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ABSTRACT

State of the art large language models rely on randomization to respond to a prompt.
As an immediate consequence, a model may respond differently to the same prompt
if asked multiple times. In this work, we argue that the evaluation and ranking of
large language models should control for the randomization underpinning their
functioning. Our starting point is the development of a causal model for coupled
autoregressive generation, which allows different large language models to sam-
ple responses with the same source of randomness. Building upon our causal
model, we first show that, on evaluations based on benchmark datasets, coupled
autoregressive generation leads to the same conclusions as vanilla autoregressive
generation but using provably fewer samples. However, we further show that, on
evaluations based on pairwise comparisons, coupled and vanilla autoregressive
generation can surprisingly lead to different rankings when comparing more than
two models, even with an infinite amount of samples. To illustrate and complement
our theoretical results, we conduct experiments with several large language models
from the Llama family. We find that, in the MMLU benchmark dataset, coupled
autoregressive generation requires up to 40% fewer samples to reach the same
conclusions as vanilla autoregressive generation. Further, in the LMSYS Chatbot
Arena platform, we find that the win-rates derived from pairwise comparisons
by a strong large language model to prompts differ under coupled and vanilla
autoregressive generation.

1 INTRODUCTION

One of the most celebrated aspects of state of the art large language models (LLMs) is that they
can solve open-ended, complex tasks across many different application domains such as coding,
healthcare and scientific discovery Bubeck et al. (2023); Mozannar et al. (2024); Haupt & Marks
(2023); Romera-Paredes et al. (2023). However, this is crucially what also makes the evaluation
and comparison of LLMs very challenging—it is very difficult, if not impossible, to create a single
benchmark. As a consequence, in recent years, there has been a flurry of papers introducing different
benchmarks Bach et al. (2022); Wei et al. (2022); Talmor et al. (2019); Mishra et al. (2022); Chen
et al. (2021); Liang et al. (2023); Longpre et al. (2023); Hendrycks et al. (2021b); Wang et al. (2023a);
Ouyang et al. (2022); Wang et al. (2023b); Chiang et al. (2025); Taori et al. (2023); Zheng et al. (2023)
In fact, one of the flagship conferences in machine learning has even created a separate datasets and
benchmarks track!

In this context, it is somehow surprising that, in comparison, there has been a paucity of work
understanding, measuring or controlling for the different sources of uncertainty present in the
evaluations and comparisons of LLMs based on these benchmarks Miller (2024); Madaan et al.
(2024); et al. (2024); Saad-Falcon et al. (2024); Boyeau et al. (2024); Chatzi et al. (2024b); Dorner
et al. (2024); Gera et al. (2024). In our work, we focus on one source of uncertainty that has been
particularly overlooked, the uncertainty in the outputs of the LLMs under comparison.
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Given an input prompt, LLMs generate a sequence of tokens1 as output using an autoregressive
process Bengio et al. (2000); Radford et al. (2019). At each time step, they first use a neural network
to map the prompt and the (partial) sequence of tokens generated so far to a token distribution. Then,
they use a sampler to draw the next token at random from the token distribution.2 Finally, they
append the next token to the (partial) sequence of tokens, and continue until a special end-of-sequence
token is sampled. To understand why, in the context of LLM evaluation and ranking, the above
autoregressive process may lead to inconsistent conclusions, we will use a stylized example.

Consider we are given three LLMs m1, m2 and m3, which we need to rank according to their ability
to answer correctly two types of input prompts, q and q′, picked uniformly at random. Assume that
the true probability that each LLM answers correctly each type of input prompt is given by:

m1 m2 m3

q 0.4 0.48 0.5
q′ 1 0.9 0.89

Then, one may argue that m1 is the best LLM, followed closely by m3, and m2 is the worst, because
the average probabilities that they answer a query picked uniformly at random correctly are 0.7,
0.695 and 0.69, respectively. However, if we conduct pairwise comparisons between outputs by two
different LLMs to the same input prompt, as commonly done in practice, we may instead argue that
m3 is the best LLM, followed by m2, and m1 is the worst, because the probability that an LLM is
preferred over others—the win-rates—are 0.16225, 0.15675, and 0.1545, respectively.3 In our work,
we argue that controlling for the randomization of the autoregressive processes underpinning the
LLMs under comparison can, at least in certain cases, avoid such inconsistencies and lead to more
intuitive conclusions. Along the way, we also show that it can reduce the number of samples required
to reliably compare the performance of LLMs.

Our contributions. Our key idea is to couple the autoregressive processes underpinning a set
of LLMs under comparison, particularly their samplers, by means of sharing the same source of
randomness. To this end, we treat the sampler of each LLM as a causal mechanism that receives
as input the distribution of the next token and the same set of noise values, which determine the
sampler’s (stochastic) state. By doing so, at each time step of the generation, we can expect that, if
different LLMs map the prompt and the (partial) sequence of tokens generated so far to the same token
distribution, they will sample the same next token. Loosely speaking, in the context of LLM evaluation
and ranking, coupled autoregressive generation ensures that no LLM will have better luck than others.
More formally, on evaluations based on benchmark datasets, we show that the difference in average
performance of each pair of LLMs under comparison is asymptotically the same under coupled and
vanilla autoregressive generation, but coupled autoregressive generation provably leads to a reduction
in the required sample size. On evaluations based on (human) pairwise comparisons, we show that the
win-rates of the LLMs under comparison can be asymptotically different under coupled and vanilla
autoregressive generation and, perhaps surprisingly, the resulting rankings can actually differ. This
suggests that the apparent advantage of an LLM over others in existing evaluation protocols may not
be genuine but rather confounded by the randomness inherent to the generation process. To illustrate
and complement our theoretical results, we conduct experiments with six LLMs of the Llama
family. We find that, across multiple knowledge areas from the MMLU benchmark dataset, coupled
autoregressive leads to a reduction of up to 40% in the required number of samples to reach the
same conclusions as vanilla autoregressive generation. Further, using data from the LMSYS Chatbot
Arena platform, we find that the win-rates derived from pairwise comparisons by a strong LLM differ
under coupled and vanilla autoregressive generation. In Appendix 5, we include a comprehensive
discussion of the limitations of our theoretical results and experiments, including additional avenues
for future work. An open-source implementation of coupled autoregressive generation is available at
https://github.com/Networks-Learning/coupled-llm-evaluation.

Further related work. Our work builds upon a very recent work on counterfactual token generation
by Chatzi et al. (2024a), which also treats the sampler of an LLM as a causal mechanism. However,

1Tokens are the units that make up sentences and paragraphs, e.g., (sub-)words, numbers, and special end-of-sequence tokens.
2If an LLM is forced to output tokens deterministically, multiple lines of evidence suggest that its performance worsens (Holtzman et al.,

2020).
3Refer to Appendix C.6 for the detailed calculation of the average win-rates.
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Figure 1: Example of coupled autoregressive generation for Llama 1B and Llama 8B. Boxes
(circles) represent endogenous (exogenous) random variables. The value of each endogenous variable
is given by a function of the values of its ancestors in the causal graph, as defined by Eq. 1. The value
of the coupled noise variable U1 (purple) is sampled independently from a given distribution PU , and
it determines the stochastic state of the samplers used by both Llama 1B and Llama 8B during
the generation of token T1.

their focus is different to ours; they augment a single LLM with the ability to reason counterfactually
about alternatives to its own outputs if individual tokens had been different. Our work also shares
technical elements with a recent work by Ravfogel et al. (2024), which develops a causal model
to generate counterfactual strings resulting from interventions within (the network of) an LLM.
However, their work does not study counterfactual generation for the purposes of model evaluation.
In this context, it is also worth pointing out that the specific class of causal models used in the above
works and ours, called the Gumbel-max structural causal model Oberst & Sontag (2019), has also
been used to enable counterfactual reasoning in other domains (Tsirtsis et al., 2021; Noorbakhsh &
Gomez-Rodriguez, 2022; Benz & Rodriguez, 2022).

Our work also builds upon the rapidly increasing literature on evaluation and comparison of
LLMs Chang et al. (2024). Within this literature, LLMs are evaluated and compared using: (i)
benchmark datasets with manually hand-crafted inputs and ground-truth outputs Bach et al. (2022);
Wei et al. (2022); Talmor et al. (2019); Mishra et al. (2022); Chen et al. (2021); Liang et al. (2023);
Longpre et al. (2023) and (ii) the level of alignment with human preferences, as elicited by means of
pairwise comparisons Taori et al. (2023); Zheng et al. (2023); Li et al. (2024b;c); Boubdir et al. (2024);
Singhal et al. (2023); Chiang et al. (2025). Within the literature on ranking LLMs from pairwise
comparisons, most studies use the Elo rating system Askell et al. (2021); Dettmers et al. (2024); Bai
et al. (2022); Wu et al. (2023); Lin & Chen (2023), originally introduced for chess tournaments Elo
(1966). However, Elo-based rankings are sensitive to the order of pairwise comparisons, as newer
comparisons have more weight than older ones, which leads to unstable rankings Boubdir et al.
(2024). To address this limitation, several studies have instead used the Bradley-Terry model, which
weighs pairwise comparisons equally regardless of their order Chiang et al. (2025); Boyeau et al.
(2024). Nevertheless, both the Elo rating system and the Bradley-Terry model have faced criticism,
as pairwise comparisons often fail to satisfy the fundamental axiom of transitivity, upon which both
approaches rely Boubdir et al. (2024); Bertrand et al. (2023). Recently, several studies have used the
win-rate Zheng et al. (2023); Chiang et al. (2025); Boyeau et al. (2024), which weighs comparisons
equally regardless of their order and does not require the transitivity assumption. In our work, we
focus on win-rates. However, we believe that it may be possible to extend our results to rankings
based on Elo ratings and the Bradley-Terry model.

2 A CAUSAL MODEL FOR COUPLED AUTOREGRESSIVE GENERATION

Let V denote a vocabulary (set) of tokens, including an end-of-sequence token ⊥, V ∗ = V ∪ V 2 ∪
· · · ∪ V K be the set of sequences of tokens up to length K, and ∅ be the empty token.4 An LLM
m ∈ M takes as input a prompt sequence sq ∈ V ∗ and responds with an output sequence s ∈ V ∗,
generated using an autoregressive process. At each time step i ∈ [K] of the process, the LLM first
takes as input the concatenation of the prompt sequence sq and the (partial) output sequence si−1,

4Here, V j denotes the set of all sequences of length j that can be constructed from the tokens in V . We restrict our attention to sequences
of finite length (≤ K) because, in practice, the context window of LLMs is finite.
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and generates a distribution over tokens di ∈ ∆(V ). Then, it samples the next token ti ∼ di from the
distribution di and creates the output sequence si = si−1 ◦ ti, where ◦ denotes the concatenation of a
token or sequence with another sequence. If ti = ⊥, it terminates and returns s = si, otherwise, it
continues to the next step i+ 1 in the generation. Once the process is completed, the output sequence
s is assigned a score r.

Following the recent work by Chatzi et al. (2024a), we augment the above autoregressive process
using a structural causal model (SCM) (Pearl, 2009; Peters et al., 2017), which we denote as C. The
SCM C is defined by the following structural equations:5

S0 = Sq, Di =

{
fD(Si−1,M) if last(Si−1) ̸= ⊥,

P∅ otherwise
, Ti =

{
fT (Di, Ui) if Di ̸= P∅,

∅ otherwise
,

Si = Si−1 ◦ Ti, S = SK , and R = fR(S,Z). (1)

In the above equations, M,Sq,U = (Ui)i∈{1,...,K}, and Z are independent exogenous random
variables, with M ∼ PM , Sq ∼ PQ, Ui ∼ PU , and Z ∼ PZ . Moreover, fD, fT and fR are given
functions, P∅ denotes the point mass distribution on ∅, and last(Si−1) denotes the last token of
the sequence Si−1. Here, the function fD maps an input sequence Si−1 to a distribution Di for
the next token, using the architecture and network weights of the LLM M , the function fT and
distribution PU specify the sampling mechanism that is used to sample the next token at each step
of the generation process, following the distribution Di, and the function fR and distribution PZ

specify the exact scoring process by which the score R is assigned to an output sequence S during
the evaluation of the LLM M .

Throughout the paper, we focus on sampling mechanisms that satisfy counterfactual stability (Oberst
& Sontag, 2019; Tsirtsis et al., 2021; Chatzi et al., 2024a)—an intuitive form of consistency between
the next token Ti, its distribution Di, and the corresponding noise variable Ui.6 Moreover, we allow
the semantic meaning of the score R as well as the support of its distribution to vary depending
on the evaluation protocol. For example, in multiple-choice questions (Hendrycks et al., 2021a),
R ∈ {0, 1} may represent whether an LLM outputs a correct (1) or an incorrect (0) response. In
pairwise comparisons (Chiang et al., 2025), R ∈ R+ may represent the level of user’s satisfaction
with the response provided by an LLM. Here, the variable Z models any uncertainty in the scoring
process, e.g., in users’ preferences (Bradley & Terry, 1952; Luce, 1959).

Building upon the above causal model, we can now formally express what it means to sample (and
evaluate) output sequences by different LLMs using the same source of randomness,7 a process we
refer to as coupled autoregressive generation. Consider a specific model m, a prompt sq , and fixed
noise values u and z. It is easy to see that specifying these values is sufficient to (deterministically)
specify and compute the exact value of the output sequence S and its score R using the autoregressive
generation and scoring process given by Eq. 1. Then, we can formally express the coupled output
sequences by two models m and m′ and their corresponding scores as the result of interventions
do(M = m) and do(M = m′), respectively, where the do(·) operator forcibly sets the value of
M while keeping the prompt sq and the noise values u, z fixed (Pearl, 1994). In what follows,
we denote the respective scores Rm(u, sq, z) and Rm′(u, sq, z), following standard notation (Pearl,
2009). For an illustration of coupled autoregressive generation against independent autoregressive
generation—the vanilla approach—refer to Fig. 1.

In practice, one run of coupled autoregressive generation consists of two or more runs of autoregressive
generation with the same prompt sq and noise values u and z, one per LLM.8 From a causal
perspective, we can view these runs as realizations of possible worlds where everything is equal
except for the (architecture and network weights of the) LLM. Or we can also view one of these runs
as a realization of the factual world and the other runs as realizations of different counterfactual worlds.
Consequently, this lends support to attribute any difference in the scores Rm(u, sq, z) across models

5Capital (lowercase) letters denote random variables (realizations).
6The default categorical sampler in PyTorch (Paszke et al., 2019), one of the most popular libraries used by state of the art LLMs, is

an implementation of the Gumbel-Max SCM (Oberst & Sontag, 2019), which satisfies counterfactual stability. For a formal definition of
counterfactual stability, refer to Appendix A.

7In our work, we implicitly assume that different LLMs share the same vocabulary V , however, in practice, this may not hold if the LLMs
use different tokenizers. Refer to Appendix 5 for further discussion on this point.

8In practice, we may not always have control over the noise value z (e.g., when the scoring process is performed by an end user). However,
even in such cases, we can still implement coupled autoregressive generation if the scoring processes occur simultaneously for each run, such as
in pairwise comparisons.
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m ∈ M to the models’ architectures and weights rather than the randomness in their generation
processes. Next, we will investigate the differences between coupled and independent autoregressive
generation in evaluations based on benchmark datasets and pairwise comparisons.

3 THEORETICAL ANALYSIS

In this section, we focus on the evaluation and comparison of LLMs based on benchmark datasets,
e.g., multiple-choice questions (Hendrycks et al., 2021a), and theoretically investigate under which
conditions coupled autoregressive generation requires fewer samples than independent autoregressive
generation to reliably estimate the competitive advantage of one LLM over another. For further
theoretical analysis of evaluations based on pairwise comparisons, refer to Appendix B.

Given a benchmark dataset characterized by an input prompt distribution PQ, for each prompt
sq ∼ PQ, let C(sq) ⊂ V ∗ denote the set of correct output sequences. Here, we consider binary scores
Rm(u, sq) = 1 {Sm(u, sq) ∈ C(sq)} ∈ {0, 1}, where Sm(u, sq) denotes the output sequence of a
model m given a prompt sq under a realized sequence of noise values u and 1{·} is the indicator
function.9

A standard approach to compare the performance of any pair of LLMs m,m′ ∈ M using a benchmark
dataset reduces to estimating the difference in their expected score, i.e.,

EU ,U ′∼PU ,Sq∼PQ
[Rm(U

↑
, Sq)−Rm′(U

↑
′
, Sq)], (2)

Independent generation

where note that we use different noise variables U and U ′ for each LLM because, in the standard
approach, each LLM generates outputs to each query independently (i.e., using independent au-
toregressive generation). At first, one may think that coupled autoregressive generation will not be
helpful. Under coupled autoregressive generation, the difference in the expected score adopts the
following form:

EU∼PU ,Sq∼PQ
[Rm(U

↑
, Sq)−Rm′(U

↑
, Sq)] (3)

Coupled generation

Therefore, based on the linearity of expectation and the fact that, under independent generation,
both U and U ′ are sampled from the same distribution PU , it is easy to see that Eqs. 2 and 3 are
equivalent. However, as we will show next, coupled autoregressive generation lets us reliably estimate
the difference in the two LLMs’ scores from finite samples faster. We first start by characterizing
the relation between the variances of the difference of scores between LLMs using the following
proposition (for the proofs of all propositions, refer to Appendix C):
Proposition 3.1. For any pair of LLMs m,m′ ∈ M, it holds that

Var[Rm(U , Sq)−Rm′(U ′, Sq)] = Var[Rm(U , Sq)−Rm′(U , Sq)]

+ 2 · Cov[Rm(U , Sq), Rm′(U , Sq)] (4)

This result immediately implies that, if the scores achieved by the LLMs under comparison are
positively correlated, i.e., the LLMs tend to generate a (in-)correct output sequence on the same
prompts under the same noise values, then the variance of the difference in scores is lower under
coupled generation than under independent generation, and thus we can expect a reduction in the
sample size required to obtain equivalent estimation errors. In what follows, we analyze two canonical
settings in which this condition holds and, in Section 4, we provide empirical evidence that, in a
well-known benchmark dataset, this condition also holds.

In the first canonical setting, the correct response to each prompt is one of two given single-token
sequences, the LLMs m and m′ under comparison always output a response that is either of these
two sequences, and the sampling mechanism used by the LLMs satisfies counterfactual stability.
While this setting may seem restrictive, it is found in real-world scenarios. For example, think of
true/false questions (or multiple-choice questions with two options) and evaluation protocols in which

9Our results can be extended to real-valued scores in a bounded interval.

5



Published at Building Trust Workshop at ICLR 2025

the LLMs are explicitly instructed to always output true/false (or one of the two options) via their
system prompt.10 The following proposition shows that the variance of the difference in scores is
lower under coupled autoregressive generation:
Proposition 3.2. Consider a benchmark dataset such that C(sq) ⊊ {t1, t2} for all sq ∼ PQ, where
t1 and t2 are two single-token sequences. Let m and m′ be two LLMs that assign positive probability
to the sequences t1 and t2 and zero probability to any other sequence. If the sampling mechanism
defined by fT and PU satisfies counterfactual stability, then, it holds that

Var[Rm(U , Sq)−Rm′(U ′, Sq)] > Var[Rm(U , Sq)−Rm′(U , Sq)]. (5)

In the second canonical setting, the correct response to each prompt is a single-token sequence,
the LLMs m and m′ under comparison always output a single-token response, and the sampling
mechanism used by the LLMs is given by the Gumbel-Max SCM, in which

fT (Di, Ui) = argmax
t∈V

{log (Di,t) + Ui,t} ,

where Ui,t ∼ Gumbel(0, 1) are i.i.d. noise variables associated with each token (Chatzi et al.,
2024a). Similarly as in the first canonical setting, this second setting is also found in real-world
scenarios—the default categorical sampler in the library PyTorch (Paszke et al., 2019) implements
the Gumbel-Max SCM. The following proposition shows that, as long as m′ is similar enough to m,
the variance of the difference in scores is lower under coupled generation:
Proposition 3.3. Consider a benchmark dataset such that |C(sq)| = 1 for all sq ∼ PQ. Let m
be an LLM that assigns positive probability to every single-token sequence and zero probability to
any other sequence. If the sampling mechanism defined by fT and PU is given by the Gumbel-Max
SCM, then, there exists a constant ε(m) > 0 such that, for every LLM m′ that assigns positive
probability to every single-token sequence and zero probability to any other sequence and satisfies
d(m,m′) = supsq ∥fD(sq,m)− fD(sq,m

′)∥∞ < ε(m), it holds that

Var[Rm(U , Sq)−Rm′(U ′, Sq)] > Var[Rm(U , Sq)−Rm′(U , Sq)].

Based on the above proposition, we hypothesize that coupled autoregressive generation will reduce
the number of samples required to reliably compare the performance of LLMs whenever these
are sufficiently similar, e.g., whenever we compare fine-tuned or quantized versions of the same
pre-trained LLM.

4 EXPERIMENTS

In this section, we evaluate several large language models from the Llama family under coupled
and independent autoregressive generation using: (i) the benchmark dataset MMLU Hendrycks et al.
(2021a) and (ii) pairwise comparisons between outputs of the LLMs when prompted using open-
ended questions from the LMSYS Chatbot Arena platform LMSYS (2023). In all our experiments,
the LLMs use an implementation of the Gumbel-Max SCM Chatzi et al. (2024a) as a sampler both
under coupled and independent autoregressive generation. For details on hardware, datasets and
models used for experiments, refer to Appendix D.

4.1 EVALUATION ON THE MMLU DATASET

In this section, we compare three LLMs of different sizes, namely, Llama-3.1-8B-Instruct
and Llama-3.2-{1B, 3B}-Instruct, using the MMLU benchmark dataset Hendrycks et al.
(2021a), which comprise 14,042 multiple choice questions covering 52 knowledge areas. Recall that
our theoretical results in Section 3 suggest that coupled autoregressive generation requires fewer
samples than independent generation to reliably estimate the competitive advantage of one LLM
against another in certain canonical settings. Here, our goal is to empirically investigate to what
extent these results generalize to evaluations based on the MMLU dataset.

Experimental setup. In our experiments, for each multiple choice question in the MMLU benchmark
dataset, we provide the question itself together with the available options (4 for each question,

10Here, our goal is to illustrate that there exist natural conditions under which coupled autoregressive generation is provably beneficial
in comparison to independent autoregressive generation. However, in practice, in this canonical setting, one could directly use the LLMs’
probabilities for the two tokens in each prompt to estimate the average difference of scores exactly.
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Figure 2: Comparison between 1B and 3B on multiple-choice questions from the MMLU dataset.
Panel (a) shows the kernel density estimate (KDE) of the covariance between the scores of the two
LLMs on each question under coupled generation; the dashed line corresponds to the average value.
Panel (b) shows the KDE of the variance of the difference between the scores of the LLMs on each
question under coupled and independent generation; the highlighted point corresponds to the median
value. Panel (c) shows the absolute error in the estimation of the expected difference between the
scores of the LLMs against the number of samples; for each point on the x-axis, we perform 1,000
sub-samplings and shaded areas correspond to 95% confidence intervals. Across all panels, we use
all questions from the knowledge area “college computer science” of MMLU. Refer to Appendix E
for qualitatively similar results for other LLMs.
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Figure 3: Empirical win-rate of 8B, bnb-8bit and bnb-4bit against any other LLM on
questions from the LMSYS-Chat-1M dataset. Each empirical win-rate is computed using pairwise
comparisons between the outputs to 500 questions with 10 (different) random seeds under both
coupled and independent generation. The error bars correspond to 95% confidence intervals. For each
pair of empirical win-rates under coupled and independent generation, we conduct a two-tailed z-test,
to test the null hypothesis that the empirical win-rates are the same; (****, ***) indicate p-values
(< 0.0001, < 0.001). Refer to Appendix F for qualitatively similar results for other LLMs.

indexed from A to D) as an input prompt to the LLMs. Further, we instruct the LLMs to generate an
output sequence comprising only the index of the selected option through a system prompt—refer
to Appendix D for the exact prompt. To evaluate the outputs provided by each LLM, we use a
binary score R ∈ {0, 1}, which indicates whether the LLM output is the (single) correct (R = 1) or
incorrect (R = 0) answer of the given options. To obtain reliable conclusions, we experiment with
each multiple choice question 10 times, each time using a (different) random seed to generate the
Gumbel noise variables used by the sampler. Due to space constraints, in what follows, we compare
1B and 3B on the knowledge area “college computer science”. In Appendix E, we provide further
results on other knowledge areas and other pairs of LLMs.

Results. Figures 2a and 2b show that the scores of the LLMs are positively correlated under coupled
generation and thus the variance of the difference in scores is lower under coupled generation than
under independent, in agreement with Proposition 3.1. Further, we compute the error in the estimation
of the expected difference in scores resulting from using the two approaches as a function of the
available sample size. To this end, we first estimate the expected score difference using 1,000 samples
and consider this as (a proxy of) the ground truth. Then, we compute the absolute estimation error
achieved by independent and coupled generation while sub-sampling the original samples across
various sample sizes. Figure 2c summarizes the results, which show that, as expected from our
theoretical analysis, a lower variance of the difference in scores under coupled generation leads to
a reduction in the number of samples required to achieve equivalent error in the estimation of the
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Coupled Independent

LLM Rank Avg. win-rate Rank Avg. win-rate

8B 1 0.3670 ±0.0020 1 0.3863 ±0.0020
bnb-8bit 2 0.3562 ±0.0020 1 0.3825 ±0.0020
bnb-4bit 3 0.3339 ±0.0020 3 0.3463 ±0.0020
AWQ-INT4 4 0.3164 ±0.0019 4 0.3310 ±0.0019
3B 5 0.2787 ±0.0019 5 0.2828 ±0.0019
1B 6 0.1650 ±0.0015 6 0.1664 ±0.0015

Table 1: Average win-rate and ranking of each LLM on questions from the LMSYS-Chat-1M
dataset. To estimate the average win-rate of each LLM, along with 95% confidence intervals, we use
the pairwise comparisons between the outputs of all pairs of LLMs using all 500 questions with 10
(different) random seeds under both coupled and independent generation. To derive the rankings, for
each LLM, we choose the lowest ranking provided by the method of Chatzi et al. (2024b).

expected difference between the scores of the LLMs. Perhaps surprisingly, we find that this reduction
can, in practice, be quite large. For example, to achieve an estimation error of ≈0.034, coupled
generation needs 40% fewer samples than independent generation.

4.2 EVALUATION ON THE LMSYS-CHAT-1M DATASET

In this section, we compare the same three LLMs as in the previous section as well as three quantized
variants, namely, Llama-3.1-8B-Instruct-{AWQ-INT4, bnb-4bit, bnb-8bit} (re-
fer to Appendix D for more details), using pairwise comparisons between their outputs by a strong
LLM, when prompted with open-ended questions from the LMSYS Chatbot Arena platform LMSYS
(2023). Here, our goal is to investigate to what extent the win-rates under coupled and independent
autoregressive generation differ in practice—our theoretical results in Appendix B show that such
discrepancies do arise in certain canonical settings.

Experimental setup. We experiment with 500 questions from the LMSYS-Chat-1M dataset Zheng
et al. (2024), we provide the question itself as an input prompt to the LLMs, and instruct them to gen-
erate a concise response as an output through a system prompt. Further, similarly as elsewhere Chatzi
et al. (2024b); Li et al. (2024a); Boyeau et al. (2024); Gera et al. (2024); Li et al. (2024b); Zheng et al.
(2023), we use a strong LLM, namely, GPT-4o-2024-11-20, as a judge. More specifically, for
each question and pair of outputs provided by two different LLMs, we prompt the judge to respond
which of the two outputs it prefers, but allowing the judge to declare a tie (for the exact prompts
we use, refer to Appendix D). Given these pairwise comparisons, to evaluate the outputs provided
by each LLM, we use the win-rate achieved by each LLM against each other. To obtain reliable
conclusions, similarly as in the previous section, we repeat each experiment 10 times, each time using
a (different) random seed to generate the Gumbel noise variables used by the Gumbel-Max SCM.

Results. We find that the empirical win-rate of each LLM against any other LLM is generally lower
under coupled generation than under independent generation, as shown in Figure 3 for 8B, bnb-
8bit and bnb-4bit, and Figure 6 in Appendix F for other LLMs. Moreover, whenever the LLMs
under comparison are sufficiently similar, the difference between win-rates is statistically significant,
suggesting that our theoretical results may generalize beyond the canonical setting discussed in
Appendix B. We hypothesize that this is partially due to an increase in the number of ties under
coupled autoregressive generation. For example, for bnb-8bit, we observe a 24%, 11%, 15%
increase in the number of ties in the pairwise comparisons against 8B, bnb-4bit, and AWQ-INT4.
Remarkably, the difference in empirical win-rates leads to differences in the rankings derived from
the average win-rates, as shown in Table 1. Under independent generation, the average win-rates
achieved by 8B and bnb-8bit are statistically indistinguishable and thus both are ranked at the top.
However, under coupled generation, 8B has a competitive advantage against bnb-8bit, and it is
ranked at the top.

5 DISCUSSION AND LIMITATIONS

In this section, we discuss several aspects of our work, which we believe are important to consider
and may serve as a basis for future research.
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Model assumptions. Our theoretical analysis of coupled autoregressive generation focuses on
sampling mechanisms that satisfy counterfactual stability (Oberst & Sontag, 2019). Although
counterfactual stability has been shown to be a desirable property for causal mechanisms in SCMs
and, more specifically, for causal mechanisms used for sampling in LLMs (Chatzi et al., 2024a),
counterfactual stability may not always be appropriate and should be justified by domain specific
knowledge (Haugh & Singal, 2023). In this context, it is also worth mentioning that the Gumbel-
Max SCM is not the only SCM that satisfies counterfactual stability (Lorberbom et al., 2021;
Haugh & Singal, 2023). Therefore, it would be interesting to understand the sensitivity of coupled
autoregressive generation to this specific choice of SCM as well as extending our theoretical analysis
to sampling mechanisms satisfying other alternative properties (Vlontzos et al., 2023).

Practical considerations. Our experimental results and theoretical analysis suggest that coupled
autoregressive generation is most advantageous over independent autoregressive generation whenever
the LLMs under comparison are sufficiently close in terms of their next-token distributions. Motivated
by this observation, it would be important to identify which parts of the LLM development pipeline
(e.g., the LLMs’ architectures, training data, or fine-tuning process) lead, in practice, to sufficiently
small changes in the next-token distributions for coupled autoregressive generation to be most
beneficial.

Our causal model for coupled autoregressive generation assumes that the LLMs under comparison
share the same vocabulary. However, in practice, this may not hold since models use different
tokenizers—different families of tokenizers may even use different low-level representations for
tokens that appear to be the same at the string level.11 One could think of naively lifting this
assumption by merging the vocabularies of different LLMs, however, we empirically found that,
using this strategy, different LLMs end up using different tokens (and thus noise values) to generate
the same responses and thus coupled autoregressive generation provides significantly lower gains.
Extending our causal model for coupled autoregressive generation to LLMs with different tokenizers
is an interesting, albeit challenging, direction for future work.

Evaluation. We have conducted experiments using LLMs from the Llama family, namely Llama-
3.1-8B-Instruct and Llama-3.2-{1B, 3B}-Instruct, and quantized versions thereof.
It would be interesting to conduct experiments with LLMs from other families and also consider
fine-tuned versions of them to understand how coupled autoregressive generation behaves in different
settings. Furthermore, we have experimented with (i) a single benchmark dataset (i.e., MMLU) and
(ii) a single dataset of prompts for pairwise comparisons (i.e., LMSYS Chatbot Arena), where we have
used a strong LLM as a judge (i.e., GPT-4o-2024-11-20) and win-rate as an evaluation metric.
To better understand the benefits of coupled autoregressive generation, it would be important to
experiment with additional datasets, pairwise comparisons made by humans, and additional evaluation
metrics based on, e.g., the Elo rating system Askell et al. (2021); Dettmers et al. (2024); Bai et al.
(2022); Wu et al. (2023); Lin & Chen (2023) and the Bradley-Terry model Chiang et al. (2025);
Boyeau et al. (2024).

6 CONCLUSIONS

In this work, we have introduced a causal model of coupled autoregressive generation that enables
the evaluation and comparison of different LLMs under the same source of randomness. In several
canonical settings, we have shown that, in evaluations based on benchmark datasets, coupled au-
toregressive generation can provably reduce the number of samples required to reliably compare the
performance of LLMs and, in evaluations based on pairwise comparisons, it can provably lead to dif-
ferent and, perhaps more intuitive, rankings of LLMs in comparison with independent autoregressive
generation. Lastly, we have empirically demonstrated that our theoretical results generalize to several
state-of-the-art LLMs and datasets commonly used for the evaluation and ranking of LLMs.
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A FORMAL DEFINITION OF COUNTERFACTUAL STABILITY

Counterfactual stability is a desirable property of SCMs (Oberst & Sontag, 2019) that has previously
been used in the context of autoregressive generation of LLMs Chatzi et al. (2024a). In the following,
we provide its formal definition along with a simple example to explain the intuition behind it.
Throughout this section, P C ; do(·) denotes the probability of the interventional distribution entailed
by an SCM C under an intervention do(·). Moreover, P C | ⋆ ; do(·) denotes the probability of the
counterfactual distribution entailed by an SCM C under an intervention do(·) given that an observed
event ⋆ has already occurred.

Definition A.1. A sampling mechanism defined by fT and PU satisfies counterfactual stability if for
all LLMs m,m′ ∈ M, i ∈ {1, 2, . . . ,K} and tokens t1, t2 ∈ V with t1 ̸= t2, the condition

P C ; do(M=m′)[Ti = t1 |Di]

P C ; do(M=m)[Ti = t1 |Di]
≥ P C ; do(M=m′)[Ti = t2 |Di]

P C ; do(M=m)[Ti = t2 |Di]
(6)

implies that P C |Di,M=m,Ti=t1 ; do(M=m′)[Ti = t2] = 0.

The property of counterfactual stability has an intuitive interpretation that can be best understood
via a simple example. Assume that the vocabulary contains 2 tokens “A” and “B” and, using LLM
m, the next-token distribution at a time step i assigns values 0.6, 0.4 to the two tokens, respectively.
Moreover, the realized noise value ui is such that the token “A” is sampled. Now, consider that, while
keeping the noise value ui fixed, we change the LLM to m′, resulting in a next-token distribution
that assigns values 0.7, 0.3 to the two tokens, respectively. Counterfactual stability ensures that, since
the noise value ui led to “A” being sampled under m at 0.6 to 0.4 odds, the same value cannot lead
to “B” being sampled under m′ where its relative odds are lower (i.e., 0.3 to 0.7).

B THEORETICAL ANALYSIS OF EVALUATIONS BASED ON PAIRWISE
COMPARISONS

In this section, we focus on the evaluation and comparison of LLMs according to their level of
alignment with human preferences, as elicited by pairwise comparisons between outputs of different
LLMs to the same prompts. Such an evaluation protocol has become particularly popular to evaluate
and compare LLMs in open-ended, complex tasks in which, in contrast to benchmark datasets,
there are no structured ground-truth outputs. In what follows, we provably show that, perhaps
surprisingly, different LLMs may compare differently under coupled autoregressive generation and
under independent autoregressive generation.

A standard approach to evaluate and compare different LLMs according to their level of alignment
with human pairwise preferences reduces to estimating the win-rate achieved by each LLM m against
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any other LLM m′ ̸= m, i.e.,12

EU ,U ′∼PU ,Sq∼PQ
[1{Rm(U

↑
, Sq) > Rm′(U

↑
′
, Sq)}] (7)

Independent generation

where 1{Rm(u, sq) > Rm′(u, sq)} = 1 (0) means that, for prompt sq and realized sequence of
noise values u, the output of m is (not) preferred over the output of m′.13

Here, similarly as in Eq. 2 in the evaluation based on benchmark datasets, we use different noise
variables U and U ′ because, in this standard approach, each LLM generates outputs to each prompt
independently (i.e., using independent generation). Conversely, under coupled autoregressive genera-
tion, the win-rate adopts the following form:

EU∼PU ,Sq∼PQ
[1{Rm(U

↑
, Sq) > Rm′(U

↑
, Sq)}] (8)

Coupled generation

However, in contrast with the comparison of the expected difference in scores under independent and
coupled autoregressive generation in the evaluation based on benchmark datasets, we cannot directly
claim that Eqs. 7 and 8 are equivalent because the win-rate is non-linear with respect to Rm(u, sq)
and Rm′(u′, sq). In what follows, we will further analyze the difference between win-rates in two
canonical settings similar to those we used in Section 3.

In the first canonical setting, for each prompt, the response can only be one of two given single-token
sequences and one of these sequences is preferred over the other by the user. Further, the LLMs
under comparison always output one of them as a response and the sampling mechanism used by the
LLMs satisfies counterfactual stability. Then, we can compute the win-rates achieved by each LLM
m against any other LLM m′ ̸= m under independent and coupled autoregressive generation using
the following proposition:
Proposition B.1. Given a fixed prompt sq ∼ PQ, assume that fR(s+) > fR(s−) for s+ = sq ◦ t+
and s− = sq ◦ t−, where t+ and t− are single-token sequences. Further, assume that the LLMs
m and m′ respond t+ with probability pm and pm′ , respectively, and t− with probability 1 − pm
and 1− pm′ , and the sampling mechanism defined by fT and PU satisfies counterfactual stability.
Without loss of generality, assume pm′ > pm. Then, under coupled autoregressive generation, we
have that

EU∼PU
[1{Rm(U , sq) > Rm′(U , sq)}] = 0,

EU∼PU
[1{Rm(U , sq) < Rm′(U , sq)}] = pm′ − pm.

Conversely, under independent autoregressive generation, we have that

EU ,U ′∼PU
[1{Rm(U , sq) > Rm′(U ′, sq)}] = pm(1− pm′),

EU ,U ′∼PU
[1{Rm(U , sq) < Rm′(U ′, sq)}] = pm′(1− pm)

From the above proposition, we can readily conclude that, in general, the win-rates do differ under
independent and coupled autoregressive generation. Nevertheless, we may be tempted to conclude
that, for ranking LLMs, this difference appears inconsequential because, for each fixed prompt sq,
we have that the difference of win-rates match. However, whenever one needs to rank more than
two LLMs, the difference in win-rates can be actually consequential—the rankings derived from the
win-rates can be different under independent and coupled autoregressive generation, as illustrated by
the following simple example.

Consider we are given three LLMs m1, m2, and m3, and we need to rank them according to the
average win-rate they achieve against each other on two input prompts q and q′, each with a preferred
single-token response out of two single-token responses. Assume that the probability that each LLM
outputs the preferred single-token response for q and q′ is given by the table of the example introduced
in Section 1. Under independent autoregressive generation, the average win-rates of m1, m2 and m3

12We believe that our theoretical results can be extended to other popular performance metrics based on the Elo rating system Askell et al.
(2021); Dettmers et al. (2024); Bai et al. (2022); Wu et al. (2023); Lin & Chen (2023) and the Bradley-Terry model Chiang et al. (2025); Boyeau
et al. (2024), as discussed in Section 5.

13For simplicity, we assume that human preferences are deterministic and thus Rm(u, sq, z) = Rm(u, sq). We lift this assumption in
Section 4.
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are 0.1545, 0.15675 and 0.16225, respectively. Therefore, m3 is ranked at the top, followed by m2,
and m1 is ranked last. In contrast, under coupled autoregressive generation, the average win-rates of
m1, m2 and m3 are 0.0525, 0.0225, and 0.03, respectively (refer to Appendix C.6 for the detailed
calculation), and thus m1 is ranked at the top, followed by m3, and m2 is ranked last. Interestingly,
the ranking obtained under coupled autoregressive generation aligns with the ranking obtained in
Section 1 using the average accuracy of each LLM. More crucially, this case illustrates how rankings
obtained using coupled and independent autoregressive generation can differ, leading to opposite
conclusions regarding the LLMs’ performance.

In the second canonical setting, for each prompt, the response can be one of any single-token
sequences, and each of the sequences may provide a different level of user’s satisfaction (i.e., achieve
a different score). Further, the LLMs under comparison always output one of them as a response
and the sampling mechanism used by the LLMs is given by the Gumbel-Max SCM. The following
proposition shows that the number of ties between an LLM m and any other sufficiently similar LLM
m′ ̸= m are higher under coupled autoregressive generation than under independent autoregressive
generation:
Proposition B.2. Given a fixed prompt sq ∼ PQ, assume, without loss of generality, that fR(sq◦t1) ≥
fR(sq ◦ t2) ≥ . . . ≥ fR(sq ◦ t|V |). Let m be an LLM that assigns positive probability to every
single-token sequence and zero probability to any other sequence. If the sampling mechanism defined
by fT and PU is given by the Gumbel-Max SCM, then, there exists a constant ε(m) > 0 such that, for
every LLM m′ that assigns positive probability to every single-token sequence and zero probability to
any other sequence and satisfies d(m,m′) = supsq ∥fD(sq,m)− fD(sq,m

′)∥∞ < ε(m), it holds
that

EU∼PU
[1{Rm(U , sq) = Rm′(U , sq)}] > EU ,U ′∼PU

[1{Rm(U , sq) = Rm′(U ′, sq)}].

The above proposition implies that the win-rates under independent and coupled autoregressive
generation are different and, similarly as in the first canonical setting, rankings derived from the
win-rates may differ under independent and coupled autoregressive generation. We investigate this
further in our experiments in Section 4.

C PROOFS

C.1 PROOF OF PROPOSITION 3.1

We can rewrite the variance of the difference in scores under independent generation in terms of the
variance of the difference in scores under coupled generation as follows:

Var[Rm(U , Sq)−Rm′(U ′, Sq)]]

= Var[Rm(U , Sq)−Rm′(U , Sq) +Rm′(U , Sq)−Rm′(U ′, Sq)]]

= Var[Rm(U , Sq)−Rm′(U , Sq)] + Var[Rm′(U , Sq)−Rm′(U ′, Sq)]

+ 2 · Cov[Rm(U , Sq)−Rm′(U , Sq), Rm′(U , Sq)−Rm′(U ′, Sq)].

For the variance of the difference in scores for the same LLM under independent noise values, we
have that

Var[Rm′(U , Sq)−Rm′(U ′, Sq)]

(a)
= E[(Rm′(U , Sq)−Rm′(U ′, Sq))

2]− E[Rm′(U , Sq)−Rm′(U ′, Sq)]
2

(b)
= E[Rm′(U , Sq)

2 − 2 ·Rm′(U , Sq)Rm′(U ′, Sq) +Rm′(U ′, Sq)
2]

(c)
= 2 · E[Rm′(U , Sq)

2]− 2 · E[Rm′(U , Sq)Rm′(U ′, Sq)],

where (a) holds by the definition of variance, (b) is due to the subtraction term being 0, and (c)
is due to the linearity of expectation. Further, for the covariance of the difference in scores under
independent generation and the difference in scores under coupled generation, we have that

Cov[Rm(U , Sq)−Rm′(U , Sq), Rm′(U , Sq)−Rm′(U ′, Sq)]

(a)
= E[(Rm(U , Sq)−Rm′(U , Sq)) · (Rm′(U , Sq)−Rm′(U ′, Sq))]
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− E[Rm(U , Sq)−Rm′(U , Sq)] · E[Rm′(U , Sq)−Rm′(U ′, Sq)]

(b)
= E[Rm(U , Sq)Rm′(U , Sq)]− E[Rm(U , Sq)Rm′(U ′, Sq)]

− E[Rm′(U , Sq)Rm′(U , Sq)] + E[Rm′(U , Sq)Rm′(U ′, Sq)]

(c)
= Cov[Rm(U , Sq), Rm′(U , Sq)]− E[Rm′(U , Sq)

2] + E[Rm′(U , Sq)Rm′(U ′, Sq)]]

where (a) and (c) hold by the definition of covariance and (b) is due to the last term being zero and by
the expansion of the first term.

Putting all the above results together, it follows that

Var[Rm(U , Sq)−Rm′(U ′, Sq)]]

= Var[Rm(U , Sq)−Rm′(U , Sq)] + 2 · Cov [Rm(U , Sq), Rm′(U , Sq)]

+ 2 · E[Rm′(U , Sq)Rm′(U ′, Sq)]− 2 · E[Rm′(U , Sq)
2] + 2 · E[Rm′(U , Sq)

2]

− 2 · E[Rm′(U , Sq)Rm′(U ′, Sq)]

= Var[Rm(U , Sq)−Rm′(U , Sq)] + 2 · Cov[Rm(U , Sq), Rm′(U , Sq)]

which concludes the proof.

C.2 PROOF OF PROPOSITION 3.2

Due to Proposition 3.1, to show that Eq. 5 holds, it suffices to show that the covariance
between the scores of the different LLMs under coupled generation is non-negative, i.e.,
Cov[Rm(U , Sq), Rm′(U , Sq)] ≥ 0.

To this end, we first rewrite the covariance as
Cov[Rm(U , Sq), Rm′(U , Sq)]

= P [Rm(U , Sq) = 1, Rm′(U , Sq) = 1]− P [Rm(U , Sq) = 1] · P [Rm′(U , Sq) = 1]

=
∑
sq

P [Sq = sq] · (P [Rm(U , sq) = 1, Rm′(U , sq) = 1]

− P [Rm(U , sq) = 1] · P [Rm′(U , sq) = 1])

(9)

Next, we note that the event Rm(U , sq) = 1 is equivalent to LLM m sampling the ground truth
token for prompt sq . Without loss of generality, assume t1 is the ground truth token, i.e., C(sq) = t1.
Then, since only tokens {t1, t2} have positive probability under m and m′, it must hold that either (i)
one LLM assigns a greater probability to t1 and the other LLM assigns a greater probability to t2, or
(ii) both LLMs assign the same probabilities. Further, since the sampling mechanism defined by fT
and PU satisfies counterfactual stability, we have that the condition in Eq. 6 holds in both (i) and (ii)
and, under coupled generation, the LLM with greater (or equal) probability for t1 will always sample
t1 when the LLM with lower (or equal) probability does. This implies that

P [Rm(U , sq) = 1, Rm′(U , sq) = 1] = min{P [Rm(U , sq) = 1], P [Rm′(U , sq) = 1]} (10)

Finally, since it holds that

min{P [Rm(U , sq) = 1], P [Rm′(U , sq) = 1]} ≥ P [Rm(U , sq) = 1]P [Rm′(U , sq) = 1] (11)

because P [Rm(U , sq) = 1] ∈ (0, 1) and P [Rm′(U , sq) = 1] ∈ (0, 1) by assumption, we can
conclude from Eq. 9 that

Cov[Rm(U , Sq), Rm′(U , Sq)] > 0. (12)

C.3 PROOF OF PROPOSITION 3.3

Using Proposition 3.1, we have that

Cov[Rm(U , Sq), Rm′(U , Sq)]

= E[Rm(U , Sq) ·Rm′(U , Sq)]− E[Rm(U , Sq)] · E[Rm′(U , Sq)]

= P [Rm(U , Sq) = 1, Rm′(U , Sq) = 1]︸ ︷︷ ︸
(i)

−P [Rm(U , Sq) = 1) · P [Rm′(U , Sq) = 1]︸ ︷︷ ︸
(ii)

.
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In the remainder of the proof, we will bound each term (i) and (ii) separately and, since |C(sq)| = 1
for all sq ∼ PQ, assume without loss of generality that the correct token is single-token sequence t1.

To bound the term (ii), first note that, using the definition of the Gumbel-Max SCM, we have that, for
each k ∈ {2, . . . , |V |}, it holds that

Rm(U , sq) = 1 ⇐⇒ U1 + log([fD(sq,m)]t1) ≥ Uk + log([fD(sq,m)]tk),

Rm′(U , sq) = 1 ⇐⇒ U1 + log([fD(sq,m
′)]t1) ≥ Uk + log([fD(sq,m

′)]tk).

Next, let ε∗ > 0 be an arbitrary constant that we will determine later such that

| log([fD(Sq,m)]tk)− log([fD(Sq,m
′)]tk)| ≤ ε∗, (13)

and note that since, by assumption, Dtk > 0 for all k ∈ {1, . . . , |V |}, any bound on the absolute
difference of log-probabilities | log([fD(Sq,m)]tk)−log([fD(Sq,m

′)]tk)| uniformly implies a bound
on the difference of probabilities |[fD(Sq,m)]tk − [fD(Sq,m

′)]tk | and vice versa. For simplicity,
we prove the result in the log-domain.

Now, using the bound defined by Eq. 13, we have that⋂
k ̸=1

{U1 + log([fD(Sq,m
′)]t1) ≥ Uk + log([fD(Sq,m

′)]tk)}

⊂
⋂
k ̸=1

{U1 + log([fD(Sq,m)]t1) + ε∗ ≥ Uk + log([fD(Sq,m)]tk)− ε∗} ,

and we can then bound the term (ii) as follows:

P [Rm(U , Sq) = 1] · P [Rm′(U , Sq) = 1]

= P [∩k ̸=1{U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk)}]
× P [∩k ̸=1{U1 + log([fD(Sq,m

′)]t1) ≥ Uk + log([fD(Sq,m
′)]tk)}]

≤ P [∩k ̸=1{U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk)}]
× P [∩k ̸=1{U1 + log([fD(Sq,m)]t1) + ε∗ ≥ Uk + log([fD(Sq,m)]tk)− ε∗}].

To bound the term (i), first note that, using the bound defined by Eq. 13, we have that⋂
k ̸=1

{U1 + log([fD(Sq,m
′)]t1) ≥ Uk + log([fD(Sq,m

′)]tk)}

⊃
⋂
k ̸=1

{U1 + log([fD(Sq,m)]t1)− ε∗ ≥ Uk + log([fD(Sq,m)]tk) + ε∗} .

Thus, we can bound the term (i) as follows:

P [Rm(U , Sq) = 1, Rm′(U , Sq) = 1]

= P
[
∩k ̸=1 {U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk)}

∩ {U1 + log([fD(Sq,m
′)]t1) ≥ Uk + log([fD(Sq,m

′)]tk)}
]

≥ P
[
∩k ̸=1 {U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk)}

∩ {U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk) + 2ε∗}
]

(a)
=

∑
sq

P [Sq = sq] · P [∩k ̸=1{U1 + log([fD(Sq,m)]t1)

≥ Uk + log([fD(Sq,m)]tk) + 2ε∗}],
where (a) follows from the fact that

{U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk) + 2ε∗}
⊂ {U1 + log([fD(Sq,m)]t1) ≥ Uk + log([fD(Sq,m)]tk)} .
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Now, note that, for k ∈ {2, . . . , |V |}, the variable Xk ≡ U1−Uk ∼ Logistic(0, 1) (for k = 1, define
Xk ≡ 0). Therefore, we can rewrite the bound for (i) as

P [Rm(U , Sq) = 1, Rm′(U , Sq) = 1]

≥
∑
sq

P [Sq = sq] ·
∏
k ̸=1

·P [{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]t1) + 2ε∗}]

and we can rewrite the bound for (ii) as

P [Rm(U , Sq) = 1]P [Rm′(U , Sq) = 1] ≤∑
sq

P [Sq = sq] ·

∏
k ̸=1

P [{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]tk)− 2ε∗}]


× P [∩k ̸=1{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]tk)}].

As a consequence, to prove that P [Rm(U , Sq) = 1, Rm′(U , Sq) = 1] > P [Rm(U , Sq) =
1]P [Rm′(U , Sq) = 1], it suffices to show that∑

sq

P [Sq = sq]
∏
k ̸=1

·P [{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]t1) + 2ε∗}]

>
∑
sq

P [Sq = sq]
∏
k ̸=1

·P [{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]t1)− 2ε∗}]

× P [∩k ̸=1{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]t1)}] (14)

To do so, note that Eq. 14 holds trivially for ε∗ = 0 since

P [∩k ̸=1{Xk ≥ log([fD(Sq,m)]tk)− log([fD(Sq,m)]t1)}] < 1,

which is a fixed term independent of m′. Since all terms in Eq. 14 are continuous in ε∗, there exists
ε∗(m) > 0, possibly dependent of m but independent of m′, such that Eq. 14 holds if

sup
sq

∥log(fD(sq,m))− log(fD(sq,m
′))∥∞ < ε∗(m).

Since by assumption Dt > 0 for all t ∈ V , there exists ε(m) > 0 in probability space such that
Eq. 14 holds if

sup
sq

∥fD(sq,m)− fD(sq,m
′)∥∞ < ε(m).

This concludes the proof.

C.4 PROOF OF PROPOSITION B.1

Under coupled autoregressive generation, if the LLM m samples the preferred token t+, then the
LLM m′ must also sample t+ because t+ is more likely under m′ than under m and the sampling
mechanism defined by fT and PU satisfies counterfactual stability. This implies that the win-rate
achieved by m against m′ is

EU∼PU
[1{Rm(U , sq) > Rm′(U , sq)}]

= P [fT (fD(sq,m),U) = t+, fT (fD(sq,m
′),U) = t−] = 0 (15)

and that

P [fT (fD(sq,m),U) = t+, fT (fD(sq,m
′),U) = t+] = P [fT (fD(sq,m),U) = t+] = pm. (16)

Using the same reasoning, if the LLM m′ samples the non-preferred token t−, then, m must also
sample t− because t− is more likely under m than under m′. This implies that

P [fT (fD(sq,m),U) = t−, fT (fD(sq,m
′),U) = t−] = P [fT (fD(sq,m

′),U) = t−] = 1− pm′

(17)
Then, from Eq. 16 and Eq. 17, we can conclude that

EU∼PU
[1{Rm(U , sq) = Rm′(U , sq)}] = pm + (1− pm′) (18)
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Finally, from Eq. 15 and Eq. 18, we can conclude that the win-rate achieved by m′ against m is

EU∼PU
[1{Rm(U , sq) < Rm′(U , sq)}]

= 1−EU∼PU
[1{Rm(U , sq) > Rm′(U , sq)}]−EU∼PU

[1{Rm(U , sq) = Rm′(U , sq)}] = pm′−pm.

Under independent autoregressive generation, the LLMs m and m′ sample tokens independently
from each other, i.e., fT (fD(sq,m),U) ⊥ fT (fD(sq,m

′),U ′). Thus, we can factorize all joint
probabilities when computing the win-rates and obtain

EU ,U ′∼PU
[1{Rm(U , sq) > Rm′(U ′, sq)}]

= P [fT (fD(sq,m),U) = t+] · P [fT (fD(sq,m
′),U ′) = t−] = pm · (1− pm′)

and

EU ,U ′∼PU
[1{Rm(U , sq) < Rm′(U ′, sq)}] = pm′ · (1− pm).

C.5 PROOF OF PROPOSITION B.2

We follow the notations and technique of Proposition 3.3. Fix query sq and consider first the case of
independent autoregressive generation. Since each LLM can only assign a non-zero probability to
single-token sequences, we have:

P [Rm(U , sq) = Rm′(U ′, sq)] =

|V |∑
k=1

P [fT (fD(sq,m),U) = tk]P [fT (fD(sq,m
′),U) = tk]

<

|V |∑
k=1

P [fT (fD(sq,m),U) = tk],

In the case of coupled autoregressive generation, since

P [{fT (fD(sq,m),U) = tk} ∩ {fT (fD(sq,m),U) = tj}] = 0, i ̸= j,

we obtain:

P [Rm(U , sq) = Rm′(U , sq)]

= P [∪i{fT (fD(sq,m),U) = tk, fT (fD(sq,m
′),U) = tk}]

=
∑
k

P [{fT (fD(sq,m),U) = tk, fT (fD(sq,m
′),U) = tk}]

=
∑
k

P [fT (fD(sq,m),U) = tk]P [fT (fD(sq,m
′),U) = tk|fT (fD(sq,m),U) = tk].

We now follow Huijben et al. (2023) and expand the posterior Gumbels, P [fT (fD(sq,m
′),U) =

tk|fT (fD(sq,m),U) = tk], as truncated Gumbel distributions. In particular, we leverage the fact
that

max
t∈V

{Ut + log([fD(sq, •)]t)} ∼ Gumbel(0, 1), (19)

and that a Gumbel distribution, with parameter log(θ), truncated at b ∼ Gumbel(0, 1) can be sampled
as

− log(exp(−b)− log(η)/θ), η ∼ U(0, 1). (20)

Furthermore, by assumption, Dtk > 0 for all k ∈ {1, . . . , |V |}, so that any bound on the absolute
difference of log-probabilities | log([fD(sq,m)]tk)− log([fD(sq,m

′)]tk)| uniformly implies a bound
on the difference of probabilities |[fD(sq,m)]tk − [fD(sq,m

′)]tk | and vice versa. Using the bound

| log([fD(sq,m)]tk)− log([fD(sq,m
′)]tk)| ≤ ε∗
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and the Gumbel properties in Eq. 19 and Eq. 20, we obtain:

P [Rm(U , sq) = Rm′(U , sq)]

=
∑
k

P [fT (fD(sq,m),U) = tk]

× P

[⋂
k

{
log([fD(s1,m

′)]tk)− log([fD(s1,m)]tk)− log(− log(ηk))

≥ log([fD(s1,m
′)]tj )− log([fD(s1,m)]tj )− log(− log(ηk)− log(ηj)/[fD(s1,m

′)]tj )
}]

≥
∑
k

P [fT (fD(sq,m),U) = tk]

× P
[
∩k{− log(− log(ηk)) ≥ −2ε∗ − log(− log(ηk)− log(ηj)/[fD(s1,m

′)]tj )}
]

(21)

where ηk ∼ U(0, 1) are independently distributed uniform random variables. Now, note that the
claim holds for ε∗ = 0 since, in that case, we have that

P

[⋂
k

{− log(− log(ηk)) ≥ − log(− log(ηk)− log(ηk)/[fD(s1,m
′)]tk)}

]
= 1,

using that x 7→ − log(x) is strictly decreasing. Since all terms in Eq. 21 are continuous in ε∗, there
exists ε∗(m) > 0, possibly dependent on m but independent of m′, such that

P [Rm(U , sq) = Rm′(U , sq)] > P [Rm(U , sq) = Rm′(U ′, sq)] (22)

holds if
sup
sq

∥log(fD(sq,m))− log(fD(sq,m
′))∥∞ < ε∗(m).

Since by assumption Dt > 0 for all t ∈ V , there exists ε(m) > 0 in probability space such that
Eq. 22 holds if

sup
sq

∥fD(sq,m)− fD(sq,m
′)∥∞ < ε(m).

This concludes the proof.

C.6 CALCULATION OF AVERAGE WIN-RATES IN THE EXAMPLE USED IN SECTION 1 AND
APPENDIX B

In this section, we provide detailed calculations of the win-rates for the example in Section 1 and
Appendix B. Recall that in this example, we are given three LLMs m1, m2 and m3, and we need to
rank them according to their ability to answer correctly two types of input prompts, q and q′, picked
uniformly at random. We assume that the true probability that each LLM answers correctly each type
of input prompt is given by:

m1 m2 m3

q p1 = 0.4 p2 = 0.48 p3 = 0.5
q′ p′1 = 1 p′2 = 0.9 p′3 = 0.89

Using Proposition B.1, the win-rates under independent autoregressive generation are given, for each
LLM mk, by:

1

2

∑
j ̸=k

EU ,U ′∼PU ,Sq∼PQ
[1{Rmk

(U , Sq) > Rmj (U
′, Sq)}] =

∑
j ̸=k pk(1− pj) +

∑
j ̸=k p

′
k(1− p′j)

4
.

(23)
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Substituting the numerical values we obtain:

1

2

∑
j ̸=1

EU ,U ′∼PU ,Sq∼PQ
[1{Rm1

(U , Sq) > Rmj
(U ′, Sq)}] = 0.1545,

1

2

∑
j ̸=2

EU ,U ′∼PU ,Sq∼PQ
[1{Rm2(U , Sq) > Rmj (U

′, Sq)}] = 0.15675,

1

2

∑
j ̸=3

EU ,U ′∼PU ,Sq∼PQ
[1{Rm3

(U , Sq) > Rmj
(U ′, Sq)}] = 0.16225

(24)

Similarly, using Proposition B.1, the win-rates using coupled autoregressive generation can be written,
for each LLM mk, as:

1

2

∑
j ̸=k

EU∼PU ,Sq∼PQ
[1{Rmk

(U , Sq) > Rmj (U , Sq)}] =
∑

j ̸=k(pk − pj)+ +
∑

j ̸=k(p
′
k − p′j)+

4
,

(25)

where (•)+ = max(0, •) denotes the positive part. Substituting the numerical values we obtain:

1

2

∑
j ̸=1

EU∼PU ,Sq∼PQ
[1{Rm1(U , Sq) > Rmj (U , Sq)}] = 0.0525,

1

2

∑
j ̸=2

EU∼PU ,Sq∼PQ
[1{Rm2

(U , Sq) > Rmj
(U , Sq)}] = 0.0225,

1

2

∑
j ̸=3

EU∼PU ,Sq∼PQ
[1{Rm3(U , Sq) > Rmj (U , Sq)}] = 0.03.

D ADDITIONAL EXPERIMENTAL DETAILS

Hardware setup. Our experiments are executed on a compute server equipped with 2 × Intel
Xeon Gold 5317 CPU, 1,024 GB main memory, and 2 × A100 Nvidia Tesla GPU (80 GB, Ampere
Architecture). In each experiment, a single Nvidia A100 GPU is used.

Datasets. As a benchmark dataset, we use Measuring Massive Multitask Language Understanding
dataset (MMLU) Hendrycks et al. (2021a) consisting of 14,042 questions covering 52 diverse
knowledge areas with each question offering four possible choices indexed from A to D, and a
ground-truth answer. For pairwise comparison tasks, we use the first 500 questions from the LMSYS-
Chat-1M dataset Zheng et al. (2024).

Models. In our experiments, we use Llama-3.1-8B-Instruct, its quantized variants
Llama-3.1-8B-Instruct-{AWQ-INT4, bnb-4bit, bnb-8bit} and Llama-3.2-
{1B, 3B}-Instruct models. The models are obtained from Hugging Face, and the quan-
tised LLM variants Llama-3.1-8B-Instruct-{bnb-4bit, bnb-8bit} are built using the
bitsandbytes library Bits and Bytes Foundation (2024).

Prompts. To instruct LLMs for generating output, we use the system prompt in Table 2 for the MMLU
dataset and Table 3 for the LMSYS-Chat-1M dataset. Further, to perform pairwise comparisons of
outputs of different LLMs, we use the system prompt in Table 4, which is adapted from Chiang et al.
(2025), to prompt the strong LLM.
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System: You will be given multiple choice questions. Please reply with a single character
‘A’, ‘B’, ‘C’, or ‘D’ only. DO NOT explain your reply.

Table 2: System prompt used for the MMLU dataset.

System: Keep your responses short and to the point.

Table 3: System prompt used for the LMSYS Chatbot Arena dataset.

System: Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user prompt displayed below. Your job is to evaluate which
assistant’s answer is better. When evaluating the assistants’ answers, compare both
assistants’ answers. You must identify and correct any mistakes or inaccurate information.
Then consider if the assistant’s answers are helpful, relevant, and concise. Helpful means
the answer correctly responds to the prompt or follows the instructions. Note when
user prompt has any ambiguity or more than one interpretation, it is more helpful and
appropriate to ask for clarifications or more information from the user than providing an
answer based on assumptions. Relevant means all parts of the response closely connect or
are appropriate to what is being asked. Concise means the response is clear and not verbose
or excessive. Then consider the creativity and novelty of the assistant’s answers when
needed. Finally, identify any missing important information in the assistants’ answers that
would be beneficial to include when responding to the user prompt. do not provide any
justification or explanation for your response. You must output only one of the following
choices as your final verdict:

‘A’ if the response of assistant A is better
‘B’ if the response of assistant B is better
‘Tie’ if the responses are tied

Table 4: System prompt used for obtaining pairwise preferences using GPT-4o-2024-11-20 as
the judge.
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E ADDITIONAL EXPERIMENTAL RESULTS ON THE MMLU DATASET

Llama-3.2-1B-Instruct vs. Llama-3.2-3B-Instruct
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Llama-3.2-1B-Instruct vs. Llama-3.1-8B-Instruct
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Llama-3.2-3B-Instruct vs. Llama-3.1-8B-Instruct
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(a) Score covariance (b) Variance of the score difference (c) Estimation error vs. # samples

Figure 4: Comparison between three pairs of LLMs on multiple-choice questions from the
“college computer science” knowledge area of the MMLU dataset. Panels in column (a) show
the kernel density estimate (KDE) of the covariance between the scores of the two LLMs on each
question under coupled generation; the dashed lines correspond to average values. Panels in column
(b) show the KDE of the variance of the difference between the scores of the LLMs on each question
under coupled and independent generation; the highlighted points correspond to median values.
Panels in column (c) show the absolute error in the estimation of the expected difference between the
scores of the LLMs against the number of samples; for each point on the x-axis, we perform 1,000
sub-samplings and shaded areas correspond to 95% confidence intervals.
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College chemistry
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(a) Score covariance (b) Variance of the score difference (c) Estimation error vs. # samples

Figure 5: Comparison between Llama-3.2-1B-Instruct and Llama-3.2-3B-
Instruct on multiple-choice questions from four knowledge areas of the MMLU dataset.
Panels in column (a) show the kernel density estimate (KDE) of the covariance between the scores of
the two LLMs on each question under coupled generation; the dashed lines correspond to average
values. Panels in column (b) show the KDE of the variance of the difference between the scores of the
LLMs on each question under coupled and independent generation; the highlighted points correspond
to median values. Panels in column (c) show the absolute error in the estimation of the expected
difference between the scores of the LLMs against the number of samples; for each point on the
x-axis, we perform 1,000 sub-samplings and shaded areas correspond to 95% confidence intervals.
We observe qualitatively similar results for other knowledge areas.
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F ADDITIONAL EXPERIMENTAL RESULTS ON THE LMSYS-CHAT-1M
DATASET
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Figure 6: Empirical win-rate of each LLM against other LLMs on questions from the LMSYS-
Chat-1M dataset. Empirical estimate of the win-rate under coupled autoregressive generation as
given by Eq. 8 and under independent generation generation as given by Eq. 7. Each empirical win-
rate is computed using pairwise comparisons between the outputs of each LLM and any other LLM
over 500 questions with 10 (different) random seeds. The error bars correspond to 95% confidence
intervals. For each pair of empirical win-rates, we conduct a two-tailed test, to test the hypothesis
that the empirical win-rates are the same; (****, ***, **, *) indicate p-values (< 0.0001, < 0.001,
< 0.01, < 0.05), respectively.
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