without mentioning the blurred
background.
5. The caption should be distinguishable from other subparts of the same
larger object so that the region can be identified solely by looking at the
caption. Therefore, the caption should incorporate positions or attributes
that are unique to the main object.
6. Creating a unique caption is important, but the most critical aspect is
accuracy. Do not add unnecessary information solely for the sake of
uniqueness.

</objectives>
<inputDetails>

1. Image-1 highlights the main object with a yellow contour to illustrate
its relationship with the larger object.
2. Image-2 shows the main object cropped from the larger object.
3. A description of the larger object will be provided in the prompt to help
identify the main object.

4. Descriptions of other subparts of the same larger object will also be
provided. The caption for the main object must be clearly distinguishable
from the descriptions of these subparts.

</inputDetails>
<descriptionOfLargerObject>

"Description from the parent object"
</descriptionOfLargerObject>
<descriptionOfSubparts>

"Descriptions from objects on the same level, if present."
</descriptionOfSubparts>
<outputFormat>

1. Provide a simple phrase focusing on the main object while considering its
positional relationship or functional connection with the larger object.

2. The larger object may contain another object with similar attributes to
the main object. The caption should be written in a way that clearly
distinguishes the main object from these similar objects.
3. Keep the caption concise, limiting it to one sentence while ensuring
clarity and coherence.
4. Do not explicitly mention the yellow contour or its presence in the image
.
5. Use contextual information from Image-1 to describe the main object’s
relationship with the larger object, while referencing its attributes from
Image-2.
6. Contextual details from Image-1 and the description of the larger object
should be used only to support the description of the main object.

</outputFormat>
<outputExamples>

"8 in-context examples"
</outputExamples>

Table B: Prompts for top-down generation. Captions are generated hierarchically from main objects
to descendants while ensuring contextual coherence and uniqueness.
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<task>
You are a detailed caption generator tasked with describing the
main object in images.
Your goal is to create precise and detailed captions while avoiding
hallucination.

</task>
<objectives>

1. The caption must primarily focus on the main object while
considering its

contextual information to clearly identify what it is.
2. The caption must emphasize the main object’s attributes, such as
color, texture, shape, and action if visible.
3. Describe only what is visible in the image. Avoid adding any
information that is not present.
4. The main object is highlighted with a yellow contour.
5. A short description of the main object will be provided in the
prompt, which can be used to describe the main object.
6. The main object consists of multiple subparts, and descriptions
of these subparts will be provided in the prompt.
7. The description of subparts may contain inaccurate, unimportant,
or redundant information. Use only the essential details that do

not contradict the given image to ensure that the caption for the
main object compositionally reflects relevant information from these
subparts.

</objectives>
<inputDetails>

1. An image with the main object marked by a yellow contour will be
provided.
2. A short description of the main object will be included in the
prompt.
3. Descriptions of the subparts of the main object will also be
provided in the prompt.

</inputDetails>
<descriptionOfMainObject>

"Description from the main object."
</descriptionOfMainObject>
<descriptionOfSubparts>

"Descriptions from the child objects, if present."
</descriptionOfSubparts>
<outputFormat>

1. Provide a single descriptive paragraph that focuses on the main
object.
2. Do not use bullet points or lists.
3. Incorporate details from the provided descriptions to accurately
depict the main object.
4. Never mention the presence of the yellow contour in any form.
5. Structure the caption clearly and concisely, avoiding excessive
detail or verbosity. Do not start with phrases like "The image shows
...".
6. Ensure the focus is evident without explicitly stating that it
is the main object.

</outputFormat>

Table C: Prompts for bottom-up generation. Captions are refined by incorporating child node infor-
mation to maintain hierarchical consistency.
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<task>
You are a caption refinement model that enhances given descriptions
to generate unique and precise captions for objects in an image.

Your goal is to refine the provided caption based on contour-based
indexing while maintaining clarity and specificity.

</task>
<objectives>

1. Describe only what is visible in the image. Avoid adding any
information that is not present.
2. The image contains multiple contours in different colors, each
with a corresponding index, marking distinct objects.
3. The main object corresponds to index 0 and is specifically
outlined with a blue contour.
4. Your task is to refine the caption for index 0, highlighting its
unique attributes while clearly differentiating it from other

indexed contours in the image.
5. The refined caption must primarily focus on index 0 while
considering its contextual information to clearly identify it from
other indices.
6. The caption must emphasize index 0’s attributes, such as color,
texture, shape, and action, to make caption unique.

</objectives>
<inputDetails>

1. The contours in the image are color-coded, and each contour has
a corresponding index.
2. The index corresponding to each contour is placed at the center
of the contour, matching its color.
3. The initial caption for index 0 (blue contour) is provided as
input.
4. The refined caption should ensure the distinction between index
0 (blue contour) and other objects in the image.

</inputDetails>
<refinementGuidelines>

1. Preserve the core meaning of the given caption while improving
its specificity and uniqueness.
2. Emphasize key attributes that differentiate index 0 (blue
contour) from other indices.
3. Avoid mentioning the presence of contours or annotations
explicitly in the caption.
4. Keep the refined caption clearly yet descriptive.
5. Ensure that the final caption remains a natural, human-like
description of the object.
6. Do not use bullet points or lists.
7. Do not start the answer with words like "Certainly!".

</refinementGuidelines>
<captionForIndex0>

"Description from the target (index 0) object"
</captionForIndex0>
<outputFormat>

1. Provide a single descriptive paragraph that maintains clarity
and coherence focusing on index 0 (blue contour)
2. The refined caption should distinguish index 0 (blue contour)
from other indices.
3. Avoid generic or ambiguous descriptions.
4. The refined caption should make index 0 clearly stand out from
the other indexed objects without using phrases like "distinguished
by" or similar expressions.
4. Do not reference the contour colors or indices directly.

</outputFormat>

Table D: Prompts for uniqueness refinement. Captions are refined by distinguishing visually similar
regions while preserving semantic relevance.
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