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Abstract

In this paper, we study the systemic risk and networks of top financial institutions
using textual data (i.e., news). In particular, we draw knowledge graphs after
the textual data are processed through various natural language processing and
embedding methods, including the use of the most recent version of ChatGPT
(via the OpenAI API). We also compare knowledge graphs drawn from the textual
data with those from the numeral data as in Chen and Zhang [1]. We test a wide
collection of models (i.e. knowledge) with both textual and numeral data for the
networks of the top financial firms. Given that systemic risk is crucial in crisis
times, we compare networks for the periods of the 2008 crisis (2007 bubble, 2008
bust, 2009 post-crisis). In particular, we focus on the troubled banks (bankrupt
and bailed-out) and try to discover any early warning signs of these firms in
terms of their networks (i.e. systemic risk). Although the models yield different
knowledge graphs, the ensemble results consistently reveal a strong network of
interconnections among the troubled firms and their closest counterparties.

1 Introduction

The 2008 global financial crisis underscored the critical importance of understanding interconnected-
ness and systemic risk within the financial system. Network models have become a primary tool for
this analysis, but have traditionally relied on numerical data like stock returns or volatility. While
insightful, these models may miss nuanced, timely information embedded in unstructured textual
data such as financial news.

In recent work, Chen and Zhang [1] for the first time constructed knowledge graphs of top financial
firms using numeral data (volatility and liquidity discount index) and Lyu et. al. ([2]) demonstrate
how to draw similar graphs using news. This paper extends their work by providing a comprehensive
study of how knowledge graph can explain the 2008 global financial crisis. We use both textual data
(news) and numeral data (volatility and liquidity index) from 2007 to 2009 to examine the systemic
risk of top financial firms. We improve upon Lyu et. al.([2]) who use only 2016 data and upon Chen
and Zhang ([1]) who use only numeral data.

Our contribution is twofold. First, we construct and compare KGs from both numerical data (volatility,
liquidity discounts) and textual data (news articles) for 27 top financial firms from 2007 to 2009.
This period allows us to study the network structure during three distinct phases: the 2007 pre-crisis
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bubble, the 2008 crisis, and the 2009 recovery. Second, we leverage modern NLP and large language
model (LLM) technology, specifically OpenAI’s text embedding models, to convert unstructured news
into a feature space suitable for network construction. This allows us to investigate whether textual
data contains early warning signals missed by numerical methods. We find that news-based KGs,
particularly those using advanced embeddings, reveal a significant tightening of the financial network
in 2008 and highlight specific clusters of troubled firms, demonstrating the value of incorporating
generative AI into systemic risk monitoring.

1.1 Data

We use two distinct datasets covering the period from January 2007 to December 2009.In using data
from 2007 to 2009, we can study three distinctly different phenomena: pre-crisis (bubble), crisis
(bubble burst), and post-crisis (recovery). Our study is also in line with Acharya et. al. ([5]) who use
daily returns of the same period to estimate the systemic risk of the top 18 financial firms

• Numerical Data: Monthly time series of firm volatility and liquidity discounts, consistent
with the data used in Chen and Zhang [1].

• Textual Data: A corpus of 31,533 news articles mentioning the 27 target firms, collected
from the LexisNexis database.

1.2 Knowledge Graph Construction

We employ a variety of methods to model the edges between firms, comparing traditional numerical
techniques with modern textual analysis.

KGs from Numerical Data Following established methods in Chen and Zhang [1], we construct
two KGs using numerical data. The edge weights are determined by the partial correlation between
firms, calculated separately for volatility and liquidity discount data for each year. 22 firms are
assumed to have 36-month observations as they survived during the global financial crisis and the
troubled 5 firms do not have data in 2009 and certain period in 2008. To eliminate less significant
dependencies, we plot the spring network by filtering the correlations greater than 5%. As an auxiliary
measure, we apply the KNN algorithm to group the financial institutions into multiple clusters.

KGs from Textual Data To leverage the news data, we first convert the unstructured text into nu-
merical representations (embeddings) that capture semantic meaning. We then use these embeddings
to derive relationship strengths.

Text Embedding: Following Lyu et al. [2], we adopt OpenAI’s text-embedding-ada-002
model [6], which belong to the second generation of embedding models. We use OpenAI’s
text-embedding-ada-002 model [6] to transform each news article into a fixed 1,536-dimensional
vector (token limit 8,191). Most articles fall within this limit; when necessary, we truncate text to fit.
We also include OpenAI’s third-generation text-embedding-3-large model (3,072 dimensions)
for comparison. These embeddings serve as inputs to our KG construction methods. The process
is shown in Figure 1 as an example. These embeddings serve as the input for the following KG
construction methods.

Figure 1: OpenAI’s text-embedding-ada-002 and text-embedding-3-large models for the news data.
from [2]

2



2 Empirical Results and Analysis

Our analysis of the KGs from 2007, 2008, and 2009 reveals distinct patterns in the financial network’s
evolution. While each model provides a different lens, a consistent narrative emerges.

2.1 Frequency Count Graph

As a simple baseline, we create a directed graph (Figure 2) where the edge weight from firm A to
firm B is the number of times firm B is mentioned in news articles primarily about firm A. This
method is intuitive, but does not capture deeper semantic relationships. These ring graphs show firm
co-mentions in news, where vertex positions are arbitrary, and edges represent joint appearances.

Figure 2: Knowledge graphs based on frequency of companies for 2007 (left), 2008 (middle),
and 2009 (right). From 2007 to 2009, the news co-mention network evolved from sparse and
uninformative connections before the crisis, to a sharp rise in 2008 with Bear Stearns and key firm
pairs dominating, and then to a contracted post-crisis structure focused mainly on bailout-related
firms.

2.2 Numerical Knowledge Graph

Partial correlation (Figure 3) is used to measure the relationship between two companies while
controlling the influence of all other companies in the network. For the KG based on market implied
volatility, the network resembles a dense “spider web,” where most firms are tightly connected
and individual influence is unclear in 2007. Centrality scores (Table 3) are better suited to rank
importance. Troubled firms such as Lehman Brothers, Merrill Lynch, and Wachovia occupy peripheral
positions, suggesting low systemic importance. In 2008, the network becomes denser, requiring a
higher correlation threshold (0.10) for visualization; Bear Stearns and Washington Mutual drop out,
while the remaining troubled firms split into two separate groups, indicating that network structure
alone does not predict the actual sequence of defaults. By 2009, the network centers on Citigroup,
CME, and Berkshire Hathaway. Overall, volatility-based knowledge graphs reveal limited predictive
structure—only that firm interconnectedness peaks during the crisis, loosens before it, and weakens
further in the post-crisis period. Using the liquidity-based KG, correlation levels drop significantly in
2008. Part of this is mechanical: there are only eight months of data for Lehman Brothers (which
defaulted in September) and limited observations for Bear Stearns (which required bailout in March).
More importantly, when liquidity discounts for all firms spike to extreme levels, cross-sectional
variation collapses, and correlations become uninformative—for example, if all liquidity discounts
are nearly identical, the implied correlations approach zero. Thus, precisely when firms are most
closely linked through funding stress, correlation-based measures can misleadingly suggest weak
connections, indicating that liquidity correlations are not a reliable basis for constructing knowledge
graphs during crisis periods.

2.3 t-SNE Visualization

To enhance interpretability, we applied the dimensionality reduction technique known as t-SNE (t-
distributed Stochastic Neighbor Embedding [3]) to reduce the high-dimensional average embedding
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Figure 3: Knowledge graphs based on market implied volatility and liquidity discount for 2007 (left),
2008 (middle), and 2009 (right). Volatility-based predictions fail to capture crisis linkages, while the
liquidity index reveals fragmented sub-networks in 2007 and shows in 2008 that most troubled firms
vanish except Lehman Brothers, which remains connected to a few institutions.

of each firm’s news corpus into a 2D space. In this KG (Figure 4), the Euclidean distance between
two firms in the 2-D plot represents their semantic similarity. This method is purely for visualization
and helps identify natural clusters.

Figure 4: Knowledge graphs based on news dataset, the averages of t-SNE reduced (from 1,536
dimensions) 2-dimensional plots. Each dot is an average of all the news embeddings in a given year
(2007, 2008, or 2009) in two dimensions.

2.4 RNN-Based KG

Our primary textual method uses a Recurrent Neural Network (RNN) to generate a more nuanced
measure of firm relationships. We train an RNN classifier to predict the primary firm associated
with a given news article’s embedding. The "knowledge" for the graph is derived from the RNN’s
confusion matrix. When the model misclassifies an article about firm A as being about firm B, it
implies a strong semantic similarity. The edge weight from A to B is defined by the frequency of
this specific confusion, creating a directed graph where edges represent learned similarities. We
numbered each firm from 1-27 (Table 6).
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Figure 5: Knowledge graphs based on RNN

In 2007 (pre-crisis), the network in Figure 5 is sparse with weak inter-firm links, indicating low
systemic risk. Troubled firms like Lehman, Bear Stearns, Wachovia, and AIG are mostly influenced
by others, not vice versa. Central roles are held by Bank of America, Goldman Sachs, and Prudential.
In the larger embedding model, Citigroup emerges as an early influential hub connecting several
major firms. The 2008 network becomes much denser, reflecting heightened interconnectedness and
systemic risk. Merrill Lynch moves to the network center, influencing several firms, while Lehman
and AIG form weaker outward links. Distressed banks are more connected among themselves, and
the overall structure loses hierarchy, consistent with severe stress and contagion during the crisis. By
2009, the network loosens again, resembling 2007 but with new central firms—Bank of America,
Citigroup, Goldman Sachs, and Prudential. Troubled institutions shift to the periphery and lose
influence. Inter-firm connections decline sharply, signaling a re-stabilized system with diminished
systemic risk and reduced market contagion.

2.4.1 Comparison with Conventional Methods

Figure 6: Cosine Similarity

While we employ neural networks (NN) for network linkage and knowledge graph construction,
conventional similarity-based methods—such as cosine similarity, Euclidean distance, and clus-
tering—can also be used as benchmarks. These baselines help highlight the advantages of the
RNN-based approach in capturing dynamic, directional relationships between firms.

Figure 6 presents the network constructed using cosine similarity. The resulting graph appears
densely connected, with nearly all firms linked to one another, making it difficult to distinguish key
influencers. This reflects a limitation of cosine similarity: it behaves much like correlation, and
because financial institutions are inherently correlated, the resulting network lacks discriminative
power.

We find uniformly high cosine similarity values across embedding vectors, suggesting limited distinc-
tiveness among nodes and hindering effective clustering. In contrast, the RNN-based confusion matrix
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captures sequential, context-dependent interactions between firms, producing a more interpretable
and differentiated network that better reflects systemic interdependencies.

2.5 Centrality Scores

If a directed graph has cycles or bi-directional relationships, then causality does not apply. One is
left with centrality measures that gauge which vertices are more important than others. Given that
our knowledge graphs are not Directed Acyclic Graphs (DAGs), we calculate a series of metrics
to demonstrate the impact of each firm – centrality scores. Section 6.1 provides the details of the
centrality scores.

Table 3 summarizes firms’ network centrality across 2007–2009, focusing on degree centrality as
a key indicator. In 2007, Citigroup ranked highest (1.0000), followed by Goldman Sachs, Morgan
Stanley, and Bank of America, indicating their dominant positions within the financial network.
By contrast, most other firms had much lower connectivity, suggesting a more fragmented system
before the global financial crisis. In 2008(Table 4), the number of firms in the network increased
to 17, reflecting tighter interconnections during the crisis. Bear Stearns, Citigroup, and Morgan
Stanley showed the highest centrality scores, while Lehman Brothers—despite its prominence—had
a surprisingly low value. In 2009(Table 5), after major consolidations, only eight firms remained,
with Citigroup, Bank of America, Morgan Stanley, Wells Fargo, and Goldman Sachs displaying the
strongest centrality values, indicating that the system became more concentrated around a few large
institutions. Overall, the analysis reveals that relationships among financial institutions intensified
during the crisis years. Citigroup, Bank of America, Wells Fargo, and Morgan Stanley consistently
occupied central roles, while Goldman Sachs stood out under closeness metrics. Insurance and
retail banks, however, remained less connected, consistent with post-crisis lessons that investment
banks—those most interconnected—were the most vulnerable to systemic shocks.

3 Key Observations

The most striking and consistent finding across nearly all models (numerical and textual) is a dramatic
increase in network density and interconnectedness in 2008. Figure 5 illustrates this using our
RNN-based KG, where the number and strength of connections visibly peak during the crisis year.
This confirms the conventional wisdom that systemic risk intensifies during a crisis, but our method
provides a quantifiable and visual representation of this phenomenon derived directly from news
data. Numerical models also show this increased density, validating the signal across different
data types. Text-based methods were particularly effective in identifying clusters of at-risk firms.
The visualization of t-SNE for 2007 (Figure 4) places Bear Stearns, Lehman Brothers, and Merrill
Lynch in a tight cluster, separate from other firms. This grouping, based on the semantic content of
pre-crisis news, is a powerful, hindsight-free indicator of their shared vulnerabilities. In contrast,
numerical models were less clear in isolating this specific group of troubled firms before the crisis.
The RNN-based model further confirmed these connections, showing directed links between these
institutions that intensified in 2008.

3.1 An Ensemble View

No single model fully captures systemic interconnections. For example, the liquidity-based KG
shows a counterintuitive drop in correlations during 2008 as firm-level liquidity spreads converged,
while the frequency-based KG produces noisier, less discriminative links. Integrating results across
all approaches yields a consistent pattern: network density peaks in 2008, reflecting elevated sys-
temic risk. Text-based models—especially t-SNE and RNN embeddings—more effectively isolate
crisis-related clusters, whereas numerical models show weaker differentiation. This highlights the
complementary nature of textual and quantitative perspectives.

Table 1 consolidates six modeling approaches— two numerical (volatility- and liquidity-based), three
textual (frequency count, RNN with ada-002, RNN with text-embedding-3-large), and one based
on network centrality. We evaluate them by four criteria: (1) whether the network tightens in 2008,
(2) whether AIG’s distress is captured, (3) which firms occupy central positions, and (4) which
institutions are most closely linked to Bear Stearns and Lehman Brothers.
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Table 1: Comparison of six models in detecting network structure and crisis dynamics.

Model Denser
2008?

Predict AIG
trouble?

Center (2007) Center (2008) Center (2009) Closest to
Lehman/Bear
Stearns

t-SNE (Fig. 4) yes no n.a. n.a. n.a. GS, MS, C, MER
Freq. count
(Fig. 2)

yes no BAC, GS, C BSC BAC, C GS, MER, MS

OpenAI-ada-002
(Fig. 5)

yes no BAC, GS BAC, GS, C BAC, GS, C GS, C

OpenAI-3large
(Fig. 5)

yes no C, MER BAC, C, AIG,
BSC, MER

C GS, C

Centrality
(Sec. 6.1)

n.a. n.a. C > GS > BSC BSC > C > MS C > BAC > MS
> GS

Volatility (Fig. 3) yes no GS, BSC everyone BRK, WFC, JPM hard to tell
Liquidity (Fig. 3) yes no GS BRK, WB, MS BRK everyone

Table 1 shows a clear consensus that financial networks tightened sharply in 2008. Before the crisis,
Goldman Sachs dominated across models, followed by Bank of America and Citigroup. During the
crisis, Bear Stearns and Citigroup became central, with Morgan Stanley and Bank of America also
prominent. By 2009, Citigroup emerged as the primary hub, consistent with its expanded post-crisis
role in a consolidated system.

Across model types, textual embeddings provide the most distinctive insights. They uncover early-
warning clusters, such as the Bear Stearns–Lehman–Merrill group, that numerical models cannot
distinguish once all firms experience similar stress. This ensemble perspective demonstrates that
combining textual and numerical signals produces a more comprehensive and interpretable view of
systemic contagion.

4 Future Work

More implications can be drawn from the basic graphs we produce in this paper. However, due to the
limitation of space, we shall put them off for future research. First and most obvious is to use the
graphs to predict future crises. This is not an easy task as knowledge graphs are usually not meant for
such a purpose. Yet, luckily, the recent developments of graphic neural networks (GNN) can help
extend the existing graphs for node-level and edge-level predictions. While this is itself an intensive
study, we provide a short roadmap to how it can be done to provide certain predictions. Secondly,
one can use the existing graphs to study how numeral metrics such as volatility and liquidity can
migrate from one node to the other. This is too huge an amount of work and to be included in this
paper. Yet, we provide a short example (via Granger’s causality test) between Lehman and AIG
to demonstrate how one bank can influence the other. We should note that Granger’s causality test
belongs to the category of directed graphs (mentioned earlier) and it is not the only method to study
mutual influences between two banks. Finally, one can stress the network with hypothetical stressed
scenarios to examine how a crisis network should look like, as a precaution for a potential bank run.
Knowledge graphs in this case would need to include macroeconomic variables.

4.1 Node-Level and Edge-Level Prediction

Based on our empirical findings, a natural next step is to use these graphs for node- and edge-level
prediction, for example to anticipate which institutions may become systemically important. Graph
neural networks (GNNs) provide a natural framework for such tasks. While our current analysis
emphasizes interpretability via traditional graph metrics, future work could explore GNN-based
models once richer labeled data become available.

4.2 Causal Relationships Between Financial Institutions

One implication can be drawn from the graphs is how economically an increase in one bank’s risk
can cause the risk of the other bank. For example, the graph shows Lehman’s (#24) influence on AIG
(#22) and CME (#9) in 2008, yet the economic impact is not properly reflected in the graph. For this
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purpose, we conduct, using Lehman and AIG as an example, Granger’s causality test [4] between
Lehman and AIG. Given that we can only apply this to numerical data, not textual data, we test on
volatility and liquidity series. Hence, we test on volatility and liquidity. We test if Lehman’s volatility
and liquidity impacts AIG’s volatility and liquidity or vice versa.

Panel (A) of Table 2 presents the volatility result and panel (B) presents the liquidity result. Columns
in Table 2 are various tests and their p-values. The results suggest that AIG’s past volatility has
a Granger-causal effect on Lehman’s volatility, particularly at shorter lags (1 to 7) and with some
evidence extending to longer lags (up to 12). This implies that changes in AIG’s volatility may
predict changes in Lehman’s volatility over both short-term and potentially extended periods. On
the contrary, Granger causality from Lehman’s liquidity to AIG’s liquidity is observed at longer lags
(primarily 11 and 12), suggesting a delayed predictive effect of Lehman’s liquidity changes on AIG’s
liquidity. This could imply that changes in Lehman’s liquidity take longer to impact AIG’s liquidity,
or there is a delayed response in AIG’s liquidity to shifts in Lehman’s liquidity.

Table 2: Granger Causality Test Results for Lehman and AIG. Values are test statistics and corre-
sponding p-values for lags 1–12. Significant p-values (typically < 0.05) are bolded.

Lag SSR F p (F) SSR χ2 p (χ2) LR p (LR) Par. F p (Par. F)

(A) Volatility: Does AIG → LEH?

1 12.40 0.0006 12.66 0.0004 12.14 0.0005 12.40 0.0006
2 5.88 0.0035 12.18 0.0023 11.70 0.0029 5.88 0.0035
3 3.60 0.0153 11.33 0.0101 10.91 0.0122 3.60 0.0153
4 3.07 0.0186 13.09 0.0108 12.53 0.0138 3.07 0.0186
5 2.79 0.0197 15.11 0.0099 14.37 0.0134 2.79 0.0197
6 2.60 0.0207 17.14 0.0088 16.19 0.0128 2.60 0.0207
7 2.27 0.0325 17.79 0.0129 16.77 0.0190 2.27 0.0325
8 1.82 0.0790 16.57 0.0349 15.67 0.0474 1.82 0.0790
9 1.71 0.0947 17.76 0.0380 16.72 0.0532 1.71 0.0947

10 1.47 0.1574 17.37 0.0666 16.37 0.0896 1.47 0.1574
11 1.41 0.1787 18.58 0.0691 17.43 0.0957 1.41 0.1787
12 1.66 0.0865 24.30 0.0185 22.37 0.0336 1.66 0.0865

(B) Liquidity: Does LEH → AIG?

1 0.28 0.5990 0.29 0.5934 0.28 0.5936 0.28 0.5990
2 0.63 0.5332 1.32 0.5168 1.31 0.5187 0.63 0.5332
3 0.46 0.7095 1.47 0.6886 1.46 0.6907 0.46 0.7095
4 0.43 0.7882 1.85 0.7626 1.84 0.7653 0.43 0.7882
5 0.57 0.7260 3.13 0.6806 3.08 0.6870 0.57 0.7260
6 0.56 0.7650 3.75 0.7098 3.69 0.7179 0.56 0.7650
7 0.71 0.6650 5.71 0.5741 5.57 0.5907 0.71 0.6650
8 1.68 0.1134 15.81 0.0452 14.80 0.0632 1.68 0.1134
9 1.58 0.1312 17.18 0.0460 15.98 0.0673 1.58 0.1312

10 1.34 0.2200 16.57 0.0844 15.44 0.1167 1.34 0.2200
11 2.57 0.0073 35.68 0.0002 30.90 0.0011 2.57 0.0073
12 2.29 0.0143 35.62 0.0004 30.82 0.0021 2.29 0.0143

The results suggest that AIG’s past volatility has a Granger-causal effect on Lehman’s volatility,
particularly at shorter lags (1 to 7) and with some evidence extending to longer lags (up to 12).
This implies that changes in AIG’s volatility may predict changes in Lehman’s volatility over both
short-term and potentially extended periods. On the contrary, Granger causality from Lehman’s
liquidity to AIG’s liquidity is observed at longer lags (primarily 11 and 12), suggesting a delayed
predictive effect of Lehman’s liquidity changes on AIG’s liquidity. This could imply that changes
in Lehman’s liquidity take longer to impact AIG’s liquidity, or there is a delayed response in AIG’s
liquidity to shifts in Lehman’s liquidity.

4.3 Potential Bias

In this study, we acknowledge the broader discussion on potential biases in textual analysis, par-
ticularly how skewed data can lead to unfair or distorted outcomes. Our approach mitigates such
concerns in two ways. First, we do not rely on ChatGPT-generated content; OpenAI’s embedding
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models are used solely as fixed feature extractors. The actual analysis is performed using our own
recurrent neural network (RNN), which is trained independently on historical news data rather than
fine-tuned on post-crisis corpora. Second, we address temporal bias: since large language models
like ChatGPT are trained on data up to 2023, applying them directly to study the 2008 financial crisis
could introduce hindsight bias. To avoid this, our knowledge graphs are constructed exclusively from
period-specific data, preserving both the temporal integrity and authenticity of the analysis.

5 Conclusion

This paper demonstrates the value of integrating textual data and generative AI in the analysis
of financial systemic risk. By constructing knowledge graphs from news articles using OpenAI’s
advanced text embeddings, we capture a more nuanced and timely view of firm interconnectedness
than is possible with numerical data alone. The results reveal a clear rise in network density during the
2008 crisis and, importantly, uncover clusters of vulnerable institutions identified from pre-crisis news,
suggesting that textual embeddings may provide early warning indicators of financial instability.

A key limitation of our study lies in the potential for hindsight bias, as the embedding models were
trained on post-crisis information. Future research could mitigate this issue by employing models
trained exclusively on period-specific corpora. Moreover, while our current analysis is descriptive,
the resulting graphical structures offer a foundation for predictive modeling. In particular, Graph
Neural Networks (GNNs) could be applied to forecast emerging linkages or identify institutions
likely to become systemically important. Such extensions represent a promising avenue for advancing
generative-AI–based systemic risk monitoring and financial stability analysis.
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6 Appendix

6.1 Centrality Scores

Table 3: Centrality scores for 2007 (threshold 50)

Node (vertex) Degree Betweenness Closeness EigenCentrality PageRank

BAC 0.8182 0.3909 0.6471 0.2126 0.1448
JPM 0.2727 0.0000 0.4074 0.0509 0.0371
C 1.0000 0.3467 0.6471 0.4615 0.2299
WFC 0.2727 0.0727 0.4400 0.0509 0.0540
BAC2 0.8182 0.0745 0.4583 0.3243 0.1195
GS 0.9091 0.0670 0.5000 0.4462 0.1288
MS 0.8182 0.0215 0.5000 0.4462 0.1383
BSC.1 0.7273 0.0085 0.5000 0.4462 0.0794
LEHMQ 0.4545 0.0000 0.3548 0.1846 0.0306
USB 0.0909 0.0000 0.0000 0.0000 0.0125
WAMUQ 0.0909 0.0000 0.0000 0.0000 0.0125
WB.1 0.0909 0.0000 0.0000 0.0000 0.0125

Table 4: Centrality scores for 2008 (threshold 200)

Node (vertex) Degree Betweenness Closeness EigenCentrality PageRank

AXP 0.1250 0.0000 0.0000 0.0000 0.0265
BSC.1 0.8750 0.0000 0.8789 0.6660 0.2544
BEN 0.3750 0.0000 0.4737 0.2763 0.0985
BAC 0.1250 0.0000 0.0000 0.0000 0.0265
C 0.6250 0.0590 0.3828 0.4559 0.1132
BAC2 0.3125 0.0076 0.2356 0.2101 0.0557
MS 0.5625 0.0465 0.3403 0.3896 0.0923
BRK 0.1250 0.0000 0.0000 0.0000 0.0265
WFC 0.3125 0.0056 0.2356 0.2101 0.0651
COF 0.1250 0.0000 0.0000 0.0000 0.0265
GS 0.3125 0.0063 0.2188 0.1795 0.0561
JPM 0.0625 0.0000 0.0000 0.0000 0.0265
LEHMQ 0.1875 0.0000 0.0000 0.0000 0.0265
PRU 0.1250 0.0000 0.0000 0.0000 0.0265
STT 0.0625 0.0000 0.0000 0.0000 0.0265
WAMUQ 0.0625 0.0000 0.0000 0.0000 0.0265
WB.1 0.2500 0.0000 0.0000 0.0000 0.0265

Table 5: Centrality scores for 2009 (threshold 200)

Node (vertex) Degree Betweenness Closeness EigenCentrality PageRank

BAC 1.2857 0.2143 0.7000 0.3034 0.1600
GS 0.7143 0.0000 0.5833 0.4591 0.1469
MS 1.0000 0.0238 0.7778 0.5521 0.2234
BAC2 0.5714 0.0000 0.4375 0.0990 0.0480
WFC 0.8571 0.1190 0.6364 0.2790 0.0999
C 1.4286 0.2143 0.8750 0.5521 0.2843
JPM 0.2857 0.0000 0.0000 0.0000 0.0188
WB.1 0.1429 0.0000 0.0000 0.0000 0.0188

Note: The ticker for Merrill Lynch was originally MER. Since it was bailed out by Bank of America
(BAC), in the dataset, it is labeled as BAC2. Similarly, the ticker for Bear Stearns was BSC (BSC.1
in dataset); for Lehman Brothers was LEH (LEHMQ in dataset); for Washington Mutual was WAMU
(WAMUMQ in dataset); and for Wachovia was WB (WB.1 in dataset). Finally, BBT was originally
the ticker for Branch Banking and Trust Company which was later merged with Sun Trust Bank and
changed its name to Truist (TFC).
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Table 6: Firm reference table.

Ticker Name Number

AFL Aflac 1
AXP American Express 2
BAC Bank of America 3
BBT BB & T (Truist) 4
BEN Franklin Resources 5
BK Bank of NY Mellon 6
BRK Berkshire Hathaway 7
C Citigroup 8
CME CME Group 9
COF Capital One 10
GS Goldman Sachs 11
JPM JP Morgan 12
MET MetLife 13
MS Morgan Stanley 14
PNC PNC Bank 15
PRU Preduntial 16
SPG Simon Property 17
STT State Street 18
TRV Travelers Group 19
USB US BankCorp 20
WFC Wells Fargo 21
AIG AIG 22
BSC.1 (BSC) Bear Stearns 23
LEHMQ (LEH) Lehman Brothers 24
BAC2 (MER) Merrill Lynch 25
WAMUMQ (WAMU) Washington Mutual 26
WB.1 (WB) Wachovia 27
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