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Abstract

Pre-trained language models have demon-001
strated superior performance in various natu-002
ral language processing tasks. However, these003
models usually contain hundreds of millions004
of parameters, which limits their practicality005
because of latency requirements in real-world006
applications. Existing methods train small007
compressed models via knowledge distillation.008
However, performance of these small mod-009
els drops significantly compared with the pre-010
trained models due to their reduced model ca-011
pacity. We propose MoEBERT, which uses a012
Mixture-of-Experts structure to increase model013
capacity and inference speed. We initialize014
MoEBERT by adapting the feed-forward neu-015
ral networks in a pre-trained model into multi-016
ple experts. As such, representation power of017
the pre-trained model is largely retained. Dur-018
ing inference, only one of the experts is acti-019
vated, such that speed can be improved. We020
also propose a layer-wise distillation method021
to train MoEBERT. We validate the efficiency022
and efficacy of MoEBERT on natural language023
understanding and question answering tasks.024
Results show that the proposed method outper-025
forms existing task-specific distillation algo-026
rithms. For example, our method outperforms027
previous approaches by over 2% on the MNLI028
(mismatched) dataset. Our code will be pub-029
licly available.030

1 Introduction031

Pre-trained language models have demonstrated032

superior performance in various natural language033

processing tasks, such as natural language under-034

standing (Devlin et al., 2019; Liu et al., 2019; He035

et al., 2021b) and natural language generation (Rad-036

ford et al., 2019; Brown et al., 2020). These models037

can contain billions of parameters, e.g., T5 (Raffel038

et al., 2019) contains up to 11 billion parameters,039

and GPT-3 (Brown et al., 2020) consists of up to040

175 billion parameters. Their extreme sizes bring041

challenges in serving the models to real-world ap- 042

plications due to latency requirements. 043

Model compression through knowledge distil- 044

lation (Romero et al., 2015; Hinton et al., 2015) 045

is a promising approach that reduces the compu- 046

tational overhead of pre-trained language models 047

while maintaining their superior performance. In 048

knowledge distillation, a large pre-trained language 049

model serves as a teacher, and a smaller student 050

model is trained to mimic the teacher’s behavior. 051

Distillation approaches can be categorized into 052

two groups: task-agnostic (Sanh et al., 2019; Jiao 053

et al., 2020; Wang et al., 2020, 2021; Sun et al., 054

2020a) and task-specific (Turc et al., 2019; Sun 055

et al., 2019; Li et al., 2020; Hou et al., 2020; Sun 056

et al., 2020b; Xu et al., 2020). Task-agnostic dis- 057

tillation pre-trains the student and then fine-tunes 058

it on downstream tasks; while task-specific dis- 059

tillation directly fine-tunes the student after ini- 060

tializing it from a pre-trained model. Note that 061

task-agnostic approaches are often combined with 062

task-specific distillation during fine-tuning for bet- 063

ter performance (Jiao et al., 2020). We focus on 064

task-specific distillation in this work. 065

One major drawback of existing knowledge dis- 066

tillation approaches is the drop in model perfor- 067

mance caused by the reduced representation power. 068

That is, because the student model has fewer pa- 069

rameters than the teacher, its model capacity is 070

smaller. For example, the student model in Distil- 071

BERT (Sanh et al., 2019) has 66 million parame- 072

ters, about half the size of the teacher (BERT-base, 073

Devlin et al. 2019). Consequently, performance 074

of DistilBERT drops significantly compared with 075

BERT-base, e.g., over 2% on MNLI (82.2 v.s. 84.5) 076

and over 3% on CoLA (54.7 v.s. 51.3). 077

We resort to the Mixture-of-Experts (MoE, 078

Shazeer et al. 2017) structure to remedy the repre- 079

sentation power issue. MoE models can increase 080

model capacity while keeping the inference com- 081

putational cost constant. A layer of a MoE model 082
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(Shazeer et al., 2017; Lepikhin et al., 2021; Fedus083

et al., 2021; Yang et al., 2021; Zuo et al., 2021)084

consists of an attention mechanism and multiple085

feed-forward neural networks (FFNs) in parallel.086

Each of the FFNs is called an expert. During train-087

ing and inference, an input adaptively activates a088

fixed number of experts (usually one or two). In089

this way, the computational cost of a MoE model090

remains constant during inference, regardless of the091

total number of experts. Such a property facilitates092

compression without reducing model capacity.093

However, MoE models are difficult to train-from-094

scratch and usually require a significant amount of095

parameters, e.g., 7.4 billion parameters for Switch-096

base (Fedus et al., 2021). We propose MoEBERT,097

which incorporates the MoE structure into pre-098

trained language models for fine-tuning. Our model099

can speedup inference while retaining the represen-100

tation power of the pre-trained language model.101

Specifically, we incorporate the expert structure by102

adapting the FFNs in a pre-trained model into mul-103

tiple experts. For example, the hidden dimension104

of the FFN is 3072 in BERT-base (Devlin et al.,105

2019), and we adapt it into 4 experts, each has a106

hidden dimension 768. In this way, the amount107

of effective parameters (i.e., parameters involved108

in computing the representation of an input) is cut109

by half, and we obtain a ×2 speedup. We remark110

that MoEBERT utilizes more parameters of the pre-111

trained model than existing approaches, such that112

it has greater representation power.113

To adapt the FFNs into experts, we propose an114

importance-based method. Empirically, there are115

some neurons in the FFNs that contribute more to116

the model performance than the other ones. That117

is, removing the important neurons causes signif-118

icant performance drop. Such a property can be119

quantified by the importance score (Molchanov120

et al., 2019; Xiao et al., 2019; Liang et al., 2021).121

When initializing MoEBERT, we share the most122

important neurons (i.e., the ones with the highest123

scores) among the experts, and the other neurons124

are distributed evenly. This strategy has two ad-125

vantages: first, the shared neurons preserve perfor-126

mance of the pre-trained model; second, the non-127

shared neurons promote diversity among experts,128

which further boost model performance. After ini-129

tialization, MoEBERT is trained using a layer-wise130

task-specific distillation algorithm.131

We demonstrate efficiency and efficacy of132

MoEBERT on natural language understanding and133

question answering tasks. On the GLUE (Wang 134

et al., 2019) benchmark, our method significantly 135

outperforms existing distillation algorithms. For 136

example, MoEBERT exceeds performance of state- 137

of-the-art task-specific distillation approaches by 138

over 2% on the MNLI (mismatched) dataset. For 139

question answering, MoEBERT increases F1 by 140

2.6 on SQuAD v1.1 (Rajpurkar et al., 2016) and 141

7.0 on SQuAD v2.0 (Rajpurkar et al., 2018) com- 142

pared with existing algorithms. 143

The rest of the paper is organized as follows: 144

we introduce background and related works in Sec- 145

tion 2; we describe MoEBERT in Section 3; ex- 146

perimental results are provided in Section 4; and 147

Section 5 concludes the paper. 148

2 Background 149

2.1 Backbone: Transformer 150

The Transformer (Vaswani et al., 2017) backbone 151

has been widely adopted in pre-trained language 152

models. The model contains several identically- 153

constructed Transformer layers. Each layer has 154

a multi-head self-attention mechanism and a two- 155

layer feed-forward neural network (FFN). 156

Suppose the output of the attention mechanism 157

is A. Then, the FFN is defined as: 158

H = σ(AW1 + b1), X
ℓ = W2H+ b2, (1) 159

where W1 ∈ Rd×dh , W2 ∈ Rdh×d, b1 ∈ Rdh 160

and b2 ∈ Rd are weights of the FFN, and σ is the 161

activation function. Here d denotes the embedding 162

dimension, and dh denotes the hidden dimension 163

of the FFN. 164

2.2 Mixture-of-Experts Models 165

Mixture-of-Experts models consist of multiple ex- 166

pert layers, which are similar to the Transformer 167

layers. Each of these layers contain a self-attention 168

mechanism and multiple FFNs (Eq. 1) in parallel, 169

where each FFN is called an expert. 170

Let {Ei}Ni=1 denote the experts, and N denotes 171

the total number of experts. Similar to Eq. 1, the 172

experts in layer ℓ take the attention output A as 173

the input. For each at (the t-th row of A) that 174

corresponds to an input token, the corresponding 175

output xℓ
t of layer ℓ is 176

xℓ
t =

∑
i∈T

pi(at)Ei(at). (2) 177

Here, T ⊂ {1 · · ·N} is the activated set of experts 178

with |T | = K, and pi is the weight of expert Ei. 179
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Different approaches have been proposed to con-180

struct T and compute pi. For example, Shazeer181

et al. (2017) take182

pi(at) = [softmax (atWg)]i , (3)183

where Wg is a weight matrix. Consequently, T is184

constructed as the experts that yield top-K largest185

pi. However, such an approach suffers from load186

imbalance, i.e., Wg collapses such that nearly all187

the inputs are routed to the same expert. Existing188

works adopt various ad-hoc heuristics to mitigate189

this issue, e.g., adding Gaussian noise to Eq. 3190

(Shazeer et al., 2017), limiting the maximum num-191

ber of inputs that can be routed to an expert (Lep-192

ikhin et al., 2021), imposing a load balancing loss193

(Lepikhin et al., 2021; Fedus et al., 2021), and194

using linear assignment (Lewis et al., 2021). In195

contrast, Roller et al. 2021 completely remove the196

gate and pre-assign tokens to experts using hash197

functions, in which case we can take pi = 1/K.198

In Eq. 2, a token only activates K instead of N199

experts, and usually K ≪ N , e.g., K = 2 and200

N = 2048 in GShard (Lepikhin et al., 2021). As201

such, the number of FLOPs for one forward pass202

does not scale with the number of experts. Such203

a property paves the way for increasing inference204

speed of a pre-trained model without decreasing the205

model capacity, i.e., we can adapt the FFNs in a pre-206

trained model into several smaller components, and207

only activate one of the components for a specific208

input token.209

2.3 Pre-trained Language Models210

Pre-trained language models (Peters et al., 2018;211

Devlin et al., 2019; Raffel et al., 2019; Liu et al.,212

2019; Brown et al., 2020; He et al., 2021b,a) have213

demonstrated superior performance in various nat-214

ural language processing tasks. These models are215

trained on an enormous amount of unlabeled data,216

such that they contain rich semantic information217

that benefits downstream tasks. Fine-tuning pre-218

trained language models achieves state-of-the-art219

performance in tasks such that natural language un-220

derstanding (He et al., 2021a) and natural language221

generation (Brown et al., 2020).222

2.4 Knowledge Distillation223

Knowledge distillation (Romero et al., 2015; Hin-224

ton et al., 2015) compensates for the performance225

drop caused by model compression. In knowledge226

distillation, a small student model mimics the be-227

havior of a large teacher model. For example, Dis-228

tilBERT (Sanh et al., 2019) uses the teacher’s soft229

prediction probability to train the student model; 230

TinyBERT (Jiao et al., 2020) aligns the student’s 231

layer outputs (including attention outputs and hid- 232

den states) with the teacher’s; MiniLM (Wang et al., 233

2020, 2021) utilizes self-attention distillation; and 234

CoDIR (Sun et al., 2020a) proposes to use a con- 235

trastive objective such that the student can distin- 236

guish positive samples from negative ones accord- 237

ing to the teacher’s outputs. 238

There are also heated discussions on the num- 239

ber of layers to distill. For example, Wang et al. 240

(2020, 2021) distill the attention outputs of the last 241

layer; Sun et al. (2019) choose specific layers to 242

distill; and Jiao et al. (2020) use different weights 243

for different transformer layers. 244

There are two variants of knowledge distillation: 245

task-agnostic (Sanh et al., 2019; Jiao et al., 2020; 246

Wang et al., 2020, 2021; Sun et al., 2020a) and 247

task-specific (Turc et al., 2019; Sun et al., 2019; 248

Li et al., 2020; Hou et al., 2020; Sun et al., 2020b; 249

Xu et al., 2020). The former requires pre-training a 250

small model using knowledge distillation and then 251

fine-tuning on downstream tasks, while the latter 252

directly fine-tunes the small model. Note that task- 253

agnostic approaches are often combined with task- 254

specific distillation for better performance, e.g., 255

TinyBERT (Jiao et al., 2020). In this work, we 256

focus on task-specific distillation. 257

3 Method 258

In this section, we first present an algorithm that 259

adapts a pre-trained language model into a MoE 260

model. Such a structure enables inference speedup 261

by reducing the number of parameters involved in 262

computing an input token’s representation. Then, 263

we introduce a layer-wise task-specific distillation 264

method that compensates for the performance drop 265

caused by model compression. 266

3.1 Importance-Guided Adaptation of 267

Pre-trained Language Models 268

Adapting the FFNs in a pre-trained language model 269

into multiple experts facilitates inference speedup 270

while retaining model capacity. This is because 271

in a MoE model, only a subset of parameters are 272

used to compute the representation of a given token 273

(Eq. 2). These activated parameters are referred to 274

as effective parameters. For example, by adapting 275

the FFNs in a pre-trained BERT-base (Devlin et al., 276

2019) (with hidden dimension 3072) model into 277

4 experts (each has hidden dimension 768), the 278
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Figure 1: Adapting a two-layer FFN into two experts.
The blue neuron is the most important one, and is shared
between the two experts. The red and green neurons are
the second and third important ones, and are assigned
to expert one and two, respectively.

number of effective parameters reduces by half,279

such that we obtain a ×2 speedup.280

Empirically, we find that randomly converting281

a FFN into experts works poorly (see Figure 4a in282

the experiments). This is because there are some283

columns in W1 ∈ Rd×dh (correspondingly some284

rows in W2 in Eq. 1) contribute more than the285

others to model performance.286

The importance score (Molchanov et al., 2019;287

Xiao et al., 2019; Liang et al., 2021), originally288

introduced in model pruning literature, measures289

such parameter importance. For a dataset D with290

sample pairs {(x, y)}, the score is defined as291

Ij =
∑

(x,y)∈D

∣∣∣(w1
j )

⊤∇w1
j
L(x, y)292

+ (w2
j )

⊤∇w2
j
L(x, y)

∣∣∣. (4)293

Here w1
j ∈ Rd is the j-th column of W1, w2

j is the294

j-th row of W2, and L(x, y) is the loss.295

The importance score in Eq. 4 indicates variation296

of the loss if we remove the neuron. That is,297

|Lw − Lw=0| ≈
∣∣∣(w − 0)⊤∇wLw

∣∣∣298

= |w⊤∇wLw|,299

where Lw is the loss with neuron1 w and Lw=0 is300

the loss without neuron w. Here the approximation301

is based on the first order Taylor expansion of Lw302

around w = 0.303

After computing Ij for all the columns, we adapt304

W1 into experts.2 The columns are sorted in as-305

1A neuron w contains two weights w1 and w2 as in Eq. 4.
2The other parameters in the FFN: W2, b1 and b2 are

treated similarly according to Ij .

cending order according to their importance scores 306

as w1
(1) · · ·w

1
(dh)

, where w1
(1) has the largest Ij 307

and w1
(dh)

the smallest. Empirically, we find that 308

sharing the most important columns benefits model 309

performance. Based on this finding, suppose we 310

share the top-s columns and we adapt the FFN 311

into N experts, then expert e contains columns 312

{w1
(1), · · · ,w

1
(s),w

1
(s+e),w

1
(s+e+N), · · · }. Note 313

that we discard the least important columns to keep 314

the size of each expert as ⌊d/N⌋. Figure 1 is an il- 315

lustration of adapting a FFN in a pre-trained model 316

into two experts. 317

3.2 Layer-wise Distillation 318

To remedy the performance drop caused by adapt- 319

ing a pre-trained model to a MoE model, we adopt a 320

layer-wise task-specific distillation algorithm. We 321

use BERT-base (Devlin et al., 2019) as both the 322

student (i.e., the MoE model) and the teacher. We 323

distill both the Transformer layer output Xℓ (Eq. 2) 324

and the final prediction probability. 325

For the Transformer layers, the distillation loss 326

is the mean squared error between the teacher’s 327

layer output Xℓ
tea and the student’s layer output Xℓ 328

obtained from Eq. 2.3 Concretely, for an input x, 329

the Transformer layer distillation loss is 330

Ltrm(x) =

L∑
ℓ=0

MSE(Xℓ,Xℓ
tea), (5) 331

where L is the total number of layers. Notice that 332

we include the MSE loss of the embedding layer 333

outputs X0 and X0
tea. 334

Let f denotes the MoE model and ftea the 335

teacher model. We obtain the prediction probabil- 336

ity for an input x as p = f(x) and ptea = ftea(x), 337

where p is the prediction of the MoE model and 338

ptea is the prediction of the teacher model. Then 339

the distillation loss for the prediction layer is 340

Lpred(x) =
1

2
(KL(p||ptea) + KL(ptea||p)) , (6) 341

where KL is the Kullback–Leibler divergence. 342

The layer-wise distillation loss is the sum of 343

Eq. 5 and Eq. 6, defined as 344

Ldistill(x) = Ltrm(x) + Lpred(x). (7) 345

We will discuss variants of Eq. 7 in the experiments. 346

3Note that Eq. 2 computes the layer output of one token
xℓ
t , i.e., one row in Xℓ.
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3.3 Model Training347

We employ the random hashing strategy (Roller348

et al., 2021) to train the experts. That is, each349

token is pre-assigned to a random expert, and this350

assignment remains the same during training and351

inference. We will discuss more about other routing352

strategies of the MoE model in the experiments.353

Given the training dataset D and samples354

{(x, y)}, the training objective is355

L =
∑

(x,y)∈D

CE(f(x), y) + λdistillLdistill(x),356

where CE is the cross-entropy loss and λdistill is a357

hyper-parameter.358

4 Experiments359

In this section, we evaluate the efficacy and effi-360

ciency of the proposed algorithm on natural lan-361

guage understanding and question answering tasks.362

We implement our algorithm using the Hugging-363

face Transformers4 (Wolf et al., 2019) code-base.364

All the experiments are conducted on NVIDIA365

V100 GPUs.366

4.1 Datasets367

GLUE. We evaluate performance of the proposed368

method on the General Language Understanding369

Evaluation (GLUE) benchmark (Wang et al., 2019),370

which is a collection of nine natural language un-371

derstanding tasks. The benchmark includes two372

single-sentence classification tasks: SST-2 (Socher373

et al., 2013) is a binary classification task that clas-374

sifies movie reviews to positive or negative, and375

CoLA (Warstadt et al., 2019) is a linguistic ac-376

ceptability task. GLUE also contains three sim-377

ilarity and paraphrase tasks: MRPC (Dolan and378

Brockett, 2005) is a paraphrase detection task; STS-379

B (Cer et al., 2017) is a text similarity task; and380

QQP is a duplication detection task. There are also381

four natural language inference tasks in GLUE:382

MNLI (Williams et al., 2018); QNLI (Rajpurkar383

et al., 2016); RTE (Dagan et al., 2006; Bar-Haim384

et al., 2006; Giampiccolo et al., 2007; Bentivogli385

et al., 2009); and WNLI (Levesque et al., 2012).386

Following previous works on model distillation,387

we exclude STS-B and WNLI in the experiments.388

Dataset details are summarized in Appendix A.389

Question Answering. We evaluate the proposed390

algorithm on two question answering datasets:391

4https://github.com/huggingface/
transformers

SQuAD v1.1 (Rajpurkar et al., 2016) and SQuAD 392

v2.0 (Rajpurkar et al., 2018). These tasks are 393

treated as a sequence labeling problem, where we 394

predict the probability of each token being the start 395

and end of the answer span. Dataset details can be 396

found in Appendix A. 397

4.2 Baselines 398

We compare our method with both task-agnostic 399

and task-specific distillation methods. 400

In task-agnostic distillation, we pre-train a small 401

language model through knowledge distillation, 402

and then fine-tune on downstream tasks. The fine- 403

tuning procedure also incorporates task-specific 404

distillation for better performance. 405

DistilBERT (Sanh et al., 2019) pre-trains a small 406

language model by distilling the temperature- 407

controlled soft prediction probability. 408

TinyBERT (Jiao et al., 2020) is a task-agnostic dis- 409

tillation method that adopts layer-wise distillation. 410

MiniLM (Wang et al., 2020, 2021) pre-trains a 411

small language model by aligning the attention 412

distribution between the teacher and the student 413

models. 414

CoDIR (Contrastive Distillation, Sun et al. 2020a) 415

proposes a framework that distills knowledge 416

through intermediate Transformer layers of the 417

teacher via a contrastive objective. 418

In task-specific distillation, a pre-trained lan- 419

guage model is directly compressed and fine-tuned. 420

PKD (Patient Knowledge Distillation, Sun et al. 421

2019) proposes a method where the student pa- 422

tiently learns from multiple intermediate Trans- 423

former layers of the teacher. 424

BERT-of-Theseus (Xu et al., 2020) proposes a pro- 425

gressive module replacing method for knowledge 426

distillation. 427

4.3 Implementation Details 428

In the experiments, we use BERT-base (Devlin 429

et al., 2019) as both the student model and the 430

teacher model. That is, we first transform the pre- 431

trained model into a MoE model, and then apply 432

layer-wise task-specific knowledge distillation. We 433

set the number of experts in the MoE model to 4, 434

and the hidden dimension of each expert is set to 435

768, a quarter of the hidden dimension of BERT- 436

base. The other configurations remain unchanged. 437

We share the top-512 important neurons among the 438

experts (see Section 3.1). The number of effective 439
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RTE CoLA MRPC SST-2 QNLI QQP MNLI
Acc Mcc F1/Acc Acc Acc F1/Acc m/mm

BERT-base 63.5 54.7 89.0/84.1 92.9 91.1 88.3/90.9 84.5/84.4

Task-agnostic
DistilBERT 59.9 51.3 87.5/- 92.7 89.2 -/88.5 82.2/-
TinyBERT (w/o aug) 72.2 42.8 88.4/- 91.6 90.5 -/90.6 83.5/-
MiniLMv1 71.5 49.2 88.4/- 92.0 91.0 -/91.0 84.0/-
MiniLMv2 72.1 52.5 88.9/- 92.4 90.8 -/91.1 84.2/-
CoDIR (pre+fine) 67.1 53.7 89.6/- 93.6 90.1 -/89.1 83.5/82.7

Task-specific
PKD 65.5 24.8 86.4/- 92.0 89.0 -/88.9 81.5/81.0
BERT-of-Theseus 68.2 51.1 89.0/- 91.5 89.5 -/89.6 82.3/-
CoDIR (fine) 65.6 53.6 89.4/- 93.6 90.4 -/89.1 83.6/82.8

Ours (task-specific)
MoEBERT 74.0 55.4 92.6/89.5 93.0 91.3 88.4/91.4 84.5/84.8

Table 1: Experimental results on the GLUE development set. The best results are shown in bold. All the models are
trained without data augmentation. All the models have 66M parameters, except BERT-base (109M parameters).
We report mean over three runs. Model references: BERT (Devlin et al., 2019), DistilBERT (Sanh et al., 2019),
TinyBERT (Jiao et al., 2020), MiniLMv1 (Wang et al., 2020), MiniLMv2 (Wang et al., 2021), CoDIR (Sun et al.,
2020a), PKD (Sun et al., 2019), BERT-of-Theseus (Xu et al., 2020).

parameters of the MoE model is 66M (v.s. 106M440

for BERT-base), which is the same as the base-441

line models. We use the random hashing strategy442

(Roller et al., 2021) to train the MoE model, we443

will discuss more later. Detailed training and hyper-444

parameter settings can be found in Appendix B.445

4.4 Main Results446

Table 1 summarizes experimental results on the447

GLUE benchmark. Notice that our method out-448

performs all of the baseline methods in 6/7 tasks.449

In general task-agnostic distillation behaves better450

than task-specific algorithms because of the pre-451

training stage. For example, the best-performing452

task-specific method (BERT-of-Theseus) has a 68.2453

accuracy on the RTE dataset, whereas accuracy454

of MiniLMv2 and TinyBERT are greater than 72.455

Using the proposed method, MoEBERT obtains a456

74.0 accuracy on RTE without any pre-training, in-457

dicating the efficacy of the MoE architecture. We458

remark that MoEBERT behaves on par or better459

than the vanilla BERT-base model in all of the460

tasks. This shows that there exists redundancy in461

pre-trained language models, which paves the way462

for model compression.463

Table 2 summarizes experimental results on two464

question answering datasets: SQuAD v1.1 and465

SQuAD v2.0. Notice that MoEBERT significantly466

outperforms all of the baseline methods in terms 467

of both evaluation metrics: exact match (EM) 468

and F1. Similar to the findings in Table 1, task- 469

agnostic distillation methods generally behave bet- 470

ter than task-specific ones. For example, PKD 471

has a 69.8 F1 score on SQuAD 2.0, while per- 472

formance of MiniLMv1 and MiniLMv2 is over 473

76. Using the proposed MoE architecture, perfor- 474

mance of our method exceeds both task-specific 475

and task-agnostic distillation, e.g., the F1 score 476

of MoEBERT on SQuAD 2.0 is 76.8, which is 7.0 477

higher than PKD (task-specific) and 0.4 higher than 478

MiniLMv2 (task-agnostic). 479

4.5 Ablation Study 480

Expert dimension. We examine the affect of ex- 481

pert dimension, and experimental results are illus- 482

trated in Figure 2a. As we increase the dimension 483

of the experts, model performance improves. This 484

is because of the increased model capacity due to a 485

larger number of effective parameters. 486

Number of experts. Figure 2b summarizes ex- 487

perimental results when we modify the number of 488

experts. As we increase the number of experts, 489

model performance improves because we effec- 490

tively enlarge model capacity. We remark that hav- 491

ing only one expert is equivalent to compressing 492
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SQuAD v1.1 SQuAD v2.0
EM F1 EM F1

BERT-base (Devlin et al., 2019) 80.7 88.4 74.5 77.7

Task-agnostic
DistilBERT (Sanh et al., 2019) 78.1 86.2 66.0 69.5
TinyBERT (w/o aug) (Jiao et al., 2020) - - - 73.1
MiniLMv1 (Wang et al., 2020) - - - 76.4
MiniLMv2 (Wang et al., 2021) - - - 76.3

Task-specific
PKD (Sun et al., 2019) 77.1 85.3 66.3 69.8

Ours (task-specific)
MoEBERT 80.4 87.9 73.6 76.8

Table 2: Experimental results on SQuAD v1.1 and SQuAD v2.0. The best results are shown in bold. All the
models are trained without data augmentation. All the models have 66M parameters, except BERT-base (109M
parameters). Here EM means exact match.

(a) Expert dimension. (b) Number of experts. (c) Shared dimension.

Figure 2: Ablation study on MNLI. We report the average accuracy of MNLI-m and MNLI-mm. As default settings,
we have expert dimension 768, number of experts 4, and shared dimension 512.

RTE MNLI SQuAD v2.0
Acc m/mm EM/F1

MoEBERT 74.0 84.5/84.8 73.6/76.8
-distill 73.3 83.2/84.0 72.5/76.0

Table 3: Efficacy of layer-wise distillation.

the model without incorporating MoE. In this case493

performance is unsatisfactory because of the lim-494

ited representation power of the model.495

Shared dimension. Recall that we share impor-496

tant neurons among the experts when adapting the497

FFNs. In Figure 2c we examine the effect of vary-498

ing the number of shared neurons. Notice that499

sharing no neurons yields the worst performance,500

indicating the efficacy of the sharing strategy. Also501

notice that performance of sharing all the neurons502

is also unsatisfactory. We attribute this to the lack503

of diversity among the experts.504

4.6 Analysis 505

Efficacy of distillation. After adapting the FFNs in 506

the pre-trained BERT-base model into experts, we 507

train MoEBERT using layer-wise knowledge dis- 508

tillation. In Table 3, we examine the efficacy of the 509

proposed distillation method. We show experimen- 510

tal results on RTE, MNLI and SQuAD v2.0, where 511

we remove the distillation and directly fine-tune 512

the adapted model. Results show that by removing 513

the distillation module, model performance signif- 514

icantly drops, e.g., accuracy decreases by 0.7 on 515

RTE and the exact match score decreases by 1.1 on 516

SQuAD v2.0. 517

Efficacy of importance-based adaptation. Re- 518

call that we adapt the FFNs in BERT-base into ex- 519

perts according to the neurons’ importance scores 520

(Eq. 4). We examine the method’s efficacy by ex- 521

perimenting on two different strategies: randomly 522

split the FFNs into experts (denoted Random), and 523

adapt (and share) the FFNs according to the in- 524

verse importance, i.e., we share the neurons with 525

7



(a) Adaptation methods. (b) Routing methods in MoE. (c) Distillation methods.

Figure 3: Experimental results of model variants on MNLI (average of m and mm).
Our methods are denoted Import, Hash-r and All in the subfigures, respectively.

Figure 4: Inference speed
(examples/second) on the
MNLI dataset.

the smallest scores (denoted Inverse). Figure 4a526

illustrated the results. Notice that performance sig-527

nificantly drops when we apply random splitting528

compared with Import (the method we use). More-529

over, performance of Inverse is even worse than530

random splitting, which further demonstrates the531

efficacy of the importance metric.532

Different routing methods. We use a random533

hashing strategy (denoted Hash-r) to route input534

tokens to experts. That is, each token in the vo-535

cabulary is pre-assigned to a random expert, and536

this assignment remains the same during training537

and inference. We examine other routing strategies:538

(1) we employ a trainable gate as in Eq. 3 (de-539

noted Gate); (2) we use a balanced hash list (Roller540

et al., 2021), i.e., tokens are pre-assigned to experts541

according to frequency, such that each expert re-542

ceives approximately the same amount of inputs543

(denoted Hash-b). From Figure 4b, we see that all544

the methods yield similar performance. Therefore,545

MoEBERT is robust to routing strategies.546

Different distillation methods. MoEBERT is547

trained using a layer-wise distillation method548

(Eq. 7), where we add a distillation loss to every549

intermediate layer (denoted All). We examine two550

variants: (1) we only distill the hidden states of the551

last layer (denoted Last); (2) we distill the hidden552

states of every other layer (denoted Skip). Figure 4c553

shows experimental results. We see that only distill-554

ing the last layer yields unsatisfactory performance;555

while the Skip method obtains similar results com-556

pared with All (the method we use).557

Inference speed. We examine inference speed of558

BERT, DistilBERT and MoEBERT on the MNLI559

dataset, and Figure 4 illustrates the results. We see560

that the speed of MoEBERT is slightly slower than561

DistilBERT, but significantly faster than BERT.562

Compressing larger models. Task-specific distil-563

lation methods do not require pre-training. There-564

RTE MNLI-m MNLI-mm
Acc Acc Acc

BERTlarge 71.1 86.3 86.2
MoEBERTlarge 72.2 86.3 86.5

Table 5: Distilling BERT-large on RTE and MNLI.

fore, these methods can be easily applied to other 565

model architectures and sizes beyond BERT-base. 566

We compress the BERT-large model. Specifically, 567

we adapt the FFNs in BERT-large (with hidden 568

dimension 4096) into four experts, such that each 569

expert has hidden dimension 1024. We share the 570

top-512 neurons among experts according to the 571

importance score. After compression, the num- 572

ber of effective parameters is reduces by half. Ta- 573

ble 5 demonstrates experimental results on RTE 574

and MNLI. We see that similar to the findings in 575

Table 1, MoEBERT behaves on par or better than 576

BERT-large in all of the experiments. 577

5 Conclusion 578

We present MoEBERT, which uses a Mixture-of- 579

Experts structure to distill pre-trained language 580

models. Our proposed method can speedup in- 581

ference by adapting the feed-forward neural net- 582

works (FFNs) in a pre-trained language model into 583

multiple experts. Moreover, the proposed method 584

largely retains model capacity of the pre-trained 585

model. This is in contrast to existing approaches, 586

where the representation power of the compressed 587

model is limited, resulting in unsatisfactory perfor- 588

mance. To adapt the FFNs into experts, we adopt 589

an importance-based method, which identifies and 590

shares the most important neurons in a FFN among 591

the experts. We further propose a layer-wise task- 592

specific distillation algorithm to train MoEBERT . 593

We conduct systematic experiments on natural lan- 594

guage understanding and question answering tasks. 595

Results show that the proposed method outper- 596

forms existing distillation approaches. 597
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A Dataset details894

Statistics of the GLUE benchmark is summarized895

in Table 7. Statistics of the question answering896

datasets (SQuAD v1.1 and SQuAD v2.0) are sum-897

marized in Table 6.898

#Train #Validation
SQuAD v1.1 87,599 10,570
SQuAD v2.0 130,319 11,873

Table 6: Statistics of the SQuAD dataset.

B Training Details899

We use Adam (Kingma and Ba, 2015) as the op-900

timizer with parameters (β1, β2) = (0.9, 0.999).901

We employ gradient clipping with a maximum gra-902

dient norm 1.0, and we choose weight decay from903

{0, 0.01, 0.1}. The learning rate is chosen from904

{1 × 10−5, 2 × 10−5, 3 × 10−5, 4 × 10−5}, and905

we do not use learning rate warm-up. We train906

the model for {3, 4, 5, 10} epochs with a batch size907

chosen from {8, 16, 32, 64}. The weight of the908

distillation loss λdistil is chosen from {1, 2, 3, 4, 5}.909

Hyper-parameters for distilling BERT-base is910

summarized in Table 8. We use Adam (Kingma911

and Ba, 2015) as the optimizer with parameters912

(β1, β2) = (0.9, 0.999). We employ gradient clip-913

ping with a maximum gradient norm 1.0. We do914

not use learning rate warm-up. For the GLUE915

benchmark, we use a maximum sequence length916

of 512 except MNLI and QQP, where we set the917

maximum sequence length to 128. For the SQuAD918

datasets, the maximum sequence length is set to919

384.920
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Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 7: Summary of the GLUE benchmark.

lr batch epoch decay λdistill

RTE 1× 10−5 1× 8 10 0.01 1.0
CoLA 2× 10−5 1× 8 10 0.0 3.0
MRPC 3× 10−5 1× 8 5 0.0 2.0
SST-2 2× 10−5 2× 8 5 0.0 1.0
QNLI 2× 10−5 4× 8 5 0.0 2.0
QQP 3× 10−5 8× 8 5 0.0 1.0
MNLI 5× 10−5 8× 8 5 0.0 5.0
SQuAD v1.1 3× 10−5 4× 8 5 0.01 2.0
SQuAD v2.0 3× 10−5 2× 8 4 0.1 1.0

Table 8: Hyper-parameters for distilling BERT-base. From left to right: learning rate; batch size (2× 8 means we
use a batch size of 2 and 8 GPUs); number of training epochs; weight decay; and weight of the distillation loss.
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