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Abstract

This paper investigates auction behavior of simulated AI agents (large language
models, or LLMs). We begin by benchmarking these LLM-driven agents against
established lab experiments across various auction settings: independent private
value, affiliated private value, and common value auctions. Our findings reveal
that LLM agents exhibit many behavioral traits similar to those observed in human
participants within lab environments. Building on this, we investigate multi-unit
combinatorial auctions under three distinct bid formats: simultaneous, sequential,
and menu-based. Our study contributes fresh empirical insights into this classical
auction framework. We run 1,000+ auctions for less than $100 with GPT-4, and
develop a framework flexible enough to run auction experiments with any LLM
model and a wide range of mechanism specification.

1 Introduction

The field of mechanism design, auction theory in particular, has benefited enormously from a rich
interplay between empirics and theory. One recent example might be the development of obviously
strategy-proof mechanisms (hereafter, OSP) (Li, 2017). The technical refinement was inspired
by an empirical puzzle: despite it being well-known that the open-ascending clock (English) and
second-price sealed-bid auctions were strategically equivalent, experiments since the 80s suggested
that people were much ‘better’ at playing the open-ascending clock auction versus the sealed-bid
auction Kagel et al. (1987). Motivated by empirical evidence, OSP provided one articulation for why
the clock format might be ‘better’ than a sealed-bid format, and has since inspired a flourishing of
work in auction design under behavioral constraints. The story echoes a well-understood but worth
emphasizing point: empirical work is vital to the development of new theory.

Unfortunately, empirical evidence is quite expensive to generate. Li (2017)’s OSP experiments alone,
with 404 participants, cost over $15,000.1 The rise of LLMs raises the exciting new question as
to whether there exist cheaper data generating processes that can substitute for human data for the
purpose of studying human behavior, whether in economic systems or otherwise ( Bubeck et al.
(2023); Horton (2023); Manning et al. (2024)). The present work examines this question for auctions.

In particular, we provide evidence in three environments. We begin by considering classic ‘revenue
equivalence’ results, comparing play under the first-price and second-price sealed-bid auctions in
an independent, private value setting. We then proceed to make the auction ‘easier’ and ‘harder’ to
play. First, we consider ‘easier’ auctions in the obviously strategy-proof sense: we compare play

1Li mentioned that for each participant, he would pay them $20 for participation and an additional money
prize they won during the game. In total, he paid on average $37.47 for each participant.
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between the second-price sealed-bid auction and two versions of the second-price ascending auction.
We conduct these experiments in both affiliated private values and independent private values for
robustness. Finally, we consider ‘harder’ auctions – we run the sealed-bid auctions in a common
values setting to observe play when problems of adverse selection (i.e., the winner’s curse) can
bite. In all experiments, we observe monotone bidding and bid variation across values, suggesting
that different plans can induce a distribution of LLM play. Our results are further compatible one
common theme observed in the existing empirical literature: humans are risk-averse by nature,
and this risk-aversion introduces a wedge in between expected theory and practice. LLM play in
our experiments here is consistent with play we would expect from a risk averse set of humans.
However, we emphasize that - because it’s impossible to read the motivations of an LLM - we cannot
disambiguate results that come from risk aversion and results that are driven by naive text completion
that would not exist in out of distribution experiments.

To obtain the data for these empirical results, we have developed a code repository to systematically
run experiments with some number of bidders and any prompting language. In particular, our
repository is flexible enough that it can be used to generate synthetic data for almost any describable
format with single or multiple goods.2 For the experiments herein, we ran more than 1, 000 auctions
with more than 5, 000 GPT-4 agent participants for costs totaling less than $100. In contrast, the
largest survey of auction experiments to date comes from Cox et al. (1988) of 1, 500+ auctions, with
total costs likely considerably higher.

We acknowledge potential limitations in interpreting LLM responses as direct proxies for human
responses, which should be approached with caution. Further experimental validation is needed, along
with careful handling of data and specific use cases, to ensure reliability in practical applications.

2 Related work

LLMs as simulated agents: Recent LLMs, having been trained on an enormous corpus of human-
generated data, are able to generate human-like texts and reason Achiam et al. (2023); Bubeck et al.
(2023). Yet, they are far from perfect and show limited planning abilities and various cognitive biases
Wan et al. (2023). There is a growing literature on using these human-like AI models as simulated
agents in economics and social science studies Aher et al. (2023); Park et al. (2023); Brand et al.
(2023). In this literature, Horton (2023) replicates four classical behavioral economics experiments
by endowing a single LLM agent with different personas and querying it about its decisions and
preferences.

LLMs in auctions: There are a few works on systematically using LLM as simulated agents in
auction experiments. Fish et al. (2024) study the collusion behaviors in first-price sealed-bid auction
of two LLM agents under the context of LLMs as a price setter for companies. Chen et al. (2023)
study how to make an LLM better at playing auctions than humans. And Manning et al. (2024) ran a
more limited study an a variant of an open-ascending clock auction with three bidders, focusing on
deviations from rational economic theory in considering bidders’ values and the final clearing price.

3 Benchmarks with previous auction experiments

3.1 FPSB vs. SPSB with IPV

We first consider the FPSB and SPSB auctions in IPV settings.

Setting: There are 3 bidders in each auction, and bidders draw an independent, private value from a
uniform distribution v ∼ U [0, 99]. Bidders, upon observing their value, submit a sealed bid. In the
FPSB auction, the highest bidder pays her bid and receives the prize (and all other bidders pay 0 and
receive no prize). In the SPSB auction, the highest bidder pays the second-highest bid and receives
the prize (and all other bidders pay 0 and receive no prize). Bids are submitted in $1 increments and
ties are resolved randomly.

2We will make the code-base public soon and hope this will facilitate additional empirical work.
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3.1.1 Theoretical and Empirical benchmarks

It is well-known that the SPSB auction has bidding one’s value as a dominant strategy equilibrium.
The FPSB auction, of course, has no equilibrium in dominant strategies but has a NE of bidding
β(v) = n−1

n v = 2
3v as values are uniformly distributed with common support.

Experimental evidence for the FPSB persistently has bids above the risk-neutral NE prediction,
suggesting a failure of revenue equivalence due to risk-aversion. Experimental data for the SPSB
has agents bidding higher than in the FPSB, and sometimes even higher than their value. In both
the FPSB and SPSB auction (and indeed, almost all auctions) there is robust evidence of bids being
strictly monotone in one’s value.

3.1.2 Simulation evidence

Simulations are run according to the setting above. Results are summarized in Figure 1.

Figure 1 demonstrates evidence of monotone bidding and the SPSB bids being larger than FPSB bids
for the same value. However, there’s fairly weak separation between the two bidding curves. There’s
also no bidding above one’s value, which is a marked difference from the existing experimental
evidence – usually, people find the inefficiency of bidding above one’s value to be a subtle point in
the SPSB auction. This may be an improvement of LLM play over human play.

Experiment logs in which LLMs explain their bidding decisions suggest that one reason to explain
the weak separation in our data between the FPSB and SPSB auctions is that 1) LLMs are quite
risk-averse and 2) that they sometimes confuse the SPSB and FPSB auctions. In this way, despite
playing more intelligently than humans (in that LLMs almost never bid above their value), they
do so because they may be confusing the SPSB for the FPSB. Additionally, LLMs in these classic
settings demonstrate one new quirk not yet documented in experimental literature – bidding zero
upon becoming frustrated. In 3% of runs, LLMs bid 0, often justifying their decision by arguing little
chance of winning the good with a higher bid.

3.2 Obvious strategy-proofness

Next, we consider clock formats against sealed-bid formats. Following Li (2017) and Breitmoser &
Schweighofer-Kodritsch (2022)’s experiments, we consider clock auctions against the SPSB auction
in the affiliated private values (APV) setting.

Setting: Once again, there are 3 bidders in each auction but now bidders draw affiliated private
values of the form v = c + p. The common component is drawn uniformly c ∼ U [0, 79] and the
private component is drawn uniformly p ∼ U [0, 20]. Winners of the auction receive their own value
of the prize v when they win, so the ‘common’ and ‘private’ components only serve to make values
correlated (even if draws are independent). The ascending clock auction (called AC below) is the
classic English auction. The blind ascending clock auction (called AC-B below) is the English auction
with the addition of not being told when other bidders leave. The SPSB auction was defined above.

All three of the auction formats in this case are strategically equivalent to second-price auctions, so
the affiliation in values is, in a sense, a red herring – for all three auctions it is still dominant strategy
to bid one’s value. The two clock auctions are obviously strategyproof, though the AC-B auction still
provides bidders with ‘less’ information than the AC auction. The affiliation hence serves only to
complicate the auction for bidders who don’t appreciate that the dominant strategy is to bid one’s
value.

3.2.1 Theoretical and empirical benchmarks

Li (2017)’s experiment delivers results supporting the theoretical framework of obvious strategyproof-
ness – even though the AC and SPSB auctions are strategically equivalent, human subjects tend to
be more truthful under the AC auction (which is OSP) than under the SPSB auction. Additional
empirical results by Breitmoser & Schweighofer-Kodritsch (2022) show that even OSP itself might
not be sufficient in capturing the rich complexities of human behavior – human subjects are less
truthful under AC-B than they are under AC (though still more truthful than the SPSB), even though
both AC and AC-B are OSP. We replicated these empirical observations using LLMs, suggesting the
ability of LLMs to mirror human behavior under these settings.
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3.2.2 Simulation evidence

Figure 3 summarizes our findings for the APV setting.

The results of the LLM experiments replicate Li (2017) and Breitmoser & Schweighofer-Kodritsch
(2022) closely. However, we see little evidence of learning over time. This is one benchmark that
we hope to reach in future iterations of this work. In the experiments in Li (2017) and Breitmoser &
Schweighofer-Kodritsch (2022), human subjects improve their understanding of the mechanisms by
bidding closer to their true value over time. In the results presented in Figure 3, this effect isn’t as
pronounced. We suspect that clever prompting strategies, leading to a better and more natural way
of communicating the history of past rounds, might lead to more human-like behavior exhibiting
learning over rounds.

3.3 Winner’s curse

The last set of simulations we ran for single-unit auctions was in common value settings.

Setting: In the common value settings explored here, there are n bidders varying from n = 2, ..., 6.
Bidders draw values of form v = c + p. Once again, the common component is drawn uniformly
c ∼ U [0, 79] and the private shock component is also drawn uniformly p ∼ U [0, 20]. However, in
the common value setting, bidders have identical ex-post valuations for the good. Hence, agents bid
based on values v = c+ p ∈ [0, 99] with a trapezoidal distribution, but only obtain c when they win.
The auction is ran as a SPSB auction.

3.3.1 Theoretical and empirical benchmarks

The theoretical optimum here is for bidders to bid βi(vi) = E[c | vi ∧ pi = p(1)], i.e., conditioning
both on their value and on the event that their received private shock was the highest (it is easy to
see the second event is equivalent to the event that the bidder won with strictly monotone β(·)). The
main experiment citation here, Kagel and Levin (1986), makes two positive predictions on the basic
common value auction: 1) that even experienced bidders fail to condition on the event where their
signal is the highest (called ‘item valuation considerations’ in their text) thereby still falling victim to
the winner’s curse, and 2) that the winner’s curse barely shows up in small auctions (3-4 bidders) but
bites in big auctions (6-7 bidders).

3.3.2 Simulation evidence

We find evidence corroborating both of these predictions. In auctions of all sizes, bidders successfully
shade by the expected value of the private shock (i.e., by about E[p] = 10)) but fail to realize that if
they won, it is because they drew the highest private shock, p(1). As n increases, E[p(1)] increases,
so bidders suffer more in larger auctions. This is demonstrated in Figure 5.

Our evidence suggests that LLMs play at about the level of experienced bidders, generally agreeing
quite strongly with existing experimental results. However, ‘learning’ remains a puzzle in this setting
as well – even when told the past history of play, agents don’t learn to condition on the event that
they win. A defense of LLMs here may be that this is just very hard: learning is non-trivial with
human agents as well (in Kagel & Levin (1986) it takes players 15-20 periods to learn). This suggests
more sophisticated learning techniques may be required to fully mitigate the winner’s curse with
LLM agents. It remains to see whether future generations of language models (e.g., GPT5, with
better in-context updating and memory) fare better on this front, thereby shading optimally against
the winner’s curse.

4 Discussion

While this paper focuses on auction theory, future work may use LLM sandboxes to test other kinds
of economic mechanisms (e.g., voting, matching, contracts, etc.). As techniques are developed to
validate LLM models as proxies for human behavior, they can be used to obtain what would otherwise
be prohibitively expensive evidence. As a provocative example, while ethical and financial constraints
make it impossible to run voting experiments at the scale of nations, it may be possible to run such
experiments with LLM agents.
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This paper acts as a proof of concept for LLMs as human proxy agents, with the primary motivation
of eventually using LLM agents to inform novel economic design. Some auction formats, such as
combinatorial auctions, are complex and can be particularly difficult to run frequently and at scale in
traditional laboratory settings. Moreover, with many open questions and limited resources, it can be
difficult to triage over the many possible experiments that could be run. Augmenting these traditional
lab experiments with LLM experiments, when correctly validated, may open up new avenues in
understanding the design tradeoffs in these kinds of complex and often high-stakes environments.

5 Conclusion

This paper reports the results of more than 1,000 auction experiments with LLM agents. In particular,
we find behavior that conforms with important experimental results (i.e., evidence of risk-averse
bidding, evidence that clock auctions are ‘easier’ to play, and evidence for the winner’s curse in
common value settings). We also test theoretical intuitions for combinatorial design in a novel way,
generating experimental evidence for three classic CA formats. Though the results are encouraging,
we see this work as preliminary, primarily putting forward a framework on how to think about LLM
experimental agents as proxy for human agents. In particular, the design space for prompting is large,
and we hope that interested readers will use our code to run simulations testing their own prompt
variations.
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A Supplemental material

Figure 1: Comparison of FPSB and SPSB under IPV setting. The theoretically predicted bid,
given that bidders’ values are independently drawn from a uniform distribution of [0, 99], is marked
in red. The experimental data points are represented by grey triangles. The 45-degree line indicates
the scenario where the LLM agents’ values equal their bids. The dashed black line represents the
LOESS-smoothed data. Left: In FPSB, the experimental bids are ramping up compared to the Bayes
Nash prediction. Right: In SPSB, the experimental bids are shading down compared to the dominant
strategy.

Comparison t-statistic p-value
AC v.s. AC-B -4.125 6.737e-05
AC v.s. 2P -5.413 2.101e-07
AC-B v.s. 2P -5.006 1.043e-06

Table 1: Two-sample t-tests of the mean absolute deviations from bids to values showed significant
differences across all comparisons of the strategyproof mechanisms. AC exhibited significantly
smaller deviations compared to both AC-B (t = -4.125, p < 0.001) and 2P (t = -5.413, p < 0.001).
Additionally, the AC-B mechanism showed significantly smaller deviations than the 2P auction (t =
-5.006, p < 0.001).
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Figure 2: Cross-format Comparison of FPSB and SPSB under IPV setting. The bins are organized
in $10 increment. The orange curve stands for the Second-Price Sealed-Bid auction and the blue
curve stands for the First-Price Sealed-Bid auction. The x-axis represents the assigned value of the
good to the LLM agent, ranging from low to high values. The y-axis shows the LLM agent’s bid
amount. The blue line represents First-Price auctions while the orange one represents Second-Price
auctions. The error bars indicate the standard error of the mean bid at each value point, showing the
variability in bidding behavior.

Figure 3: Comparison of three strategically equivalent auctions. Ascending-clock (AC) and its
variant without dropping-out information (AC-B) are obviously strategy-proof while second-price
sealed-bid (SPSB) is not. Here, the green dot-dash line plotted the mean absolute deviation from
bids to values in AC. Red dash line is for AC-B. And blue solid line is for SPSB. The mean absolute
deviations are smallest in AC and highest in SPSB and with AC-B in between, consistent with the
human lab experiments in Breitmoser & Schweighofer-Kodritsch (2022). However, there is no sign
of learning over rounds.
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Figure 4: Bid versus value scatter plot for different auction formats. The X-axis is the assigned
value for the good and Y-axis is LLM agent’s bid. Red triangle stands for the bids of non-winner in
the auction while the blue circle represents the ones of the winners. In the Ascending Clock (AC)
auction, all players dropped out at the dominant strategy price within one round of bidding. The bids
in AC-Blind auction are close to the optimal line, but showed a significant pattern of early dropouts.
In the Second-Price Sealed-Bid auction, almost all the bids deviated from the dominant strategy,
going both higher and lower than the optimal price.

Figure 5: Distribution of the winner’s total profit across auctions with 2 to 6 bidders. Each box
shows the interquartile range of profits, with the median indicated by the central line. The horizontal
red dashed line represents zero profit. As the number of bidders increases, the median winner’s total
profit decreases and more frequently turns negative. This echoes with the intensifying effect of the
winner’s curse in larger auctions.
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B Prompts in IPV section

First-Price Sealed-Bid (FPSB) with IPV

In this game, you will participate in an auction for a prize against num]_bidders other bidders.
At the start of each round, bidders will see their value for the prize, randomly drawn between
0andprivate, with all values equally likely.
After learning your value, you will submit a bid privately at the same time as the other bidders.
Bids must be between $0 and $private in $increment increments. The highest bidder wins the
prize and pays their bid amount. This means that, if you win, we will add to your earnings the
value for the prize, and subtract from your earnings your bid. If you don’t win, your earnings
remain unchanged.
After each auction, we will display all bids and profits. Ties for the highest bid will be
resolved randomly.

Second-Price Sealed-Bid (SPSB) with IPV

In this game, you will participate in an auction for a prize against num_bidders other bidders.
At the start of each round, bidders will see their value for the prize, randomly drawn between
0andprivate, with all values equally likely.
After learning your value, you will submit a bid privately at the same time as the other bidders.
Bids must be between $0 and $private in $increment increments. The highest bidder wins
the prize and pays the second-highest bid. This means that, if you win, we will add to your
earnings the value for the prize, and subtract from your earnings your bid. If you don’t win,
your earnings remain unchanged.
After each auction, we will display all bids and the winner’s profits. Ties for the highest bid
will be resolved randomly.

C Prompts in OSP section

Second-Price Sealed-Bid (SPSB) with APV

In this game, you will bid in an auction for a prize against num_bidders other bidders. The
prize may have a different dollar value for each person in your group. You will play this game
for n rounds. All dollar amounts in this game are in increment increments. At the start of
each round, we display your value for this round’s prize. If you win the prize, you will earn
the value of the prize, minus any payments from the auction.
Your value for the prize will be calculated as follows: 1. For each group we will draw a
common value, which will be between common_low and common_high. Every number
between common_low and common_high is equally likely to be drawn. 2. For each person,
we will also draw a private adjustment, which will be between 0 and private. Every number
between 0 and private is equally likely to be drawn. In each round, your value for the prize
is equal to the common value plus your private adjustment. At the start of each round, you
will learn your total value for the prize, but not the common value or the private adjustment.
This means that each person in your group may have a different value for the prize. However,
when you have a high value, it is more likely that other people in your group have a high
value.
The auction proceeds as follows: First, you will learn your value for the prize. Then you
can choose a bid in the auction. Each person in your group will submit their bids privately
and at the same time. All bids must be between min_price and max_price, and in increment
USD increments. The highest bidder will win the prize, and make a payment equal to the
second-highest bid. This means that we will add to her earnings her value for the prize,
and subtract from her earnings the second-highest bid. All other bidders’ earnings will not
change.
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Blind Ascending-Clock (AC-B) with APV

In this game, you will bid in an auction for a prize against num_bidders other bidders. The
prize may have a different dollar value for each person in your group. You will play this game
for n rounds. All dollar amounts in this game are in increment increments. At the start of
each round, we display your value for this round’s prize. If you win the prize, you will earn
the value of the prize, minus any payments from the auction.
Your value for the prize will be calculated as follows: 1. For each group we will draw a
common value, which will be between common_low and common_high. Every number
between common_low and common_high is equally likely to be drawn. 2. For each person,
we will also draw a private adjustment, which will be between 0 and private. Every number
between 0 and private is equally likely to be drawn. In each round, your value for the prize
is equal to the common value plus your private adjustment. At the start of each round, you
will learn your total value for the prize, but not the common value or the private adjustment.
This means that each person in your group may have a different value for the prize. However,
when you have a high value, it is more likely that other people in your group have a high
value.
The auction proceeds as follows: First, you will learn your value for the prize. Then, the
auction will start. We will display a price to everyone in your group, that starts low and
counts upwards in increment USD increments, up to a maximum of max_price. At any point,
you can choose to leave the auction. The starting bidding will be min_price. When there is
only one bidder left in the auction, that bidder will win the prize at the current price. This
means that we will add to her earnings her value for the prize, and subtract from her earnings
the current price. All other bidders’ earnings will not change. At the end of each auction, we
will show you the prices where bidders stopped, and the winning bidder’s profits. If there is a
tie for the highest bidder, no bidder will win the object.

Open Ascending-Clock (AC) with APV

In this game, you will bid in an auction for a prize against num_bidders other bidders. The
prize may have a different dollar value for each person in your group. You will play this game
for n rounds. All dollar amounts in this game are in increment increments. At the start of
each round, we display your value for this round’s prize. If you win the prize, you will earn
the value of the prize, minus any payments from the auction.
Your value for the prize will be calculated as follows: 1. For each group we will draw a
common value, which will be between common_low and common_high. Every number
between common_low and common_high is equally likely to be drawn. 2. For each person,
we will also draw a private adjustment, which will be between 0 and private. Every number
between 0 and private is equally likely to be drawn. In each round, your value for the prize
is equal to the common value plus your private adjustment. At the start of each round, you
will learn your total value for the prize, but not the common value or the private adjustment.
This means that each person in your group may have a different value for the prize. However,
when you have a high value, it is more likely that other people in your group have a high
value.
The auction proceeds as follows: First, you will learn your value for the prize. Then, the
auction will start. We will display a price to everyone in your group, that starts low and
counts upwards in increment USD increments, up to a maximum of max_price. At any point,
you can choose to leave the auction. The starting bidding will be min_price. When there is
only one bidder left in the auction, that bidder will win the prize at the current price. This
means that we will add to her earnings her value for the prize, and subtract from her earnings
the current price. All other bidders’ earnings will not change. At the end of each auction, we
will show you the prices where bidders stopped, and the winning bidder’s profits. If there is a
tie for the highest bidder, no bidder will win the object.
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D Prompts in Common value auction

Second-Price Sealed Bid with common value

In this game, you will bid in an auction for a prize against num_bidders other bidders. The
prize may have a different dollar value for each person in your group. You will play this game
for n rounds. All dollar amounts in this game are in increment increments. At the start of
each round, we display your value for this round’s prize. If you win the prize, you will earn
the value of the prize, minus any payments from the auction.
Your value for the prize will be calculated as follows: 1. For each group we will draw a
common value, which will be between common_low and common_high. Every number
between common_low and common_high is equally likely to be drawn. 2. For each person,
we will also draw a private adjustment, which will be between 0 and private. Every number
between 0 and private is equally likely to be drawn. In each round, your value for the prize
is equal to the common value. However, at the start of each round, you will learn only your
total value for the prize, not the common value or the private adjustment. This means that
each person in your group may have a different perceived value for the prize.
The auction proceeds as follows: First, you will learn your (perceived) value for the prize.
Then you can choose a bid in the auction. Each person in your group will submit their bids
privately and at the same time. All bids must be between min_price and max_price, and in
increment USD increments. The highest bidder will win the prize, and make a payment equal
to the second-highest bid. This means that we will add to her earnings the (true) common
value for the prize, and subtract from her earnings the second-highest bid. All other bidders’
earnings will not change.
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