
Improving Decision Trees through the Lens of
Parameterized Local Search

Juha Harviainen∗

Department of Computer Science
University of Helsinki

Helsinki, Finland
juha.harviainen@helsinki.fi

Frank Sommer∗
Institute of Computer Science

Friedrich-Schiller Universität Jena
Jena, Germany

frank.sommer@uni-jena.de

Manuel Sorge∗
Institute of Logic and Computation

TU Wien
Vienna, Austria

manuel.sorge@ac.tuwien.ac.at

Abstract

Algorithms for learning decision trees often include heuristic local-search opera-
tions such as (1) adjusting the threshold of a cut or (2) also exchanging the feature
of that cut. We study minimizing the number of classification errors by performing
a fixed number of a single type of these operations. Although we discover that the
corresponding problems are NP-complete in general, we provide a comprehensive
parameterized-complexity analysis with the aim of determining those properties of
the problems that explain the hardness and those that make the problems tractable.
For instance, we show that the problems remain hard for a small number d of
features or small domain size D but the combination of both yields fixed-parameter
tractability. That is, the problems are solvable in (D + 1)2d · |I|O(1) time, where
|I| is the size of the input. We also provide a proof-of-concept implementation of
this algorithm and report on empirical results.

1 Introduction

Decision trees classify and explain data by associating labels with subsets of the feature space,
characterized by a set of inequalities [30, 31, 35]. Not only are the models simple and efficient but
also relevant for explainable AI because of their interpretability [15, 39]. Many prominent algorithms
for learning decision trees like CART [2], C4.5 [36], C5.0, and J48 [43] utilize heuristics to decide
when and where in the tree to add new internal nodes that cut the data based on some chosen feature
and a threshold value. To mitigate overfitting, one may afterwards remove cuts from the decision tree
by performing different types of pruning operations such as replacing some subtree by a leaf node
[2, 36, 43]. Typically, when and where these are applied is also chosen heuristically.

After finding an initial solution a common and effective technique for optimization problems is to then
perform local search, that is, searching for a better solution within some local neighborhood under
some distance metric. Local search for decision trees is prevalent in the literature, in particular in
simulated annealing approaches [6, 8], genetic algorithms as a mutator [20, 21, 22, 23, 27, 28, 29, 40],
and SAT-based local search has recently shown strong performance for finding near-optimal decision
trees [41]. However, local search is not applied in the standard decision-tree heuristics [2, 36, 43],

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

raising the question whether there is a justification for this situation. That is, what is the potential for
local search to be effective for decision trees, in particular, heuristically computed ones? To answer
this question, we need algorithms that are capable of, given a decision tree and training data, to find the
optimum solution within a local neighborhood. Unfortunately, we are not aware of any systematic anal-
ysis of the algorithmics of this local-search problem. Contributing such an analysis is our main goal.

We focus on two natural types of local-search operations: Choose a cut and (1) adjust the threshold
of the cut or (2) also exchange the feature associated with the cut. Both have been studied extensively
in heuristics [6, 8, 20, 21, 22, 23, 27, 28, 29, 40]. We refer to searching the local neighborhood for an
optimal modified tree as THRESHOLD ADJUSTMENT and CUT EXCHANGE. More specifically, we
ask whether at most k cuts can be modified (with adjustment or exchange) simultaneously such that
the resulting tree has fewer errors than the input tree. As we show, both problems are NP-complete;
thus we need more detailed algorithmic analysis to be relevant to practice. Thus, we identify the key
parameters related to the local-search problems and characterize the influence of these parameters and
most of their combinations on the complexity; see Figure 2. This continues a recent line of research
on parameterized learning and improvement of decision trees [7, 10, 14, 24, 25, 33, 34, 42, 26].

There are three main levels of influence that a parameter p can have when a problem is NP-hard:
ideally (1) fixed-parameter tractability (FPT), that is, there is an algorithm with f(p) · |I|O(1) running
time, or (2) W[1]-hardness and XP-tractability, that is, there is an algorithm with running time
f(p) · |I|f(p) and it is likely not possible to remove the dependence of the exponent on p, and (3)
paraNP-hardness, that is, even for constant values of p the problem is NP-hard. The parameters
that we study are the number n of training-data examples, number d of features, the largest domain
size D, the size s of the input tree, the number k of local search operations, the number ℓ of nodes
unaffected by local search, an upper bound t on the number errors that we aim for, and the largest
number δmax of features in which two examples of different classes differ; see Figure 1. 2

See Figure 2 for overviews over our results. Broadly, we observe that CUT EXCHANGE is at least
as hard as THRESHOLD ADJUSTMENT; in particular this is justified by reductions from the latter
THRESHOLD ADJUSTMENT to CUT EXCHANGE. Both are also related to the problem of learning an
optimal decision tree from scratch: Some of our results can be interpreted to show hardness of learn-
ing decision trees even when we restrict the structure of the desired trees. Essentially, the associated
reductions use scaffolding to construct a useless decision tree which then has to be made useful via
changing its cuts with local-search operations where the number of local-search operations roughly
corresponds to the size of the tree to be learned. (In practice, however, the number of local search oper-
ations will be lower than the tree size to be learned.) There are indeed parameter combinations where
THRESHOLD ADJUSTMENT is strictly harder than learning decision trees, and CUT EXCHANGE is
strictly harder than THRESHOLD ADJUSTMENT from a complexity point of view, see Figure 2.

On the positive side, several parameter combinations yield tractability: For instance while both prob-
lems are unlikely to be fixed-parameter tractable (FPT) in either the number d of features or the maxi-
mum number D of distinct values for a feature alone, their combination yields an FPT-algorithm. This
algorithm can also straightforwardly incorporate the parameterized decision-tree pruning algorithm of
Harviainen et al. [14] on the same parameters to improve the decision tree with local search and prun-
ing at the same time, where the pruning operations either (1) replace a subtree by a new leaf or (2) raise
a subtree Tv rooted at v by substituting a subtree rooted at an ancestor of v with Tv (see Theorem 4.3).

To complement our theoretical findings, we study the potential benefits of local search, that is, is there
room for improvement in the decision trees constructed by the heuristics? While it is well known
that optimally learning decision trees is NP-hard [16], the heuristics might still perform (almost)
optimally on practical instances or at least be optimal in some local neighborhood of models. For
instance, recent research [14] has—perhaps unexpectedly—suggested that the pruning heuristics
employed by the commonly used libraries tend to be near-optimal on common benchmark datasets.
We observe a similar phenomenon here suggesting near-optimality also locally, that is, while there is
some room for improvement on the instances already by performing a single local search operation,
the decrement in errors tends to be mild (see Table 1).

We proceed by fixing basic definitions and notation in Section 2. In Section 3, we show that learning
decision trees reduces to local search. Section 4 focuses on algorithms for both problems, and in

2See Ordyniak and Szeider [34, Table 1] and Staus et al. [42, Table 3] for indication that δmax is small in
relevant settings and see Harviainen et al. [14, Section 6] for parameters d and D.

2

BF n BF

P3.4 s P3.3

T4.6 k T4.6 C5.7 ℓ P3.3

T5.3 t P3.3

T4.1 d T4.2 & T5.1

T5.3 D P3.3

C5.4 δmax P3.3

FPT

XP and W[1]-hard

paraNP-hard

Figure 1: A Hasse diagram of the parameters, where an edge between two parameters means that
the lower one is upper bounded by some function of the upper one. The dashed edge applies only to
the THRESHOLD ADJUSTMENT problem. The color of the left box next to each parameter indicates
the complexity for THRESHOLD ADJUSTMENT and the color of the right box for CUT EXCHANGE,
which happen to be the same for all considered single parameters. The texts of the boxes refer to
the corresponding theorems, and BF stands for a brute-force algorithm. The figure shows that for
example, both problems are W[1]-hard and in XP when parameterized by s, and consequently they
are at least W[1]-hard (potentially paraNP-hard) for all parameters smaller than s (for example ℓ) and
have at least an XP-time algorithm (potentially FPT) for all parameters larger than s (for example n).

Section 5 we provide further hardness results for both problems. Our main technical highlights are as
follows: (1) For the FPT-algorithm for tree size s and error bound t for THRESHOLD ADJUSTMENT,
in a first step we guess the changed cuts and the distribution of errors in the final tree and in a second
step we rely on recursive binary-search to compute the optimal thresholds. Our other algorithms
exploit structural properties via dynamic programming. (2) Our most involved hardness result is
the W-hardness for the number d (for both problems). We reduce from MULTICOLORED CLIQUE
and create two features per color class and an input decision tree T which has a regular structure.
However, we need to be very careful with the values of the examples in these features (especially
for THRESHOLD ADJUSTMENT since we cannot change the feature of any cut). In Section 6, we
summarize our experiments and their results. Finally, we conclude with implications and potential
research directions in Section 7. 3

2 Preliminaries

In this section, we recall the basic definitions and terminology of decision trees and parameterized
complexity. Denote the set {1, 2, . . . ,m} by [m] and the set {0, 1, . . . ,m} by [0,m].

Decision trees. The set E of n labeled data points in the d-dimensional spaceRd is called examples.
The set of possible class labels of E is denoted by Σ, which we assume to be {blue, red} throughout
the paper. The value of the ith feature of an example e is e[i] and the label of the example is λ(e).
The pair (E, λ) is the training data set. For a feature i and a threshold x ∈ R, we define two subsets
of examples E≤[i, x] := {e ∈ E : e[i] ≤ x} and E>[i, x] := E \ E≤[i, x] = {e ∈ E : e[i] > x}.

A decision tree is a tuple (T, feat, thr, cla) with a rooted tree T on a set of nodes V = V (T),
functions feat and thr that associate a feature feat(v) ∈ [d] and a threshold thr(v) ∈ R to each
internal node v ∈ V , and a function cla that associates a class label cla(v) ∈ Σ for each leaf
node v ∈ V . With minor abuse of terminology, we often call the rooted tree T a decision tree without
explicitly mentioning the functions feat, thr, and cla. The internal nodes are also called cuts. Each
cut v ∈ V of the rooted tree T has two ordered children which we refer to as its left and right children.

Each node v ∈ V of the decision tree T is then associated with a subset E[T, v] ⊆ E of the examples,
defined recursively as follows. For the root r of T , we let E[T, r] = E. For a cut v ∈ V whose
left child is u and right child is w, we let E[T, u] = E[T, v] ∩ E≤[feat(u), thr(u)] and E[T,w] =
E[T, v]∩E>[feat(w), thr(w)]. For conciseness, let E[v] := E[T, v] when T is clear from the context.
Note that for any example e, the set of nodes v for which e ∈ E[v] is a path from the root of T to one
of its leaves w. We call w the leaf of e and say that T assigns e to the class cla(w). If λ(e) = cla(w),
then e is correctly classified (by T), and otherwise it is misclassified and called an error.

3A continuously updated version of our paper is available on arXiv [12] and the related source code for
replicating the experiments on Zenodo [13].

3

k +D + t

T4.6 & T5.3

k

k +D + δmax

T4.6 & C5.5

k

s+ d

T4.1 & P3.4

d

d+ t

T4.1 & T5.2

d

T4.4

s+ t

T4.1

d+D

ℓ+D + δmax

C5.7

t+D + δmax

C5.4

t+ ℓ+D

T5.6

FPT

XP and W[1]-hard

paraNP-hard

(a) Results for THRESHOLD ADJUSTMENT (b) Results for CUT EXCHANGE

s+ t+D

T4.6 & P3.3

k

s+D + δmax

T4.6 & P3.3

k

s+ d

T4.6 & P3.7

k

T4.2

d+D

T4.5

d+ s+ t

ℓ+t+D+δmax

P3.3

d+ ℓ+ t

T4.2 & T5.1

d

largest param.

class+theorem

lowest param.

Figure 2: Summary of our results for combinations of parameters. In each box, the center cell indicates
the complexity class (and references the corresponding theorem) which holds for all parameterizations
bounded from below by the parameter of the bottom cell and from above by the parameter of the top
cell. As a concrete example, the first box of the middle row states that THRESHOLD ADJUSTMENT
is W[1]-hard and in XP for, for example, k, k +D, k + t, and k +D + t. Note that THRESHOLD
ADJUSTMENT parameterized by t+ ℓ+D is W[1]-hard but XP-tractability is open.

Local search. In the present work, we consider two natural local operations that modify the decision
tree (T, feat, thr, cla). The first operation is threshold adjustment, where we choose one cut v ∈ V
of the decision tree and a new threshold x ∈ R, and obtain a new decision tree (T ′, feat′, thr′, cla′)
whose only difference to (T, feat, thr, cla) is that thr′(v) = x. Similarly in our other operation, cut
exchange, we pick one cut v ∈ V , a new feature i ∈ [d], and a new threshold x ∈ R to obtain a
decision tree with feat′(v) = i and thr′(v) = x. We also allow for arbitrarily changing the labels of
the leaves of the decision tree to accommodate the modified cuts better.

Given these two local search operations, the question is then how much performing them some
number of times helps us reduce the number of misclassifications, potentially after relabeling any
number of leaves. We thus consider the following problems:

THRESHOLD ADJUSTMENT / CUT EXCHANGE

Input: A training data set (E, λ), a decision tree T for (E, λ), and k, t ∈ N.
Task: Perform k threshold adjustments/cut exchanges to obtain a decision tree with at most t errors.

Reasonability. To argue about the computational hardness of the problems in practice, we apply
the notion of reasonability of Harviainen et al. [14]. Roughly speaking, a reasonable decision tree
should be learnable by a heuristic algorithm for decision tree learning. More precisely, they propose
two rules properties that a reasonable decision tree should satisfy: (1) no leaf v should be empty, that
is, E[v] ̸= ∅, and (2) the class label of each leaf v should match the majority of examples e ∈ E[v].

Parameterized complexity. We study the complexities of these problems from the viewpoint of
parameterized complexity [3, 4, 5], that is, we not only consider total encoding length |I| of the input
instance I but also its properties. They are described by parameters n, d, k, and t defined above,
the size s of the decision tree, the number of unmodified cuts ℓ := s − k, the domain size D :=
maxi∈[d]

∣∣{e[i] : e ∈ E}
∣∣ and δmax, which is the maximum number of features where two examples

of different classes have different values. These parameters have also been observed to be relevant
in the literature for learning [10, 24, 34] and pruning [14] decision trees, and their relationships are
illustrated in Figure 1. Note that s ≤ n by reasonability and that d ≤ n for threshold adjustment,
since we can remove all features of the examples that do not appear in the initial decision tree.

A problem is fixed-parameter tractable (FPT) with respect to a parameter p if any instance I of
the problem is solvable in time O(f(p) · poly |I|) for some function f . For example, FPT in n
for THRESHOLD ADJUSTMENT and CUT EXCHANGE follows by observing that there are at most
(s + 1)n ≤ nn ways the examples can be partitioned to the leaves, and we can test in polynomial
time for each partition whether it is obtainable with k ≤ s ≤ n operations. A problem is slicewise

4

polynomial (XP) if it is solvable in time O(f(p) · |I|g(p)) for some functions f, g. Under the common
assumption that FPT̸=W[i], i ≥ 1, one can show that a problem is not in FPT for some parameter p
by reducing some known W[i]-hard problem to it in time O(f(p) · poly |I|).
Tighter lower bounds can be proven conditional to the exponential time hypothesis (ETH) [17, 18],
which states that 3-SAT on n-variable formulas cannot be solved in 2o(n) time. Essentially, one then
shows that a fast algorithm to a problem would violate ETH through a reduction from 3-SAT to the
problem. The strong exponential time hypothesis (SETH) [17, 18] similarly states that the satisfiability
problem for n-variable formulas in conjunctive normal form cannot be solved in O((2− ϵ)n) time.

3 From Computing Decision Trees to Local Search for Decision Trees

In this section we provide parameterized reductions from restricted versions of the computation of
optimal decision trees to the associated local search problems for decision trees with respect to the
two operations threshold adjustment and cut exchange, allowing us to transfer hardness results.

Computation of minimal-size decision trees. Initially, we reconsider the problem of computing a
minimal-size decision tree DECISION TREE LEARNING and strengthen an existing hardness result
which will also hold for one of our new restricted versions and subsequently also for CUT EXCHANGE.
In DECISION TREE LEARNING the input consists of a training data set (E, λ) and integers s, t ∈ N,
and the task is to compute a decision tree T with at most s inner nodes making at most t errors.
Gahlawat and Zehavi [10, Thm. 1] showed that DECISION TREE LEARNING is W[1]-hard for s and
cannot be solved in |I|o(s) time unless the ETH fails, even if δmax = 3. Here, we strengthen their
result by ensuring that parameter D is constant, while arguably being simpler.

Theorem 3.1 (⋆). DECISION TREE LEARNING is W[1]-hard for s and cannot be solved in
|I|o(s) time unless the ETH fails, even if δmax = 2 and D = 2.

Computation of structure-restricted decision trees. To obtain hardness results for CUT EX-
CHANGE, we reduce from the problem of computing a decision tree with a fixed structure, that is,
the underlying tree of the decision tree T is fixed. In other words, we are given a tree Q and need to
assign cuts to each inner node of Q. Moreover, for THRESHOLD ADJUSTMENT, we reduce from the
problem of computing a decision tree with a fixed structure and a fixed feature assignment, that is, the
function feat(·) is given, mapping each inner node of the fixed tree Q to a feature of E.

We consider the following two learning problems: (1) In FIXED STRUCTURE DECISION TREE
(FS-DT) the input consists of a training data set (E, λ), a tree Q, and t ∈ N, and the task is to
assign features and thresholds to all inner nodes of Q, and classes to the leaves such that the resulting
decision tree T makes at most t errors. (2) In FIXED STRUCTURE FIXED FEATURE DECISION TREE
(FSFF-DT) the input consists of a training data set (E, λ), a tree Q, a function feat(·) with fixed
feature assignment, and t ∈ N, and the task is to assign thresholds to all inner nodes of Q, and classes
to the leaves such that the resulting decision tree T makes at most t errors.

Observe that FS-DT/FSFF-DT corresponds to the special case of CUT EXCHANGE/THRESHOLD
ADJUSTMENT where k = s if we assign some dummy cuts/thresholds to all inner nodes and some
dummy classes to all leaves of the tree Q. We formalize that as the following observation and use it
to obtain hardness results for both CUT EXCHANGE and THRESHOLD ADJUSTMENT via hardness
results for FS-DT and FSFF-DT, respectively.

Observation 3.2. There is a (parameterized) reduction from FS-DT to CUT EXCHANGE and from
FSFF-DT to THRESHOLD ADJUSTMENT where k = s.

FS-DT and CUT EXCHANGE. Note that in the reduction behind Theorem 3.1 the structure of
any decision tree T which is a solution is essentially fixed: The inner nodes of T always form a path,
exactly one leaf of the last cut in T is blue, and all other leaves are red. Consequently, the reduction
behind Theorem 3.1 also works for FS-DT. Since other hardness reductions for DECISION TREE
LEARNING enforce similar structures of the resulting decision tree, we obtain the following.

Proposition 3.3 (⋆). Even if the subgraph induced by the inner nodes is a path, CUT EXCHANGE

1. is W[1]-hard for s and cannot be solved in |I|o(s) time unless the ETH fails, even if ℓ = 0, D = 2,
and δmax = 3.

5

2. is NP-hard even if D = 2, δmax = 2, ℓ = 0, and t = 0,

3. is W[2]-hard for s, cannot be solved in |I|o(s) time unless the ETH fails, and cannot be solved
in O(ns−ε) for any ε > 0 unless the SETH fails, even if D = 2, ℓ = 0, and t = 0,

FSFF-DT and THRESHOLD ADJUSTMENT. Next, for THRESHOLD ADJUSTMENT our goal is
to show the following. (Running time lower bounds herein hold when assuming the ETH.)
Proposition 3.4 (⋆). Even if the subgraph induced by the inner nodes is a path, ℓ = 0, and δmax is a
constant, THRESHOLD ADJUSTMENT is W[1]-hard wrt. s+d and cannot be solved in |I|o(s+d) time.

To prove Proposition 3.4, we first take a closer inspection of a similar hardness result presented by
Harviainen et al. [14, Thm. 5.6] for decision tree pruning with the so-called raising operation and
show that their reduction can also be used to show a similar hardness result for FSFF-DT. Second,
we use Observation 3.2 to obtain the result for THRESHOLD ADJUSTMENT.
Proposition 3.5 (⋆). Even if the subgraph induced by the inner nodes is a path, ℓ = 0 and δmax is a
constant, FSFF-DT is W[1]-hard wrt. s+ d and cannot be solved in no(s+d) time.

From THRESHOLD ADJUSTMENT to CUT EXCHANGE. Finally, we provide a reduction from
THRESHOLD ADJUSTMENT to CUT EXCHANGE which allows us to transfer our hardness result for
parameter s+ d to CUT EXCHANGE. We achieve this in two steps: (1) We modify the THRESHOLD
ADJUSTMENT instance I such that each feature is used at most once by adding new identical original
features. (2) We replace each leaf v of I by a new gadget Gv consisting of a long path of cuts in new
features and we add new dummy examples Ev for each leaf v which can only be correctly classified
with our budget of allowed cut exchange operations if they end up in gadget Gv corresponding to v.
Thus, cut exchange operations performed at original cuts can only change their thresholds.
Theorem 3.6 (⋆). THRESHOLD ADJUSTMENT reduces to CUT EXCHANGE.
Proposition 3.7 (⋆). CUT EXCHANGE is W[1]-hard with respect to s+ d.

4 Algorithms for THRESHOLD ADJUSTMENT and CUT EXCHANGE

Here, we provide FPT-algorithms and XP-algorithms for both problems and various parameters.

The parameter d + D. Now, we show that both problems admit an FPT-algorithm for d+D via
dynamic-programming. Simultaneously, these algorithms are also XP-algorithms for d. Afterwards,
we show that this dynamic-programming approach also works if we allow both local search operations
and also pruning. More precisely, in DECISION TREE PRUNING AND LOCAL SEARCH (DT-PLS)
the input is a decision tree T and we have 4 individual budgets, one for the number of threshold
adjustment operations, one the number of cut exchange operations, one for the number of subtree
replacement operations, and one for the number of subtree raising operations. Recall that in a subtree
replacement operation an inner node v of T whose 2 children are leafs is replaced by a new leaf and
in subtree raising the subtree rooted at an ancestor of v is substituted by the subtree rooted at v.
Theorem 4.1 (⋆). THRESHOLD ADJUSTMENT can be solved in O((D + 1)2d+1nk2 + ns) time.

Proof Sketch. We adapt the algorithm of Harviainen et al. [14] for subtree raising under the same
parameterization. A threshold sequence (li, ri)i∈[d] encodes for each feature i ∈ [d] an interval (li, ri],
characterizing a subset of the feature space. Let E[(li, ri)i∈[d]] := {e ∈ E : e[i] ∈ (li, ri] for i ∈ [d]}
be the set of examples within the box defined by a threshold sequence. Let Q[v, (li, ri)i∈[d], k

′] be
the minimum number of errors achievable if our decision tree is the subtree rooted at v ∈ V on
our initial decision tree T on the set of examples E[(li, ri)i∈[d]] if we make at most k′ threshold
adjustment operations. Define L((li, ri)i∈[d], j, x) as the threshold sequence identical to (li, ri)i∈[d]

except that for i = j we have the interval (max{li, x}, ri). Define R((li, ri)i∈[d], j, x) analogously
with an interval (li,max{ri, x}). For any cut v, when combining subresults of the left child w and
the right child u of v, we either adjust thr(v) or not. Thus, Q[v, (li, ri)i∈[d], k

′] is the minimum of

min
β∈[0,k′]

Q[w,L((li, ri)i∈[d], feat(v), thr(v)), β] +Q[u,R((li, ri)i∈[d], feat(v), thr(v)), k′ − β], and

min
β∈[0,k′−1],x∈R

Q[w,L((li, ri)i∈[d], feat(v), x), β]+Q[u,R((li, ri)i∈[d], feat(v), x), k′−β−1].

6

Theorem 4.2 (⋆). CUT EXCHANGE can be solved in O((D + 1)2d+1ndk2 + ns) time.

Theorem 4.3 (⋆). DT-PLS can be solved in O((D + 1)2d+1ndk8 + ns) time.

The parameter s + t. We now provide an FPT-algorithm for THRESHOLD ADJUSTMENT with
respect to s + t by iteratively using binary search to determine the new thresholds. I contrast, in
Proposition 3.3 we showed that CUT EXCHANGE remains W[2]-hard with respect to s, even if t = 0.
Hence, an FPT-algorithm for s+ t is unlikely. However, if we additionally include the number d of
features in the parameter, then we can obtain an FPT-algorithm.

Theorem 4.4. THRESHOLD ADJUSTMENT can be solved in sO(3s+t) · poly(|I|) time.

Proof. Let ((E, λ), T, k, t) be an instance of THRESHOLD ADJUSTMENT and let T ′ be a solution.
Next, we describe our branch-and-bound algorithm: First, we guess the k nodes N where a threshold
adjustment is done, that is, the k nodes with different threshold in T ′ than in T . Clearly, by testing
all O(sk) ∈ O(ss) node subsets of size at most k, in one branch the algorithm finds the correct
node subset N where the adjustments are performed. Moreover, since T has s+ 1 leaves, there are
2s+1 possible assignments of classes to the leaves. Again, by testing all 2s+1 of them, the correct one
is found in one branch. In the following, we assume that the set N and this assignment are fixed.

Second, we guess how many errors are done in each leaf in T ′. Since T has size s and is binary, T
has at most s+ 1 leaves. Now, for each of these leaves i we guess a number ti ∈ [0, t] such that the
sum of all these numbers is at most t. Let t be the corresponding error vector. Number ti represents
the number of errors in leaf i of the solution T ′. Clearly, by testing all O(st) possibilities, in one
branch the algorithm find the correct error distribution as in the solution T ′. In the following, we
assume that the error vector t is fixed.

Finally, we use binary-search to obtain the concrete thresholds of the nodes N . This technique is
inspired by a similar procedure to obtain the thresholds when computing a minimal size (or minimal
depth) decision tree [7, 10, 24, 34]. Consider a node p ∈ N for which we have to find the correct
threshold tp in T ′. With the binary search, we determine the largest threshold value tp in the feature
of node p for which we can find thresholds for all nodes with unknown thresholds in the left subtree
of p respecting our guess on the number of errors in all leaves. Moreover, if for threshold tp we
cannot find thresholds for all nodes with unknown thresholds in the right subtree of p respecting
our guess on the number of errors in all leaves, then we deal with a no instance: We cannot move
threshold tp further to the left since then even more examples go to the right subtree of p and thus the
number of errors in the right subtree cannot decrease. The pseudocode of this binary search is shown
in Algorithm 1. We defer the analysis of correctness and time complexity to the Appendix B.4.

Theorem 4.5 (⋆). CUT EXCHANGE can be solved in sO(3s+t)dk · |I|O(1) time.

The parameter k. Finally, for the parameter k we obtain XP-algorithms via brute-force.

Proposition 4.6 (⋆). 1. THRESHOLD ADJUSTMENT can be solved in time O
(
sk+1Dkn

)
.

2. THRESHOLD ADJUSTMENT can be solved in time O ((D + 1)ssn).

3. CUT EXCHANGE can be solved in O(((D + 1)ds)kns) time.

5 Complementing Hardness Results for both Problems

First, we show that both problems are W[1]-hard for d even if t = 0. This result implies that the
parameter s in Theorem 4.5 for CUT EXCHANGE cannot be dropped. Second, we take a closer
inspection of THRESHOLD ADJUSTMENT. More specifically, we provide hardness results for various
parameters including k. One of our results implies that the simple brute-force algorithm behind
Proposition 4.6 for THRESHOLD ADJUSTMENT cannot substantially improved, unless the ETH fails.

The parameter d+t. We show that both problems are unlikely to admit an FPT-algorithm for d+t.
Our results are inspired by a hardness reduction of Harviainen et al. [14, Thm. 5.10] who showed
W[1]-hardness for decision tree pruning with subtree raising for the same parameter. Our reductions,
however, especially the one for THRESHOLD ADJUSTMENT, are substantially more involved.

7

Algorithm 1 Binary search to populate the unknown thresholds of the decision tree T . The initial
call is ComputeThresholds(E, r), where E is the set of examples and r is the root of T .
Global Variables: Decision tree T , N ⊆ V (T) of nodes with unknown threshold, error vector t
Function ComputeThresholds (E′, n)

Input: An example set E′ ⊆ E and a node n ∈ T .
Output: True if and only if we can assign thresholds to all nodes with unknown threshold in the

decision tree corresponding to the subtree rooted at n while respecting the error vector t
if we only consider the examples E′.

1 if n is a leaf then // check if error bound according to t is met
2 Let c be the class label of n and tn be the entry of t corresponding to n
3 if more than tn examples of E′ do not have label c then return False else return True

4 if n ∈ N then z = BinarySearch(E′, n) // n has an unknown threshold
5 else z = thr(n)
6 p = right child of n, x = ComputeThresholds(E′[ffeat(n) > z], p)
7 q = left child of n, y = ComputeThresholds(E′[ffeat(n) ≤ z], q)
8 return x AND y

Function BinarySearch (E′, n)
Input: An example set E′ ⊆ E and a node n ∈ T .
Output: The largest threshold x of feat(n) s.t. we can populate all unknown thresholds in the

left subtree of n while respecting the error vector t if we only consider the examples E′.
9 Set D to be an array containing all thresholds of feature feat(n) in ascending order

10 Set L = 0, R = |length(D)| − 1, b = 0, q = left child of n
11 while L ≤ R do
12 m = ⌊(L+R)/2⌋
13 if ComputeThresholds(E′[ffeat(n) ≤ D[m]], q) = True then L = m+ 1, b = 1
14 else R = m− 1, b = 0
15 if b = 1 then return D[m]
16 return D[m− 1], with D[−1] = D[0]− 1

For both problems, we reduce from MULTICOLORED INDEPENDENT SET, where the input is a
graph G, and κ ∈ N, where the vertex set V (G) of N vertices is partitioned into V1, . . . , Vκ. The
question is whether G contains an independent set consisting of exactly one vertex per class Vi.
MULTICOLORED INDEPENDENT SET is W[1]-hard parameterized by κ and cannot be solved in
f(κ) · no(κ) time unless the ETH fails [3]. In both reductions, we create two features d<i and d>i per
class i such that all cuts in features d<i and d>i together correspond to a vertex selection in Vi. We
achieve this as follows: For each pair d<i and d>i , we create examples which can only be separated
in these two features and which have labels blue and red alternatingly. Hence, for each possible
threshold x in features d<i and d>i , the resulting decision tree T needs to contain either cut (d<i , x) or
cut (d>i , x). Furthermore, for each edge we create a red edge example. If vertex vi,j ∈ Vi is selected,
then all edge examples corresponding to edges having an endpoint in color class i which is not vi,j
will then be correctly classified by the resulting decision tree T . Thus, we can only correctly classify
an edge example if we do not select at least one endpoint of the corresponding edge.

For CUT EXCHANGE the input decision tree T ′ is a path with red and blue leaves alternatingly with
cuts in a dummy feature d̂. To obtain T , all cuts of T ′ which are in d̂, need to be changed to cuts in
features d<i , d>i , and d∗i . For THRESHOLD ADJUSTMENT it is more complicated since we cannot
change the feature of any cut: Thus, we extend features d<i and d>i by new dummy thresholds which
are used in the input decision tree T ′. Since t = 0, however, T ′ cannot be a path anymore. Instead,
we add new cuts in dummy cuts in new dummy features which cannot be adjusted, as we show.
Theorem 5.1 (⋆). CUT EXCHANGE is W[1]-hard for d even if δmax = 6, ℓ = 0 and t = 0. Under
ETH, the problem cannot be solved in time |I|o(d).
Theorem 5.2 (⋆). THRESHOLD ADJUSTMENT is W[1]-hard for d even if t = 0 and δmax = 20.
Under ETH, the problem cannot be solved in time |I|o(d).

Other hardness results for THRESHOLD ADJUSTMENT. Now, we prove hardness for many
parameters including k. Afterwards, we present two hardness results for parameters including ℓ+D.

8

Theorem 5.3 (⋆). THRESHOLD ADJUSTMENT is W[2]-hard for k even if D = 2 and t = 0. Under
the ETH, the problem cannot be solved in time O(|I|o(k)), and under the SETH, the problem cannot
be solved in time O(sk−ϵ) for any ϵ > 0.

Proof Sketch. We reduce from the W[2]-hard problem HITTING SET [3]. Consider an instance
of HITTING SET with a universe U = {1, 2, . . . , |U |} and a family of sets S such that we look
for a hitting set of size κ. We create a THRESHOLD ADJUSTMENT instance with |U | features
d1, d2, . . . , d|U |, and for each set S in S we create a red example e such that e[di] = 0 if i ∈ S, and
e[di] = 1 otherwise. We also create one blue example e′ with e′[di] = 1 for all i ∈ U . Our initial
decision tree has |U | cuts c1, c2, . . . , c|U | that form a chain where the right child of the cut ci is ci+1

for all i ∈ [|U | − 1]. The right child of c|U | is a blue leaf. The left child of each cut is a red leaf. The
feature of the cut ci is di and the initial threshold is 0. Finally, let k = κ and t = 0. The correctness
proof, the lower bound, and adaptation for reasonable trees are deferred to the appendix.

Our next two results follow by reducing from (PARTIAL) VERTEX COVER instead of HITTING SET.

Corollary 5.4 (⋆). THRESHOLD ADJUSTMENT is NP-hard even if D = 3, δmax = 2, and t = 0.

Corollary 5.5 (⋆). THRESHOLD ADJUSTMENT is W[1]-hard for k even if D = 3 and δmax = 2.

To achieve our final two results, we again reduce from HITTING SET/VERTEX COVER. Each cut starts
in an undecided state (threshold 0) and has to be included (threshold 1) or not included (threshold −1)
in the hitting set. Including a cut yields 1 error and thus only a fixed number of cuts can be activated.

Theorem 5.6 (⋆). THRESHOLD ADJUSTMENT is W[2]-hard for t even if ℓ = 0, D = 3. Under
ETH, the problem cannot be solved in time O(|I|o(t)), and under SETH, the problem cannot be
solved in time O(st−ϵ) for any ϵ > 0.

Corollary 5.7 (⋆). THRESHOLD ADJUSTMENT is NP-hard even if ℓ = 0, D = 3, δmax = 3.

6 Experiments

The goals of our small-scale empirical study were as follows: (1) Assess whether our algorithms can in
principle be used to study the local-search neighborhoods of decision trees that are computed from real-
world benchmark data by established heuristics. (2) Evaluate the potential performance of local search
in optimizing existing heuristic decision trees. (3) Assess whether performing pruning and local search
simultaneously is superior to the heuristics in terms of classification error. The experiments are not
designed to be conclusive; instead they have a proof-of-concept nature and aim to spur follow-up work.

We used 47 datasets from the Penn Machine Learning Benchmarks library [38], including 32
previously used for minimum-size tree computation [1, 32, 42] and additional larger datasets. The
datasets range from 72 to 5404 examples (mean 655.09, median 302.00), see the appendix for more
details. We computed unpruned and pruned trees using WEKA 3.8.5’s [9] C4.5 implementation [36]
J48. For the pruned trees we used J48’s subtree replacement heuristic; more details in the appendix.

We implemented an algorithm based on Theorem 4.3 that, given a dataset and a decision tree T , can
compute for every tuple (kad, kex, kre) the minimum number of errors attainable by a tree obtained
from T with at most kad adjustment, kex exchange, and kre subtree replacement operations (where kre
counts the number of cut nodes). Since naive enumeration of all threshold sequences in the dynamic
program is wasteful, we instead start, for each node v in the tree, with the sequence of thresholds
implied by the cuts above v and then compute all modifications of this sequence obtainable by the
remaining number of adjustment and replacement operations above v. This maintains optimality.
Nevertheless, there is large potential for heuristic improvements. We implemented the algorithm in
Python 3.10.12 and all experiments were carried out on a personal computer running Ubuntu Linux
22.04 with an 8-core Intel Core i7-9700 processor and 16GiB RAM (running up to eight instances of
the algorithm in parallel).

We first checked whether the heuristically computed real-world pruned decision trees are locally
optimal. That is, for each of the 47 datasets we took the pruned tree and checked whether their
misclassifications could be reduced by up to two adjustment or exchange operations. For adjustment,
33 (70.21%) thus obtained problems could be solved within a 1h time limit, for exchange it was
17 (36.17%). The heuristically computed trees were 2-optimal or close to 2-optimal, that is, they

9

Table 1: Error rates for different operations. Dashes indicate timeouts.
Dataset Initial kad = 1 kad = 2 kex = 1 kex = 2

banana 249 248 – – –
breast-cancer 31 30 30 30 29
cleve 15 14 14 14 –
cleveland 13 12 12 12 –
cleveland-nominal 23 23 23 22 22
colic 15 15 15 14 –
ecoli 10 8 8 8 8
heart-c 15 14 14 14 –
lymphography 5 5 5 5 4
profb 42 41 – 41 –

can hardly be improved with up to two local-search operations: with at most two exchanges, 9 trees
could be improved, and with up to two adjustments, 7 trees. The reduction in misclassifications was
at most 2. Table 1 shows the trees which could be improved. To summarize, for small number of
local search operations the implementation is feasible and it seems that heuristically computed trees
are close to being locally optimal.

We also looked at combining pruning with local search. We first investigated whether local search
enables further pruning heuristically pruned trees: For 18 datasets, this was possible after adjustments
(avg. 1.40 nodes) and for 24 after exchanges (avg. 1.78 nodes)—with one tree size nearly halving
after a single exchange. Starting with unpruned trees and combining pruning with local search gave
better results than sequential application: 10 and 17 trees showed error reductions of 5.16% and
8.92% on average, respectively. We also computed full pareto fronts for the tradeoff between pruning
and errors (Figure 7, appendix); here local search becomes more effective with aggressive pruning.
This indicates that heuristics typically select tradeoffs minimally amenable to local search; full
details in the appendix. Overall, our algorithms provide new insights indicating local search becomes
increasingly valuable with more extensive pruning than commonly applied. Note that to obtain the
above results we need algorithms that find the optimum, which we here designed for the first time.

7 Outlook

We gave a comprehensive analysis of the parameterized complexity of improving decision trees with
the local search operations threshold adjustment and cut exchange. We presented both algorithmic
results and complexity-theoretic lower bounds for both problems corresponding to the two operations.
Based on these algorithms we provided a proof-of-concept implementation and demonstrated that
there is some potential—albeit limited—for improvement in the trees constructed by heuristics. The
experiments were hampered by the computational hardness of the problems, which might be mitigable
by designing new approaches to them, for example, by formulating them as a mixed integer program.

While we settled the complexity for many parameter combinations for both problems, some combina-
tions are still open. For example is THRESHOLD ADJUSTMENT FPT with respect to d+ ℓ+ t, or is
CUT EXCHANGE FPT with respect to d+ k + t? Investigating so-called ensembles of decision trees
under the local search operations threshold adjustment and cut exchange is an interesting direction
for future research. Clearly, our hardness result transfer to ensembles, but for the algorithms this is
not clear. Moreover, on the practical side it is interesting to investigate whether the effect of local
search for ensembles is stronger than for a single decision tree. Also, it is interesting to study the
complexity of other local search operations for decision trees which change the structure of the tree,
for example subtree switching [37] or subtree substitution [41]. Moreover, since our new approach
yields optimal solutions for local search of decision trees, our algorithms could be used to develop
new genetic algorithms with more powerful crossover operations. Finally, currently minimal-size
decision trees can only be computed for size up to s = 20 [42] and a major hurdle are good lower
bounds to abort parts of the branch-and-bound approach early. Our local search algorithm could help
in strengthening existing lower bounds and thus make the learning of minimal-size decision trees
more applicable.

10

Acknowledgments and Disclosure of Funding

Juha Harviainen was supported by the Research Council of Finland, Grant 351156. We also gratefully
acknowledge support by the TU Wien International Office for hosting Juha Harvianen in Vienna.

Frank Sommer was supported by the Alexander von Humboldt Foundation and partially by the Carl
Zeiss Foundation, Germany, within the project “Interactive Inference”.

References
[1] C. Bessiere, E. Hebrard, and B. O’Sullivan. Minimising decision tree size as combinatorial

optimisation. In Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming (CP ’09), volume 5732 of Lecture Notes in Computer Science, pages
173–187. Springer, 2009.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

[3] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[4] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic
results. SIAM J. Comput., 24(4):873–921, 1995.

[5] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.

[6] J. Dvorák and P. Savický. Softening splits in decision trees using simulated annealing. In
Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms
(ICANNGA ’07), volume 4431 of Lecture Notes in Computer Science, pages 721–729. Springer,
2007.

[7] E. Eiben, S. Ordyniak, G. Paesani, and S. Szeider. Learning small decision trees with large
domain. In Proceedings of the 32nd International Joint Conference on Artificial Intelligence
(IJCAI ’23), pages 3184–3192. International Joint Conferences on Artificial Intelligence Organi-
zation, 2023.

[8] G. Folino, C. Pizzuti, and G. Spezzano. Genetic programming and simulated annealing: A
hybrid method to evolve decision trees. In Proceedings of the 3rd European Conference on
Genetic Programming (EuroGP ’00), volume 1802 of Lecture Notes in Computer Science, pages
294–303. Springer, 2000.

[9] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, and B. Pfahringer. WEKA - A machine learning
workbench for data mining. In The Data Mining and Knowledge Discovery Handbook, 2nd ed,
pages 1269–1277. Springer, 2010.

[10] H. Gahlawat and M. Zehavi. Learning small decision trees with few outliers: A parameterized
perspective. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI ’24),
pages 12100–12108. AAAI Press, 2024.

[11] J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of vertex cover variants.
Theory Comput. Syst., 41(3):501–520, 2007.

[12] J. Harviainen, F. Sommer, and M. Sorge. Improving decision trees through the lens of parame-
terized local search. CoRR, abs/2510.12726, 2025.

[13] J. Harviainen, F. Sommer, and M. Sorge. Improving decision trees through the lens of parameter-
ized local search (associated software), 2025. Link: https://doi.org/10.5281/zenodo.17350776.

[14] J. Harviainen, F. Sommer, M. Sorge, and S. Szeider. Optimal decision tree pruning re-
visited: Algorithms and complexity. In Proceedings of the Forty-second International
Conference on Machine Learning (ICML ’25), 2025. To appear. Full version available at
https://doi.org/10.48550/arXiv.2503.03576.

11

[15] A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek. Explainable AI methods - A brief
overview. In Proceedings of the Workshop xxAI - Beyond Explainable AI Held in Conjunction
with the International Conference on Machine Learning (xxAI@ICML ’20), volume 13200 of
Lecture Notes in Computer Science, pages 13–38. Springer, 2020.

[16] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Inf.
Process. Lett., 5(1):15–17, 1976.

[17] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–375,
2001.

[18] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
J. Comput. Syst. Sci., 63(4):512–530, 2001.

[19] M. Janota and A. Morgado. SAT-based encodings for optimal decision trees with explicit
paths. In Proceedings of the 23rd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science, pages
501–518. Springer, 2020.

[20] K. Jurczuk, M. Czajkowski, and M. Kretowski. Evolutionary induction of a decision tree for
large-scale data: A GPU-based approach. Soft Comput., 21(24):7363–7379, 2017.

[21] K. Jurczuk, M. Czajkowski, and M. Kretowski. Fitness evaluation reuse for accelerating GPU-
based evolutionary induction of decision trees. Int. J. High Perform. Comput. Appl., 35(1),
2021.

[22] K. Jurczuk, M. Czajkowski, and M. Kretowski. Multi-GPU approach to global induction of
classification trees for large-scale data mining. Appl. Intell., 51(8):5683–5700, 2021.

[23] D. Kalles and A. Papagelis. Lossless fitness inheritance in genetic algorithms for decision trees.
Soft Comput., 14(9):973–993, 2010.

[24] S. G. Kobourov, M. Löffler, F. Montecchiani, M. Pilipczuk, I. Rutter, R. Seidel, M. Sorge, and
J. Wulms. The influence of dimensions on the complexity of computing decision trees. Artif.
Intell., 343:104322, 2025.

[25] C. Komusiewicz, P. Kunz, F. Sommer, and M. Sorge. On computing optimal tree ensembles. In
Proceedings of the International Conference on Machine Learning (ICML ’23), volume 202 of
Proceedings of Machine Learning Research, pages 17364–17374. PMLR, 2023.

[26] C. Komusiewicz, A. Schidler, F. Sommer, M. Sorge, and L. P. Staus. Learning minimum-size
BDDs: Towards efficient exact algorithms. In Proceedings of the Forty-second International
Conference on Machine Learning (ICML ’25), 2025. To appear.

[27] M. Kretowski. A memetic algorithm for global induction of decision trees. In Proceedings of the
34th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM ’08),
volume 4910 of Lecture Notes in Computer Science, pages 531–540. Springer, 2008.

[28] M. Kretowski and M. Grzes. Global learning of decision trees by an evolutionary algorithm. In
K. Saeed and J. Pejas, editors, Information Processing and Security Systems, pages 401–410.
Springer, 2005.

[29] M. Kretowski and M. Grzes. Evolutionary induction of mixed decision trees. Int. J. Data
Warehous. Min., 3(4):68–82, 2007.

[30] D. T. Larose. Discovering knowledge in data: an introduction to data mining, volume 4. John
Wiley & Sons, 2014.

[31] S. K. Murthy. Automatic construction o,f decision trees from data: A multi-disciplinary survey.
Data Min. Knowl. Discov., 2(4):345–389, 1998.

[32] N. Narodytska, A. Ignatiev, F. Pereira, and J. Marques-Silva. Learning optimal decision trees
with SAT. In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI ’18), pages 1362–1368. ijcai.org, 2018.

12

[33] S. Ordyniak, G. Paesani, M. Rychlicki, and S. Szeider. A general theoretical framework for
learning smallest interpretable models. In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI ’24), pages 10662–10669. AAAI Press, 2024.

[34] S. Ordyniak and S. Szeider. Parameterized complexity of small decision tree learning. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 6454–
6462. AAAI Press, 2021.

[35] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[36] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[37] R. Rivera-López, J. Canul-Reich, E. Mezura-Montes, and M. A. Cruz-Chávez. Induction of
decision trees as classification models through metaheuristics. Swarm Evol. Comput., 69, 2022.

[38] J. D. Romano, T. T. Le, W. G. L. Cava, J. T. Gregg, D. J. Goldberg, P. Chakraborty, N. L. Ray,
D. S. Himmelstein, W. Fu, and J. H. Moore. PMLB v1.0: an open-source dataset collection for
benchmarking machine learning methods. Bioinformatics, 38(3):878–880, 2022.

[39] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nat. Mach. Intell., 1(5):206–215, 2019.

[40] M. Saremi and F. Yaghmaee. Improving evolutionary decision tree induction with multi-interval
discretization. Comput. Intell., 34(2):495–514, 2018.

[41] A. Schidler and S. Szeider. SAT-based decision tree learning for large data sets. J. Artif. Intell.
Res., 80:875–918, 2024.

[42] L. P. Staus, C. Komusiewicz, F. Sommer, and M. Sorge. Witty: An efficient solver for computing
minimum-size decision trees. In Proceedings of the 39th Conference on Artificial Intelligence
(AAAI ’25), pages 20584–20591. AAAI Press, 2025.

[43] I. H. Witten, E. Frank, and M. A. Hall. Data mining: practical machine learning tools and
techniques. Morgan Kaufmann, Elsevier, 3rd edition edition, 2011.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims accurately reflect our contribution and the results of our experi-
ments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Specific limitations of the current work are mentioned in the introduction,
preliminaries, and conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: All our theoretical results are supported by rigorous mathematical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The source code, compilation instructions, and used datasets are available in
the supplemental material. The unmodified original datasets are publicly available from
third parties. The details about the performed experiments are included in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code, compilation instructions, and used datasets are available in
the supplemental material. The unmodified original datasets are publicly available from
third parties. If the paper gets accepted, the source code, compilation instructions, and used
datasets will be made available in a public repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details about the performed experiments are included in the paper. All
details necessary to understand our main results are part of the main paper. Further details
are provided as part of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not suitable since we do not give bar plots. There is no
randomness involved in our experiments, so we only report the results on the benchmark
data and do not draw more general conclusions than merited.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the paper we describe all necessary details about the environment in which
we ran our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and are sure that our research
conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

17

https://neurips.cc/public/EthicsGuidelines

Justification: The paper focuses on the technical aspects of improving decision trees with
local search. Our main contributions are a parameterized complexity classification of the
corresponding problems. Moreover, our experiments concern the local optimality of decision
trees computed by common heuristics. Thus, our work has no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used datasets are part of the Penn Machine Learning Benchmarks and
licensed under the MIT License which is included in the released code. The creators of all
heuristic algorithms that we use in our experiments are properly credited

Guidelines:

18

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

19

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Additional Material for Section 3

A.1 Proof of Theorem 3.1

Proof. We reduce from PARTIAL VERTEX COVER where we are given a graph G and two integers κ
and τ and the goal is to select at most k vertices S of G such that at least τ edges are covered by S.
PARTIAL VERTEX COVER is W[1]-hard with respect to κ [11], and unless the ETH fails, PARTIAL
VERTEX COVER cannot be solved in f(κ) · no(κ) time [3].

We create one binary feature dv for each vertex v ∈ V (G). For each edge e = uw ∈ E(G) we create
one red example euw which has value 1 in the two features du and dw which are corresponding to its
endpoints u and w, and value 0 in each other feature. Moreover, we add blue examples b1, . . . , bn2

which has value 0 in each feature. Finally, we set s := κ and t := m − τ , where m := |E(G)|.
Observe that δmax = 2 = D. Note that all blue examples have the same coordinates in each feature.
In the end we argue how we can modify the instance such that each pair of (blue) examples differs in
at least one feature.

We now show that G has a vertex set S of size at most κ covering τ edges if and only if there exists a
decision tree t of the DECISION TREE LEARNING instance of size s with at most t errors.

(⇒) Let S be a solution of (G, k, τ). Let T be the decision tree whose inner nodes are a path and
where there is a one-to-one correspondence between vertices in S and the cuts of the form dx > 0
which are in T . Each left subtree of these cuts leads to a red leaf and the unique right leaf is blue.
Now, observe that each red edge example euw corresponding to an edge uw which has at least one
endpoint in S is put in one of the red leaves. Moreover, all blue examples end up in the unique
blue leaf. Since at least τ edges are incident with at least one vertex of S, we conclude that T has the
desired properties.

(⇐) Let T be a minimal decision tree with at most s = κ inner nodes making at most t = m−τ errors.
Since all blue examples have the same coordinates in all features, it is safe to assume that the inner
nodes of T are a path such that exactly one leaf of the last cut in T is a blue leaf and all other
leaves are red. Moreover, since each feature is binary, we conclude that all cuts of T use different
features. Now let S be the set of vertices corresponding to features used in T . Since T makes
at most t = m − τ errors, and since all n2 > m blue examples are indistinguishable, at most
t = m− τ red examples are misclassified by T . Consequently, τ red edge examples are correctly
classified by T . By construction each edge corresponding to one of these edge examples has at least
one endpoint in S and thus S covers at least τ edges of G.

A.2 Proof of Proposition 3.3

Proof. First, observe that all three results hold for FS-DT: 1. holds due to Theorem 3.1. Similarly,
hardness results shown for computing minimal-size decision trees were the induced subgraph of the
inner nodes form a path and exactly one leaf is blue and all other leafs are red (or vice versa) by
reductions from VERTEX COVER and HITTING SET instead of PARTIAL VERTEX COVER are known.
More precisely, 2. was shown by Ordyniak and Szeider [34, Thm. 2], and 3. was proven by Ordyniak
and Szeider [34, Thm. 3]. Second, together with Observation 3.2 we obtain analog hardness results
for CUT EXCHANGE.

A.3 Proof of Proposition 3.5

Proof. By a reduction from MULTICOLORED CLIQUE, Harviainen et al. [14, Thm. 5.6] showed that
DTRAIS= is W[1]-hard for d+ ℓ even if δmax = 6. In DTRAIS= the input consist of a classification
instance, a decision tree T with s′ inner nodes and two integers t and ℓ. The goal is to prune exactly
s′ − ℓ inner nodes of T with the so-called raising operation such that the resulting decision tree T ′

consisting of ℓ inner nodes makes at most t errors. Moreover, in MULTICOLORED CLIQUE the input
consists of a κ-partite graph G where each partite set consists of q vertices, and the goal is to find
a clique of size κ having exactly one vertex in each partite set. In their construction they create
2 features per partite set of G, that is, 2 · κ features in total. Moreover, the input decision tree T has
a very restrictive structure: (1) The subgraph induced by the inner nodes is a path (p1, p2, . . . , pz),

21

where z = q · 2 · κ. (2) T has a unique red leaf; in other words, all leafs except one are blue. (3)
Inner nodes p1+i·q, . . . , pq+i·q correspond to possible values of feature i for each i ∈ [0, 2 · κ− 1].
Finally, they set ℓ = 2 · κ. In the correctness part of their proof, Harviainen et al. [14, Thm. 5.6]
argue that exactly one cut in each feature has to remain to fulfill to error bound t.

Hence, the reduction of Harviainen et al. [14, Thm. 5.6] can easily be adapted for FSFF-DT by
giving as input a decision tree T with exactly ℓ = 2 · κ inner nodes which are arranged in a path and
each of these inner nodes is equipped with a unique feature of the 2 · κ total features. The correctness
can be shown similar as for DTRAIS=; for FSFF-DT it is simpler since we do not need to argue that
exactly one cut per feature remains. Also, the leaf-assignment cannot be changed due to the so-called
forcing examples.

A.4 Proof of Proposition 3.4

Proof of Proposition 3.4. The proof is a immediate consequence of Proposition 3.5 and Observa-
tion 3.2.

A.5 Proof of Theorem 3.6

Proof. The main idea is to add sets of new examples for each leaf of the decision tree from THRESH-
OLD ADJUSTMENT such that at least t + 1 of those examples gets misclassified if the feature of
some original cut is changed. We achieve this, by adding a gadget to each leaf of the THRESHOLD
ADJUSTMENT instance. Moreover, our budget is chosen such that we can and have to perform exactly
one cut exchange in each of these gadgets.

Construction. We first show that we can assume without loss of generality that no feature appears
twice in the initial decision tree.

For all features di, replace the first occurrence of the feature di by a new feature d1i , the second by d2i ,
and so on. Modify the examples e ∈ E accordingly, that is, let e[dji] = e[di] for the new features dji .
Now, the original instance to THRESHOLD ADJUSTMENT has a solution if and only if our modified
instance to THRESHOLD ADJUSTMENT has a solution.

We then start constructing our CUT EXCHANGE instance by using this THRESHOLD ADJUSTMENT
instance as our starting point. For the budget k of allowed cut exchange operations, we set k :=
k′ + s′ +1, where k′ is the budget of allowed threshold adjustment operations and s′ is the size of the
THRESHOLD ADJUSTMENT instance. Also, all examples of the initial THRESHOLD ADJUSTMENT
instance are referred to as original.

Moreover, we index the leaves arbitrarily. For each leaf v with index j ∈ [s′ + 1], we create
2(t+ 1)(k + 1) + 2(n+ t+ 2) + 1 new leaf examples whose leaf is initially v and remains v if only
threshold adjustments are performed. Recall that n is the number of examples in the THRESHOLD
ADJUSTMENT instance. Consider the root-to-leaf path v1, v2, . . . , vm for v, where vm = v. Then,
add k red leaf examples e+j,1, e

+
j,2, . . . , e

+
j,k, k red leaf examples e−j,1, e

−
j,2, . . . , e

−
j,k, and two blue

leaf examples e+j,0, e
−
j,0. For each of these leaf examples, we create t+ 1 copies. Moreover, we create

two red leaf examples e+j,k+1, e
−
j,k+1. Next, we create n+ t+ 2 copies of both of these examples.

Finally, we add another blue leaf example ej .

Now, we define the values in each feature. All features which are constructed so far are referred to
as the original features. First, we set the coordinates of all leaf examples in the original features
as follows: If vi+1 is the left child of vi, we set ej [feat(vi)] = −∞ and for all l ∈ [0, k + 1]
we let e+j,l[feat(vi)] = e−j,l[feat(vi)] = −∞, and otherwise, we set ej [feat(vi)] = ∞ and we
let e+j,l[feat(vi)] = e−j,l[feat(vi)] = ∞. Moreover, for each other original feature d′, that is, d′ ̸=
feat(vi) for all vi on the path to leaf v, we set ej [d′] = −∞ and for all l ∈ [0, k+1] we let e−j,l[d

′] =

−∞, and e+j,l[d
′] = ∞.

We continue by creating k + 2 new gadget features dj,1, dj,2, . . . , dj,k, and dj,α, dj,β for each leaf v
with index j. We set e+j,l[dj,l] = e−j,l[dj,l] = 0 for l ∈ [k]. Moreover, we set e+j,0[dj,α] = e−j,0[dj,α] =

e+j,0[dj,β] = e−j,0[dj,β] = 0 and we set ej [dj,α] = ej [dj,β] = 0. For each other combination of a
leaf example e and a gadget feature d′, we set e[d′] = ∞. It remains to define the coordinates of

22

dj,1 < 1

dj,2 < 1

. . .

dj,k < 1

dj,α < 0

red

red

red

redblue

Figure 3: The gadget used for misclassifying leaf examples that do not correspond to the jth leaf v in
Theorem 3.6. Note that the class of v is not relevant for this gadget.

the original examples in the gadget features. For each original example e we do the following: We
set e[dj,α] = 0 for each j ∈ [s′ + 1]. For each remaining gadget feature d′ we set e[d′] = ∞.

As the last step of the reduction, we replace the jth leaf v of the initial decision tree by a gadget that is
a chain of k + 1 inner nodes as follows: The chain has k + 1 cuts in features dj,1, dj,2, . . . , dj,k, dj,α
with threshold value 1 for the cuts in features dj,l for l ∈ [k] and red leaves as the left children,
except for the cut in feature dj,α which uses threshold 0 and that has a blue leaf as the left child and
a red leaf as the right child. This is illustrated in Figure 3. Call the added cuts gadget cuts and the
other cuts original cuts.

Observe that the so-constructed tree is reasonable: (1) The left child of cut dj,l < 1, which is a
red leaf contains the red leaf examples e+j,l, e

−
j,l. (2) The left child of cut dj,α < 0, which is a

blue leaf contains the blue leaf examples ej . (3) The right child of cut dj,α < 0, which is a red
leaf contains the red leaf examples e+j,k+1, e

−
j,k+1, the blue leaf examples e+j,0, e

−
j,0, and the original

examples ending up at the jth leaf. Since there are n original examples, for examples e+j,0, e
−
j,0 we

have t+ 1 copies each, and for examples e+j,k+1, e
−
j,k+1 we have n+ t+ 2 copies each, we conclude

that this leaf contains more red examples than blue examples. Hence, this tree is reasonable.

Correctness. We claim that this instance of CUT EXCHANGE has a solution with k = k′ + s′ + 1
cut exchanges if and only if the original THRESHOLD ADJUSTMENT instance has a solution with
k′ threshold adjustments.

(⇒) Suppose that a solution to the THRESHOLD ADJUSTMENT instance I exists. In the first step, we
change the corresponding original cuts in the CUT EXCHANGE instance by assigning the thresholds
of the solution to I . Second, for each leaf v of the solution to I , we do the following: If v is a blue
leaf, then we change the cut dj,α < 0 to dj,α < 1, and otherwise, if v is a red leaf, we change the
cut dj,α < 0 to dj,β < 1. Clearly, we perform at most k = k′ + s′ + 1 cut exchange operations.
Observe that after these cut exchanges all leaf examples are correctly classified: (1) The red leaf
examples e+j,l, e

−
j,l end up in the left child of cut dj,l < 1 which is a red leaf. (2) The blue leaf

examples e+j,0, e
−
j,0, ej end up in the left child of cut dj,α < 1 or dj,β < 1, respectively, which

is a blue leaf. (3) The red leaf examples e+j,k+1, e
−
j,k+1 end up in the right child of cut dj,α < 1

or dj,β < 1, respectively, which is a red leaf.

Hence, it remains to consider the original examples: Consider the jth leaf in the solution to I . If v is
blue, then we replaced cut dj,α < 0 with cut dj,α < 1. Consequently, all examples ending in v in the
solution to I end up in the left child of dj,α < 1 which is a blue leaf. Otherwise, if v is red, then we
exchanged cut dj,α < 0 with cut dj,β < 1. Consequently, all examples ending in v in the solution
to I end up in the right child of dj,β < 1 which is a red leaf. Thus, the same set of original examples
is correctly classified and thus we have at most t errors in total.

(⇐) Suppose now instead that a solution to the CUT EXCHANGE instance exists. First, note that to
separate the red leaf examples e+j,1, e

+
j,2, . . . , e

+
j,k and e−j,1, e

−
j,2, . . . , e

−
j,k from the blue leaf examples

e+j,0 and e−j,0, the tree needs to contains the cuts dj,l < 1 for each l ∈ [k] since feature dj,l is the
unique feature in which e+j,l, e

−
j,l differ from e+j,0, e

−
j,0. Since there are t + 1 copies of each leaf

23

examples, lack of such a cut causes at least t + 1 errors. Moreover, in order to separate the blue
leaf examples e+j,0, e

−
j,0 from the red leaf examples e+j,k+1, e

−
j,k+1 the tree needs to contain either the

cut dj,α < 1 or dj,β < 1 since these examples only differ in features dj,α, dj,β . Again, since for
each of these examples we have at least t+ 1 copies, lack of such a cut causes at least t+ 1 errors.
Moreover, observe that the cut dj,α < 1 or dj,β < 1 has to appear after any cut in feature dj,l since
otherwise the blue leaf examples e+j,0, e

−
j,0 cannot be separated from the red leaf examples e+j,l, e

−
j,l,

causing at least t+1 errors. Furthermore, note that by the fact in which all of these leaf examples end
up, the leaf labeling of the gadget is fixed, that is, is identical to the initial labeling shown in Figure 3.

Note that since the initial tree neither contains the cut dj,α < 1 nor the cut dj,β < 1, this consumes
s′ +1 cut exchange operations of our budget of k = k′ + s′ +1. Consequently, the remaining budget
for the number of cut exchange operations is k′.

Assume now that we changed the feature of some inner node z (except the case that z has a
cut dj,α < 0) to d∗ in our solution to CUT EXCHANGE, and without loss of generality, assume that
the features on the inner nodes between the root and z remain the same (but the thresholds may
change). There are two cases: either (1) z is an original cut or (2) z is a gadget cut.

(1): Let w be a child of z whose subtree does not have the feature d∗ and let j be the index of some
leaf there. Such a child exists, since each cut has a unique feature in the initial decision tree. Let u be
the other child of z. Consider the case where w is the left subtree of z; the proof is analogous for
the right subtree. In the initial decision tree T , we have e+j,l ∈ E[T,w] for all l ∈ [k + 1]. However,
e+j,l[d

∗] = ∞, and thus e+j,l ∈ E[T ′, u] in the modified decision tree T ′. Now, we have budget to
perform at most k − 1 additional cut exchange operations, and therefore there is an example e+j,l′ that
ends up at the same leaf as e+j,0, since none of the features dj,1, dj,2, . . . , dj,k appear in the subtree
rooted at u. This results in at least t + 1 misclassifications because there are t + 1 copies of both
examples. Hence, no feature in an original cut can be changed without yielding at least t+ 1 errors.

(2): Assume that z has a gadget cut different from dj,α < 0. Note that the features on that path from
root to z were not changed, and thus E[T, z] and E[T ′, z] contain the same set of leaf examples for
the original decision tree T and the modified decision tree T ′. If d∗ is an original feature, then there
cannot be a path containing cuts in features dj,1, dj,2, . . . , dj,k and in feature dj,α or dj,β , and thus
we get at least t + 1 errors. The same argument applies if we make the feature of any cut in the
subtree rooted at z be an original feature. Therefore, the cut exchange operations performed in a
gadget must essentially just permute the features dj,l, which can only affect the classification of the
leaf examples belonging to that gadget as other examples have value ∞ in those features. As the leaf
examples e+j,l, e

−
j,l are initially all correctly classified, there is no possible gain from doing that, and

another solution can be obtained by not performing those operations.

Since one can avoid changing any features in original cuts and we apply at most k− (s′+1) = k′ cut
exchange operations in the original cuts, the solution can then be mapped back to THRESHOLD
ADJUSTMENT by performing the same threshold adjustments in the original cuts. Moreover, by setting
the leaf labels to the dominate class, we then obtain a solution for the THRESHOLD ADJUSTMENT
instance.

A.6 Proof of Proposition 3.7

Proof. We can reduce any instance of THRESHOLD ADJUSTMENT to CUT EXCHANGE in polynomial
time by Theorem 3.6 such that the size of the decision tree and the number of features in the new
instance are bounded by a function (quadratic) of the size of the decision tree in the THRESHOLD
ADJUSTMENT instance. The result then follows from THRESHOLD ADJUSTMENT being W[1]-hard
with respect to the same parameters by Proposition 3.4.

B Additional Material for Section 4

B.1 Proof of Theorem 4.1

Proof. We adapt the algorithm of Harviainen et al. [14] for subtree raising under the same parameter-
ization. Let Di = {e[i] : e ∈ E} ∪ {−∞} for i ∈ [d] be the set of distinct values for feature i with
an extra value of −∞. A threshold sequence (li, ri)i∈[d] encodes for each feature i ∈ [d] an interval

24

(li, ri] with li ≤ ri and li, ri ∈ Di, characterizing a subset of the feature space. We thus let

E[(li, ri)i∈[d]] := {e ∈ E : li < e[i] ≤ ri for all i ∈ [d]}

be the set of examples within the box defined by a threshold sequence. Let Q be a dynamic
programming table whose entry Q[v, (li, ri)i∈[d], k

′] is the minimum number of misclassifications
achievable if our decision tree is the subtree rooted at v ∈ V on our initial decision tree T on the set
of examples E[(li, ri)i∈[d]] if we make at most k′ threshold adjustment operations. In other words,
we have a positive answer to THRESHOLD ADJUSTMENT if Q[r, (−∞,∞)i∈[d], k] ≤ t when the
root of the initial decision tree is r. Define L((li, ri)i∈[d], j, x) as the threshold sequence identical
to (li, ri)i∈[d] except that for i = j we have the interval (max{li, x}, ri). Define R((li, ri)i∈[d], j, x)
analogously with an interval (li,max{ri, x}).
For a leaf node v and all k′ ≤ k, it suffices to count the number of examples in E[(li, ri)i∈[d]] whose
class labels differ from the majority, since the leaf can be relabeled to have the label of the majority.
For a cut v, there are two cases to consider when combining subresults of the left child w and the
right child u of v: either we adjust the threshold of v or not. Thus, we get a dynamic programming
recurrence

Q[v, (li, ri)i∈[d], k
′] = min



min
k′′∈[0,k′]

Q[w,L((li, ri)i∈[d], feat(v), thr(v)), k′′]

+Q[u,R((li, ri)i∈[d], feat(v), thr(v)), k′ − k′′],

min
k′′∈[0,k′−1]

min
x∈Dfeat(v)

Q[w,L((li, ri)i∈[d], feat(v), x), k′′]

+Q[u,R((li, ri)i∈[d], feat(v), x), k′ − k′′ − 1].

To recover one of the possible solutions, backtracking in the dynamic programming table is
straightforward.

Note that the number of entries is bounded from above by n · (D + 1)2d · k, and computing the entry
for each cut takes O(D · k) time. For each of the s leaves, the computation takes O(n) time. Thus,
the total time complexity is O((D + 1)2d+1nk2 + ns).

B.2 Proof of Theorem 4.2

Proof. We adapt the algorithm of Harviainen et al. [14] for subtree raising under the same parame-
terization, proceeding analogously to Theorem 4.1. The only difference is that when we modify a
cut, we may also change its associated feature. For a cut v with a left child w and a right child u, the
dynamic programming recurrence is thus

Q[v, (li, ri)i∈[d], k
′] = min



min
k′′∈[0,k′]

Q[w,L((li, ri)i∈[d], feat(v), thr(v)), k′′]

+Q[u,R((li, ri)i∈[d], feat(v), thr(v)), k′ − k′′],

min
k′′∈[0,k′−1]

min
j∈[d]

min
x∈Dj

Q[w,L((li, ri)i∈[d], j, x), k
′′]

+Q[u,R((li, ri)i∈[d], j, x), k
′ − k′′ − 1].

The time complexity of computing each state increases by a factor of d, resulting in the total time
complexity of O((D + 1)2d+1ndk2 + ns).

B.3 Proof of Theorem 4.3

Proof. Essentially, we combine the two dynamic programs from Theorems 4.1 and 4.2 while also
allowing subtree replacement as a pruning operation. Formally, in DT-PLS we are equipped with
numbers kad, kex, kre, kra which denote the number of allowed threshold adjustments, cut exchanges,
subtree replacement operations, and subtree raising operations, respectively. As in Theorem 4.1, we
let Di = {e[i] : e ∈ E} ∪ {−∞} for i ∈ [d] be the set of distinct values for feature i with an extra
value of −∞. Again, a threshold sequence (li, ri)i∈[d] encodes for each feature i ∈ [d] an interval
(li, ri] with li ≤ ri and li, ri ∈ Di, characterizing a subset of the feature space. We thus let

E[(li, ri)i∈[d]] := {e ∈ E : li < e[i] ≤ ri for all i ∈ [d]}

25

be the set of examples within the box defined by a threshold sequence.

Now, however, the definition of table S and the updates are more complicated to incorporate the
4 different operations.

Q[v, (li, ri)i∈[d], k
′
ad, k

′
ex, k

′
re, k

′
ra] =



The minimum number of misclassifications achievable
if our decision tree is the subtree rooted at v ∈ V

on our initial decision tree T on the set of
examples E[(li, ri)i∈[d]] if we make

(1) at most k′ad threshold adjustments,

(2) at most k′ex cut exchanges,

(3) prune exactly k′re nodes with subtree replacement, and

(4) prune exactly k′ra nodes with subtree raising.

Note that for subtree replacement we demand exactly k′re operations instead of at most since
we assume the input decision tree T ′ is reasonable and thus no subtree replacement operation
on T ′ can reduce the number of errors. We also demand exactly kra raising operations since
usually they increase the number of errors. Thus, we have a positive answer to DT-PLS if
Q[r, (−∞,∞)i∈[d], kad, kex, kre, kra] ≤ t when the root of the initial decision tree is r. Again,
we define L((li, ri)i∈[d], j, x) as the threshold sequence identical to (li, ri)i∈[d] except that for i = j
we have the interval (max{li, x}, ri) and we define R((li, ri)i∈[d], j, x) analogously with an interval
(li,max{ri, x}).
Consider a leaf node v. We set a corresponding table entry with k′re ≥ 1 or k′ra ≥ 1 to ∞ since in v
no subtree replacement operation can be performed. For the remaining table entries corresponding
to v, that is, k′re = 0 and k′ra = 0, we do the following: For all k′ad ≤ kad and k′ex ≤ kex, it suffices to
count the number of examples in E[(li, ri)i∈[d]] whose class labels differ from the majority, since the
leaf can be relabeled to have the label of the majority.

For a cut v, there are five cases to consider when combining subresults of the left child w and the
right child u of v: (P1) We adjust the threshold of v, (P2) we make a cut exchange, (P3) we perform
subtree replacement on v, (P4) we perform subtree raising on v and we substitute the subtree rooted
at v by the subtree rooted at u or the subtree rooted at w or (P5) v is not changed. Thus, we get a
dynamic programming recurrence

Q[v, (li, ri)i∈[d], k
′
ad, k

′
ex, k

′
re, k

′
ra] = min(X1, X2, X3, X4, X5)

where we always have k′′ad ∈ [0, k′ad], k
′′
ex ∈ [0, k′ex], k

′′
re ∈ [0, k′re], and k′′ra ∈ [0, k′ra] for

X1 = min
k′′

ad,k
′′
ex,k

′′
re,k

′′
ra

k′′
ad<k′

ad

min
x∈Dfeat(v)

Q[w,L((li, ri)i∈[d], feat(v), x), k′′ad, k
′′
ex, k

′′
re, k

′′
ra]

+Q[u,R((li, ri)i∈[d], feat(v), x), k′ad − k′′ad − 1, k′ex − k′′ex, k
′
re − k′′re, k

′
ra − k′′ra],

X2 = min
k′′

ad,k
′′
ex,k

′′
re,k

′′
ra

k′′
ex<k′

ex

min
j∈[d]

min
x∈Dj

Q[w,L((li, ri)i∈[d], feat(v), x), k′′ad, k
′′
ex, k

′′
re, k

′′
ra]

+Q[u,R((li, ri)i∈[d], feat(v), x), k′ad − k′′ad, k
′
ex − k′′ex − 1, k′re − k′′re, k

′
ra − k′′ra],

X3 =

{
min(Blue((li, ri)i∈[d])),Red((li, ri)i∈[d]))), if sv = k′re + k′ra and k′re ≥ 1,

∞, otherwise.

X4 = min
k′′

re,k
′′
ra

k′′
ra>0

{
Q[u, (li, ri)i∈[d], feat(u), thr(u), k′ad, k

′
ex, k

′
re − k′′re, k

′
ra − k′′ra] if sw = k′′re + k′′ra

Q[w, (li, ri)i∈[d], feat(w), thr(w), k′ad, k
′
ex, k

′
re − k′′re, k

′
ra − k′′ra] if su = k′′re + k′′ra,

26

X5 = min
k′′

ad,k
′′
ex,k

′′
re,k

′′
ra

Q[w,L((li, ri)i∈[d], feat(v), thr(v)), k′′ad, k
′′
ex, k

′′
re, k

′′
ra]

+Q[u,R((li, ri)i∈[d], feat(v), thr(v)), k′ad − k′′ad, k
′
ex − k′′ex, k

′
re − k′′re, k

′
ra − k′′ra].

where sv is the number of inner nodes in the subtree rooted at v, su is the number of inner nodes in
the subtree rooted at w, and sw is the number of inner nodes in the subtree rooted at u, respectively.
Moreover, Blue((li, ri)i∈[d])) and Red((li, ri)i∈[d])) are the number of blue and red examples in the
box (li, ri)i∈[d], respectively.

Note that in X3 and X4 only node v has to be removed with the respective operation; the remaining
nodes in the subtree of v, u, or w can be removed with any of the two operations.

To recover one of the possible solutions, backtracking in the dynamic programming table is straight-
forward.

Note that the number of entries is bounded from above by n · (D + 1)2d · k4 where k =
max(kad, kex, kre, kra), and computing the entry for each cut takes O(D · k4) time. For each of the s
leaves, the computation takes O(n) time. Thus, the total time complexity is O((D + 1)2d+1nk8 +
ns).

B.4 Missing details of Theorem 4.4

We next argue that Algorithm 1 is correct. Clearly, if Algorithm 1 outputs True a threshold assignment
to each node in N respecting the error vector t was found and thus the input instance is a yes-instance.
For the converse assume that there exists at least one solution. Now we argue that Algorithm 1
outputs True. We show this via induction over |N |. For the base case |N | = 0, no threshold needs
to be determined and the algorithm simply checks if the error bound of each leaf is fulfilled. Now,
assume an the induction hypothesis that the statement holds for all instances where |N | < q. Since
the algorithm does nothing for nodes where the threshold is already known, it is safe to assume that
the root r of T has an unknown threshold. Moreover, assume that the left subtree Tℓ of r has x1 nodes
with an unknown threshold and that the right subtree Tr of r has x2 nodes with an unknown threshold.
Clearly, x1 < |N | and x2 < |N |. Tree Tr witnesses that there is a threshold assignment for all
x2 nodes with an unknown threshold in Tr for E[ffeat(n) > thrr∗], where thr(r∗) is the threshold
of the root r in a fixed solution. An analogous statement is true for Tℓ. Thus, in Line 4 we find a
threshold z ≥ thr(p∗) because, by the induction hypothesis, the recursive calls to Lines 6 and 7 in
which D[m] ≤ thr(p∗) will return True. Again, by the induction hypothesis we obtain threshold
assignments for all other nodes with an unknown threshold. Consequently, Algorithm 1 is correct.

It remains to analyze the running time of our algorithm: There are O(ss) possibilities for the up to
k nodes where a threshold adjustment is performed. Moreover, there are O(st) possibilities for the
error vector. Finally, it remains to analyze the running time of Algorithm 1. Observe that the number
of recursive calls is O(log(D)). Moreover, the depth is bounded by s, the number of inner nodes
of T , since after each recursive call one additional threshold is fixed. Consequently, Algorithm 1 has
a running time of log(D)O(s). Analogously to Kobourov et al. [24, Theorem 3.2.], one can show that
log(D)O(s) ∈ O(s2s ·D1/s). Hence, we obtain the desired running time bound.

B.5 Proof of Theorem 4.5

Proof. We modify the algorithm behind Theorem 4.4 for the FPT-algorithm for s+ t for THRESHOLD
ADJUSTMENT as follows: After the guess of the k nodes where an operation is performed, we
additionally guess which feature is used in any of these k nodes. Note that we need to consider at
most dk possibilities and clearly in one branch this guess is correct. Afterwards, the algorithm behind
Theorem 4.4 works completely analogously. Consequently, we obtain an additional factor of dk in
the running time.

B.6 Proof of Proposition 4.6

Proof. 1. We enumerate over all subsets of adjusted nodes of size at most k in O(sk) time. For
each of these subsets, we try all combinations of the new thresholds in time O(Dk). To each leaf

27

we assign the most-dominant class label. Finally, we verify whether performing these adjustments
results in at most t misclassifications in time O(ns). In total, we use O

(
sk+1Dkn

)
time.

2. We use a straightforward brute force algorithm. We enumerate over all (D + 1)s possible
combinations of adjustments and test if we made at most k of them. To each leaf we assign the
most-dominant class label. Further, we test if we misclassify at most t examples in O(sn) time on
each iteration.

3. We brute force over all subsets of at most k cuts to modify and enumerate over all possible d
features i and D + 1 thresholds in Di. To each leaf we assign the most-dominant class label. Finally,
we verify in O(ns) time whether we get at most t errors.

C Additional Material for Section 5

C.1 Proof of Theorem 5.1

Proof. Our construction is inspired by a similar construction of Harviainen et al. [14, Thm. 5.10]
who showed W[1]-hardness for decision tree pruning with the so-called raising operation for the
same parameter.

We reduce from MULTICOLORED INDEPENDENT SET where each color class has the same number p
of vertices. An example instance is shown in part a) of Figure 4. Formally, the input is a graph G,
and κ ∈ N, where the vertex set V (G) of N vertices is partitioned into V1, . . . , Vκ and |Vi| =
p for each i ∈ [κ]. More precisely, Vi := {v1i , v2i , . . . , v

p
i } and p · κ = N . The question is

whether G contains an independent set consisting of exactly one vertex per class Vi. MULTICOLORED
INDEPENDENT SET is W[1]-hard parameterized by κ and cannot be solved in f(κ) · no(κ) time
unless the ETH fails [3]. The property that all color classes have the same number of vertices is only
used to simplify the proof.

Outline. For an overview of our reduction, we refer to Figure 4. The idea is to create two features d<i
and d>i per color class i such that all cuts in features d<i and d>i correspond to a vertex selection in Vi.
We achieve this as follows: For each pair d<i and d>i of features we create examples which can only
be separated in these two features and which have labels blue (separating examples) and red (choice
examples) alternatingly. Hence, for each possible threshold x in features d<i and d>i , the resulting
decision tree T needs to contain either cut (d<i , x) or cut (d>i , x). Furthermore, for each edge we
create a red edge example. If vertex vji ∈ Vi is selected, then all edge examples corresponding to
edges having an endpoint in color class i which is not vi will then be correctly classified by the
resulting decision tree T . Thus, we can only correctly classify an edge example if we do not select at
least one endpoint of the corresponding edge. Next, we have another feature d∗ with only 2 thresholds
to ensure that all red choice examples corresponding to selected vertices are correctly classified by
the resulting decision tree T and that an edge example gets misclassified as blue if we select both
endpoints of the corresponding edge. Finally, the inner nodes of the input decision tree T ′ are a path
with red and blue leaves alternatingly with cuts in a dummy feature d̂. Thus, in order to obtain T , all
cuts of T ′ which are in feature d̂ need to be changed to cuts in features d<i , d>i , and d∗i , respectively.

Construction.

Description of the data set: A visualization is shown in part b) of Figure 4.

• For each edge {vxi , vzj } ∈ E(G) we add an edge example e(vxi , v
z
j). To all these examples

we assign label red.

• For each i ∈ [κ] and each x ∈ [p− 1] we add a blue separating example b(i, x).

• For vertex vxi ∈ Vi we create a red choice example cxi .

• We add a red dummy example ri for each i ∈ [(p− 1) ·κ+1] and a blue dummy example bi
for each i ∈ [(p− 1) · κ].

• We create red enforcing example r∗ and a blue forcing example b∗. To make the input
tree T ′ reasonable, we add Z copies of b∗, where Z is the total number of red examples

28

a) v11

v21

v31

V1

v12

v22

V2

v13 v23 V3

b)

d<1 : E(v11)c11 b(1, 1) E(v21) c21 b(1, 2) E(v31) c31 Rest<1
d>1 : Rest>1 c11 E(v11) b(1, 1) E(v21) c21 b(1, 2) E(v31) c31
d<2 : c12 E(v12) b(2, 1) E(v22) c22 Rest<2
d>2 : Rest>2 c12 E(v12) b(2, 1) E(v22) c22
d<3 : c13 E(v13) b(3, 1) E(v23) c23 Rest<3
d>3 : Rest>3 c13 E(v13) b(3, 1) E(v23) c23
d∗: b∗bi edge examples Rest∗

1 1.5 2 2.5 3

1 2 3 4 5 6 7 8 9 2(p− 1)κ+ 2 = 10

d̂: r1 b1 r2 b2 r3 b3 r4 b4 r5 Restˆ| | | | | | | | |

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

c) d̂ < 2

d̂ < 3

d̂ < 4

d̂ < 5

d̂ < 6

d̂ < 7

d̂ < 8

d̂ < 9

d̂ < 10

red

blue

red

blue

red

blue

red

blue

red blue

d) d<1 < 1.5

d<1 < 2

d>1 > 2.5

d>1 > 2

d<2 < 1.5

d<2 < 2

d>3 > 1.5

d>3 > 1

d∗ < 1

red

blue

red

blue

red

blue

red

blue

red blue

Figure 4: A visualization of the reduction from the proof of Theorem 5.1. Part a) shows a MULTI-
COLORED INDEPENDENT SET instance. For the sake of the illustration, the property that all partite
sets have the same size is dropped and thus 2(p− 1)κ+ 2 = 10. A multicolored independent set is
depicted in orange. Part b) shows the corresponding classification instance. Here, E(vji) is the set of
all edges incident with vertex vji . Rest<i , Rest>i , Rest∗, and Restˆ refers to all other examples not
shown in that feature (the precise set differs in each feature and is always a subset of all examples
having the default threshold of that feature). All possible cuts in the classification instance are shown
by “|”. Moreover, cuts in the input decision tree are shown in violet and cuts of the solution decision
tree are shown in brown. Part c) shows the input tree T ′. Part d) shows one possible solution tree T .

we create. For simplicity, in the following, we will only talk about the concrete forcing
example b∗.

Note that we add M := |E(G)| edge examples, N choice examples, N − κ = (p− 1) · κ separating
examples, 2(p− 1) · κ+ 1 dummy examples, and 2 further examples. Thus, the number of examples
is polynomial in the input size.

For each i ∈ [κ], we add two features d<i and d>i . We also add two other features d∗ and d̂. Thus, we
have 2 · κ+ 2 features.

It remains to describe the coordinates of the examples in the features. Initially, we declare a default
threshold default(d′) for each feature d′. Then, each example e has the default threshold in each
feature, unless we assign e a different threshold in that feature.

For each feature d<i , we set default(d<i) = p, for each feature d>i , we set default(d>i) = 1, for
feature d∗, we set default(d∗) = 2, and for feature d̂, we set default(d̂) = 2(p− 1) · κ+ 2.

• For each edge example e = e(vxi , v
z
j) we set e[d<i] = e[d>i] = x, e[d<j] = e[d>j] = z,

and e[d∗] = 1. In each other features e is set to the default threshold.

• For the separating example e = b(i, x) we set e[d<i] = e[d>i] = x + 1/2. In each other
features e is set to the default threshold.

• For the choice example e = cxi we set e[d<i] = e[d>i] = x. In each other features e is set to
the default threshold.

• The red enforcing example r∗ has the default threshold in every feature. For the blue forcing
example b∗, we set b∗[d∗] = 1, and in each other feature we use the default threshold.

29

• For the red dummy example ri, we set ri[d̂] = 2i− 1, and in each other feature we use the
default threshold. Finally, for the blue dummy example bi, we set bi[d̂] = 2i, bi[d∗] = 1,
and in each other feature we use the default threshold.

So far, our construction is very similar to the one of Harviainen et al. [14, Thm. 5.10]: Additionally
to their construction we have the blue and red dummy examples and the feature d̂. Anything else is
identical. The input decision tree, however, is substantially different.

Description of the input tree T ′: For a visualization of T ′, we refer to part c) of Figure 4. The
inner nodes of the input tree T ′ are a path with cuts only in feature d̂. Moreover, for all cuts the
leafs are alternatingly labeled with red and blue, starting with red. Observe that T consists of
(p− 1) · 2κ+ 1 inner nodes. This completes our construction.

Parameters δmax, Error bound t and ℓ: Finally, we set t := 0, and k := (p− 1) · 2κ+1. Thus, ℓ = 0.
Note that each edge example differs at most 4 times from the default thresholds, that each separating
and each choice example differs exactly 2 times from the default thresholds, that b∗ differs exactly
once from the default thresholds, that r∗ always has the default thresholds, and that each dummy
example differs at most 3 times from the default thresholds. Thus, δmax = 6.

Note that since ℓ = 0, we can perform a cut exchange on any node and thus the sole purpose of T ′ is
to fix the structure of the inner nodes and the leaf labeling.

Reasonability of the input tree T ′: Observe that each leaf except the blue leaf of the last cut in T ′

contains exactly one example of the same color. Moreover, observe that this blue leaf of the last
cut of T ′ contains the red enforcing example, all red choice examples, all red edge examples, all
blue separation examples, and all Z copies of the blue forcing example, where Z is the total number
of red examples, we conclude that this blue leaf contains more blue examples than red examples.
Consequently, T ′ is reasonable.

Correctness. We show that G has a multicolored independent set if and only if all cuts of T ′ can be
exchanged to obtain a tree T making at most t = 0 errors.

(⇒) This direction of the correctness proof is almost analogous to the same direction of the correctness
proof of Harviainen et al. [14, Thm. 5.10]. For completeness, we give all details. More precisely,
the solution decision tree T in both proofs is identical and here we additionally need to argue that
all dummy examples are correctly classified by T . For a visualization of T , we refer to part d) of
Figure 4.

Let S = {vai
i : i ∈ [κ], ai ∈ [p]} be a multicolored independent set of G. We perform a cut

exchange on all nodes of T ′ such that in the resulting tree T , in feature d<1 we have exactly one
cut at thresholds x ∈ {1.5, 2, 2.5, 3, . . . , p} for which x ≤ ai. Similarly, for each feature d>i in
tree T , we have exactly one cut at thresholds x ∈ {1, 1.5, 2, 2.5, . . . , p − 1/2} for which ai ≤ x.
Moreover, in T we have the unique cut in feature d∗. Furthermore, in T we first have the cuts in
feature d<1 in ascending order, then the cuts in feature d>1 in descending order, then in feature d<2
in ascending order and so on. The last cut of T is in feature d∗. In other words, T has the cuts
{d<1 < 1.5, d<1 < 2, . . . , d<1 < a1, d

>
1 > p − 1/2, . . . , d>1 > a1, . . . , d

>
κ > aκ, d

∗ < 1} in that
specific order. Moreover, the class assignment to the leaves is not changed.

Since T ′ has (p− 1) · 2κ+ 1 inner nodes and since we perform a cut exchange on each of them, we
obtain k = (p− 1) · 2κ+ 1 and ℓ = 0. Thus, it remains to verify that T makes no errors.

Outline: First, we make an observation for examples using the default threshold in a feature and
second we use this observation to show that all examples are correctly classified by the solution
tree T .

Step 1: Recall that T has no cut in feature d̂. Observe that if any example e lands at some inner
node of T corresponding to a cut in feature d′ where d′ = d<i or d′ = d>i for some i ∈ [κ] and e
has the default threshold in that feature d′, that is, e[d′] = default(d′), then e will always go to the
right subtree of that node. Moreover, any example e with the default threshold in feature d∗ is put
into the left subtree of the cut in feature d∗. Since T ′ is a path, any example e which has the default
threshold in each feature will be contained in the red leaf of the cut d∗ < 1. Also, in order for an
example e to land in a different leaf, we only need to consider cuts of T in features where e has a
different threshold than the default threshold.

30

Step 2: We distinguish the different example types.

Step 2.1: By construction, the red enforcing example r∗ always has the default threshold. Thus r∗
ends up in the left child of the last cut of T which is a red leaf. Furthermore, the unique feature in
which the blue forcing example b∗ does not have the default threshold is d∗. Thus, b∗ ends up in the
right child of the last cut of T which is a blue leaf.

Thus, examples r∗ and b∗ are correctly classified by T .

Step 2.2: Consider a blue separating example e = b(i, z). Recall that z = x+ 1/2 and x ∈ [p− 1]
and recall that ai ∈ N is the index of the selected vertex of color class i. Without loss of generality,
assume that z < ai. By Step 1, e will end up in the cut d<i < 1.5 of T . Also, recall that the next cuts
in T ′ are d<i < 2, . . . , d<i < ai in that specific order. Consequently, e goes to the left subtree of the
cut d<i < z + 1/2, which by construction is a blue leaf. Thus, e is correctly classified as blue by T .

Step 2.3: Consider a red choice example e = cxi where x ∈ [p].

First, consider the case that x ̸= ai. Then the argumentation is almost identical to the blue separating
examples: Without loss of generality, assume that x < ai. By Step 1, e will end up in the cut d<i < 1.5
of T . Also, recall that the next cuts in T are d<i < 2, . . . , d<i < ai in that specific order. Consequently,
e goes to the left subtree of the cut d<i < x+ 1/2, which by construction is a red leaf.

Second, consider the case that x = ai. Observe that in all cuts of T in features d<i and d>i , example e
will always go to the right subtree. Since e has the default threshold in each features different from d<i
and d>i , example e ends up in the left leaf of the last cut d∗ < 1 of T which is a red leaf.

Thus, in both cases e is correctly classified as red by T .

Step 2.4: Consider a red edge example e = (vxi , v
z
j). By assumption, S is a multicolored independent

set. Hence, at least one of the two endpoints vxi and vzj is not contained in S. Without loss of
generality, assume that vxi /∈ S and that i < j. The argumentation is analog to the red choice
examples cxi where x ̸= ai: Without loss of generality, assume that x < ai. By Step 1, e will end up
in the cut d<i < 1.5 of T . Also, recall that the next cuts in T are d<i < 2, . . . , d<i < ai in that specific
order. Consequently, e goes to the left subtree of the cut d<i < x+ 1/2, which by construction is a
red leaf. Thus, e is correctly classified as red by T .

Step 2.5: It remains to consider the dummy examples. First, consider a red dummy example rh.
Recall that rh uses the dummy thresholds in all features except d̂. Since d̂ is not used in T , the
red dummy example rh, analogously to the red enforcing example r∗, ends up in the left child of
the last cut of T (which is d∗ < 1) which is a red leaf. Second, consider a blue dummy example bh.
Recall that bh uses the dummy thresholds in all features except d̂ and d∗. Hence, analogously to the
blue forcing example b∗, the blue dummy example bh, ends up in the right child of the last cut of T
(which is d∗ < 1) which is a blue leaf.

Consequently, the tree T has no classification errors.

(⇐) Let T be a solution of the cut exchange problem, that is, up to all cuts of the initial tree T ′ have
been changed such that T makes no errors.

Outline: This direction of the correctness proof follows a similar route as the corresponding direction
of the correctness proof of Harviainen et al. [14, Thm. 5.10]. Step 4, however, is substantially
different.

We first show that T has to include the unique cut in feature d∗. Second, we show that T needs to
contain at least on of the two cuts d<i < x and d>i > x− 1/2 for each i and each x. Third, because
of our choice of the size of the initial tree T ′ and ℓ = 0 we then conclude that for each i and each x
exactly one of the cuts d<i < x and d>i > x− 1/2 has to be preserved. Fourth, we show that the cuts
of T in a feature d<i (or d>i) do not have gaps, that is, if x is the largest (smallest) threshold, such
that the cut d<i < x (d>i > x) is included in T , then also all cuts d<i < z for each z < x (d>i > z for
each x < z) have to be contained in T . For example, the tree shown in part d) of Figure 4 which has
0 errors fulfills this property. Fifth, we use this solution structure to identify a selected vertex of each
color class. Let S be the corresponding vertex set. Finally, we show that S has to be a multicolored
independent set.

31

Step 1: Note that the blue forcing example b∗ and that the red enforcing example r∗ only differ in
the binary feature d∗. Thus, T has to contain the cut d∗ < 1.

Step 2: Our aim is to show that at least one of the cuts d<i < x and d>i > x − 1/2 for any i ∈ [κ]
and x ∈ {1.5, 2, 2.5, . . . , p} has to be included in T . Without loss of generality assume that x is
an integer. Note that x ≥ 2. By construction, for the blue separating example e = b(i, x − 1) we
have e[d<i] = e[d>i] = x− 1/2 and for the red choice example e = cxi we have e[d<i] = e[d>i] = x.
Furthermore, note that b(i, x−1) and cxi have the default threshold in each other feature. Consequently,
only the cuts d<i < x and d>i > x−1/2 can separate b(i, x−1) and cxi . Since T has no classification
errors, we thus conclude that at least one of the cuts d<i < x and d>i > x− 1/2 has to be included
in T .

Step 3: Recall that s = (p− 1) · 2κ+ 1 and ℓ = 0. By Step 1, T has to include the cut d∗ > 1. By
Step 2, at least one of the cuts d<i < x and d>i > x−1/2 for any i ∈ [κ] and x ∈ {1.5, 2, 2.5, . . . , p}
has to be contained in T . Note that these are exactly (p− 1) · 2κ pairs of distinct cuts. Consequently,
T has to contain exactly one of the cuts d<i < x and d>i > x− 1/2.

Step 4: We show that for each i ∈ [κ] there is a threshold xi such that T contains all cuts d<i < z
where z ≤ xi and all cuts d>i > z where z > xi. Assume towards a contradiction that this is not true.
Let P<

i ⊆ {1.5, 2, 2.5, . . . , p} be the subset of consecutive thresholds including 1.5 such that for
each xi ∈ P<

i the tree T contains the cut d<i < xi. Analogously, let P>
i ⊆ {1.5, 2, 2.5, . . . , p} be

the subset of consecutive thresholds including p such that for each xi ∈ P>
i the tree T contains the

cut d>i > xi−1/2. According to our assumption, P<
i ∪P>

i ̸= {1.5, 2, 2.5, . . . , p}. Now consider the
first cut d<i < x or d>i > x−1/2 of T (from the root) such that x ∈ {1.5, 2, 2.5, . . . , p}\(P<

i ∪P>
i).

Without loss of generality assume it is the cut d<i < x. By our choice, x /∈ P<
i . Let z be the largest

threshold in P<
i . Clearly, z < x. Moreover, z ≤ x − 1, because otherwise if z = x − 1/2 then

we would have x ∈ P<
i , a contradiction to the fact that P<

i is maximal. Also, observe that for
threshold x − 1/2 we have x − 1/2 /∈ P<

i ∪ P>
i . Without loss of generality, we assume that x is

an integer. We now exploit the fact that x /∈ P<
i ∪ P>

i is the first threshold such that either d<i < x
or d>i > x−1/2 is contained in T . Since also x−1/2 /∈ P<

i ∪P>
i , and according to our choice of x

at the time when in T cut d<i < x is considered, neither the cut d<i < x− 1/2 nor the cut d>i > x− 1

was considered. Thus, the red choice example cx−1
i and the blue separating example b(i, x− 1) are

both moved into the left subtree of the node with cut d<i < x which is a leaf implying that one of
them gets misclassified, a contradiction to the fact that t = 0. Thus, P<

i and P>
i form a partition

of {1.5, 2, 2.5, . . . , p}.

We would like to note that one can additionally show that all cuts d<i < x contained in T appear in
ascending order in T , that is no cut d<i < z appears before a cut d<i < x for some z > x. This fact,
however, is not necessary to obtain the multicolored independent set.

Step 5: Consider one fixed i ∈ [κ]. Let xi be the largest threshold such that the cut d<i < xi is
contained in in T . In other words, xi is the largest threshold contained in P<

i . Thus, each threshold
which is smaller than x is also contained in P<

i and all thresholds larger than xi are contained
in P>

i . Next, assume towards a contradiction that x is no integer, that is, xi = q + 1/2 for some
integer q ∈ [p−1]. Now, observe that the blue separating example b(i, q) is put in the right subtree of
each cut d<i < z for each z ≤ xi and for each cut d>i > z for each xi ≤ z. Recall that d<i and d>i are
the only features such that b(i, q) does not use the default thresholds. Now, since the red enforcing
example r∗ always uses the default thresholds, we conclude that T cannot distinguish b(i, q) and r∗

and consequently T makes at least one error, a contradiction to the fact that t = 0. Hence, xi is an
integer.

We let vxi
i be the selected vertex of color class i. Furthermore, let S := {vxi

i : i ∈ [κ]}.

Step 6: It remains to verify that S is a multicolored independent set. By definition, S contains exactly
one vertex of each color class. Hence, it remains to show that S is an independent set.

Observe that since T has no classification errors, it is sufficient to show that T cannot distinguish
the blue forcing example b∗ and an red edge example e = (vxi , v

z
j) if both endpoints vxi and vzj are

contained in S: Let e = e(vxi , v
z
j) be an edge example where vxi , v

z
j ∈ S. Note that analogously

to Step 5, the red edge example e ends up in the right subtree of each cut in features d<i , d>i , d<j ,
and d>j . Since the blue forcing example b∗ uses the default thresholds in these 4 features, this is also
true for b∗. Now, observe that the only other feature where e or b∗ to not use the default thresholds

32

is d∗. But in d∗ we have e[d∗] = 1 = b∗[d∗]. Thus, T cannot distinguish the blue forcing example b∗
and the red edge example e = (vxi , v

z
j). Consequently, S is also an independent set.

Lower Bound. Recall that d = 2 · κ + 2, δmax = 6, ℓ = 0, and t = 0. Since MULTICOLORED
INDEPENDENT SET is W[1]-hard with respect to κ [3], we obtain that CUT EXCHANGE is W[1]-
hard with respect to d even if δmax = 6, ℓ = 0, and t = 0. Furthermore, since MULTICOLORED
INDEPENDENT SET cannot be solved in f(κ) · no(κ) time unless the ETH fails [3], we observe that
CUT EXCHANGE cannot be solved in f(d) · |I|o(d) time if the ETH is true, where |I| is the overall
instance size, even if δmax = 6, ℓ = 0, and t = 0.

C.2 Proof of Theorem 5.2

Proof. Our construction is inspired by a similar construction of Harviainen et al. [14, Thm. 5.10]
who showed W[1]-hardness for decision tree pruning with the so-called raising operation for the same
parameter. Our construction, however, is substantially more involved due to the restrictive nature of
the threshold adjustment operation.

We reduce from MULTICOLORED INDEPENDENT SET where each color class has the same number p
of vertices. An example instance is shown in part a) of Figure 5. Formally, the input is a graph G,
and κ ∈ N, where the vertex set V (G) of N vertices is partitioned into V1, . . . , Vκ and |Vi| =
p for each i ∈ [κ]. More precisely, Vi := {v1i , v2i , . . . , v

p
i } and p · κ = N . The question is

whether G contains an independent set consisting of exactly one vertex per class Vi. MULTICOLORED
INDEPENDENT SET is W[1]-hard parameterized by κ and cannot be solved in f(κ) · no(κ) time
unless the ETH fails [3]. The property that all color classes have the same number of vertices is only
used to simplify the proof.

Outline. For an overview of our reduction, we refer to Figure 5. Similar to Theorem 5.1, the idea is
to create two features d<i and d>i per color class i such that all cuts in features d<i and d>i correspond
to a vertex selection in Vi. We achieve this as follows: For each pair d<i and d>i of features we create
examples which can only be separated in these two features and which have labels blue (separating
examples) and red (choice examples) alternatingly. These are the important thresholds of features d<i
and d>i . Hence, for each possible threshold x in features d<i and d>i , the resulting decision tree T
needs to contain either cut (d<i , x) or cut (d>i , x). Furthermore, for each edge we create a red edge
example. If vertex vji ∈ Vi is selected, then all edge examples corresponding to edges having an
endpoint in color class i which is not vi will then be correctly classified by the resulting decision
tree T . Thus, we can only correctly classify an edge example if we do not select at least one endpoint
of the corresponding edge. Next, we have another feature d∗ with only 2 thresholds to ensure that
all red choice examples corresponding to selected vertices are correctly classified by the resulting
decision tree T and that an edge example gets misclassified as blue if we select both endpoints of the
corresponding edge.

In the proof in Theorem 5.1 for cut exchange, the initial tree T ′ was a path with red and blue leaves
alternatingly. For the threshold adjustment operation we need a more complex structure of T ′: Since
we are only allowed to do threshold adjustments, we cannot add a dummy feature with dummy cuts as
in the proof in Theorem 5.1 for cut exchange. Instead, we extend each feature d<i and d>i by dummy
thresholds which are used in the initial tree T ′. Since T ′ is reasonable, we also add new dummy
examples rxi and bxi alternatingly in features d<i and d>i . This, however, creates a new problem:
since t = 0 doing a threshold adjustment in feature d<i moves both a red and a blue dummy example
in the same (left) subtree. Thus, as in the proof in Theorem 5.1 the left subtree is not simply a leaf, but
is another inner node with a cut in a new rescue feature p<i to separate the differently labeled dummy
examples. Our construction of these rescue features together with the tightness of the budget k
ensures that in any optimal solution no threshold adjustment in any rescue feature is possible. In
other words, all threshold adjustments need to be done within the features d<i and d>i .

Construction. Compared to Harviainen et al. [14, Thm. 5.10] and to our reduction in Theorem 5.1,
our construction here is significantly more involved. On the one hand, we need way more examples
and features and on the other hand, the input decision tree is not only a path. Next, we describe our
construction in detail.

Description of the data set: A visualization is shown in part d) of Figure 5.

33

a
)

v
1 1

v
2 1 v
3 1 V
1

v
1 2 v
2 2

V
2

v
1 3

v
2 3

V
3

b)
d
< 1
<

−
3

d
< 1
<

−
2

d
< 1
<

−
1 d
< 1
<

1 d
> 1
>

6 d
> 1
>

5 d
> 1
>

4 d
> 1
>

3 d
∗
<

2

p
< 1
<

2 q< 1
<

3 q< 1
<

4 q< 1
<

5 p
> 1
<

2 q> 1
<

3 q> 1
<

4 q> 1
<

5

bl
ue

re
d

re
d

bl
ue

bl
ue

re
d

re
d

bl
ue

bl
ue

re
d

re
d

bl
ue

bl
ue

re
d

re
d

bl
ue

re
d

bl
ue

c)
d
< 1
<

1.
5 d
< 1
<

2 d
< 1
<

−
1 d
< 1
<

1 d
> 1
>

2.
5 d
> 1
>

2 d
> 1
>

4 d
> 1
>

3 d
∗
<

2

p
< 1
<

2 q< 1
<

3 q< 1
<

4 q< 1
<

5 p
> 1
<

2 q> 1
<

3 q> 1
<

4 q> 1
<

5

bl
ue

re
d

re
d

bl
ue

bl
ue

re
d

re
d

bl
ue

bl
ue

re
d

re
d

bl
ue

bl
ue

re
d

re
d

bl
ue

re
d

bl
ue

d
)

d
< 1
:
r1

<
1

b1
<

1
r1

<
2

b1
<

2
r1

<
3

b1
<

3
r1

<
4

b1
<

4
E
(v

1 1
)

c1 1
r1

∗
1
b1

∗
1

b(
1,
1)
r1

∗
2
b1

∗
2

E
(v

2 1
)

c2 1
r1

∗
3
b1

∗
3

b(
1,
2
) r

1
∗

4
b1

∗
4

E
(v

3 1
)

c3 1
r1

∗
5
b1

∗
5

R
es
t< 1

d
> 1
:

R
es
t> 1

E
(v

1 1
)

c1 1
r1

∗
1
b1

∗
1

b(
1,
1)
r1

∗
2
b1

∗
2

E
(v

2 1
)

c2 1
r1

∗
3
b1

∗
3

b(
1,
2
) r

1
∗

4
b1

∗
4

E
(v

3 1
)

c3 1
r1

∗
5
b1

∗
5

r1
>

4
b1

>
4

r1
>

3
b1

>
3

r1
>

2
b1

>
2

r1
>

1
b1

>
1

d
< 2
:
r2

<
1

b2
<

1
r2

<
2

b2
<

2
E
(v

1 2
)

c1 2
r2

∗
1
b2

∗
1

b(
2,
1)
r2

∗
2
b2

∗
2

E
(v

2 2
)

c2 2
r2

∗
3
b2

∗
3

R
es
t< 2

d
> 2
:

R
es
t> 2

E
(v

1 2
)

c1 2
r2

∗
1
b2

∗
1

b(
2,
1)
r2

∗
2
b2

∗
2

E
(v

2 2
)

c2 2
r2

∗
3
b2

∗
3

r2
>

2
b2

>
2

r2
>

1
b2

>
1

d
< 3
:
r3

<
1

b3
<

1
r3

<
2

b3
<

2
E
(v

1 3
)

c1 3
r3

∗
1
b3

∗
1

b(
3,
1)
r3

∗
2
b3

∗
2

E
(v

2 3
)

c2 3
r3

∗
3
b3

∗
3

R
es
t< 3

d
> 3
:

R
es
t> 3

E
(v

1 3
)

c1 3
r3

∗
1
b3

∗
1

b(
3,
1)
r3

∗
2
b3

∗
2

E
(v

2 3
)

c2 3
r3

∗
3
b3

∗
3

r3
>

2
b3

>
2

r3
>

1
b3

>
1

p
< 1
:

E
(v

1 1
)

c1 1
r1

∗
1

r1
<

1
r1

<
2

r1
<

3
r1

<
4

R
es
t(
p
< 1
)

q< 1
:

b(
1
,1
)
b1

∗
1
b1

∗
2

b1
<

2
E
(v

2 1
)

c2 1
r1

∗
2
r1

∗
3

r1
<

3
b(
1
,2
)
b1

∗
3
b1

∗
4

b1
<

4
R
es
t(
q< 1

)

p
> 1
:

E
(v

3 1
)

c3 1
r1

∗
5

r1
>

1
r1

>
2

r1
>

3
r1

>
4

R
es
t(
p
> 1
)

q> 1
:

b(
1
,2
)
b1

∗
4
b1

∗
5

b1
>

2
E
(v

2 1
)

c2 1
r1

∗
4
r1

∗
3

r1
>

3
b(
1
,1
)
b1

∗
2
b1

∗
3

b1
>

4
R
es
t(
q> 1

)

d
∗ :

bi
∗ j

b∗
ed

ge
ex

am
pl

es
R
es
t(
d
∗)

−
4

−
3

−
2

−
1

1
1.
5

2
2.
5

3
4

5
6

7

1
2

3
4

5

Fi
gu

re
5:

A
vi

su
al

iz
at

io
n

of
th

e
re

du
ct

io
n

fr
om

th
e

pr
oo

f
of

T
he

or
em

5.
2.

Pa
rt
a
)

sh
ow

s
a

M
U

LT
IC

O
L

O
R

E
D

IN
D

E
P

E
N

D
E

N
T

S
E

T
in

st
an

ce
.

Fo
r

th
e

sa
ke

of
th

e
ill

us
tr

at
io

n,
th

e
pr

op
er

ty
th

at
al

lp
ar

tit
e

se
ts

ha
ve

th
e

sa
m

e
si

ze
is

dr
op

pe
d.

A
m

ul
tic

ol
or

ed
in

de
pe

nd
en

ts
et

is
de

pi
ct

ed
in

or
an

ge
.T

he
ve

rt
ex

se
le

ct
io

n
in

th
e

pa
rt

ite
se

tV
1
,a

nd
th

e
fin

al
cu

ti
n

fe
at

ur
e
d
∗ .

Pa
rt
b)

sh
ow

s
th

e
pa

rt
of

th
e

in
pu

tt
re

e
T

′
co

rr
es

po
nd

in
g

to
th

e
ve

rt
ex

se
le

ct
io

n
in

th
e

pa
rt

ite
se

tV
1

to
ge

th
er

w
ith

th
e

fin
al

cu
ti

n
fe

at
ur

e
d
∗ .

Pa
rt
c)

sh
ow

s
th

e
pa

rt
of

a
so

lu
tio

n
tr

ee
T

co
rr

es
po

nd
in

g
to

th
e

ve
rt

ex
se

le
ct

io
n

in
th

e
pa

rt
ite

se
tV

1
to

ge
th

er
w

ith
th

e
fin

al
cu

ti
n

fe
at

ur
e
d
∗ .

T
he

cu
ts

w
he

re
a

th
re

sh
ol

d
ad

ju
st

m
en

tw
as

ap
pl

ie
d

ar
e

m
ar

ke
d

or
an

ge
an

d
th

ey
in

di
ca

te
th

e
se

le
ct

io
n

of
ve

rt
ex

v
2 1
∈
V
1
.P

ar
td

)
sh

ow
s

th
e

co
rr

es
po

nd
in

g
cl

as
si

fic
at

io
n

in
st

an
ce

.H
er

e,
E
(v

j i
)

is
th

e
se

to
fa

ll
ed

ge
s

in
ci

de
nt

w
ith

ve
rte

x
v
j i
.R

es
t

re
fe

rs
to

al
lo

th
er

ex
am

pl
es

no
ts

ho
w

n
in

th
at

fe
at

ur
e

(th
e

pr
ec

is
e

se
td

iff
er

s
in

ea
ch

fe
at

ur
e

an
d

is
al

w
ay

s
a

su
bs

et
of

al
le

xa
m

pl
es

ha
vi

ng
th

e
de

fa
ul

tt
hr

es
ho

ld
of

th
at

fe
at

ur
e)

.
Fe

at
ur

es
x
< j

an
d
x
> j

fo
r
x
∈
{p

,q
}

an
d
j
∈
{2

,3
}

ar
e

no
ts

ho
w

n.
N

ot
e

th
at

th
re

sh
ol

ds
−
4

to
−
1

on
ly

ex
is

tf
or

fe
at

ur
es

d
< i

an
d

th
at

th
re

sh
ol

ds
d
> i

on
ly

ex
is

tf
or

fe
at

ur
es

d
> i

.A
ll

po
ss

ib
le

cu
ts

in
th

e
cl

as
si

fic
at

io
n

in
st

an
ce

ar
e

sh
ow

n
by

“|
”.

M
or

eo
ve

r,
w

e
us

e
a

4
co

lo
ri

ng
to

di
st

in
gu

is
h

cu
ts

of
th

e
in

iti
al

tr
ee

T
′

an
d

a
so

lu
tio

n
tr

ee
T

:1
)c

ya
n

cu
ts

ar
e

us
ed

by
bo

th
T

′
an

d
T

,2
)b

ro
w

n
cu

ts
ar

e
on

ly
us

ed
by

T
′ ,

or
an

ge
cu

ts
ar

e
on

ly
us

ed
by

T
,a

nd
4)

bl
ac

k
cu

ts
ar

e
ne

ith
er

us
ed

by
T

′
no

rT
.

34

• For each edge {vxi , vzj } ∈ E(G) we add an edge example e(vxi , v
z
j). To all these examples

we assign label red.

• For each i ∈ [κ] and each x ∈ [p− 1] we add a blue separating example b(i, x).

• For vertex vxi ∈ Vi we create a red choice example cxi .

• We create red enforcing example r∗ and a blue forcing example b∗. To make the input
tree T ′ reasonable, we add (N2 + 1) copies of b∗. For simplicity, in the following, we will
only talk about the concrete forcing example b∗.

• For each feature d<i and each j ∈ [2(p − 1)] we add a blue dummy example bi<j and a
red dummy example ri<j . Analogously, for each feature d>i and each j ∈ [2(p− 1)] we add
a blue dummy example bi>j and a red dummy example ri>j .

• For each i ∈ [k] and each j ∈ [2(p−1)+1], we add a blue filler example bi∗j and a red filler
example ri∗j .

Note that we add M := |E(G)| edge examples, N choice examples, N − κ = (p− 1) · κ separating
examples, 8(p− 1) · κ dummy examples, (4(p− 1) + 2) · κ filler examples, and 2 further examples.
Thus, the number of examples is polynomial in the input size.

For each i ∈ [κ], we add six features d<i , d>i , p<i , p>i , q<i , and q>i . We also add another feature d∗.
Thus, we have 6 · κ+ 1 features.

It remains to describe the coordinates of the examples in the features. Initially, we declare a default
threshold default(d′) for each feature d′. Then, each example e has the default threshold in each
feature, unless we assign e a different threshold in that feature.

• For each feature d<i , we set default(d<i) = p, for each feature d>i , we set default(d>i) = 1.

• For each feature p<i , we set default(p<i) = 2. Analogously, for each feature p>i , we
set default(p>i) = 2.

• For each feature q<i , we set default(q<i) = 2(p− 1) + 1. Analogously, for each feature q>i ,
we set default(q>i) = 2(p− 1) + 1.

• For feature d∗, we set default(d∗) = 2.

Now, we are ready to assign the coordinates to all examples.

• For each edge example e = e(vxi , v
z
j) we set e[d<i] = e[d>i] = x, e[d<j] = e[d>j] =

z, and e[d∗] = 1. Next, we distinguish three different values of x: (1) if x = 1, we
set e[p<i] = 1. (2) if x = p, we set e[p>i] = 1. (3) if 1 < x < p, we set e[q<i] = 2x − 1
and e[q<i] = 2(p− x) + 1. We do similar for z, that is, (1) if z = 1, we set e[p<j] = 1. (2)
if z = p, we set e[p>j] = 1. (3) if 1 < z < p, we set e[q<j] = 2z−1 and e[q<j] = 2(p−z)+1.
In each other features e is set to the default threshold.

• For the separating example e = b(i, x) we set e[d<i] = e[d>i] = x + 1/2. Moreover, we
set e[p<i] = 2x, and e[p>i] = 2(p−x). In each other features e is set to the default threshold.

• For the choice example e = cxi we set e[d<i] = e[d>i] = x. Next, we distinguish three
different values of x: (1) if x = 1, we set e[p<i] = 1. (2) if x = p, we set e[p>i] = 1. (3)
if 1 < x < p, we set e[q<i] = 2x− 1 and e[q<i] = 2(p− x) + 1. In each other features e is
set to the default threshold.

• The red enforcing example r∗ has the default threshold in every feature. For the blue forcing
example b∗, we set b∗[d∗] = 1, and in each other feature we use the default threshold.

• Let i ∈ [κ] and j ∈ [2(p− 1)].

35

(A) For the blue dummy example e = bi<j , we set e[d<1] = −2(p−1)−1+j = −2p+1+j.
Note that −2(p− 1) ≤ e[d<1] ≤ −1. Moreover, if j is even, we set e[q<i] = j.

(B) For the blue dummy example e = bi>j , we set e[d>1] = p+ 2(p− 1)− j = 3p− 1− j.
Note that p+ 1 ≤ e[d<1] ≤ 3p− 2. Moreover, if j is even, we set e[q>i] = j.

(C) For the red dummy example e = ri<j , we set e[d<1] = −2(p−1)−1+ j = −2p+1+j.
Note that −2(p− 1) ≤ e[d<1] ≤ −1. Also, we set e[p<i] = 1. Moreover, if j > 1 and j is
odd, we set e[q<i] = j.

(D) For the red dummy example e = ri>j , we set e[d>1] = p+ 2(p− 1)− j = 3p− 1− j.
Note that p + 1 ≤ e[d<1] ≤ 3p − 2. Also, we set e[p>i] = 1. Moreover, if j > 1 and j is
odd, we set e[q>i] = j.

• Let i ∈ [κ] and j ∈ [2p− 1].

(A) For the blue filler example e = bi∗j , we set e[d<i] = (j + 1)/2 = e[d>i], and e[d∗] = 1.
Next, we distinguish the precise value of j: (1) if j = 1, we set e[q<i] = 2. (2) if j = 2p− 1,
we set e[q>i] = 2. (3) if 1 < j < 2p − 1 and j is odd, we set e[q<i] = j + 1 and e[q>i] =
2p+ 1− j. (4) otherwise, if j is even, we set e[q<i] = j, and e[q>i] = 2p− j.

(B) For the red filler example e = ri∗j , we set e[d<i] = (j + 1)/2 = e[d>i]. Next, we
distinguish the precise value of j: (1) if j = 1, we set e[p<i] = 1. (2) if j = 2p − 1,
we set e[p>i] = 1. (3) if j = 2, we set e[q<i] = 3. (4) if 1 < j < 2p − 1 and j is odd,
we set e[q<i] = j = e[q>i]. (5) otherwise, if 2 < j and j is even, we set e[q<i] = j + 1,
and e[q>i] = j − 1.

Description of the input tree T ′: For a visualization of parts of T ′, we refer to part b) of Figure 5.
Intuitively, tree T ′ consists of a path P of cuts in features d<i , d>i , and d∗, and each left subtree
of this path (except for the unique cut in feature d∗) consists of a unique cut in features x<

i or x>
i

where x ∈ {p, q}.

First, we formally describe path P : It consists of the cuts d<i < −2p+ 3, d<i < −2p+ 4, . . . , d<i <
−1, d<i < 1, d>i > 3p− 3, . . . , d>i > p, d<2 < −2p+ 3, . . . , d>κ > p, d∗ < 2. Second, we describe
the remaining cuts: (1) The left subtree of the cut d<i < −2p + 3 consists of the cut p<i < 2. (2)
The left subtree of the cut d>i > 3p − 3 consists of the cut p>i < 2. (3) The left subtree of the
cut d<i < −2p + 2 + j for j ≥ 2 consists of the cut q<i < j + 1. (4) The left subtree of the
cut d>i > −3p− 2− j for j ≥ 2 consists of the cut q>i < j + 1.

Finally, it remains to describe the class assignment to the leaves: The left leaf of the cuts p<i < 2,
p>i < 2, q<i < j, and q>i < j for even j is red and their right child is blue. For all remaining cuts,
that is for cuts q<i < j, q>i < j for odd j, and for d∗ < 2, the left child is blue and the right child
is red.

Observe that T ′ consists of exactly 8(p− 1) · κ+ 1 cuts.

Parameters δmax, Error bound t and ℓ: Finally, we set t := 0, and k := (p− 1) · 2κ. Note that each
edge example differs at most 13 times from the default thresholds, that each separating and each
choice example differs exactly 6 times from the default thresholds, that b∗ differs exactly once from
the default thresholds, that r∗ always has the default thresholds, that each dummy example differs at
most 3 times from the default thresholds, and that each filler example differs 7 times from the default
thresholds. Thus, δmax ≤ 20.

Reasonability of input tree T ′: Observe that each leaf attached to a cut in feature x<
i or x>

i for x ∈
{p, q} and i ∈ [κ] contains exactly one dummy example of the same class. Moreover, observe that
the red leaf of the cut d∗ < 2 contains all blue separating example, all red choice examples, all
red filler examples, and the red enforcing example. Thus, the red leaf contains more red examples
than blue examples. Finally, consider the blue leaf of the cut d∗ < 2. This leaf contains all red edge
examples, all blue filler examples, and the (N2 + 1) copies of the blue forcing example. Thus,
the blue leaf contains more blue examples than red examples. Consequently, the input tree T ′ is
reasonable.

36

Correctness. We show that G has a multicolored independent set if and only if on k = (p−1)·2κ cuts
of T ′ we can perform a threshold adjustment operation to obtain a tree T making at most t = 0 errors.

(⇒) Let S = {vai
i : i ∈ [κ], ai ∈ [p]} be a multicolored independent set of G. We now show how

to construct a tree T from T ′ with at most k = (p− 1) · 2κ thresholds adjustments such that T has
0 errors. For a visualization of parts of T , we refer to part c) of Figure 5.

For each color class i, we perform a threshold adjustment operation in the first 2(ai − 1) cuts of T ′ in
feature d<i and in the first 2(p−ai) cuts in feature d>i . Moreover, the newly adjusted thresholds in d<i
range from 1.5 to ai in that order and the newly adjusted thresholds in d>i range from p− 1/2 to ai
in that order. Note that these are 2(p− 1) threshold adjustment operations per color class and thus
k = (p− 1) · 2κ threshold adjustment operations in total. Now, we describe these operations in detail:
We change cut d<i < −2(p− 1) + 1 = −2p+ 3 to d<i < 1.5, d<i < −2p+ 4 to d<i < 2, and so on,
until d<i < −2(p− 1)+2(ai− 1) = −2(p−ai) to d<i < ai. Moreover, we change cut d>i > 3p− 3
to d>i > p−1/2, d>i > 3p−4 to d>1 > p−1, and so on, until d>i > 3p−2−2(p−ai) = p+2ai−2
to d>i > ai. Moreover, note that we do not change the class of any leaf.

Observe that the new tree T might not be reasonable anymore: For example, consider the selection of
vertex v21 ∈ V1 shown in part c) of Figure 5: The cut d<1 < −1 puts all examples into its right subtree
since its parent has the stronger cut d<i < 2.

Now, it remains to verify that T makes no errors.

Outline: First, we make an observation for examples using the default threshold in a feature and
second we use this observation to show that all examples are correctly classified by the solution
tree T .

Step 1: Observe that if any example e lands at some inner node of T corresponding to a cut in
feature d′ where d′ = d<i or d′ = d>i for some i ∈ [κ] and e has the default threshold in that
feature d′, that is, e[d′] = default(d′), then e will always go to the right subtree of that node.
Moreover, any example e with the default threshold in feature d∗ is put into the right subtree of the
cut in feature d∗ which is a lneg leaf. Consequently, any example e which has the default threshold
in each feature will be contained in the red leaf of the cut d∗ < 2. Also, in order for an example e
to land in a different leaf, we only need to consider cuts of T in features where e has a different
threshold than the default threshold.

Step 2: We distinguish the different example types and show that T makes no errors.

Step 2.1: By construction, the red enforcing example r∗ always has the default threshold. Thus r∗
ends up in the right child of the last cut of T which is a red leaf. Furthermore, the unique feature in
which the blue forcing example b∗ does not have the default threshold is d∗. Thus, b∗ ends up in the
left child of the last cut of T which is a blue leaf.

Thus, examples r∗ and b∗ are correctly classified by T .

Step 2.2: Consider a blue separating example e = b(i, z). Recall that z = x+ 1/2 and x ∈ [p− 1]
and recall that ai ∈ N is the index of the selected vertex of color class i.

First we consider the case z ≤ ai. This implies that at least one threshold adjustment is done
in feature d<i . By Step 1, e will end up in the cut d<i < 1.5 of T . Afterwards, the next cuts
are d<i < 2, d<i < 2.5, . . . , d<i < ai in that specific order. Consequently, e goes to the left subtree of
the cut d<i < z + 1/2 (note that z + 1/2 is an integer and z + 1/2 ≥ 2). Observe that the root of this
left subtree is the cut q<i < h for some h ≤ 2p− 1 such that h is odd. Consequently, e is put into the
left subtree of the cut q<i < h which is a blue leaf. Thus, e is correctly classified as blue by T .

Second, we consider the case z > ai. Observe that all cuts in feature d<i have the form d<i < h with
some threshold h ≤ ai < z. Hence, e is put into the right subtree of each cut in feature d<i of T .
Now, the argumentation is analogously as in the first case for feature d>i and since T contains the
cut d>i > ai, example e is put into the left subtree of one of the cuts in feature d>i .

Step 2.3: Consider a red choice example e = cxi where x ∈ [p].

First, consider the case that x ̸= ai. Then the argumentation is almost identical to the blue separating
examples:

37

(A) assume that x < ai. By Step 1, e will end up in the cut d<i < 1.5 of T . Also, recall that the
next cuts in T are d<i < 2, d<i < 2.5, . . . , d<i < ai in that specific order. Consequently, e goes to the
left subtree of the cut d<i < x+ 1/2. If, x = 1, then the root of this left subtree is the cut p<i < 2.
Otherwise, if x ≥ 2, then the root of this left subtree is the cut q<i < h for some h ≤ 2p− 1 such
that h is even. Observe that in both cases e is put into the left subtree of the cut p<i < 2 or q<i < h
which is a red leaf.

(B) assume that x > ai. Observe that all cuts in feature d<i have the form d<i < h with some
threshold h ≤ ai < x. Hence, e is put into the right subtree of each cut in feature d<i of T . Now, the
argumentation is analogously as in the first case for feature d>i and since T contains the cut d>i > ai,
example e is put into the left subtree of one of the cuts in feature d>i .

Second, consider the case that x = ai. Note that in T all cuts in feature d<i have the form d<i < h for
some h ≤ ai and that all cuts in feature d>i have the from d>i > h for some h ≥ ai. Thus, e is put
into the right subtree of each of these cuts. Since e uses the default threshold in feature d∗, e is put
into the right subtree of the cut d∗ < 2 which is a red leaf.

Consequently, in all cases e is correctly classified as red by T .

Step 2.4: Consider a red edge example e = (vxi , v
z
j). By assumption, S is a multicolored independent

set. Hence, at least one of the two endpoints vxi and vzj is not contained in S. Without loss of
generality, assume that vxi /∈ S and that i < j. The argumentation is analog to the red choice
examples cxi where x ̸= ai: Without loss of generality, assume that x < ai. By Step 1, e will end
up in the cut d<i < 1.5 of T . Also, recall that the next cuts in T are d<i < 2, . . . , d<i < ai in that
specific order. Consequently, e goes to the left subtree of the cut d<i < x+ 1/2. If, x = 1, then the
root of this left subtree is the cut p<i < 2. Otherwise, if x ≥ 2, then the root of this left subtree is the
cut q<i < h for some h ≤ 2p− 1 such that h is even. Observe that in both cases e is put into the left
subtree of the cut p<i < 2 or q<i < h which is a red leaf. Thus, e is correctly classified as red.

Step 2.5: (A) Consider a red filler example e = ri∗j . The argumentation is very similar to the
red choice examples. First, consider the case j ̸= ai and assume without loss of generality that j < ai
(the case j > ai follows by considering feature d>i instead). By Step 1, e will end up in the
cut d<i < 1.5 of T . Also, recall that the next cuts in T are d<i < 2, . . . , d<i < ai in that specific order.
Next, observe that the cut d<i < (j + 1)/2 puts e into its left subtree. If j = 1, then the root of this
subtree is p<i < 2 and puts e into its left subtree which is a red leaf. Otherwise, if j ≥ 2, then the
root of this subtree is q<i < j + 1. If j is even, cut q<i < j + 1 puts e into its right subtree which is a
red leaf. Otherwise, if j is odd, cut q<i < j + 1 puts e into its left subtree which is a red leaf.

Second, consider the case j = ai. Again, observe that in T all cuts in feature d<i have the form d<i < h
for some h ≤ ai and that all cuts in feature d>i have the from d>i > h for some h ≥ ai. Thus, e is
put into the right subtree of each of these cuts. Since e uses the default threshold in feature d∗, e is
put into the right subtree of the cut d∗ < 2 which is a red leaf.

Hence, e is correctly classified as red.

(B) The argumentation for a blue filler example e = bi∗j is very similar: If j ̸= ai, then the
cuts p<i < 2 and q<i < j + 1 will put e into its blue leaf. Otherwise, if j = ai, then e ends up at the
cut d∗ < 2 and then e is put into the left subtree which is a blue leaf. Consequently, e is correctly
classified as blue.

Step 2.6: (A) Consider a red dummy example e = ri<j . First, assume that ai ≥ 2. Then the first
cut of T in feature d<i is d<i < 1.5. Hence, e is put into the left subtree of the cut d<i < 1.5. The
root of this subtree is the cut p<i < 2. Consequently, e is put into the left subtree of the cut p<i < 2
which is a red leaf. Second, consider the case that ai = 1. Then, the cuts of T in feature d<i
are d<i < −2p+ 3, d<i < −2p+ 4, . . . , d<i < −1, d<i < 1 in that specific order. If j = 1, then e is
put into the left subtree of the cut d<i < −2p+ 3 whose root is the cut p<i < 2. Otherwise, if j ≥ 2,
then e is put into the left subtree of the cut d<i < −2p+ 2 + j whose root is the cut q<i < j + 1. In
both cases e is then put into the red leaf of this cut.

The argumentation for a red dummy example ri>j follows analogously with the features d>i , p
>
i ,

and q>i instead of d<i , p
<
i , and q<i .

38

(B) The argumentation for the blue dummy examples e = bi<j and e = bi>j follows analogously as
for the red dummy examples. The difference is that the cuts p<i < 2 and q<i < j + 1 put e into the
blue leaf of this cut.

Consequently, all dummy examples are correctly classified by T .

Thus, all examples are correctly classified by T and we deal with a yes-instance for THRESHOLD
ADJUSTMENT.

(⇐) Let T be a solution of the THRESHOLD ADJUSTMENT instance, that is, to up to k = (p −
1) · 2κ cuts of T ′ a threshold adjustment operation was applied such that the resulting tree T has
t = 0 errors.

Outline: Observe that in T ′ the classification paths of all blue separation examples b(i, x) is identical
to the classification paths of the red enforcing example. First, from that observation we conclude
that in T one of the following two cases has to occur: (a) T contains a cut d<i < h for some h
such that x ≤ h + 1 or (b) T contains a cut d>i > h for some h ≤ x. Second, we show that
if T contains a cut d<i < h for some h ∈ {1.5, 2, 2.5, . . . , p}, then T also needs to contain the
cuts d<i < x for all x ∈ {1.5, 2, 2.5, . . . , h}. Analogously we show that, if T contains the cut d>i > h
for some h ∈ {1, 1.5, 2, . . . , p − 1/2}, then T also needs to contain the cuts d>i > x for all x ∈
{h, h+1/2, h+1, . . . , p−1/2}. Third, this structure of cuts in d<i and d>i tightens the budget k and
allows us to define a selected vertex of the color class i. Finally, we argue that all selected vertices
form a multicolored independent set.

Step 1: As discussed above, the classification paths of all blue separation examples b(i, x) is identical
to the classification paths of the red enforcing example e∗ in T ′. Recall that e[d<i] = x+1/2 = e[d>i]
and that e∗ uses the default thresholds in each feature. Also observe that in T ′ all cuts in feature d<i
have the form d<i < h for some h ≤ 1 and all cuts in feature d>i have the form d>i > h for
some h ≥ p. Moreover, recall that e and e∗ are put into the right subtree of each cut in d<i and d>i
in T ′. Since T makes no errors, we conclude that T needs to have (a) a cut d<i < h for some h such
that x ≤ h+ 1 or (b) a cut d>i > h for some h ≤ x, in order to put e into the left subtree of this cut
and consequently separate e from e∗.

Step 2: Consider the set Z of cuts d<i < h in T where h ∈ {1.5, 2, 2.5, . . . , p}. Let d<i < x be a cut
in Z. We now argue (a) that T also needs to contain all cuts d<i < h for any 1.5 ≤ h < z and (b) that
the cuts of Z need to appear in T in ascending order with thresholds, that is, first cut d<i < 1.5, then
cut d<i < 2, and so on.

Assume towards a contradiction that (a) is wrong, that is, T contains a cut d<i < x but not the
cut d<i < x− 1/2. Without loss of generality we assume that x is an integer. Now observe that each
cut in feature d<i handles the following examples incidentally: (a) the red filler examples ri∗2x−5, r

i∗
2x−4

and (b) the blue filler examples bi∗2x−5, b
i∗
2x−4. That means that each cut of T either puts all 4 of these

examples into its left subtree or into its right subtree. This is true since by our assumption T does
not contain the cut d<i < x− 1/2. Moreover, observe that since T contains the cut d<i < x, at some
cut d<i < h for h ≥ x all these 4 examples are put into the left subtree of the cut d<i < h. Now,
observe that this left subtree consists of a single inner node with a cut in feature p<i or q<i . Next, note
that each cut in feature p<i or q<i can only separate exactly one pair ri∗j , bi∗j of filler examples, but not
two. Thus, at least one filler example gets misclassified by T , a contradiction to the fact that t = 0.

Thus, if T contains the cut d<i < x for x ≥ 2, then T also needs to contain the cut d<i < x− 1/2.
Note that the above argumentation implies that the cut d<i < x − 1/2 needs to appear before the
cut d<i < x because otherwise still at least one filler example gets misclassified.

Analogously, one can show that if T contains the cut d>i > x for some x ≤ p − 1, then T also
needs to contain the cut d>i > x+ 1/2 and that in T cut d>i > x+ 1/2 needs to appear before the
cut d>i > x.

Step 3: Let b(i, x) be the blue separation example such that T contains a cut d<i < x+ 1 and such
that x is maximal. Next, we distinguish the value of x. If x = p − 1, then since T contains the
cut d<i < p, by Step 2, T also needs to contain the cuts d<i < h where 1.5 ≤ h ≤ p. Observe that
these are 2(p− 1) cuts in total.

Otherwise, if x ≤ p− 2 (this includes the case that x does not exist), then by Step 2, T also needs
to contain the cuts d<i < h where 1.5 ≤ h ≤ x + 1. Observe that these are 2x cuts in total.

39

d1 < 0

d2 < 0

. . .

d|U |−1 < 0

d|U | < 0

red

red

red

red blue

Figure 6: The initial decision tree in the reduction of Theorem 5.3 from HITTING SET.

Since x ≤ p− 2, the blue separation example b(i, x+ 1) exists. By Steps 1 and 2, T contains (a)
a cut d<i < x+ 1 or (b) a cut d>i > x. By our assumption, (a) is not possible and thus T contains
the cut d>i > x. Again, by Step 2, we can conclude that T also needs to contain the cuts d>i > h
for each x ≤ h ≤ p − 1/2. Note that these are 2(p − 1 − x) cuts in total. Thus, in total T needs
to perform at least 2x + 2(p − 1 − x) = 2(p − 1) threshold adjustment operations in features d<i
and d>i .

Recall that the budget is k = 2(p− 1)κ. Since there are κ color classes and in each pair d<i and d>i
of features T needs to perform at least 2(p− 1) threshold adjustment operations, we conclude that to
obtain T exactly 2(p− 1) threshold adjustment operations per features d<i and d>i are performed and
that in no feature q<i or q>i any threshold adjustment operations is done.

If x exists, we say that vx+1
i ∈ Vi is selected, and otherwise, if x does not exist, we say that v1i ∈ V1

is selected. Let S be the set of all selected vertices.

Step 4: We now argue that S is a multicolored independent set. Clearly, S contains exactly one vertex
per color class. Hence, it remains to verify that S is an independent set.

Observe that since T has no classification errors, it is sufficient to show that T cannot distinguish
the blue forcing example b∗ and an red edge example e = (vxi , v

z
j) if both endpoints vxi and vzj are

contained in S: Let e = e(vxi , v
z
j) be an edge example where vxi , v

z
j ∈ S. Observe that according

to Steps 1-3 all cuts of T in feature d<i have the form d<i < h for some h ≤ x and all cuts in
feature d>i have the from d>i > h for some h ≥ x. Hence, e is put into the right subtree of each of
these cuts. Analogously, we can argue that e ends up in the right subtree of each cut in features d<j
and d>j . Since the blue forcing example b∗ uses the default thresholds in these 4 features, this is also
true for b∗. Thus, both e and b∗ end up in the cut d∗ < 2. Both examples, however, are put in the
left subtree of this cut. Thus, T cannot distinguish the blue forcing example b∗ and the red edge
example e = (vxi , v

z
j). Consequently, S is also an independent set.

Lower Bound. Recall that d = 6 · κ + 1, δmax = 20, and t = 0. Since MULTICOLORED
INDEPENDENT SET is W[1]-hard with respect to κ [3], we obtain that CUT EXCHANGE is W[1]-hard
with respect to d even if δmax = 20, and t = 0. Furthermore, since MULTICOLORED INDEPENDENT
SET cannot be solved in f(κ) · no(κ) time unless the ETH fails [3], we observe that CUT EXCHANGE

cannot be solved in f(d) · |I|o(d) time if the ETH is true, where |I| is the overall instance size, even
if δmax = 20, and t = 0.

C.3 Proof of Theorem 5.3

Proof. We reduce from the W[2]-hard problem HITTING SET. Let (U,S, κ) be an instance of
HITTING SET with a universe U and a family of sets S such that we look for a hitting set of size κ.
Essentially, we create a cut and a feature for each element of the universe and an example for each set
of the instance.

Without loss of generality, assume that the elements of the universe are 1, 2, . . . , |U |. We create a
THRESHOLD ADJUSTMENT instance with |U | features d1, d2, . . . , d|U |, and for each set S in S we
create a red example e such that e[di] = 0 if i ∈ S, and e[di] = 1 otherwise. We also create one

40

blue example e′ with e′[di] = 1 for all i ∈ U . Our initial decision tree has |U | cuts c1, c2, . . . , c|U |
that form a chain where the right child of the cut ci is ci+1 for all i ∈ {1, 2, . . . , |U | − 1}. The right
child of c|U | is a blue leaf. The left child of each cut is a red leaf. The feature of the cut ci is di and
the initial threshold is 0. An illustration of the initial decision tree is provided in Figure 6. Finally, let
k = κ and t = 0.

We claim that this instance of THRESHOLD ADJUSTMENT has a solution if and only if the HITTING
SET instance has a solution. First, assume that the HITTING SET instance has a hitting set H . Then,
adjusting the thresholds of cuts ci to 1 for all i ∈ H results in 0 misclassifications: For the blue
example, all thresholds are at most 1 and so it still goes to the blue leaf. Similarly for any red
example e corresponding to some set S ∈ S, there is some cut ci with i ∈ H whose threshold was
adjusted to 1, and the example thus goes to a red leaf since e[di] = 0 by construction.

Assume now instead that the HITTING SET instance has no solution. Let us prove by contradiction
that then the THRESHOLD ADJUSTMENT instance has no solution. Suppose the opposite, that is,
there exists a solution by somehow adjusting some set of cuts C. First note that we cannot have
increased any threshold above 1, since that would result in us misclassifying the only blue example
if the leaf is not relabeled, and otherwise some red example gets misclassified. Consequently, the
blue example ends up in the only leaf that is originally labeled as blue, and thus its label cannot be
changed.

Consider now the set H = {i : ci ∈ C}. It cannot be a hitting set, since our HITTING SET instance
has no solution. Thus, there is some set S ∈ S with S ∩ H = ∅. Take now the red example e
corresponding to S. The only was we can classify e as red is that the threshold of ci is greater than
e[di]. This is not possible for any i ∈ S, since those cuts remain unadjusted by the fact that S∩H = ∅.
For all i ̸∈ S, we have that e[di] = 1, and no threshold could have been increased above 1 without
misclassifying the blue example. Thus, e has to get misclassified. By contradiction, the THRESHOLD
ADJUSTMENT instance has no solution.

Note that the instance is not yet reasonable, since some leaves are initially empty. The following
modification to the instance suffices for making the it reasonable here and for the following proposi-
tions of the section. Let n′ be the number of examples in the instance before making this adjustments.
For each feature di with i ∈ [|U |], we create n′ + 1 red examples e with e[dj] = −∞ for j ≥ i and
e[dj] = ∞ otherwise. We create also n′ + 1 blue examples e with value ∞ for all features. Now, no
leaf is empty, and each leaf has more than n′ new examples, so their labels match the majority. The
proof of W[2]-hardness even with these new examples goes identically to as above.

We have shown that the above reduction is correct. Note that k = κ, D = 2 and t = 0 for the
constructed instance. Thus, THRESHOLD ADJUSTMENT is W[2]-hard with respect to k even if
D = 2 and t = 0. It is known that HITTING SET cannot be solved in O((|U | +

∑
S∈S |S|)o(κ))

time assuming ETH, and not in O(|U |κ−ϵ) time for any ϵ > 0 assuming SETH, see Corollary 14.23
and Theorem 14.42 by Cygan et al. [3] (note that DOMINATING SET straightforwardly reduces to
HITTING SET). The ETH-based lower bound for THRESHOLD ADJUSTMENT follows because k = κ
and the constructed instance of THRESHOLD ADJUSTMENT has size polynomial in |U |+ |S|. Further,
since s = |U | the SETH-based lower bound for THRESHOLD ADJUSTMENT also follows.

In the following propositions of the section, we do not construct our reduced instances to be reasonable
for conciseness. However, an adjustment identical to that of Theorem 5.3 suffices for making them
reasonable up to and including Corollary 5.7.

C.4 Proof of Corollary 5.4

Proof. The reduction is similar to Theorem 5.3, but we reduce from the NP-hard problem VERTEX
COVER instead of HITTING SET. Take an arbitrary VERTEX COVER instance (G, κ) such that we
look for a vertex cover of size κ from the graph G = (V,E). We then perform the same reduction as
in Thm. 5.3, treating V as the universe and E as the family of sets, each of which is of size two.

C.5 Proof of Corollary 5.5

Proof. The reduction is similar to Theorem 5.3 and Corollary 5.4 but we reduce from the W[1]-hard
problem PARTIAL VERTEX COVER. Take an arbitrary PARTIAL VERTEX COVER instance (G, κ, τ)

41

where we look for a subset of κ vertices from the graph G = (V,E) such that at most τ edges are
uncovered. We perform the reduction similarly to Theorem 5.3, treating V as the universe and E
as the family of sets, each of which is of size two. The differences to that reduction are as follows:
let t = τ and create t + 1 blue examples e with e[di] = 1 for all i ∈ U . This prevents us from
increasing any threshold above 1 as we would get more than t errors. On the other hand, we can now
misclassify at most τ = t examples corresponding to the edges of G. The rest of the proof then goes
analogously.

C.6 Proof of Theorem 5.6

Proof. We again reduce from HITTING SET. This time, the idea is that each cut is initially in an
undecided state (threshold 0) and has to be included (threshold 1) or not included (threshold −1) in
the hitting set. Our initial decision tree is constructed the same way as in Theorem 5.3. However, our
examples are different.

We add a single blue universe example e for each element u ∈ U such that e[du] = −1 and otherwise
e[di] = 1 for all i ∈ U with i ̸= u. These examples are initially misclassified. For each set S in S , we
create t+ 1 copies of a red example e such that e[di] = 0 if i ∈ S, and e[di] = 1 otherwise. These
are also initially misclassified. Finally, we create t+ 1 copies of a blue example e′ with e′[di] = 1
for all i ∈ U . These are initially correctly classified but get misclassified if any threshold is adjusted
to be more than 1. Finally, set k = |U | and t = κ.

We again claim that this THRESHOLD ADJUSTMENT instance has a solution if and only if the initial
HITTING SET instance has a solution. The other direction goes almost identically to the proof
of Theorem 5.3; if a suitable hitting set H exists, we increase the threshold of the cut ci to 1 for
all i ∈ H and decrease the threshold to −1 for cuts ci with i ∈ U \ H . Consequently, we get
|H| ≤ κ = t errors.

Assume now instead that the HITTING SET instance does not have a solution and suppose that
THRESHOLD ADJUSTMENT has a solution. We know that at most t = κ cuts can have threshold
above −1, since otherwise more than t universe examples get misclassified. We can argue identically
to Theorem 5.3 that if C is the set of cuts whose scores are above −1 and H = {i : ci ∈ C}, then
there exists some set S ∈ S that H does not hit and the corresponding example e is misclassified.
Since there are t+ 1 copies of that example, this would result in us exceeding the error budget. Thus,
no solution to THRESHOLD ADJUSTMENT exists.

Thus the reduction is correct. The ETH and SETH-based lower bounds for THRESHOLD ADJUST-
MENT follow in an analogous way to Theorem 5.3.

C.7 Proof of Corollary 5.7

Proof. Direct adaptation of Theorem 5.6 by reducing from VERTEX COVER analogously to Corol-
lary 5.4.

D Additional Material for Section 6

Data sets and initial decision trees. We used 47 datasets from the Penn Machine Learning
Benchmarks library [38]. 32 of the datasets were used before for computing minimum-size trees [1,
32, 42] and since the number of examples was usually small we added further larger datasets. The
datasets range from 72 to 5404 examples (mean 655.09, median 302.00); for the full details, see
Table 2. We transformed the data sets as follows (similarly to Janota and Morgado [19]): First, we
replaced each categorical feature by a set of new binary features indicating whether an example is in
the category. Second, we converted each instance into a binary classification problem by making two
classes, one of which contains all examples of the largest original class and one which contains all
remaining examples. Finally, if two examples of different classes had the same value in all features,
we removed one of them arbitrarily.

We computed unpruned and pruned trees using the C4.5 heuristic for decision-tree computation [36]
implemented WEKA 3.8.5 [9]. The unpruned trees were obtained by running WEKA’s J48 classi-
fier with the flags -no-cv -B -M 0 -J -U. The pruned trees were computed by the replacement
heuristic implemented in J48 when run with the flags -no-cv -B -M 0 -J -S. Overall, the tree

42

Table 2: Dataset statistics.

Dataset # Examples # Features Class 0 Class 1 Class Ratio

analcatdata boxing2 132 3 61 71 1.16
appendicitis 106 7 85 21 0.25
australian 690 18 383 307 0.8
backache 180 55 155 25 0.16
banana 5300 2 2924 2376 0.81
biomed 209 14 75 134 1.79
breast-cancer 266 31 188 78 0.41
bupa 341 5 168 173 1.03
cars 392 12 147 245 1.67
cleve 302 27 164 138 0.84
cleveland 303 27 139 164 1.18
cleveland-nominal 130 17 61 69 1.13
colic 357 75 134 223 1.66
contraceptive 1358 21 764 594 0.78
corral 160 6 90 70 0.78
dermatology 366 129 254 112 0.44
diabetes 768 8 268 500 1.87
ecoli 327 7 184 143 0.78
flare 1066 10 884 182 0.21
glass 204 9 128 76 0.59
glass2 162 9 86 76 0.88
haberman 283 3 73 210 2.88
hayes-roth 84 15 59 25 0.42
heart-c 302 27 138 164 1.19
heart-h 293 29 106 187 1.76
heart-statlog 270 25 150 120 0.8
hepatitis 155 39 123 32 0.26
Hill Valley without noise 1212 100 600 612 1.02
hungarian 293 29 187 106 0.57
ionosphere 351 34 126 225 1.79
irish 500 5 278 222 0.8
lupus 86 3 52 34 0.65
lymphography 148 50 67 81 1.21
molecular biology promoters 106 228 53 53 1.0
monk2 601 6 395 206 0.52
new-thyroid 215 5 65 150 2.31
phoneme 5404 5 3818 1586 0.42
pima 768 8 500 268 0.54
postoperative-patient-data 72 22 50 22 0.44
prnn synth 250 2 125 125 1.0
profb 672 9 448 224 0.5
schizo 340 14 140 200 1.43
soybean 622 133 545 77 0.14
tae 106 5 71 35 0.49
titanic 2099 8 1418 681 0.48
tokyo1 959 44 346 613 1.77
yeast 1479 8 1050 429 0.41

size s ranges from 2 to 607 (mean 71.23, median 29.00); the number of features d ranges from 1 to
88 (mean 11.35, median 8.00); the domain size D ranges from 1 to 321 (mean 17.26, median 6.00);
the number of classification errors ranges from 0 to 302 (mean 20.66, median 1.00). For the full
details, see Table 3.

43

Table 3: Decision trees used in our experiments: The first entry is for the unpruned tree T , the second
for the tree T computed by the replacement heuristic.

Dataset Size s # Features d used in T Domain D used in T Errors

analcatdata boxing2 48 / 9 3 / 3 11 / 5 0 / 17
appendicitis 15 / 10 6 / 6 5 / 3 0 / 2
australian 90 / 46 13 / 11 29 / 11 0 / 22
backache 26 / 13 13 / 9 7 / 2 0 / 7
banana 607 / 186 2 / 2 321 / 107 1 / 249
biomed 21 / 3 6 / 3 6 / 1 0 / 15
breast-cancer 95 / 31 25 / 21 8 / 6 2 / 31
bupa 111 / 72 5 / 5 21 / 18 0 / 25
cars 22 / 15 7 / 7 7 / 5 0 / 3
cleve 57 / 29 15 / 13 12 / 5 0 / 15
cleveland 55 / 31 16 / 13 10 / 6 0 / 13
cleveland-nominal 46 / 8 15 / 8 1 / 1 6 / 23
colic 51 / 28 27 / 18 6 / 4 0 / 15
contraceptive 486 / 120 21 / 21 33 / 21 10 / 217
corral 13 / 13 5 / 5 1 / 1 0 / 0
dermatology 5 / 3 4 / 3 1 / 1 0 / 2
diabetes 137 / 96 8 / 8 24 / 16 0 / 24
ecoli 25 / 5 5 / 3 11 / 2 0 / 10
flare 93 / 15 8 / 7 5 / 4 125 / 159
glass 28 / 26 7 / 7 7 / 7 0 / 1
glass2 22 / 16 6 / 5 6 / 5 0 / 4
haberman 92 / 21 3 / 3 30 / 9 2 / 38
hayes-roth 14 / 12 11 / 10 1 / 1 0 / 1
heart-c 57 / 29 15 / 13 12 / 5 0 / 15
heart-h 57 / 32 20 / 18 13 / 6 0 / 14
heart-statlog 54 / 27 17 / 13 13 / 7 0 / 15
hepatitis 18 / 12 10 / 9 3 / 2 0 / 3
Hill Valley without noise 250 / 228 88 / 85 63 / 47 0 / 11
hungarian 57 / 32 19 / 19 13 / 6 0 / 14
ionosphere 21 / 19 12 / 11 4 / 4 0 / 1
irish 2 / 2 1 / 1 2 / 2 0 / 0
lupus 25 / 4 2 / 2 20 / 2 0 / 13
lymphography 23 / 14 18 / 11 1 / 1 0 / 5
molecular biology promoters 12 / 10 11 / 9 1 / 1 0 / 1
monk2 40 / 40 6 / 6 1 / 1 0 / 0
new-thyroid 13 / 9 5 / 5 4 / 4 0 / 2
phoneme 504 / 341 5 / 5 159 / 99 0 / 98
pima 137 / 96 8 / 8 24 / 16 0 / 24
postoperative-patient-data 23 / 21 13 / 13 1 / 1 0 / 1
prnn synth 39 / 9 2 / 2 24 / 5 0 / 23
profb 185 / 115 9 / 9 24 / 17 0 / 42
schizo 83 / 69 12 / 12 15 / 10 0 / 8
soybean 28 / 13 22 / 12 1 / 1 0 / 8
tae 41 / 21 5 / 5 13 / 7 0 / 11
titanic 336 / 61 8 / 8 61 / 20 157 / 302
tokyo1 46 / 34 24 / 22 10 / 5 0 / 6
yeast 315 / 125 8 / 7 43 / 24 0 / 129

Further pruning pruned trees. The above indicates that misclassifications may not be strongly
reducable by local search. We next wanted to know whether it is possible to further prune the trees
after local search, keeping the number of misclassifications at most the same. Indeed, in the solved
problems, for 18 it was possible to prune further after at most two adjustments and for 24 this was
possible after two exchanges. The average nodes pruned were 1.40 and 1.78, respectively. In one
case, the tree size could be almost halved after one exchange. The full details for the improvable
instances are shown in Table 4.

Combining pruning with local search. Next, we wanted to know whether we improve pruning
perfomance over the heuristics. Thus, we started with the unpruned heuristically computed trees,

44

0 20 40 60 80

kre

130

140

150

160

170

180

M
in

.
#

er
ro

rs
ac

h
ie

va
b

le
Dataset: flare

kex = 0, kad = 0

kex = 0, kad = 1

kex = 0, kad = 2

kex = 1, kad = 0

kex = 2, kad = 0

0 2 4 6 8 10 12 14

kre

0

5

10

15

20

25

M
in

.
#

er
ro

rs
ac

h
ie

va
b

le

Dataset: hayes-roth

kex = 0, kad = 0

kex = 0, kad = 1

kex = 0, kad = 2

kex = 1, kad = 0

kex = 2, kad = 0

Figure 7: Pareto fronts for number of achievable errors vs. number of pruning operations kre for
various local search parameters.

45

Table 4: Number of nodes for decision trees that can be pruned without increasing errors after local
search. Dashes indicate timeouts.

Dataset Tree Size Initial Errors kad = 1 kad = 2 kex = 1 kex = 2

banana 607 249 1 – – –
breast-cancer 95 31 1 1 1 2
bupa 111 25 1 – 1 –
cleve 57 15 2 2 2 –
cleveland 55 13 2 2 2 –
cleveland-nominal 46 23 0 0 1 1
colic 51 15 0 0 1 –
contraceptive 486 217 1 1 1 –
corral 13 0 0 0 6 6
diabetes 137 24 1 – 1 –
ecoli 25 10 1 2 1 2
flare 93 159 0 0 0 1
glass 28 1 1 – 1 –
glass2 22 4 0 1 0 –
haberman 92 38 1 1 1 1
heart-c 57 15 2 2 2 –
heart-h 57 14 0 0 1 –
heart-statlog 54 15 1 1 1 –
hungarian 57 14 0 0 1 –
ionosphere 21 1 1 – – –
lymphography 23 5 0 0 0 1
pima 137 24 1 – 1 –
postoperative-patient-data 23 1 0 0 0 1
profb 185 42 1 – 1 –
soybean 28 8 0 0 2 –
tae 41 11 0 1 0 1
yeast 315 129 1 – 2 –

pruned them to the same size as the heuristically computed pruned trees while also allowing up to
two local search operations in the process. In the solved problems, this was the case for 10 trees
with adjustments and 17 with exchanges, where the errors were improved by 5.16% and 8.92% on
average, respectively. The full details are shown in Table 5. Since the heuristic chooses only one
possible tradeoff between errors and number of pruned nodes, we also looked at the full pareto fronts
for these goals, defined by zero local search operations, one or two. A plot of the pareto fronts for
two representative instances is shown in Figure 7. The behaviour of error decreases for local search is
relatively consistent over different tradeoffs but local search becomes much more effective for large
numbers of pruned nodes, especially for cut exchange.

Summary. Overall, we have indication that our algorithms can feasibly be used to gain new insights
into the amenability of small real-world decision trees. It seems that the heuristics choose tradeoffs
between pruning and errors that are only very weakly amenable to local search. (Note that such
observations are only possible to make with algorithms that find the optimum values, as we have
designed here for the first time.) When pruning more nodes than the heuristics commonly choose,
local search may be effective and important.

46

Table 5: Error numbers obtainable when combining pruning with local search. Dashes indicate
timeouts.

Dataset Pruned Nodes Heur. Errors kad = 1 kad = 2 kex = 1 kex = 2

australian 44 22 22 – 21 –
breast-cancer 64 31 30 30 30 –
cleve 28 15 14 14 14 –
cleveland 24 13 12 12 12 –
cleveland-nominal 38 23 23 23 22 22
colic 23 15 15 15 14 –
contraceptive 366 217 217 – 216 –
dermatology 2 2 2 2 2 1
ecoli 20 10 8 8 8 –
flare 78 159 157 157 157 156
haberman 71 38 37 37 37 37
heart-c 28 15 14 14 14 –
lymphography 9 5 5 5 5 4
profb 70 42 41 – 41 –
soybean 15 8 8 8 7 –
titanic 275 302 301 – 301 –
yeast 190 129 127 – 126 –

47

	Introduction
	Preliminaries
	From Computing Decision Trees to Local Search for Decision Trees
	Algorithms for Threshold Adjustment and Cut Exchange
	Complementing Hardness Results for both Problems
	Experiments
	Outlook
	Additional Material for sec:local-search
	Proof of thm-learning-hard-s+D+delta
	Proof of prop-hardness-cut-exchange
	Proof of prop-hardness-FSFFDT
	Proof of prop-hardness-thr-adjust
	Proof of thm:adjustment-to-exchange
	Proof of cor:exc-w-hard-s-d

	Additional Material for sec-algorithms
	Proof of thm:adj-fpt-d-D
	Proof of thm:exc-fpt-d-D
	Proof of thm:adj+exc-fpt-d-D
	Missing details of thm:adj-fpt-s-t
	Proof of thm:exc-fpt-d-s-t
	Proof of thm:adj-xp-k

	Additional Material for sec:hardness
	Proof of thm:exc-w-hard-d-t
	Proof of thm:adj-w-hard-d-t
	Proof of thm:adj-hard-par-k-const-d-t
	Proof of cor:adj-np-hard-const-delta-d-t
	Proof of cor:adj-w-hard-k-const-d-t
	Proof of thm:adj-hard-par-t-const-ell-d
	Proof of cor:adj-np-hard-const-ell-d-delta

	Additional Material for sec:experiments

